焊接强度计算知识[1]

合集下载

焊接强度计算

焊接强度计算

受扭矩的接头强度计算
① 矩形截面构件的接头 若开坡口四周全焊,接头的 最大切应力按下式计算:
τ max
Mn = 2 ⋅ Z ⋅ (h − Z )( B − Z )
若不开坡口四周全部角焊, 接头的最大切应力为:
τ max
Mn = 2 × 0.7 ⋅ K (h + 0.7 K )( B + 0.7 K )
受弯矩联接接头的强度计算
① 若构件同时承受弯矩M和轴向力N时,焊缝中应 力分别求出和,由于两者方向相同,所以合成应 力: τ 合 = τ N + τ M ② 若构件同时承受横向力P和轴力N时,则要同时 考虑弯矩M=P·L和轴向力N及剪切力Q=P的作用。 由于构件承受切力Q时,只是腹板承受的,故切 力只由联接腹板的焊缝承受,并设切应力沿焊缝 均匀分布。计算联接的焊缝强度时,应验算两个 位置的合应力: 一个是盖板外侧受拉 M N y max + ≤ [τ ' ] 的焊缝的合成应力: τ 合 = Ix 0 .7 K ⋅ L 另一个是腹板立焊缝 M h N τ合 = ( ⋅ + ) 2 + τ θ2 ≤ [τ ' ] 端点的合成应力: I x 2 0.7 K ⋅ l
② 单面焊的正面、侧面联合 塔接焊缝的强度公式:
P τ= = ≤ [τ ' ] α ⋅ ∑ l 0.7 K ⋅ ∑ l
P
受弯矩的搭接接头计算
2.受弯矩的搭接接头计算 方法有三种: ① 分段计算法:
τ=
M h2 0.7 K [l (h + K ) + ] 6
② 轴惯性矩计算法 最大切应力: M τ max = ⋅ y max ≤ [τ ' ] IX
载荷平行于焊缝丁字接头强度计算

焊接强度计算知识

焊接强度计算知识

各种焊接接头都有不同程度的应力集中,当母材具有足够的塑性时,结构在静开车破坏之前就有显著的塑性变形,应力集中对其强度无影响。

例如,侧面搭接接头在加载时,如果母材和焊缝金属都有较好的塑性,其切应力的分布是不均匀的,见图29。

继续加载,焊缝的两端点达到屈服点σs,则该处应力停止上升,而焊缝中段各点的应力因尚未达到σs,故应力随加载继续上升,到达屈服点的区域逐渐扩大,应力分布曲线变平,最后各点都达到σs。

如再加载,直至使焊缝全长同时达到强度极限,最后导致破坏。

36 什么是工作焊缝?什么是联系焊缝?焊接结构上的焊缝,根据其载荷的传递情况,可分为两种:一种焊缝与被连接的元件是串联的,承担着传递全部载荷的作用,一旦断裂,结构就立即失效,这种焊缝称为工作焊缝,见图30a、图30b,其应力称为工作应力。

另一种焊缝与被连接的元件是并联的,仅传递很小的载荷,主要起元件之间相互联系的作用,焊缝一旦断裂,结构不会立即失效,这种焊缝称为联系焊缝,见图30c、图30d,其应力称为联系应力。

设计时,不需计算联系焊缝的强度,只计算工作焊缝的强度。

37 举例说明对接接头爱拉(压)时的静载强度计算。

全焊透对接接头的各种受力情况见图31。

图中F为接头所受的拉(压)力,Q为切力,M1为平面内弯矩,M2为垂平面弯矩。

受拉时的强度计算公式为Fσt=───≤〔σ′t 〕Lδ1F受压时的强度计算公式为σα=───≤〔σ′α 〕Lδ1式中F——接头所受的拉力或压力(N);L——焊缝长度(cm);δ1——接头中较薄板的厚度(cm);σ——接头受拉(σt)或受压(σα)时焊缝中所承受的应力(N/cm2)㈠〔σ′t 〕——焊缝受拉时的许用应力(N/cm2)〔σ′α〕——焊缝受压时的许用应力(N/cm2)计算例题两块板厚为5mm、宽为500mm的钢板对接焊在一起,两端受28400N的拉力,材料为Q235-A钢,试校核其焊缝强度。

解:查表得〔σ′t 〕=14200 N/cm2。

焊接知识问答(焊接强度及焊接结构)

焊接知识问答(焊接强度及焊接结构)

焊接知识问答(焊接强度及焊接结构)各种焊接接头都有不同程度的应力集中,当母材具有足够的塑性时,结构在静开车破坏之前就有显著的塑性变形,应力集中对其强度无影响。

例如,侧面搭接接头在加载时,如果母材和焊缝金属都有较好的塑性,其切应力的分布是不均匀的,见图29。

继续加载,焊缝的两端点达到屈服点σs,则该处应力停止上升,而焊缝中段各点的应力因尚未达到σs,故应力随加载继续上升,到达屈服点的区域逐渐扩大,应力分布曲线变平,最后各点都达到σs。

如再加载,直至使焊缝全长同时达到强度极限,最后导致破坏。

36 什么是工作焊缝?什么是联系焊缝?焊接结构上的焊缝,根据其载荷的传递情况,可分为两种:一种焊缝与被连接的元件是串联的,承担着传递全部载荷的作用,一旦断裂,结构就立即失效,这种焊缝称为工作焊缝,见图30a、图30b,其应力称为工作应力。

另一种焊缝与被连接的元件是并联的,仅传递很小的载荷,主要起元件之间相互联系的作用,焊缝一旦断裂,结构不会立即失效,这种焊缝称为联系焊缝,见图30c、图30d,其应力称为联系应力。

设计时,不需计算联系焊缝的强度,只计算工作焊缝的强度。

37 举例说明对接接头爱拉(压)时的静载强度计算。

全焊透对接接头的各种受力情况见图31。

图中F为接头所受的拉(压)力,Q为切力,M 1为平面内弯矩,M2为垂平面弯矩。

受拉时的强度计算公式为Fσt=───≤〔σ′t〕Lδ1F受压时的强度计算公式为σα=───≤〔σ′α 〕Lδ1式中F——接头所受的拉力或压力(N);L——焊缝长度(cm);δ1——接头中较薄板的厚度(cm);σ——接头受拉(σt)或受压(σα)时焊缝中所承受的应力(N/cm2)㈠〔σ′t〕——焊缝受拉时的许用应力(N/cm2)〔σ′α〕——焊缝受压时的许用应力(N/cm2)计算例题两块板厚为5mm、宽为500mm的钢板对接焊在一起,两端受28400N的拉力,材料为Q235-A钢,试校核其焊缝强度。

焊接强度计算课件

焊接强度计算课件
焊接电流
电流大小直接影响焊接质量和 效率,要根据母材厚度、电导
率等参数选择合适的电流。
焊接电压
电压过低会导致电弧不稳定, 过高则会导致电弧飞溅,需要 根据实际情况选择合适的电压 。
焊接速度
焊接速度过慢会导致热影响区 过大,速度过快则会导致母材 未充分熔合,需要选择合适的 焊接速度。
预热和后热
对于某些高强度材料,需要进 行预热和后热处理,以降低应 力、防止裂纹等缺陷的产生。
焊接试样的制备
试样选择
选择具有代表性的焊接接头,确 保试样无缺陷、无变形。
试样制备
按照相关标准进行试样制备,包 括切割、研磨、抛光等步骤,保 证试样表面质量。
焊接强度的试验方法
拉伸试验
通过拉伸试验机对焊接接头进行 拉伸,测试其抗拉强度和延伸率

弯曲试验
通过弯曲试验机对焊接接头进行 弯曲,测试其冷弯性能和塑性变
02
焊接强度是评估焊接质量的重要 指标之一,它与焊接接头的几何 形状、尺寸、材料、热处理等因 素有关。
焊接强度的影响因素
焊接材料的质量和化学成分
焊接材料的力学性能和化学成分对焊接接头的强度有重要影响。
焊接工艺和参数
焊接工艺和参数如焊接电流、电压、焊接速度等对焊接接头的形状 、尺寸和内部质量有直接影响,从而影响焊接强度。
焊接变形的控制
焊接过程中由于局部高温和应力作用,往往导致工件产生变形。为确保工件的尺 寸精度和形状稳定性,需要采用反变形、刚性固定等方法进行控制。
智能化焊接的发展趋势
自动化焊接
随着机器人技术的发展,自动化焊接 已成为一种趋势。自动化焊接可以减 少人为因素的影响,提高焊接质量和 效率。
数字化焊接
数字化焊接是指通过数字化技术对焊 接过程进行实时监控和控制。这有助 于提高焊接精度和稳定性,同时降低 对工人技能的要求。

铁管口焊接计算公式

铁管口焊接计算公式

铁管口焊接计算公式在工程施工中,铁管口焊接是一种常见的焊接方式。

在进行铁管口焊接时,需要根据管道的直径、壁厚、焊接材料等因素进行计算,以确保焊接质量和安全性。

本文将介绍铁管口焊接的计算公式及其应用。

一、焊接强度计算公式。

在进行铁管口焊接时,首先需要计算焊接强度。

焊接强度的计算公式如下:焊接强度 = 0.7 抗拉强度断面积。

其中,抗拉强度是焊接材料的抗拉强度,单位为N/mm²;断面积是焊接截面的有效面积,单位为mm²。

根据计算得到的焊接强度,可以评估焊接的质量和安全性。

二、焊接变形计算公式。

在进行铁管口焊接时,焊接变形是一个重要的考虑因素。

焊接变形的计算公式如下:焊接变形 = α L δ。

其中,α是焊接变形系数,L是焊接长度,δ是焊接变形厚度。

通过计算焊接变形,可以评估焊接后的变形情况,从而确定是否需要进行补偿或调整。

三、焊接温度计算公式。

在进行铁管口焊接时,焊接温度是一个重要的考虑因素。

焊接温度的计算公式如下:焊接温度 = (I² R t) / (K A)。

其中,I是焊接电流,单位为A;R是焊接电阻,单位为Ω;t是焊接时间,单位为s;K是焊接材料的热导率,单位为W/(m·K);A是焊接截面的面积,单位为m²。

通过计算焊接温度,可以评估焊接时的温度分布情况,从而确定是否需要进行温度控制或调整。

四、焊接弯曲计算公式。

在进行铁管口焊接时,焊接弯曲是一个重要的考虑因素。

焊接弯曲的计算公式如下:焊接弯曲 = (M L) / (E I)。

其中,M是焊接弯矩,单位为N·m;L是焊接长度,单位为m;E是焊接材料的弹性模量,单位为N/mm²;I是焊接截面的惯性矩,单位为mm⁴。

通过计算焊接弯曲,可以评估焊接后的弯曲情况,从而确定是否需要进行弯曲补偿或调整。

五、焊接热影响区计算公式。

在进行铁管口焊接时,焊接热影响区是一个重要的考虑因素。

焊接热影响区的计算公式如下:焊接热影响区 = (Q / (π t ΔT)) 10^6。

焊接物理公式总结

焊接物理公式总结

焊接物理公式总结1. 焊缝尺寸计算公式焊缝尺寸是对焊接接头形状和尺寸的描述,常用的焊缝尺寸计算公式包括:•有效焊缝高度(H):用于计算焊缝的有效高度,一般表示为母材的厚度(t)。

•有效焊缝宽度(B):用于计算焊缝的有效宽度,一般表示为焊缝的最大值。

•焊缝几何尺寸(S):用于计算焊缝的尺寸,一般表示为焊缝的长度。

•焊缝面积(A):用于计算焊缝的面积,一般表示为焊缝的单位长度乘以焊缝的有效宽度。

2. 焊接热力学公式2.1 焊接热输入计算公式焊接热输入是焊接过程中输入到焊接接头的总热量,常用的计算公式为:•焊接热输入(HI):用于计算焊接过程中输入到焊接接头的总热量,一般表示为焊接电流(I)乘以焊接电压(V)再乘以焊接时间(t)再乘以焊接效率(η)。

2.2 焊接热循环计算公式焊接热循环描述了焊接过程中的温度变化,常用的计算公式为:•焊接热循环(HC):用于计算焊接过程中的温度变化,一般表示为焊接热输入(HI)除以焊接周期(T)再乘以焊接周期(t)。

3. 焊接力学公式3.1 焊接强度计算公式焊接强度是指焊接接头的抗拉强度和抗剪强度,常用的计算公式包括:•抗拉强度(Rm):用于计算焊接接头的抗拉强度,一般表示为焊缝的抗拉载荷(F)除以焊缝的横截面积(A)。

•抗剪强度(Rshear):用于计算焊接接头的抗剪强度,一般表示为焊缝的抗剪载荷(Fshear)除以焊缝的横截面积(A)。

3.2 焊接变形计算公式焊接接头在焊接过程中会发生变形,常用的计算公式包括:•焊接变形(D):用于计算焊接接头在焊接过程中的变形,一般表示为焊接接头的变形量(L)除以焊接接头的长度(L0)。

4. 焊接能量计算公式焊接能量是指焊接过程中转化为热量的能量,常用的计算公式为:•焊接能量(EW):用于计算焊接过程中转化为热量的能量,一般表示为焊接电流(I)乘以焊接电压(V)再乘以焊接时间(t)。

结论综上所述,焊接物理公式对于焊接过程中的各种参数和特性的计算具有重要的作用。

工字钢焊接强度验算

工字钢焊接强度验算

工字钢焊接强度验算M max ——使截面达到材料设计强度的计算截面弯矩2、三级焊缝达到设计强度的弯矩计算三级的抗拉对接焊缝强度设计值为2/185mm N f w t =2/185mm N W M==σM=185N/mm 2×325×103mm 3=60.125KN.m 3、加强钢板截面尺寸计算焊缝对截面抵抗的削弱在腹板处和翼缘板处,由于施工中对翼缘板处平整的要求,一般不在翼缘板处加强,因此在腹板两边添加加强钢板来弥补焊缝对截面的削弱。

由于截面的弯矩抵抗力主要是由截面尺寸来提供,所以计算选取在腹板处焊接两片170mm 高,8mm 厚的钢板来加强。

截面几何性质计算:431.4225212178.03570cm I x =⨯⨯+=3max 1.384111.4225cm y I W x x ===2/185mm N W M==σ当焊接加强钢板后抵抗弯矩:M=185N/mm 2×384.1×103mm 3=71.058KN.m 对接焊缝使母材抵抗弯矩减小值: 69.875KN.m -60.125KN.m=9.75 KN.m 加强钢板焊接后抵抗弯矩增加值: 71.058KN.m -60.125KN.m=10.93 KN.m所以当腹板增加加强钢板后,截面的抵抗弯矩增大了10.93KN.m ,大于由对接焊缝引起的母材抵抗弯矩减小值9.75 KN.m ,满足截面最大应力的要求并与母材截面强度相同。

4、焊缝强度计算工字钢对接处在弯矩和剪力的组合作用下,使得各处应力值小于焊缝强度设计值来保证焊缝的长度满足要求,当临近焊缝处母材应力达到设计强度时焊缝刚好破坏的临界状态,以确定焊缝最小长度和最小的有效截面面积。

拟采用两块高170mm×长100mm×厚8mm 的Q235钢对I22b 的工字钢进行周边焊,验算焊缝的抗拉强度能否达到抗拉强度设计要求。

正面角焊缝(作用力垂直于焊缝长度方向)2/3.624)52170(57.08.4652)185215(mm N l h N w e f =⨯⨯-⨯⨯⨯-==σ侧面角焊缝(作用力平行于焊缝长度方向)2/8.1104)52100(57.08.4652)185215(mm N l h N w e f =⨯⨯-⨯⨯⨯-==τ在各种力综合作用下,需满足22fff τβσ+⎪⎪⎭⎫ ⎝⎛wf f ≤222222/160/1228.11022.13.62mm N mm N f ff ≤=+⎪⎭⎫ ⎝⎛=+⎪⎪⎭⎫ ⎝⎛τβσ计算结果满足要求。

焊缝强度、定额计算.

焊缝强度、定额计算.

焊缝的强度、定额计算二 焊缝的强度计算角焊缝的计算断面,在角焊缝截面的最小高度上,其值等于内接三角形高度a (计算高度)。

K Ka7.02= 余高和个量熔深对接头强度没有影响,对埋弧焊CO 2气保护的熔深较大应考虑。

计算断面:δ=(K+P )cos45° 当K ≤8mm δ可取等于K 当K >8mm 可取P=3mm ⑴ 对接接头的静载荷强度计算a 不考虑焊缝的的余高(基本金属的强度即为焊缝的强度,计算公式通用)b 焊缝的计算长度=实际长度c 计算厚度时取薄板一侧d 焊缝金属的许用应力与基本金属相等,不必进行强度计算 A 受拉或受压受拉时 []'≤=t L Ft σδσ1 受压时 []'≤=p L Fp σδσ1F :接头所受的拉力或压力(N ) L :焊缝长度(mm)δ1 接头中较薄板的厚度σt 、σp 接头受拉或受压焊缝中所承受的应力(Mpa ) [σt ′]焊缝受拉或弯曲时的许用应力(Mpa ) [σp ′]焊缝受压时的许用应力(Mpa ) 例1:两块板厚5mm ,宽为500mm 的钢板,对接在一起,两端受到284000N 拉力,材料为Q235-A ,[σt ′]=142MPa ,试校核其焊缝强度?已知:δ=5mm ,焊缝长度L=500mm ,F=28400N ,[σt ′]=142MPa ,求σt <[σt ′] 解:[]Mpa t Mpa <L F t 1426.11355002840001='=⨯==σδσ∴该对接接头焊缝强度满足要求,结构工作是安全的注:1)单位化为mm ;2)应有校核的结论Bτ:接头焊缝中所承受的切应力(Mpa ) Q : 接头所受的剪切力[τ′]:焊缝许用的剪切应力(Mpa ) 例2两块板厚为10mm 的钢板对接,焊缝受到29300N 的切力,材料为Q235,试设计焊缝的长度?已知:δ1=10mm ,Q=29300N ,[τ′]=98 Mpa 。

焊缝抗剪强度计算

焊缝抗剪强度计算

5.7 焊缝连接计算
5.7.1一般高耸结构不承受疲劳动力荷载,按等强设计工厂焊缝宜采用熔透的二级对接焊缝。

二级及以上对接焊缝按国家现行标准《建筑钢结构焊接技术规程》JGJ81要求做无损探伤,三级对接焊缝和角焊缝做外观检查。

对于安全等级为一级的高耸结构或承受疲劳动力荷载的高耸结构,其焊缝等级应提高一级。

5.7.2承受轴心拉力或压力的对接焊缝强度应按下式计算:
式中N――作用在连接处的轴心拉力或压力;
ιw――焊缝计算长度(mm),未用引弧板施焊时,每条焊缝取实际长度减去2t(mm);
5.7.3承受剪力的对接焊缝剪应力应按下式验算:
5.7.4承受弯矩和剪力的对接焊缝,应分别计算其正应力σ和剪应力τ,并在同时受有较大正应力和剪应力处,按下式计算折算应力:
5.7.5角焊缝在轴心力(拉力、压力或剪力)作用下的强度应按下式计算:
5.7.6角焊缝在非轴心力或各种力共同作用下的强度应按下式计算:
式中σf――按焊缝有效截面计算、垂直于焊缝长度方向的应力(N/mm2)
――按焊缝有效截面计算、沿焊缝长度方向的应力(N/mm2)。

5.7.7圆钢与钢板(或型钢)、圆钢与圆钢的连接焊缝抗剪强度应按下式计算:
5.8 螺栓连接计算
5.9 法兰盘连接计算。

《焊接强度计算》课件

《焊接强度计算》课件

确定焊接接头的强度 计算焊接接头的应力 确定焊接接头的变形
确定焊接接头的疲劳寿命 确定焊接接头的失效模式 确定焊接接头的优化设计
焊接强度计算公式的局限性
公式只适用于理想状态,实际焊接过程中存在各种因素影响 公式无法考虑焊接过程中的温度变化和应力分布 公式无法预测焊接过程中的裂纹和变形 公式无法考虑焊接材料的物理和化学性质对焊接强度的影响
焊接强度计算在工程实践中的应用前景
焊接强度计算在结构设计 中的应用
焊接强度计算在材料选择 和优化中的应用
焊接强度计算在焊接工艺 优化中的应用
焊接强度计算在焊接质量 控制中的应用
焊接强度计算在焊接设备 研发中的应用
焊接强度计算在焊接技术 培训中的应用
YOUR LOGO
THANK YOU
汇报人:PPT 汇报时间:20X-XX-XX
不锈钢的焊接方法:TIG焊、 MIG焊、激光焊等
不锈钢的焊接强度计算方法: 采用有限元分析、实验测试
等方法进行计算
不锈钢的焊接强度影响因素: 材料、焊接方法、焊接参数、
焊接环境等
不锈钢的焊接强度提高方法: 优化焊接工艺、选用合适的
焊接材料等
实例三:铝及其合金的焊接强度计算
铝及其合金的物理特性
铝及其合金的焊接方法
焊接强度计算概述
焊接强度的概念
焊接强度:焊接 接头在载荷作用 下抵抗破坏的能 力
影响因素:材料、 焊接工艺、焊接 参数等
重要性:保证焊 接结构的安全性 和可靠性
计算方法:理论 计算、实验测定、 数值模拟等
焊接强度计算的意义
确保焊接结构的安全性和 可靠性
提高焊接结构的使用寿命 和性能
降低焊接结构的制造成本 和维护费用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种焊接接头都有不同程度的应力集中,当母材具有足够的塑性时,结构在静开车破坏之前就有显著的塑性变形,应力集中对其强度无影响。

例如,侧面搭接接头在加载时,如果母材和焊缝金属都有较好的塑性,其切应力的分布是不均匀的,见图29。

继续加载,焊缝的两端点达到屈服点σs,则该处应力停止上升,而焊缝中段各点的应力因尚未达到σs,故应力随加载继续上升,到达屈服点的区域逐渐扩大,应力分布曲线变平,最后各点都达到σs。

如再加载,直至使焊缝全长同时达到强度极限,最后导致破坏。

36什么是工作焊缝?什么是联系焊缝?焊接结构上的焊缝,根据其载荷的传递情况,可分为两种:一种焊缝与被连接的元件是串联的,承担着传递全部载荷的作用,一旦断裂,结构就立即失效,这种焊缝称为工作焊缝,见图30a、图30b,其应力称为工作应力。

另一种焊缝与被连接的元件是并联的,仅传递很小的载荷,主要起元件之间相互联系的作用,焊缝一旦断裂,结构不会立即失效,这种焊缝称为联系焊缝,见图30c、图30d,其应力称为联系应力。

设计时,不需计算联系焊缝的强度,只计算工作焊缝的强度。

37举例说明对接接头爱拉(压)时的静载强度计算。

全焊透对接接头的各种受力情况见图31。

图中F为接头所受的拉(压)力,Q为切力,M1为平面内弯矩,M2为垂平面弯矩。

受拉时的强度计算公式为Fσt=───≤〔σ′t 〕Lδ1F受压时的强度计算公式为σα=───≤〔σ′α〕Lδ1式中F——接头所受的拉力或压力(N);L——焊缝长度(cm);δ1——接头中较薄板的厚度(cm);σ——接头受拉(σt)或受压(σα)时焊缝中所承受的应力(N/cm2)㈠〔σ′t〕——焊缝受拉时的许用应力(N/cm2)〔σ′α〕——焊缝受压时的许用应力(N/cm2)计算例题两块板厚为5mm、宽为500mm的钢板对接焊在一起,两端受28400N的拉力,材料为Q2 35-A钢,试校核其焊缝强度。

解:查表得〔σ′t〕=14200 N/cm2。

根据已知条件,在上述公式中,F=28400N,L=5 00mm=50cm,δ1=5mm=0.5cm,代入计算为F28400σt=───=─────=1136N/cm2<14200N/ cm2Lδ150×0.5∴该对接接头焊缝强度满足要求,结构工作安全。

38举例说明对接接头受剪切时的静载强度计算。

受剪切时的强度计算公式为Qτ= ───≤〔τ′〕Lδ1式中Q——接头所受的切力(N);L——焊缝长度(cm);δ1——接头中较薄板的厚度(cm);τ——接头焊缝中所承受的切应力(N/cm2);〔τ′〕——焊缝许用切应力(N/cm2)计算例题两块板厚为10mm的钢板对接焊,焊缝受29300N的拉力,材料为Q235-A钢,试设计焊缝的长度(钢板宽度)。

解:查表得〔τ′〕=9800 N/cm2。

根据已知条件,在上述公式中,Q=29300N,δ1=1 0mm=1cm,代入计算为Q28400L≥──────=──────=2.99cm = 29.9m mδ1〔τ′〕1×9800取L = 30mm。

即当焊缝长度(板宽)为30mm时,该对接接头焊缝强度能满足要求。

39举例说明对接接头受弯矩时的静载强度计算。

受水平板面内弯矩的强度计算公式为6M1σ=────≤〔σ′t〕δ1 L2受垂直板面内弯矩的强度计算公式为6M2σ=────≤〔σ′t 〕δ12L式中M1——水平板面内弯矩(N/cm2);M2——垂直板面弯矩(N/cm2);L ——焊缝长度(cm);δ1——接头中较薄板的厚度(cm);σ——接头受弯矩作用时焊缝中所承受的应力(N/c m2);〔σ′t 〕——焊缝受弯时的许用应力(N/cm2)。

计算例题两块厚度相同钢板的对接接头,材料为16 MnR钢,钢板宽度为30mm,受垂直板面弯矩300 000N·cm,试计算焊缝所需的厚度(板厚)。

解:查表得〔σ′t 〕=20100 N/cm2。

根据已知条件,在上述公式中,M2=300000N·cm,L=300mm=30cm,代入计算为取δ1=18mm,即当焊缝厚度(板厚)为18mm时,该对接接头焊缝强度能满足要求。

40举例说明搭接接头受拉(压)时的静载强度计算。

各种搭接接头的受力情况,见图32。

三种焊缝的计算公式为⑴正面搭接焊缝受拉(压)的计算公式为Fτ=────≤〔τ′〕1.4KL⑵侧面搭接焊缝受拉(压)的计算公式为Fτ=────≤〔τ′〕1.4KL⑶联合搭接焊缝受拉(压)的计算公式为Fτ=────≤〔τ′〕0.7KΣL式中F——搭接接头受的拉(压)力(N);K——焊脚尺寸(cm);L——焊缝长度(cm);ΣL——正、侧面焊缝总长(cm);τ——搭接接头角焊缝受的切应力(N/cm2);〔τ′〕——焊缝金属许用切应力(N/cm2);计算例题将100mm×10mm的角钢用角焊缝搭接在一块钢板上见图33。

受拉伸时要求与角钢等强度,试计算接头的合理尺寸K和L应该是多少?解:从材料手册查得角钢断面积S=19.2cm2;许用应力〔σ〕=16000 N/cm2,焊缝许用应力〔τ′〕=1 0000 N/cm2。

角钢的允许载荷为〔F〕=S〔σ〕=19.2×16000=307200N假定接头上各段焊缝中的切应力都达到焊缝许用切应力值,即て=〔τ′〕。

若取K=10mm,采用手弧焊,则所需的焊缝总长为〔F〕307200ΣL =───────=─────────=43. 9cm0.7K〔て′〕0.7×1×10000角钢一端的正面角焊缝L3=100mm,则两侧焊缝总长度为339mm。

根据材料手册查得角钢的拉力作用线位置e=28.2mm,按杠杆原理,则侧面角焊缝L2应承受全部侧面角焊缝载荷的28.3%。

28.3∴L2 =339 ×───=96mm100另外一侧的侧面角焊缝长度L1应该为100-28.3L1 =339 ×──────=243mm100取L1=250mm,L2=100mm。

41举例说明搭接接头受弯矩时的静载强度计算。

搭接接头受弯矩的情况,见图34a。

计算公式为式中M——作用在接头上的外加弯矩(N/cm2);K——焊脚尺寸(cm);H——搭接板宽度(cm);〔τ′〕——焊脚的许用切应力(N/cm2))。

计算例题由三面焊缝组成的悬臂搭接接头(图34),当焊缝总长为500mm,K=10mm时,在梁的端头作用一弯矩M=2800000N·cm,试验计算接头是否安全?已知焊缝作用切应力〔τ′〕=10000 N/cm2。

42举例说明搭接接头受偏心载荷时的静载强度计算。

如果搭接接头承受的载荷是垂直X轴方向的偏心载荷F见图35,此时焊缝中既有由弯矩M=FL引起的切应力τM(由来1公式计算),又是有由切力Q=F引起的切应力τQ为计算例题一偏心受载的搭接接头(图35),已知焊缝长h=400mm,l0=100mm,焊脚尺寸K=10m m,外加载荷F=30000N,梁长L=100cm,试校核焊缝强度。

焊缝的许用切应力〔τ′〕=10000N/cm2。

解:分别计算τM 、τQ:43举例说明T形接头受平行于焊缝载荷时的静载强度计算。

接头及其受载荷的情况,见图36a。

如果接头开坡口并焊透,其强度按对接接头计算,焊缝金属截面等于母材截面(S=δh)。

如果接头开I形坡口,此时产生最大切应力的危险点在焊缝的最上端,该点同时作用有两个切应力:一个是由M=FL引起的τM;另一个是由Q=F引起的τQ。

τM、τQ的44什么是焊接结构的疲劳断裂?疲劳断裂的过程由三个阶段所组成:1)在承受重复载荷的结构的应力集中部位产生疲劳裂纹(此时结构所受应力低于弹性极限)。

2)疲劳裂纹稳定扩展。

3)结构断裂。

据统计,由于疲劳而失效的金属结构,约占失效结构的90%。

焊接结构较其它结构(如铆接结构)更容易产生疲劳断裂,这是因为:1)铆接结构的疲劳裂纹发展遇到钉孔或板层间隔会受阻,焊接结构由于其整体性,一旦产生裂纹,裂纹扩展不受阻止,直至整个构件断裂。

2)焊接连接不可避免地存在着产生应力集中的夹渣、气孔、咬边等缺陷。

3)焊缝区存在着很大的残余拉应力。

几个典型的焊接结构疲劳断裂事例见图3 7。

图37a为直升飞机起落架的疲劳断裂。

裂纹从应力集中很高的角接板尖端开始,该机飞行着陆2118交后发生破坏,属于低周疲劳。

图37b为载重汽车底架纵梁的疲劳断裂。

该梁板厚5 mm,承受反复的弯曲应力,在角钢和纵梁的焊接处,因应力集中很高而产生疲劳裂纹而破坏,此时该车已运行30000km。

45试述焊接接头形式对疲劳极限的影响。

焊接结构中,在接头部位由于具有不同的应力集中,将对接头的疲劳极限产生程度不同的不利影响。

⑴对接接头对接接头从焊缝至母材的形状变化不大,应力集中比其它接头要小,所以在所有的接头形式中具有最高的疲劳极限。

但是过大的余高会增加应力集中,使疲劳极限下降。

⑵T形接头这种接头由于在焊缝向基本金属过渡处有明显的截面变化,应力集中系数比对接接头的应力集中系数高,因此其疲劳极限远低于对接接头。

提高T形接头疲劳极限的根本措施是开坡口焊接和加工焊缝过渡区使之圆滑过渡。

⑶搭接接头这是一种疲劳极限最低的接头形式,特别是在原来对接接头的基础上,增加盖板来进行“加强”,其结果适得其反,这种盖板非但没有起到“加强”作用,反而使原来疲劳极限较高的对接接头被大大地削弱了。

46试述焊接缺陷对疲劳极限的影响。

焊接缺陷对焊接接头的疲劳极限产生重大的不利影响,这种不利影响与焊接缺陷的种类、尺寸、方向和位置有关。

片状缺陷(如裂纹、未熔合、未焊透)比带圆角的缺陷(如气孔、点状夹渣)影响大。

表面缺陷比内部缺陷影响大。

与作用力方向垂直的片状缺陷的影响比其它方向大。

位于残余拉应力区内的缺陷的影响比在残余应力区内的大;位于应力集中区内的缺陷(如焊趾裂纹)的影响比在均匀应力区中同样缺陷影响大。

咬边和未焊透在不同位置、不同载荷下对接头疲劳极限的影响,见图38,其中A组的影响最大,B组的影响较小。

47如何选用合理的结构形式来提高接头的疲劳极限?选用应力集中较小的结构形式是提高疲劳极限的重要措施,几种设计方案的正误比较,见图3948如何利用电弧整形的方法来提高接头的疲劳极限?电弧整形的方法,是用钨极氩弧在焊接接头焊缝与母材之间的过渡区重熔一次,使焊缝与基本金属能平滑地过渡,同时减少该部位的微小非金属夹杂物,使接头部位的疲劳极限得以提高,见图40。

电弧整形提高接头疲劳极限的效果,见表10。

表11常用提高焊接接头疲劳极限的方法方法,技术说明,适用范围及优点,缺点,改善,几何,形状,方法,电弧气刨后补焊法,砂轮修磨法,钻孔法,锥形砂轮磨光法,TIG重熔法用碳弧气刨吹掉熔化金属后再补焊用100cm直径砂轮,60~150级硅砂孔径一般为12~25mm用锥形砂轮打磨焊趾磨去基材0.5mm。

相关文档
最新文档