磁滞回线实验数据

合集下载

磁滞回线的测量(实验报告)

磁滞回线的测量(实验报告)

实验名称: 用示波器观测铁磁材料的动态磁滞回线姓 名学 号 班 级桌号教 室 基础教学楼1101实验日期 2016年 月 日 节4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。

二、实验仪器1. 双踪示波器2. DH4516C 型磁滞回线测量仪三、实验原理(一)铁磁物质的磁滞现象铁磁性物质除了具有高的磁导率外,另一重要的特点就是磁滞。

以下是关于磁滞的几个重要概念1、饱和磁感应强度B S 、饱和磁场强度H S 和磁化曲线铁磁材料未被磁化时,H 和B 均为零。

这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H 与磁感应强度B 也随之变大,其B-H 变化曲线如图1(OS )曲线所示。

到S 后,B 几乎不随H 的增大而增大,此时,介质的磁化达到饱和。

与S 对应的H S 称饱和磁场强度,相应的B S 称饱和磁感应强度。

我们称曲线OS 为磁性材料的磁化曲线。

图1 磁性材料的磁化曲线 图2 磁滞回线和磁化曲线2、磁滞现象、剩磁、矫顽力、磁滞回线当铁磁质磁化达到饱和后,如果使H 逐步退到零,B 也逐渐减小,但B 的减小“跟不上”H 的减小(B 滞后于H )。

即:其轨迹并不沿原曲线SO ,而是沿另一曲线Sb 下降。

当H 下降为零时,B 不为零,而是等于B r ,说明铁磁物质中,当磁化场退为零后仍保留一定的磁性。

这种现象叫磁滞现象,B r 叫剩磁。

若要完全消除剩磁B r ,必须加反向磁场,当B =0时磁场的值H c 为铁磁质的矫顽力。

当反向磁场继续增加,铁磁质的磁化达到反向饱和。

反向磁场减小到零,同样出现剩磁现象。

不断地正向或反向缓慢改变磁场,磁化曲线成为一闭合曲线,这个闭合曲线称为磁滞回线,如图2所示。

即:IH (1)由(1)式可知,若将电压U1输入示波器 X偏转板时,示波器上任一时刻电子束在X轴的偏转正比于磁场强度H。

为了追踪测量样品内的磁感应强度B,在截面面积为S的样品中缠绕副线圈N2,B可通过副线圈N2中由于磁通量变化而产生的感应电动势ε来测定。

磁滞回线实验报告精选全文完整版

磁滞回线实验报告精选全文完整版

〖实验三十〗用示波器观测动态磁滞回线〖目的要求〗1、学习使用示波器对动态磁滞回线进行观察和测量,了解磁感应强度和磁场强度的测量方法;2、学习应用RC 积分电路;3、了解铁磁性材料的动态磁化特性。

〖仪器用具〗动态磁滞回线测量仪(包括正弦波信号源、待测铁磁样品及绕组、积分电路所用的电阻和电容),双踪读出示波器,直流电源,数字多用表,滑线变阻器。

〖实验原理〗1、铁磁材料的磁化特性把物体放在外磁场H 中,物体就会被磁化,其内部产生磁场。

设其内部磁化强度为M ,磁感应强度为B ,可以定义磁化率m χ和相对磁导率r μ表征物质被磁化的难易程度:0m r M H B Hχμμ==物质的磁性按磁化率m χ可以分为抗磁性、顺磁性和铁磁性三种。

抗磁性物质的磁化率为负值,通常在5610~10--的量级,且几乎不随温度变化;顺磁性物质的磁化率通常为2410~10--之间,且随温度线性增大;而铁磁性物质的磁化率通常远大于1,且随温度增高而变小。

除了磁导率高以外,铁磁材料还具有特殊的磁化规律。

对一个处于磁中性状态(H=0且B=0)的铁磁材料加上由小变大的磁场H 进行磁化时,磁感应强度B 随H 的变化曲线称为起始磁化曲线,它大致分为三个阶段:①可逆磁化阶段,当H 很小的时候,B 随H 变化可逆,见图中OA 段,若减小H ,B 会沿AO返回至原点;②不可逆磁化阶段,见图中AS 段,若减小H ,B 不会沿SA 返回(比如当磁场从D 点的D H 减小到D H H -∆,再从D H H -∆增大到D H ,B-H 轨迹会是图中点线所示的回线样式);③饱和磁化阶段,见图中SC 段,在S 点材料已经被磁化至饱和状态,继续增大H ,磁化强度M 不再增大,由于0(M H)βμ=+,B 会随H 线性增大,但增量极小。

图中S H 和S B 表示M 刚刚达到饱和值时的H 和B 的值,分别称为饱和磁场强度和饱和磁感应强度。

如果将铁磁材料磁化到饱和状态(图中S 点)后再减小磁场H ,那么磁感应强度B 会随H 减小而减小,但并不沿起始磁化曲线SAO 减小,而会沿着SP 这条更缓慢的曲线减小。

动态法测量磁滞回线和磁化曲线实验报告

动态法测量磁滞回线和磁化曲线实验报告

动态法测量磁滞回线和磁化曲线实验报告动态法测量磁滞回线和磁化曲线实验报告一、引言磁滞回线和磁化曲线是研究磁性材料磁化性质的重要工具。

磁滞回线描述了材料在外加磁场作用下磁化程度的变化规律,而磁化曲线则反映了材料的磁化特性。

本实验通过动态法测量磁滞回线和磁化曲线,旨在深入了解磁性材料的磁化行为,并通过分析实验数据得出相关结论。

二、实验原理1. 磁滞回线磁滞回线是描述材料在外加磁场逐渐增加和减小过程中磁化程度的变化情况。

在实验中,我们需要使用霍尔效应磁强计来测量磁场强度,从而可以得到材料的磁滞回线。

2. 磁化曲线磁化曲线是描述材料在外加磁场作用下磁化程度随磁场变化的曲线。

在实验中,我们需要使用霍尔效应磁强计和恒流源来测量材料在不同磁场强度下的磁场强度和磁化强度,并绘制出磁化曲线。

三、实验步骤1. 实验准备:a. 准备一块磁性材料样品,并将其放置在实验装置上。

b. 连接霍尔效应磁强计和恒流源到实验装置上,确保测量的准确性和稳定性。

2. 磁滞回线的测量:a. 调整恒流源的电流使得霍尔效应磁强计输出为零。

b. 逐渐增加恒流源的电流,记录同时测量到的磁场强度和霍尔效应磁强计输出的数值。

c. 逐渐减小恒流源的电流,重复步骤b的测量过程。

d. 根据实验数据绘制磁滞回线图。

3. 磁化曲线的测量:a. 调整恒流源的电流使得霍尔效应磁强计输出为零。

b. 逐渐增加恒流源的电流,记录同时测量到的磁场强度和霍尔效应磁强计输出的数值。

c. 根据实验数据绘制磁化曲线图。

四、实验结果与讨论1. 磁滞回线的分析根据所测得的磁滞回线数据,我们可以观察到磁性材料在磁场逐渐增大过程中逐渐磁化,达到饱和磁化强度后,进一步增大磁场也不会有明显增加的效果。

而在磁场逐渐减小过程中,磁性材料的磁化程度也会随之减小,直到完全消除磁化。

磁滞回线的形状对应着材料的磁滞损耗和剩磁等特性。

2. 磁化曲线的分析根据所测得的磁化曲线数据,我们可以观察到磁性材料在不同磁场强度下的磁化程度存在一定的非线性关系。

磁化曲线和磁滞回线测量实验报告

磁化曲线和磁滞回线测量实验报告

磁化曲线和磁滞回线测量实验报告磁化曲线和磁滞回线测量实验报告引言:磁场是物质中储存的一种能量形式,而磁化曲线和磁滞回线则是描述磁场特性的重要工具。

本实验旨在通过测量磁化曲线和磁滞回线的变化,了解磁场对物质的影响,以及探索磁场的特性和应用。

实验步骤:1. 实验仪器和材料准备:- 电磁铁- 磁场强度计- 直流电源- 磁滞回线测量仪2. 实验过程:a. 将电磁铁连接到直流电源上,并调节电流大小以改变磁场强度。

b. 在不同电流下,使用磁场强度计测量磁场强度,并记录数据。

c. 使用磁滞回线测量仪,测量不同电流下的磁滞回线。

实验结果与讨论:通过实验测量,我们获得了一系列磁化曲线和磁滞回线的数据。

根据这些数据,我们可以得出以下结论:1. 磁化曲线:磁化曲线描述了物质在外加磁场作用下磁矩的变化情况。

从实验数据中,我们可以观察到磁化曲线呈现出非线性的特点。

随着外加磁场的增加,磁矩也随之增加,但增加的速率逐渐减慢,直至趋于饱和。

这是因为在磁场较小的情况下,磁矩的增加主要是由于磁矩的取向发生变化,而在磁场较大时,磁矩的取向已经趋于饱和,因此磁矩的增加速率减慢。

2. 磁滞回线:磁滞回线描述了物质在磁场强度发生变化时,磁矩的变化情况。

从实验数据中,我们可以看到磁滞回线呈现出环形的特点。

当磁场强度逐渐增加时,磁矩也随之增加,但当磁场强度减小时,磁矩并不完全回到初始状态,而是略微偏离。

这是因为在磁场强度减小时,磁矩的取向需要一定的能量来改变,导致磁矩的回复不完全。

3. 磁场的应用:磁场的特性和应用广泛。

在电磁铁中,通过改变电流大小可以控制磁场强度,从而实现吸附和释放物体的功能。

在电动机和发电机中,利用磁场与电流的相互作用,实现能量的转换和传输。

此外,磁场还在磁存储器、磁共振成像等领域发挥着重要作用。

结论:通过本次实验,我们深入了解了磁化曲线和磁滞回线的测量方法和特性。

磁化曲线展示了物质在外加磁场下磁矩的变化规律,而磁滞回线则描述了物质在磁场强度变化时磁矩的变化情况。

铁磁材料的磁滞回线实验报告

铁磁材料的磁滞回线实验报告

铁磁材料的磁滞回线实验报告一、实验目的。

本实验旨在通过实验方法测量铁磁材料的磁滞回线,了解铁磁材料的磁滞特性。

二、实验原理。

磁滞回线是指在磁场的作用下,材料磁化强度随着磁场的变化而发生变化,并且在去除磁场后,材料的磁化强度不完全回到零点,形成一个闭合的回线。

铁磁材料的磁滞回线特性是其重要的磁性能指标之一。

三、实验仪器与设备。

1. 电磁铁。

2. 电源。

3. 示波器。

4. 铁磁材料样品。

四、实验步骤。

1. 将铁磁材料样品放置在电磁铁中间位置。

2. 调节电源输出电压,使电磁铁通电,产生磁场。

3. 用示波器测量铁磁材料的磁感应强度随磁场变化的曲线。

4. 逐渐减小电磁铁的电流,观察示波器上的磁滞回线变化。

五、实验数据记录与分析。

根据实验测得的数据,我们绘制了铁磁材料的磁滞回线曲线图。

从曲线图中可以清晰地看出铁磁材料的磁化特性。

在磁场强度增加时,磁感应强度随之增加,但当磁场强度减小时,磁感应强度并不完全回到零点,而是形成一个闭合的回线。

六、实验结论。

通过本次实验,我们深入了解了铁磁材料的磁滞回线特性。

磁滞回线是铁磁材料在磁化过程中产生的一种特殊现象,对于材料的磁性能有着重要的影响。

通过测量和分析磁滞回线,可以更好地了解铁磁材料的磁化特性,为材料的应用提供重要参考。

七、实验注意事项。

1. 在实验中要注意安全,避免触电和磁场对身体造成的影响。

2. 实验过程中要注意仪器的正确使用和操作方法,保证实验数据的准确性和可靠性。

八、参考文献。

1. 《材料物理学实验指导》。

2. 《磁性材料与器件》。

以上为铁磁材料的磁滞回线实验报告。

磁滞回线实验

磁滞回线实验

磁滞回线实验报告一、实验目的1、用示波器观测软磁材料的交流磁滞回线2、学习标定磁场强度,磁感应强度,测量样品的磁参数3、了解铁磁材料的磁化过程及磁化规律 二、仪器用具磁滞回线实验仪器(两个待测样品、一个软铁、一个硅钢片等),低压交流源,电感,示波器,直流电压源,数字万能表,导线若干。

三、实验原理磁滞回线表现磁场强度周期性变化时,强磁性物质磁滞现象的闭合磁化曲线。

四、实验内容与步骤1、电路连接:选样品1按实验仪上所给电路图连接电路,令1R =2.5Ω,“U 选择”置于0位,H U 和B U 分别接入示波器的“X 输入”和“Y 输入”,插孔为公共端。

2、样品退磁:开启实验仪电源,顺时针方向转动“U 选择”按钮,令U 从0增至3V ,然后逆时针转动旋钮,将U 从最大降至0,消除剩磁。

3、观察磁滞回线:开启示波器电源,令光点位于坐标网格中心,令U=2.2V ,并分别调节示波器X 和Y 轴灵敏度,使显示屏出现图形大小合适的磁滞回线。

4、绘制基本磁化曲线:按步骤二对样品进行退磁,从U=0开始,逐档提高励磁电压,记录下这些磁滞回线第一象限顶点的坐标,其连线就是样品的基本磁化曲线B -H ;再做μ-H 曲线。

5、调节U=1.2V ,1R =2.5Ω,测定样品一的一组UB 和UH ,记录测量数据。

计算出D H 、r B 、m B 和H B ,绘出样品一的磁滞回线。

五、数据记录及处理 1、绘制基本磁化曲线(H U LR N 1H =, B U nS R 22C B = , HB=μ)2、测定样品一的一组UB、UH值六、注意事项1、磁滞回线顶部出现小环,降低励磁电压予以消除。

2、建议选择样品一做实验,测得数据绘制的磁滞回线的图形比较饱满,实验数据更好测量。

3、无信号接入时,因为噪声会产生峰值,但是接入了信号后噪声产生的峰值会消除。

铁磁材料的磁滞回线实验报告

铁磁材料的磁滞回线实验报告

铁磁材料的磁滞回线实验报告磁滞回线是描述铁磁材料磁化特性的重要参数之一,通过实验可以直观地观察到铁磁材料在外加磁场作用下的磁化和去磁化过程,从而得到磁滞回线的形状和相关参数。

本实验旨在通过实际操作,掌握铁磁材料的磁滞回线特性,并对实验结果进行分析和讨论。

实验仪器和材料:1. 铁磁材料样品。

2. 交变电流源。

3. 示波器。

4. 电阻。

5. 电感。

6. 直流电源。

7. 电流表。

8. 电压表。

9. 磁场计。

实验步骤:1. 将铁磁材料样品包绕绕组,接入电阻和电感,构成串联交变电路。

2. 将直流电源接入绕组,通电使铁磁材料样品磁化。

3. 调节直流电源,改变磁场强度,观察示波器上的磁滞回线波形。

4. 测量不同磁场强度下的磁感应强度和磁场强度,记录数据。

5. 分析实验数据,绘制磁滞回线图,并计算相关参数。

实验结果和分析:通过实验测量和分析,我们得到了铁磁材料的磁滞回线图,并计算出了相关的参数。

从磁滞回线图可以看出,铁磁材料的磁化曲线呈现出明显的磁滞现象,磁滞回线闭合成环形。

在磁化和去磁化过程中,磁感应强度和磁场强度之间存在一定的滞后关系,这是铁磁材料特有的磁滞特性。

根据实验数据计算得到的参数,我们可以得出铁磁材料的磁滞回线图的面积代表了磁滞损耗,磁滞损耗越大,说明铁磁材料的磁化和去磁化过程中能量损耗越大。

而磁滞回线图的形状和大小也反映了铁磁材料的磁化特性和磁滞特性,对于不同的铁磁材料,其磁滞回线图的形状和参数也会有所不同。

结论:通过本次实验,我们深入了解了铁磁材料的磁滞回线特性,通过实际操作和数据分析,掌握了磁滞回线的测量方法和相关参数的计算方法。

磁滞回线是铁磁材料磁化特性的重要指标,对于铁磁材料的应用具有重要的意义。

在今后的学习和科研工作中,我们将进一步深入研究铁磁材料的磁化特性和磁滞特性,不断提高实验技能和数据分析能力,为铁磁材料在电磁器件、电机、变压器等领域的应用提供更有力的支持和保障。

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告一、实验目的1、认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。

2、测定样品的基本磁化曲线,作μ—H 曲线。

3、测定样品的 Hc、Br、Bm 和(Hm,Bm)等参数。

4、了解磁性材料在工程技术中的应用。

二、实验原理1、铁磁物质的磁化特性铁磁物质具有很强的磁化特性,其磁感应强度 B 与磁场强度 H 之间不是简单的线性关系。

当 H 从零开始增加时,B 随之缓慢增加;当H 增加到一定值时,B 急剧增加,这种现象称为磁饱和。

当 H 从最大值逐渐减小时,B 并不沿原曲线返回,而是滞后于 H 的变化,这种现象称为磁滞。

2、磁滞回线当磁场强度 H 从最大值 Hm 逐渐减小到零,再反向增加到 Hm,然后再从 Hm 逐渐减小到零,最后又正向增加到 Hm 时,B 随 H 变化的闭合曲线称为磁滞回线。

磁滞回线所包围的面积表示在一个反复磁化的循环过程中单位体积的铁磁物质所消耗的能量。

3、基本磁化曲线对同一铁磁材料,选择不同的最大磁场强度 Hm 进行反复磁化,可得到一系列大小不同的磁滞回线。

连接这些磁滞回线顶点的曲线称为基本磁化曲线,它反映了铁磁材料在反复磁化过程中的平均磁化特性。

4、磁性材料的分类根据磁滞回线的形状,磁性材料可分为软磁材料和硬磁材料。

软磁材料的磁滞回线狭窄,剩磁 Br 和矫顽力 Hc 都很小,磁导率高,适用于制作变压器、电机的铁芯等;硬磁材料的磁滞回线宽阔,Br 和 Hc都很大,适用于制作永磁体。

三、实验仪器1、磁滞回线实验仪2、示波器四、实验步骤1、按实验仪的电路图连接好线路,确保线路连接正确无误。

2、将样品放入测试线圈中,调节示波器的灵敏度和扫描速度,使示波器上能显示出清晰的磁滞回线。

3、逐渐增加磁场强度 Hm,观察磁滞回线的变化,记录不同 Hm下的磁滞回线。

4、测量磁滞回线的顶点坐标,计算出相应的 Bm、Hm、Br 和 Hc 等参数。

5、绘制基本磁化曲线,即 B—H 曲线。

磁滞回线实验报告数据

磁滞回线实验报告数据

磁滞回线实验报告数据分析磁滞回线实验是物理学实验中常见的一种。

通过测量材料在磁场作用下的磁化过程,绘制出磁化曲线,即可获得磁滞回线。

本次实验旨在探究材料的磁滞性质及磁导率。

实验过程1. 将待测材料铁心绕上绕组,接上电源和电流表。

2. 调节电源输出电压,使电流从0开始逐渐加大,同时记录电流表和磁感应强度计的读数。

3. 当电流达到一定值时,非线性磁化开始表现出来,此时记录磁感应强度计的读数。

4. 当电流达到最大值后,逐渐将电流减小,同时记录磁感应强度计的读数。

5. 循环进行上述步骤,直至测量三次的数据具有较好的一致性。

实验结果通过实验测量,我们获得了三组数据,具体如下表所示:电流/I 磁感应强度/B1.0 10.12.0 19.23.0 26.34.0 31.65.0 35.84.0 32.13.0 27.52.0 20.31.0 10.40.0 0.0-1.0 -10.5-2.0 -19.0-3.0 -26.1-4.0 -31.2-5.0 -35.1-4.0 -31.5-3.0 -27.5-2.0 -20.1-1.0 -10.20.0 0.0通过对实验数据的处理,我们得出以下结论:1. 实验结果表明,在磁场作用下,材料的磁化曲线呈现出饱和、非线性的特性,即磁滞性。

2. 随着电流的逐渐增大,材料开始发生磁化,此时磁感应强度也随之增大;当电流达到一定值时,材料的磁化逐渐趋于饱和,磁感应强度达到最大值。

3. 当电流从最大值逐渐减小时,由于材料的磁滞特性,磁感应强度并不会立即跟随电流下降,而是形成了一个环形的回线。

4. 磁滞回线的大小和形状与材料的性质密切相关,可以通过对磁滞回线的分析来探究材料的磁性质。

实验结论通过本次磁滞回线实验,我们成功地获得了材料的磁滞回线数据,并探索了材料的磁性质。

下一步需要对数据进行更进一步的处理和分析,深化对材料磁性质的认识。

磁滞回线实验报告磁导率

磁滞回线实验报告磁导率

磁滞回线实验报告 - 磁导率1. 引言磁滞回线是指在磁化和去磁化过程中,材料的磁化强度与磁场强度之间的关系曲线。

磁滞回线的形状与材料的磁导率密切相关。

本实验旨在通过测量磁滞回线,研究不同材料的磁导率。

2. 实验设备和材料•电源•电流表•铁芯线圈•铁芯样品•磁场强度计(霍尔效应磁场传感器)3. 实验步骤3.1 准备工作•将铁芯线圈连接至电源,并将电流表与线圈串联,以测量通过线圈的电流。

•将磁场强度计连接至电源,以测量磁场强度。

3.2 测量铁芯样品的磁滞回线1.将铁芯样品置于铁芯线圈中心,并调整线圈的电流,使得磁场强度为零。

2.逐渐增加线圈电流,记录不同电流值下的磁场强度。

3.当线圈电流达到最大值时,逐渐减小电流,同样记录不同电流值下的磁场强度。

4.根据记录的磁场强度和电流数据,绘制磁滞回线图。

3.3 计算磁导率根据磁滞回线图,可以计算出磁芯样品的磁导率。

磁导率可以通过下式计算得出:磁导率 = 斜率 * 磁场强度 / 电流其中,斜率为磁滞回线上的斜率,磁场强度为磁滞回线上的纵坐标值,电流为通过线圈的电流值。

4. 结果和讨论根据实验测量得到的磁滞回线图,我们可以得到铁芯样品的磁导率。

通过对不同材料的磁滞回线进行比较,可以得出不同材料的磁导率差异。

这对于材料的选取和应用具有重要意义。

5. 结论通过本实验,我们成功测量了铁芯样品的磁滞回线,并计算出了磁导率。

磁滞回线实验是研究材料磁性特性的重要手段之一,可以为材料的应用提供参考依据。

6. 参考文献[1] 张三, 李四. 磁滞回线实验原理与方法. 物理实验教程, 20XX.[2] 王五, 赵六. 磁导率的测量与计算. 物理研究, 20XX.。

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】实验题目:铁磁材料的磁滞回线和基本磁化曲线 实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ-H 曲线;计算样品的H c 、B r 、B m 和(H m ,B m )等参数;测绘样品的磁滞回线,估算其磁带损耗。

实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很大;在磁化场作用停止后,铁磁质可以保留磁化状态。

以B 为纵轴,H 为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H 开始增加时,B 随之增加。

如右上图中a ,称为起始磁化曲线。

当H 从H m 减小时,B 沿滞后于H 的曲线SR 减小,这就是磁滞现象。

当H=0时,B=B r 称为保留剩磁。

当B=0时,H=-H c ,H c 称为矫顽力。

当磁场沿H m →0→-H c →-H m →0→H c →H m 次序变化时,相应的B 沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线。

若铁磁材料在交变电场中不断反复被磁 图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的能量,称为磁滞损耗,其值与磁滞回线面积成正比。

磁滞回线的顶点的连线称为基本磁化曲线(右下图)。

B图二:基本磁化曲线实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至,测量铁磁质的磁滞回线;3、将电压从逐渐调至,依次得到Bm 、Hm,从而得到铁磁质的基本磁化曲线。

实验数据:磁滞回线:表一:磁滞回线数据基本磁化曲线:表二:基本磁化曲线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:Bm=;Hm=m;Br=;Hc=m。

基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

实验题目:铁磁材料的磁滞回线和基本磁化曲线实验目的:认识铁磁物质的磁化规律;测定样品的基本磁化规律,作μ-H 曲线;计算样品的H c 、B r 、B m 和(H m ,B m )等参数;测绘样品的磁滞回线,估算其磁带损耗。

实验原理:铁磁物质在外磁场作用下被强烈磁化,故磁导率μ很大;在磁化场作用停止后,铁磁质可以保留磁化状态。

以B 为纵轴,H 为横轴作图,原点表示磁化之前物质处于磁中性状态,B=H=0,当H 开始增加时,B 随之增加。

如右上图中a ,称为起始磁化曲线。

当H 从H m 减小时,B 沿滞后于H 的曲线SR 减小,这就是磁滞现象。

当H=0时,B=B r 称为保留剩磁。

当B=0时,H=-H c ,H c 称为矫顽力。

当磁场沿H m →0→-H c →-H m →0→H c →H m 次序变化时,相应的B 沿一条闭合曲线变化(右上图),这个曲线就是磁滞回线。

若铁磁材料在交变电场中不断反复被磁 图一:磁滞回线化、去磁化,那么材料在这个过程中要消耗额外的能量,称为磁滞损耗,其值与磁滞回线面积成正比。

磁滞回线的顶点的连线称为基本磁化曲线(右下图)。

B图二:基本磁化曲线实验内容:1、将仪器的连线连接好,开启仪器;2、退磁后,将额定电压调至3.0V,测量铁磁质的磁滞回线;3、将电压从0.5V逐渐调至3.0V,依次得到B m、H m,从而得到铁磁质的基本磁化曲线。

实验数据:磁滞回线:表一:磁滞回线数据基本磁化曲线:表二:基本磁化曲线数据数据处理:磁滞回线根据数据作图得:图三:实验测量所得磁滞回线从图中大致得到:B m=0.604T;H m=194.0A/m;B r=0.183T;H c=37.3A/m。

基本磁化曲线根据数据作图得:图四:实验所得基本磁化曲线实验小结:1、本实验原理相对比较简单,操作上也没有什么难点,但是应该注意每次进行完一次测量,应当进行退磁处理,否则测量结果将不准确;2、实验中发现若使用电压越高,那么进行一次退磁后的剩磁会越多,这和电压高所带来的更大的磁滞现象有关;3、实验最终所得结果比较理想,磁滞曲线和基本磁化曲线与标准图样相比基本相同。

动态磁滞回线实验报告

动态磁滞回线实验报告

动态磁滞回线实验报告动态磁滞回线实验报告引言:磁滞回线是磁性材料在外加磁场作用下磁化过程中磁化强度与磁场强度之间的关系曲线。

磁滞回线实验是研究磁性材料性质的重要手段之一。

本实验旨在通过测量磁滞回线,探究材料的磁性特性。

实验装置:本实验采用了一台磁滞回线测量仪,该仪器可通过改变外加磁场的大小和方向,测量材料在不同磁场下的磁化强度。

实验步骤:1. 准备工作:将待测材料样品放置于磁滞回线测量仪的磁场中心位置,并确保样品与测量仪的传感器之间的距离合适。

2. 测量初始状态:调节磁滞回线测量仪的磁场为零,记录此时材料的磁化强度为初始状态。

3. 施加外加磁场:逐渐增加外加磁场的大小,每次增加一定值后等待磁化强度稳定后记录数据,直到达到最大外加磁场。

4. 减小外加磁场:逐渐减小外加磁场的大小,每次减小一定值后等待磁化强度稳定后记录数据,直到外加磁场为零。

5. 测量结束:记录完整的磁滞回线数据后,实验结束。

实验结果:根据实验所得数据,我们可以绘制出材料的磁滞回线曲线图。

磁滞回线图展示了材料在不同磁场下的磁化强度变化情况,从而揭示了材料的磁性特性。

讨论与分析:1. 磁滞回线形状:根据实验结果,我们可以观察到磁滞回线的形状可能呈现为对称的椭圆形、长方形或其他形状。

不同形状的磁滞回线反映了材料的不同磁性特性,如饱和磁化强度、剩余磁化强度和矫顽力等。

2. 磁滞回线的宽度:磁滞回线的宽度反映了材料的磁滞效应,即磁化强度随磁场变化的灵敏程度。

宽度较大的磁滞回线表明材料的磁滞效应较强,而宽度较小的磁滞回线则表明材料的磁滞效应较弱。

3. 磁滞回线的面积:磁滞回线的面积代表了材料在磁化过程中消耗的能量。

面积较大的磁滞回线表明材料在磁化过程中消耗的能量较多,而面积较小的磁滞回线则表明材料在磁化过程中消耗的能量较少。

结论:通过本次实验,我们成功地测量并分析了材料的磁滞回线。

磁滞回线图展示了材料的磁性特性,如饱和磁化强度、剩余磁化强度和矫顽力等。

磁滞回线实验报告数据

磁滞回线实验报告数据

磁滞回线实验报告数据磁滞回线实验报告数据引言:磁滞回线实验是物理学中的一个重要实验,它可以通过测量材料在外加磁场作用下磁化强度与磁场强度之间的关系,来研究材料的磁性特性。

本文将介绍一次磁滞回线实验的数据结果,并对实验结果进行分析和讨论。

实验装置和方法:本次实验使用的装置主要包括磁场强度调节装置、磁场强度测量仪和磁化强度测量仪。

首先,我们将待测材料放置在磁场强度调节装置中,并通过调节装置控制外加磁场的强度。

然后,使用磁场强度测量仪测量外加磁场的强度,并使用磁化强度测量仪测量材料的磁化强度。

在不同外加磁场强度下,记录下对应的磁化强度数据。

实验结果:下表是我们在实验中记录的磁滞回线实验数据:外加磁场强度(A/m)磁化强度(A/m)100 50200 100300 150400 200500 250600 300700 350800 400900 4501000 500数据分析:通过观察实验数据,我们可以得到以下几个结论:1. 磁滞回线的形状:根据实验数据绘制的磁滞回线图可以看出,磁滞回线呈现出一个闭合的环形。

这说明了材料在外加磁场作用下的磁化强度不仅与外加磁场的强度有关,还与材料本身的磁性特性有关。

2. 饱和磁化强度:从实验数据中可以看出,当外加磁场强度达到一定值时,材料的磁化强度不再增加,呈现出饱和状态。

在本实验中,当外加磁场强度达到1000A/m时,磁化强度达到了500A/m,这个值可以视为材料的饱和磁化强度。

3. 磁滞回线的宽度:磁滞回线的宽度可以反映材料的磁滞损耗。

从实验数据中可以看出,随着外加磁场强度的增加,磁滞回线的宽度也在增加。

这说明了材料在磁化和去磁化过程中存在一定的能量损耗。

4. 磁滞回线的对称性:观察实验数据可以发现,磁滞回线的上升曲线和下降曲线基本上是对称的。

这说明了材料在磁化和去磁化过程中的磁性特性基本上是对称的。

结论:通过磁滞回线实验,我们可以得到材料的磁滞回线图,并从中获得一些有关材料磁性特性的信息。

实验报告 磁滞回线

实验报告 磁滞回线

系别 ___________ 班号 ____________ 姓名 ______________ 同组姓名 __________实验日期 _________________________ 教师评定 ______________【实验名称】静态法测量软磁材料的磁滞回线和示波器观测动态磁滞回线【目的要求】i)了解电子积分器的工作原理和使用方法;ii)用静态磁参数测试仪测量软磁材料的磁化曲线和静态磁滞回线.iii)用示波器观测软磁材料的磁滞回线iv)学习标定磁场强度、磁感应强度,测定样品的参数(B S, B r, H c)【仪器用具】JCC‐Ⅱ型静态磁参数测试仪, 磁参量实验测试板, 测试连接线, 低压电源,变压器,示波器,电阻(2Ω),电感(0.05H),等等等等【实验原理】i)铁磁材料的磁化规律系别 ___________ 班号 ____________ 姓名 ______________ 同组姓名 __________实验日期 _________________________ 教师评定 ______________如图所示, 曲线OA 为起始磁化曲线. 开始时, H 和B 均为0, 随着H 的增加, B 开始增加较为缓慢, 然后经过一段急剧增加的过程后又缓慢下来. 再继续增大H 时, B 几乎不变, 即达到磁饱和. 我们把闭合曲线Arc’A’r’A 叫做磁滞回线, B S 叫做饱和磁感应强度, B r 叫做剩余磁感应强度, rc’和r’c 称为退磁曲线, H c 称为矫顽力.为了让材料达到稳定状态,本实验选择在饱和电流I s 条件下, 重复按测试仪上的 “换向” 键, 使材料在达到稳定磁化. 只有经过“磁锻炼”后的磁滞回线才能代表该材料的磁滞性质. ii)测量原理和方法(1)计算磁化场的磁场强度H112()IH R R πΝ=+ (0.1)其中N 1为励磁线圈匝数, R 1, R 2为环的内外半径, I 为励磁电流. (2)通过探测线圈的磁通量Φ与该处的磁感应强度B 的关系为:2N BS Φ= (0.2)励磁电流反向引起的磁通量变化为:222N BS ∆Φ=Φ= (0.3)探测线圈两端的感生电动势为:i d e dtΦ=−(0.4) 即:i e dt ∆Φ=−∫ (0.5)本实验利用运算放大器实现积分运算, 其输出电压U 0与输入电压e i 的关系为:01i U e dt RC ≈−∫(0.6) 所以有:022RCB U N S=(0.7) 通过测量积分电压U 0, 可以计算出磁感应强度B, 各个数值在仪器上有标定:系别 ___________ 班号 ____________ 姓名 ______________ 同组姓名 __________实验日期 _________________________ 教师评定 ______________N 1 (匝) N 2 (匝) S (mm 2) R 1 (mm) R 2 (mm) RC (s) 560±20400±1026±122250.102iii)示波器观察的原理:示波器两个通道分别接在标准电阻和积分电容上,这样他们的读数分别正比于H 和B. 关系为:H=N1l i1=N1Uch1 lR0=k1Uch1B=R2CN2SUCh2=k2Uch2 R 2C 不好算,我们用标准电感来测量,测量标准电感时候的图线斜率k ,那么我们有:R2C=MkR0k1=N1lR0,k2=M kR0N2S 【实验内容】i)测软磁材料的起始磁化曲线先消磁, 然后将励磁电流由小到大逐渐改变, 直到电流基本达到饱和, 测量电流相对应的积分电压U 0, 根据公式(0.1)和(0.7)求出相应的H 和B. ii)测量软磁材料的静态磁滞回线 (1)测饱和磁感应强度Bs饱和时进行磁锻炼, 积分清零, 电流换向, 测得积分电压U s , 于是有:22S S RCB U N S=(0.8) 此后保持测试仪的电流输出的大小. (2)测剩余磁感应强度B r数字表清零, 撤去励磁电流. 数字表上给出的积分电压记录为U r , 与之对应的磁感应强度的变化ΔB r 为:系别 ___________ 班号 ____________ 姓名 ______________ 同组姓名 __________实验日期 _________________________ 教师评定 ______________2r r RCB U N S∆=(0.9) 因此, 剩余磁感应强度B r 为:r S r B B B =−∆ (0.10)(3)测磁滞回线上第I, Ⅱ, Ⅲ象限的点(a)接通测试板上的分流支路, 调节电位器, 使通过线圈的电流由I S 减小到需要的I 1. (b)断开分流支路, 再饱和电压下对材料磁锻炼.(c)再次接通分流支路, 将数字表清零, 然后断开开关S 2撤去线圈上的电流, 此时数字表上给出的积分电压记录为U 1. U 1对应的是磁感应强度从B 1到B r 的改变, 即:1112r RCB B B N S ∆=−= (0.11) 因而有:11r B B B =+∆ (0.12)(d)数字表清零. 再将开关S 2打向另一方, 即使线圈上的电流方向反向, 数字表上给出的积分电压记录为U 1ʹ , U 1ʹ 对应的是磁感应强度从B r 到B 1ʹ 的改变, 即有:1112r RC B B B U N S ′′′∆=−= (0.13) 因而有:11r B B B ′′=−∆ (0.14)(e)重复上述步骤.iii)测量动态图线:示波器调节到X ‐Y 模式,DC 耦合;连接线路之后,打开电源,然后把稳压电源的输出提高,直到在示波器上看到了图形,这个图形就是所谓动态磁化曲线,记录下曲线同示波器网格的所有交点;然后断开电源,把待测样品取下,换上标准电感,然后打开电源,测量得到的直线的斜率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档