Fluent学习

合集下载

学习fluent(流体常识及软件计算参数设置)

学习fluent(流体常识及软件计算参数设置)

luent 中一些问题( 目录 )离散化的目的 计算区域的离散及通常使用的网格 控制方程的离散及其方法 各种离散化方法的区别8 9 10在GAMBIT 中显示的“check 主要通过哪几种来判断其网格的质量?及其在做网格时大 致注意到哪些细节?11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克 服这种情况呢?12在设置GAMBIT 边界层类型时需要注意的几个问题:a 、没有定义的边界线如何处理?b 、计算域内的内部边界如何处理( 2D )? 13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪 些?14 20 何为流体区域( fluid zone )和固体区域( solid zone )?为什么要使用区域的概念? FLUENT 是怎样使用区域的?15 21 如何监视 FLUENT 的计算结果?如何判断计算是否收敛?在 FLUENT 中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些 参数?解决不收1 如何入门2 CFD 2.1 2.2 2.3 2.42.5 2.6 计算中涉及到的流体及流动的基本概念和术语 理想流体( Ideal Fluid )和粘性流体( Viscous Fluid ) 牛顿流体( Newtonian Fluid )和非牛顿流体( non-Newtonian Fluid ) 可压缩流体( Compressible Fluid )和不可压缩流体( Incompressible Fluid ) 层流( Laminar Flow )和湍流( Turbulent Flow ) 定常流动( Steady Flow )和非定常流动( Unsteady Flow ) 亚音速流动 (Subsonic) 与超音速流动( Supersonic ) 热传导( Heat Transfer )及扩散( Diffusion )2.73 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常 使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有 什么不 同? 3.1 3.23.33.44 常见离散格式的性能的对比(稳定性、精度和经济性)5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是 什么?6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反 而比可压缩流动有更多的困难?6.1 可压缩 Euler 及 Navier-Stokes 方程数值解6.2 不可压缩 Navier-Stokes 方程求解什么叫边界条件?有何物理意义?它与初始条件有什么关系? 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别? 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?敛问题通常的几个解决方法是什么?16 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有 什么样的影响?17 23 在 FLUENT 运行过程中, 经常会出现 “ turbulence viscous rate 超过”了极限值, 此时 如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响18 24 在 FLUENT 运行计算时,为什么有时候总是出现 “ reversed flow ?”其具体意义是什 么?有没有办法避免?如果一直这样显示,它对最终的计算结果有什么样的影响26 什么叫问题的初始化?在 FLUENT 中初始化的方法对计算结果有什么样的影响?初始 化中的 “patch怎”么理解?27 什么叫 PDF 方法? FLUENT 中模拟煤粉燃烧的方法有哪些?30 FLUENT 运行过程中,出现残差曲线震荡是怎么回事?如何解决残差震荡的问题?残差 震荡对计算收敛性和计算结果有什么影响?31 数值模拟过程中, 什么情况下出现伪扩散的情况?以及对于伪扩散在数值模 何避免? 32 FLUENT 轮廓( contour )显示过程中,有时候标准轮廓线显示通常不能精确地显示其细 节,如果采用非稳态计算完毕后,如何才能更形象地显示出动态的效果图?在 FLUENT 的学习过程中,通常会涉及几个压力的概念,比如压力是相对值还是绝对35 在 FLUENT 结果的后处理过程中,如何将美观漂亮的定性分析的效果图和定量分析示 意图插入到论文中来说明问题?36 在 DPM 模型中,粒子轨迹能表示粒子在计算域内的行程,如何显示单一粒径粒子的轨 道(如 20 微米的粒子) ? 37 在 FLUENT 定义速度入口时, 速度入口的适用范围是什么? 湍流参数的定义方法有哪些?各自有什么不同?38 在计算完成后, 如何显示某一断面上的温度值?如何得到速度矢量图?如何得到流线?39 分离式求解器和耦合式求解器的适用场合是什么?分析两种求解器在计算效率与精度 方面的区别dbs , msh , cas , dat ,trn ,jou , profile 等有什么用2D )或一个体( 3D )内定义体积热源或组分质量源。

(完整版)学习fluent(流体常识及软件计算参数设置)

(完整版)学习fluent(流体常识及软件计算参数设置)

luent中一些问题----(目录)1 如何入门2 CFD计算中涉及到的流体及流动的基本概念和术语2.1 理想流体(Ideal Fluid)和粘性流体(Viscous Fluid)2.2 牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid)2.3 可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid)2.4 层流(Laminar Flow)和湍流(Turbulent Flow)2.5 定常流动(Steady Flow)和非定常流动(Unsteady Flow)2.6 亚音速流动(Subsonic)与超音速流动(Supersonic)2.7 热传导(Heat Transfer)及扩散(Diffusion)3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?3.1 离散化的目的3.2 计算区域的离散及通常使用的网格3.3 控制方程的离散及其方法3.4 各种离散化方法的区别4 常见离散格式的性能的对比(稳定性、精度和经济性)5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?6.1 可压缩Euler及Navier-Stokes方程数值解6.2 不可压缩Navier-Stokes方程求解7 什么叫边界条件?有何物理意义?它与初始条件有什么关系?8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?9 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?10 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?12 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?14 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?15 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?16 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?17 23 在FLUENT运行过程中,经常会出现“turbulence viscous rate”超过了极限值,此时如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响18 24 在FLUENT运行计算时,为什么有时候总是出现“reversed flow”?其具体意义是什么?有没有办法避免?如果一直这样显示,它对最终的计算结果有什么样的影响26 什么叫问题的初始化?在FLUENT中初始化的方法对计算结果有什么样的影响?初始化中的“patch”怎么理解?27 什么叫PDF方法?FLUENT中模拟煤粉燃烧的方法有哪些?30 FLUENT运行过程中,出现残差曲线震荡是怎么回事?如何解决残差震荡的问题?残差震荡对计算收敛性和计算结果有什么影响?31数值模拟过程中,什么情况下出现伪扩散的情况?以及对于伪扩散在数值模拟过程中如何避免?32 FLUENT轮廓(contour)显示过程中,有时候标准轮廓线显示通常不能精确地显示其细节,特别是对于封闭的3D物体(如柱体),其原因是什么?如何解决?33 如果采用非稳态计算完毕后,如何才能更形象地显示出动态的效果图?34 在FLUENT的学习过程中,通常会涉及几个压力的概念,比如压力是相对值还是绝对值?参考压力有何作用?如何设置和利用它?35 在FLUENT结果的后处理过程中,如何将美观漂亮的定性分析的效果图和定量分析示意图插入到论文中来说明问题?36 在DPM模型中,粒子轨迹能表示粒子在计算域内的行程,如何显示单一粒径粒子的轨道(如20微米的粒子)?37 在FLUENT定义速度入口时,速度入口的适用范围是什么?湍流参数的定义方法有哪些?各自有什么不同?38 在计算完成后,如何显示某一断面上的温度值?如何得到速度矢量图?如何得到流线?39 分离式求解器和耦合式求解器的适用场合是什么?分析两种求解器在计算效率与精度方面的区别43 FLUENT中常用的文件格式类型:dbs,msh,cas,dat,trn,jou,profile等有什么用处?44 在计算区域内的某一个面(2D)或一个体(3D)内定义体积热源或组分质量源。

fluent学习笔记

fluent学习笔记

界条件一起使用,这是可用压力出口边界条件
用于定义流动出口的静压 (如果有回流存在, 还 包括其他的标量变量) 。当有回流时,使用压力 压力出口( pressure outlet ) 出口边界条件代替出流边界条件常常有更好的
收敛速度。
用来描述无穷远处的自由可压流体。 该边界条件
压力远场( pressure far-field )
(1)、基本求解器 的定义 Define→ Models→Solver Fluent 中提供了三种求解方法: ·非耦合求解 segregated ·耦合隐式求解 coupled implicit ·耦合显示求解 coupled explicit 非耦合求解方法 主要用于 不可压缩流体 或者 压缩性不强的流体 。 耦合求解方法 用在 高速可压缩流体 fluent 默认设置是非耦合求解方法,但对于 高速可压缩流动 ,有强 的体积力(浮力或离心力)的流动,求解问题时网格要比较密集,建 议采用 耦合隐式求解方法 。耦合能量和动量方程, 可以较快的得到收 敛值。耦合隐式求解的 短板 :运行所需要的存比较大。若果必须要耦 合求解而机器存不够用, 可以考虑采用耦合显示求解方法。 盖求解方 法也耦合了动量,能量和组分方程,但是存却比隐式求解方法要小。 需要指出的是, 非耦合求解器的一些模型在耦合求解器里并不一定都 有。耦合求解器里没有的模型包括:多相流模型、混合分数 /PDF 燃 烧模型、预混燃烧模型。污染物生成模型、相变模型、 Rosseland 辐 射模型、确定质量流率的周期性流动模型和周期性换热模型。 %%%有点重复,但是可以看看加深理解 Fluent 提供三种不同的求解方法; 分离解、隐式耦合解、 显示耦合解。 分理解和耦合解的主要区别在于:连续方程、动量方程、能量方程和 组分方程解的步骤不同。 分离解按照顺序解, 耦合解是同时解。 两种解法都是最后解附加的标 量方程。隐式解和显示解的区别在于线性耦合方程的方式不同。 Fluent 默认使用分离求解器,但是对于高速可压流动,强体积力导致 的强烈耦合流动 (流体流动耦合流体换热耦合流体的混合, 三者相互 耦合的过程—文档整理者注) (浮力或者旋转力),或者在非常精细的 网格上的流动,需要考虑隐式解。这一解法耦合了流动和能量方程, 收敛很快。 %%% ( 2)、其他求解器的选择 在实际问题中,除了要计算流场, 有时还要计算温度场或者浓度场等, 因此还需要其他的模型。主要的模型有: Multiphase(多相流动) viscous(层流或湍流) energy(是否考虑传 热) species(反应及其传热相关) ( 3)操作环境的设置 Define→ operation → condition

如果想学习Fluent

如果想学习Fluent

如果想学习Fluent,并学以致用的话,我给你的建议有以下几点:
1.掌握流体力学,计算流体力学(CFD)的理论基础知识,另外,还要熟悉你所要应用Fluent解决问题相关领域的理论背景;
2.学习Fluent,对于初学者,如果感觉看英文比较慢,可以参考《Fluent全攻略》,赵玉新版的Fluent中文帮助文档,虽然是针对Fluent以前版本的,但基本上大同小异,也可以买王福军和韩占忠的那两本书看看;如果看英文没有问题的话,我建议你直接看Fluent自带的User's Guide,写的还算详细,容易理解。

另外,论坛上有很多Fluent的讲稿,也是很好的参考资料,都是一些重点知识,可以结合着看看。

这条建议的主要目的是对要Fluent的基础知识以及相关应用方面的知识有一定的了解;
3.结合Fluent自带的实例,认认真真地做几个,了解计算流程,以及一些后处理操作,等等;然后,结合流体力学和CFD理论知识,对得到的结果进行了解分析,对于简单的算例,可以将计算结果与理论结果进行对比,分析误差来源,精度水平,看看有没有改进的地方,等等。

最后,大家如果想好好学习Fluent,我推荐两个比较好的论坛:
一个就是Fluent技术工程师支持的论坛:
这个论坛以前是允许中国版友注册的,现在已经不能注册发帖了,但是可以搜索论坛,里面有很多问题解答地都很好。

另一个论坛就是CFD Online网站上的Fluent论坛:/Forum/fluent.cgi 是可以自由发帖讨论的,而且他们会将别人的最新回复发到你的邮箱提醒你。

最后,我觉得本论坛也不错,呵呵,欢迎大家常来讨论,我们一起学习进步。

谢谢!
先说这么多吧,呵呵。

Fluent学习

Fluent学习

Fluent学习当你使用piso修正时,所有方程的松弛因子都推荐使用1.如果对高度扭曲网格进行斜度piso修正,那么动量和压力的松弛因子之和应该为1单/双精度解算器1.如果几何体细长,则使用双精度;2.如果模型中存在通过小直径管道相连的多个封闭区域,不同区域之间存在很大的压差,用双精度。

3.对于导热系数高和网格表面比大的问题,使用双精度。

网格类型的选择:1.建模时间2.计算花费一般对于同一几何体三角形/四面体网格元素比四边形/六面体的数目要少。

但是后者却能允许较大的纵横比,因此对于狭长形的几何体选择该种网格类型。

3.数字分歧。

发散的原因是系统的截断误差。

如果实际流场只有一个很小的散度,散度是非常重要的。

对于fluent,二次离散化有助于减少散度。

此外,优化网格也是减少散度的有效方法。

如果水流与网格平行,对于网格和几何体的要求:1.对于轴对称几何体,对称轴必须是x轴。

2.gambit能生等角的或非等角的周期性的边界区域。

另外,可以在fluent中通过make-periodic文本命令来生成等角的周期性的边界区域。

网眼质量:1.节点密度和聚变。

对于由于负压强梯度引起的节点脱离,以及层流壁面边界层的计算精度来说,节点浓度的确定是很重要的。

对于湍流的影响则更重要,一般来说,任何流量管的网格元素不应少于5个。

当然,也应该考虑计算机的性能。

2.光滑性。

相邻网格元素体积的变化过大,容易引起较大的截断误差,从而导致发散。

fluent通过修正网格元素的体积变化梯度来光滑网格。

3.元素形状。

它主要包括倾角和纵横比。

通常,纵横比应小于5:1。

4.流场。

很倾斜的网格在流动的初始区域是可以的,但在梯度很大的地方就不行。

由于不能实现预测该区域的存在,因此要努力在整个区域划分优良的网格。

对于等边网格,如果不想在相邻网格单元之间生成边界,可以使用“融合面”面板组合重叠的边界。

这将生成一个具有内部边界的区域。

如果你想使用移动网格,记住你不能使用这个功能。

FLUENT学习经验总结(狠珍贵,学长传授)

FLUENT学习经验总结(狠珍贵,学长传授)

1对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢?答:学习任何一个软件,对于每一个人来说,都存在入门的时期。

认真勤学是必须的,什么是最好的学习方法,我也不能妄加定论,在此,我愿意将我三年前入门FLUENT心得介绍一下,希望能给学习FLUENT的新手一点帮助。

由于当时我需要学习FLUENT来做毕业设计,老师给了我一本书,韩占忠的《FLUENT流体工程仿真计算实例与应用》,当然,学这本书之前必须要有两个条件,第一,具有流体力学的基础,第二,有FLUENT 安装软件可以应用。

然后就照着书上二维的计算例子,一个例子,一个步骤地去学习,然后学习三维,再针对具体你所遇到的项目进行针对性的计算。

不能急于求成,从前处理器GAMBIT,到通过FLUENT进行仿真,再到后处理,如TECPLOT,进行循序渐进的学习,坚持,效果是非常显著的。

如果身边有懂得FLUENT的老师,那么遇到问题向老师请教是最有效的方法,碰到不懂的问题也可以上网或者查找相关书籍来得到答案。

另外我还有本《计算流体动力学分析》王福军的,两者结合起来学习效果更好。

2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。

A.理想流体(Ideal Fluid)和粘性流体(Viscous Fluid):流体在静止时虽不能承受切应力,但在运动时,对相邻的两层流体间的相对运动,即相对滑动速度却是有抵抗的,这种抵抗力称为粘性应力。

流体所具备的这种抵抗两层流体相对滑动速度,或普遍说来抵抗变形的性质称为粘性。

粘性的大小依赖于流体的性质,并显著地随温度变化。

实验表明,粘性应力的大小与粘性及相对速度成正比。

当流体的粘性较小(实际上最重要的流体如空气、水等的粘性都是很小的),运动的相对速度也不大时,所产生的粘性应力比起其他类型的力如惯性力可忽略不计。

fluent学习重点

fluent学习重点

fluent全攻略:7.2 湍流模型8.2.2 定义湍流参数,计算湍流参数8.3 压强入口边界条件8.4 速度入口边界条件8.19很重要,涉及到理论方程的公式,需要仔细研究。

8.8 压强出口边界条件8.10 出流边界条件8.17 流体条件(fluid各个参数设置)9.7.1 Fick扩散定律(1)在动量方程中增加一个动量源项可以模拟多孔介质的作用。

多孔介质模型就是在动量方程中增加了一个代表动量消耗的源项。

源项由两部分组成:一个粘性损失项,即方程(8-45)右端第一项;和一个惯性损失项,即方程(8-45)右端第二项:(2)多孔介质对能量方程的影响体现在对对流项和时间导数项的修正上。

在多孔介质对对流项的计算中采用了有效对流函数,在时间导数项中则计入了固体区域对多孔介质的热惯性效应:(3)在缺省情况下,FLUENT 在多孔介质计算中通过求解标准守恒型方程计算湍流变量。

在计算过程中,通常假设固体介质对湍流的生成和耗散没有影响。

在多孔介质的渗透率很大,因而介质的几何尺度对湍流涡结构没有影响时,这个假设是合理的。

(2)用Ergun 方程计算充填床的多孔介质参数。

作为第二个例子,可以研究一下充填床问题。

在湍流中,充填床的数学模型是用穿透率和惯性损失系数来定义的。

计算相关常数的一种办法是使用半经验公式Ergun 方程,这个方程适用的雷诺数范围很广,同时也使用于多种填充物:13. 在多孔区域中取消湍流计算在Fluid(流体)面板中,开启Laminar Zone(层流区)选项,就可以将湍流粘度设为零,从而使相关区域中的流动保持层流状态。

能够反映多孔介质流动特点的参数是速度和压强。

14. 因为直接求解NS 方程非常困难,所以通常用两种办法对湍流进行模拟,即对NS 方程进行雷诺平均和滤波处理。

这两种方法都会增加新的未知量,因此需要相应增加控制方程的数量,以便保证未知数的数量与方程数量相同,达到封闭方程组的目的。

雷诺平均NS 方程是流场平均变量的控制方程,其相关的模拟理论被称为湍流模式理论。

FLUENT学习方法精华总结

FLUENT学习方法精华总结

FLUENT学习方法精华总结1.创造一个沉浸式环境:要想快速地提高外语的流利性,最好的方法就是创造一个沉浸式的学习环境。

参加语言交流活动,看外语电影、电视节目,听外语音乐等都是很好的方法。

在这个环境中,你会不自觉地开始思考和交流外语,从而提高你的流利性。

2.频繁练习口语:流利说话是外语学习的重点之一、要想提高口语流利性,就需要频繁地练习口语。

可以找一个语言学习伙伴一起练习口语,或者参加外语会话班,利用各种机会与母语人士进行对话。

3.多听多读:多听外语是提高流利级的有效方法之一、可以通过听录音、听外语歌曲、听外语广播等方式来增加你的听力理解和语感。

同样,多读外语也能帮助你提高流利性,帮助你更好地理解和产生外语表达。

4.注意语音和发音:学习语音和发音是提高流利性的重要一环。

语音和发音正确与否直接影响到你的交流流利性。

通过学习国际音标和模仿母语人士的发音,你可以逐渐改正自己的错误并提高流利性。

5.锻炼语法和词汇:语法和词汇是外语学习的基础。

通过学习和掌握语法规则和常用词汇,你可以更好地理解外语句子和产生表达。

在学习过程中,要注重语法和词汇的巩固和运用。

6.不怕犯错误:要想提高流利性,就要勇于开口,不怕犯错误。

只有经过不断地尝试和修正,你才能逐渐提高你的流利性。

从错误中学习,不断改进,提高自己的表达能力。

7.注重交流和实践:外语流利性的提高需要注重交流和实践。

可以加入外语俱乐部,参加外语角活动,和母语人士进行实际交流和实践,这样你才能更好地运用你所学的外语,提高你的流利性。

8.全面复习和总结:学习外语需要全面复习和总结。

可以写日记、做听力题、做口语练习等方式来复习和巩固所学知识。

通过不断的复习和总结,你可以更好地掌握所学的外语知识,提高流利性。

9.善用技术工具:现代科技为外语学习提供了很多便利的工具。

可以利用语言学习APP、在线教学网站、语音识别软件等技术工具来帮助你学习和提高你的外语流利性。

10.坚持和兴趣:外语学习需要坚持和持之以恒。

Fluent入门基础培训

Fluent入门基础培训
启动 FMG 初始化
– 压力基求解器: /solve/init/fmg-initialization – 密度基求解器: 当选择密度基求解器后在 GUI里可见
FMG 在粗网格上用多重网格求解
– 通过 TUI 命令来设置
软件结构及常用文件类型(2)
GAMBIT 设置几何形状 生成2D或3D网格
几何形状或 网格
其它软件包, 如CAD,CAE等
prePDF
2D或3D网格
PDF查表
FLUENT
PDF程序
网格输入及调整 物理模型 边界条件 流体物性确定 计算 结果后处理



体边

网界
格和
( 或

TGrid
网格 2D三角网格
安装方法
基本概念(1)
理想与实际流体:根据是否考虑流体的粘性,可将流体分为理 想流体和实际流体。
可压缩流体与不可压缩流体:根据流体压缩性的大小,可将流 体分为可压缩流体与不可压缩流体。密度随压强变化大且不可 视为常数的为可压缩流体,反之,称为不可压缩流体。 正常情况下,液体和低速气体(<50m/s)可视为不可压缩流体。
– 更真实的初值能提高收敛稳 定性,加速收敛过程.
– 有些情况需要一个好的初值
在特定区域对特定变量单独 赋值
– 自由射流(喷射区高速) – 燃烧问题 (高温激活反应) – 单元标注(自适应)
FMG 初始化(2)
Full MultiGrid (FMG) 能用来创建更好的初场
– FMG 初始化对包括大的压力梯度和速度梯度的复杂流动有用 – 在粗级别网格上求解一阶欧拉方程 – 可用于压力基或密度基求解器,但限于稳态问题
精度与经济性

Fluent软件学习心得与体会

Fluent软件学习心得与体会

Fluent软件学习心得与体会Fluent软件学习心得与体会作为一名工科学生,学习和掌握流体力学相关的软件工具是非常重要的。

在这方面,ANSYS Fluent软件是被广泛使用的一款流体仿真软件,它具有强大的求解能力和友好的用户界面。

在我深入学习并应用这款软件的过程中,我积累了许多宝贵的心得体会,现在将和大家分享一下。

首先,我认为系统性学习和理解基本原理是掌握Fluent软件的关键。

在开始使用这款软件之前,我先通过翻阅相关的教材和视频教程了解了流体力学的基本理论和模型。

这让我对软件中的各项参数和模型有了更深刻的认识,并且使我能够更好地应用软件解决流体力学问题。

其次,Fluent软件的用户界面相对来说算是比较友好和直观的。

但在实际使用中,我发现了一些需要注意的地方。

首先是网格的设置,合理的网格划分对于数值模拟的结果准确性有着重要的影响。

我学会了在软件中使用不同的网格生成方法,并且根据具体的问题进行优化。

其次是模型选择和边界条件的设定。

在使用Fluent软件时,根据实际问题需求选择合适的模型,并设置合理的边界条件是非常重要的。

我在实践中不断尝试和调整,逐渐掌握了这些技巧。

另外,Fluent软件提供了丰富的后处理功能,能够对仿真结果进行多种可视化展示。

在我的学习过程中,我学会了使用软件中的不同后处理工具,如云图、曲线图、剖面图等,来直观地展示流场的各项参数。

这些可视化结果帮助我更深入地理解流体动力学的本质,并且能够有效地与实际问题进行对比,进一步提升仿真结果的准确性。

另外,Fluent软件不仅仅用于传统的流体动力学问题仿真,还可以用于多学科领域的耦合问题仿真。

例如,我曾经用Fluent软件进行了流体与固体的热传导耦合问题的仿真计算。

通过这个实践,我发现Fluent软件能够与其他ANSYS软件进行无缝的耦合,实现多学科问题的综合求解。

这为解决更加复杂的实际工程问题提供了很大的方便。

总的来说,学习和应用Fluent软件使我在流体力学领域的研究和实践中受益匪浅。

Fluent软件学习笔记

Fluent软件学习笔记

Fluent软件学习笔记Fluent软件学习笔记⼀、利⽤Gambit建⽴计算区域和指定边界条件类型1)⽂件的创建及其求解器的选择软件基本知识:Geometry 绘制图形Mesh ⽹格划分Zones 指定边界条件类型和区域类型Operation绘图⼯具⾯板Tools 指定坐标系统等视图控制⾯板:全图显⽰(Fit to window)选择象限显⽰视图选择显⽰项⽬撤销或重复上⼀步⿏标键:左键单击——旋转模型中键单击——平移模型右键单击——放缩模型Shift+⿏标左键——选择点、边、⾯等①建⽴新⽂件:Flie New②选择求解器:Solver2)创建控制点:Operation-Geometry-Vertex创建边:Operation-Geometry-Edge创建⾯:Operation-Geometry-Face3)划分⽹格对边进⾏划分:对⾯进⾏划分:Operation-Mesh-Face-Mesh Faces注:打开的⽂本框中:Quad-四边形⽹格Elements- Tri-三⾓形⽹格Quad/Tri-混合型⽹格Map映射成结构化⽹络Submap分块/区映射块结构化⽹络Type- Pave平铺成⾮结构化⽹络Tri Primitive 将⼀个三⾓形区域分解为三个四边形区域在划分结构化⽹格Interval size:指定⽹格间距Interval count:指定⽹格个数4)边界条件类型的指定:Operation-ZonesAdd添加Name:为边界命名Action- Modify修改Type:指定类型Delete删除Entity :选择边/⾯5)Mesh⽹格⽂件的输出:File-Export-Mesh注:对于⼆维情况,必须选中Export2-D(X-Y)Mesh总结:建⽴⼏何模型划分⽹格定义边界条件输出⽹格⽂件(即建⽴计算区域)⼆、利⽤Fluent求解器求解1)Fluent求解器的选择2d:⼆维、单精度求解器2ddp:⼆维、双精度求解器3d:三维、单精度求解器3ddp:三维、双精度求解器2)⽂件导⼊和⽹格操作①导⼊⽹格⽂件:File-Read-Case②检查⽹格⽂件:Grid-Check(若minimum volume即最⼩⽹格的体积的值⼤于0,则⽹格可以⽤于计算)③设置计算区域尺⼨:Grid-ScaleFluent中默认的单位为m,⽽Gambit作图时候采⽤的单位为mm④显⽰⽹格:Display-Grid3)选择计算模型①求解器的定义:Define-Models-Solver(压⼒基、密度基)②其他操作模型的选定Multiphase多相流模型Energy考虑传热与否Species反应及其传热相关Viscous层流或湍流模型选择Define-Models-Viscous:打开粘性模型Inviscid⽆粘模型Laminar层流模型Spalart-Allmaras单⽅程湍流模型(S-A模型)K-epsilon双⽅程模型(k-ε模型)K-omega双⽅程模型以及雷诺应⼒模型③操作环境的设置:Define-Operating ConditionsPascal(环境压强)、Gravity(重⼒影响)4)定义流体的物理性质:Define-MaterialsFluent Database中调出5)设置边界条件:Define-Boundary Conditions①设置Fluid流体区域的物质:Zone-Fluid--Set②设置Inlet的边界条件:Zone-Inlet-Set③设置Outlet的边界条件④设置Wall的边界条件6)求解⽅法的设置及控制①求解参数的设置:Solve-Controls-Solutions...Equations:需要求解的控制⽅程Pressure-Velocity Coupling:压⼒-速度耦合求解⽅式Discretization:所求解的控制⽅程Under-Relaxation Factor:松弛因⼦②初始化:Solve-Initialize-Initialize...设置Compute Form为Inlet,依次点击Init和Close图标完成对流场的初始化③打开残差监控图:Solve-Monitors-Residuai...④保存当前的Case⽂件:File-Write-Case...⑤开始迭代计算:Solve-Iterate...⑥保存计算后的Case和Date⽂件:File-Write-Case&Date...7)计算结果显⽰显⽰速度等值线图:Display Contours...Contous of-------选中Velocity...Surfaces-------指定平⾯Levels--------等值线数⽬(默认)Options-----------选中Filled绘制的是云图注:轴对称问题,可通过镜像选择显⽰整个圆管的物理量分布镜像选择显⽰的设置:Display-Views... 在Mirror Planes中选择axial为镜像平⾯,然后点击Apply图标接受设置绘制速度⽮量图:Display-Vectors...Vectors of-------选中VelocityStyle----------箭头类型Scale---------⽮量被放⼤倍数Skip----------⽮量密集程度显⽰某边上速度的速度剖⾯XY点线图:Plot-XY Plot...注:Plot Direction:表⽰曲线将沿什么⽅向绘制显⽰迹线F ile—path lines在release from surface列表中选择释放粒⼦的平⾯设置step size和step的数⽬,step size设置长度间隔steps设置了⼀个微粒能够前进的最⼤步数单击display三、⼆维⽰例⼆维定常可压缩流场分析——NACA 0006翼型⽓动⼒计算⼆维定常不可压缩流场分析——卡门涡街动画的设置:Solve-Animate-Define三维定常可压缩流动⽰例第⼆章:流体⼒学基本⽅程及边界条件三⼤控制⽅程:质量守恒、动量守恒及能量守恒⽅程初始条件边界条件:速度⼊⼝三维定常速度场的计算1、内部⽹格的显⽰打开examine mesh对话框温度场的计算Fluent处理中选中能量⽅程求解器:define/models/energy设置wall边界条件时候,convection热对流边界条件多相流模型VOF模型的选择define/models/multiphase基本相及第⼆相的设置define/phase动画的设置。

Fluent学习总结

Fluent学习总结

FLUENT学习总结1 概述:FLUENT是目前处于世界领先地位的商业CFD软件包之一,最初由FLUENT Inc.公司发行。

2006年2月ANSYS Inc.公司收购FLUENT Inc.公司后成为全球最大的CAE软件公司。

FLUENT是一个用于模拟和分析复杂几何区域内的流体流动与传热现象的专用软件。

FLUENT提供了灵活的网格特性,可以支持多种网格。

用户可以自由选择使用结构化或者非结构化网格来划分复杂的几何区域,例如针对二维问题支持三角形网格或四边形网格;针对三维问题支持四面体、六面体、棱锥、楔形、多面体网格;同时也支持混合网格。

用户可以利用FLUENT提供的网格自适应特性在求解过程中根据所获得的计算结果来优化网格。

FLUENT是使用C语言开发的,支持并行计算,支持UNIX和Windows等多种平台,采用用户/服务器的结构,能够在安装不同操作系统的工作站和服务器之间协同完成同一个任务。

FLUENT通过菜单界面与用户进行交互,用户可以通过多窗口的方式随时观察计算的进程和计算结果。

计算结果可以采用云图、等值线图、矢量图、剖面图、XY散点图、动画等多种方式显示、存贮和打印,也可以将计算结果保存为其他CFD软件、FEM软件或后处理软件所支持的格式。

FLUENT还提供了用户编程接口,用户可以在FLUENT的基础上定制、控制相关的输入输出,并进行二次开发。

1.1 FLUENT软件包的组成针对不同的计算对象,CFD软件都包含有3个主要功能部分:前处理、求解器、后处理。

其中前处理是指完成计算对象的建模、网格生成的程序;求解器是指求解控制方程的程序;后处理是指对计算结果进行显示、输出的程序。

FLUENT软件是基于CFD软件的思想设计的。

FLUENT软件包主要由GAMBIT、Tgrid、Filters、FLUENT几部分组成。

(1)前处理器。

包括GAMBIT、Tgrid和Fliters。

其中GAMBIT是由FLUENT Inc.公司自主开发的专用CFD前置处理器,用于模拟对象的几何建模以及网格生成。

(完整版)学习fluent(流体常识及软件计算参数设置)

(完整版)学习fluent(流体常识及软件计算参数设置)

luent中一些问题----(目录)1 如何入门2 CFD计算中涉及到的流体及流动的基本概念和术语2.1 理想流体(Ideal Fluid)和粘性流体(Viscous Fluid)2.2 牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid)2.3 可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid)2.4 层流(Laminar Flow)和湍流(Turbulent Flow)2.5 定常流动(Steady Flow)和非定常流动(Unsteady Flow)2.6 亚音速流动(Subsonic)与超音速流动(Supersonic)2.7 热传导(Heat Transfer)及扩散(Diffusion)3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?3.1 离散化的目的3.2 计算区域的离散及通常使用的网格3.3 控制方程的离散及其方法3.4 各种离散化方法的区别4 常见离散格式的性能的对比(稳定性、精度和经济性)5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?6.1 可压缩Euler及Navier-Stokes方程数值解6.2 不可压缩Navier-Stokes方程求解7 什么叫边界条件?有何物理意义?它与初始条件有什么关系?8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?9 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?10 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?12 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?14 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?15 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?16 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?17 23 在FLUENT运行过程中,经常会出现“turbulence viscous rate”超过了极限值,此时如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响18 24 在FLUENT运行计算时,为什么有时候总是出现“reversed flow”?其具体意义是什么?有没有办法避免?如果一直这样显示,它对最终的计算结果有什么样的影响26 什么叫问题的初始化?在FLUENT中初始化的方法对计算结果有什么样的影响?初始化中的“patch”怎么理解?27 什么叫PDF方法?FLUENT中模拟煤粉燃烧的方法有哪些?30 FLUENT运行过程中,出现残差曲线震荡是怎么回事?如何解决残差震荡的问题?残差震荡对计算收敛性和计算结果有什么影响?31数值模拟过程中,什么情况下出现伪扩散的情况?以及对于伪扩散在数值模拟过程中如何避免?32 FLUENT轮廓(contour)显示过程中,有时候标准轮廓线显示通常不能精确地显示其细节,特别是对于封闭的3D物体(如柱体),其原因是什么?如何解决?33 如果采用非稳态计算完毕后,如何才能更形象地显示出动态的效果图?34 在FLUENT的学习过程中,通常会涉及几个压力的概念,比如压力是相对值还是绝对值?参考压力有何作用?如何设置和利用它?35 在FLUENT结果的后处理过程中,如何将美观漂亮的定性分析的效果图和定量分析示意图插入到论文中来说明问题?36 在DPM模型中,粒子轨迹能表示粒子在计算域内的行程,如何显示单一粒径粒子的轨道(如20微米的粒子)?37 在FLUENT定义速度入口时,速度入口的适用范围是什么?湍流参数的定义方法有哪些?各自有什么不同?38 在计算完成后,如何显示某一断面上的温度值?如何得到速度矢量图?如何得到流线?39 分离式求解器和耦合式求解器的适用场合是什么?分析两种求解器在计算效率与精度方面的区别43 FLUENT中常用的文件格式类型:dbs,msh,cas,dat,trn,jou,profile等有什么用处?44 在计算区域内的某一个面(2D)或一个体(3D)内定义体积热源或组分质量源。

FLUENT的学习总结

FLUENT的学习总结

FLUENT软件的学习总结通过这段时间对FLUENT软件的学习,我发现这个软件有庞大的参数设置和边界条件设置,同时要应用好这个软件也需要扎实的流体力学、传热学、导热学等基础知识。

在逐步的学习和摸索的过程中我总结有以下几个核心问题需要面对和研究。

第一.GAMBIT软件中的边界设置错误问题当在gambit中进行边界条件的设置时,路面上方十米处设置辐射源时,只要选择RADIATOR在网格输出时就会出现错误的提示,如选择WALL来作为边界,或者选择其它项时则不会出现这种情况。

请教一些人后,有人认为是网格划分的问题,认为对于网格的划分,要求控制网格的密度,可以遵循从线到面的原则,不能将所有边的网格点都定死,必须有一些边不定义网格,如四边形区域,一般只定义相邻两个边的网格,但是我在重新划分后还是不能解决。

后来在gambit2.3.16版本下运行也出现同样的问题。

所以现在对辐射面还是暂时设定为WALL,这直接影响到在msh文件导入fluent 后的边界条件设置。

同时在导入FLUENT也会出现如下的错误提示。

第二.Fluent中辐射模型的选用FLUENT 中可以用5 种模型计算辐射换热问题。

这5 种模型分别是离散换热辐射模型(DTRM)、P-1 辐射模型、Rosseland 辐射模型、表面辐射(S2S)模型和离散坐标(DO)辐射模型。

这五种模型究竟哪一种最适合路面对空气辐射的情况,由于没找到相关的算例,只能预估选择模型,根据看一些辐射算例和相关论坛,总结出要从以下几个方面去考虑:(1)光学厚度:可以用光学厚度(optical thickness)作为选择辐射模型的一个指标,看到一些论坛上关于光学厚度选模型的文章,由于我的模型的介质是空气,而空气的光学厚度相对其他介质比较小,所以选用P-1 模型或DO 模型,DO 模型的计算范围更大,但是同时计算量也更大,对计算机要求更高。

(2)散射:P-1、Rosseland 和DO 模型均可以计算散射问题,而DTRM 模型则忽略了散射的影响。

Fluent学习总结

Fluent学习总结

0 起因接触Fluent这款软件不到两年。

在此之前一直在使用CFX。

CFX的使用时间其实也不到三个月,伴随着项目的结束也自然的放下了。

再那之前,我甚至还不知道什么是CFX,什么是CFD。

研一的一整年基本上没去过实验室,整天就是在教室或寝室中度过,上课之余玩玩游戏,我以为研究生三年就会这么度过,日子过得很空虚。

我的真正导师并没有什么项目,说出来也许很好笑,在整个研一一年里,我都没有见过他,可以说是一个传奇中的人物,他将我委托给另外一个老师。

当时我不知道这些情况,是后来老师告诉我的我才明白。

先不讲这些无关的。

当时虽然每天上上课打打游戏,表面上看起来日子过得很惬意,其实玩过游戏的人都清楚,玩的时候感觉很过瘾,退出来感觉更无聊。

我当时也是那样,看到其他同学在学习之余跟着老师做项目,学习一些新的东西,其实心里也是蛮羡慕的。

08年4月的一天,老师(不是我的导师,是带我的那位老师)突然打电话让我去他办公室,想和我谈谈。

我当时心情有点紧张还有点期盼。

不到半个小时,我来到老师的办公室,老师五十多岁了,挺和蔼可亲的,几句话就让我放松下来了,然后他问我:“你这三年有什么打算?”。

我当时不知道如何回答,想了半天,说了一句:“老师,我不想像现在这样整天混下去了”。

老师说:“你该进实验室了!”。

那时候不像现在实验室的电脑多得找不到人使用,其实那时电脑还是勉强够研二研三的使用。

第二天,我去了实验室,看了下具体情况,由于我本人性格比较内向,不善于与别人交流,所以看到实验室的位置不够后,连老师的正牌研一的学生都没有位子,我觉得我还是等两个月后研三的毕业了腾出地方了再进实验室了。

其实老师和我谈话的时候问了一下我的基础怎么样,还说实验室现在基本上搞的都是流体,问我有没有兴趣往流体方向发展。

我现在都记不大清楚当初是怎么回答的了,大概意思好像是没问题。

我这个人平时喜欢挑战,可能是无知者无畏吧,当时我对流体模拟是什么都不知道,连流体力学都没有接触过。

Fluent学习笔记(一)

Fluent学习笔记(一)

Fluent学习笔记(⼀)前⾔:之前⽤过CFX,看完Fluent感觉好⽤多了。

不过,本⼈是⾃⼰编代码做CFD的,我对这些CFD软件⼀直持有保守观点,我始终认为只有掌握CFD的基本原理才抓住了他的本质。

学个CFX,Fluent在我看来就是学会了怎么点点功能按键,⼀个完全不懂CFD的⼈可以靠Fluent输出五颜六⾊的图⽚,外⾏⼈⼀看还以为是⼤神。

不过,我承认,⽤Fluent或者CFX对快速求解分析⼀些问题是很好的⼯具,对于不是专门做CFD的⾏外⼈员来说蛮好⽤。

对于我这种像研究CFD原理的⼈来说,就当⼀个技能学了。

如果在命名过程中使⽤.gz或.z的后缀,则系统会⽤相应的压缩⽅式保存算例⽂件和数据⽂件,它们是Fluent中的压缩⽂件格式。

进程⽂件相当于重播⽤户曾经进⾏的操作,可以读⼊。

记录⽂件也可以记录⽤户所有的键盘和菜单输⼊动作,但是不可以重播。

边界函数分布⽂件⽤于定义计算边界上的流场条件,例如可以⽤边界函数分布⽂件定义管道⼊⼝处的速度分布。

Mesh->check检查⽹格的质量,输出⽹格的常⽤信息,⽐如坐标值、体积值、⾯积值。

当体积为负时,意味着存在⼀个或多个单元有不合适的连通性,⼀个负体积的单元经常可以使⽤Iso-Value Adaption。

在合并⾯域时,选择所要合并的⾯,在Tolerance中输⼊适当的公差值,单机fuse按钮进⾏合并。

在两个⼦域交会的边界处不需要⽹格的节点位置统⼀,如果使⽤Tolerance的默认值没有使所有合适的⾯合并,那么可以适当增加Tolerance的数值,然后再试着合并域,但是Tolerance不应该超过0.5,否则可能会合并错误的节点。

通常情况下,⽹格设置后还需要进⾏光顺和单元⾯交换来提⾼最后数值⽹格的质量,光顺重新配置节点和⾯的交换修改单元的连通性,从⽽使⽹格在质量上取的改善。

(单元⾯交换仅仅适⽤于三⾓形和四⾯体单元的⽹格适应)求解器的类型有Pressure-based和density-based。

FLUENT学习必备

FLUENT学习必备

8.网络资料
FLUENT中文全教程.pdf 赵玉新 国防科技大学
fluent全攻略.pdf 流体中文网整理 2005.3
这是我目前知道的比较系统全面介绍Fluent的教程,二者有部分重复,因为Fluent提供的帮助文件就只有一份。推荐!
其余的还有网友整理的帖子问答文档,比较多。其他一些比较好的资料正在搜集整理之中。这些东西都在我的ftp提供下载,也可以单独联系我。多上CFD论坛,会发现很多惊喜,呵呵。
Fluent学习推荐书目
虽然网络上的资料和帖子很多,但多数有些还都是限于个人经验而显得不太正规,现在把目前我觉得适合入门又值得继续深入学习的优秀教材和资料推荐出来,供大家参考。
1.计算流体动力学分析-CFD软件原理与应用 王福军 编著 清华大学出版社 2004.9
这本书适合对Fluent有了一定的了解,但是又很云山雾罩的那种感觉的人,见到这本贴心为读者编写的书会觉得万分亲切,相见恨晚。该书对CFD的各种离散格式,求解算法,湍流模型,边界条件,网格生成原理几个方面做了深入浅出的介绍和比较,会让人在那些高深的理论面前找回点自信,原来CFD理论也不是不可理喻的嘛!最令人舒服的是后面对Fluent基本用法的介绍,细致到了绝大多数通用界面的设置,细致到每个参数的意义和取值。多说了,别犹豫赶紧出手吧,中关村或者当当网都有卖,卓越没货很久了,毕竟04年出版的又没有后续修订,不是新书了。
把这本书放在后面不是因为它推荐程度低于前几本,只是因为现在很不好买了。图书馆有借,网上很不好买,不知道书店还有没有。我这里有不清晰的pdf,费了很大的劲才淘到,在我的ftp有下srm:srm@10.22.27.26,也可以单独跟我要。
6.传热与流体流动的数值计算 S. V. 帕坦卡 著 张政 译 蒋章焰 校 北京理工大学出版社 2004.10

Fluent学习历程及关键步骤

Fluent学习历程及关键步骤

Fluent学习历程及关键步骤
学习基础知识:在开始使用Fluent之前,了解流体力学的基本概念和方程是很重要的。

这将帮助你理解Fluent软件的工作原理和使用方法。

学习界面和工具栏:熟悉Fluent软件的界面和工具栏是学习的第一步。

了解各个工具的功能和用途,以及如何在界面中导航和操作。

学习网格生成:网格生成是Fluent中非常重要的一步,它决定了模拟的准确性和效率。

学习如何使用Fluent的网格生成工具,包括创建几何体、划分网格、调整网格参数等。

设置边界条件:在模拟中,正确设置边界条件是至关重要的。

学习如何在Fluent中设置边界条件,包括流体入口、出口、壁面等。

定义物理模型:Fluent提供了多种物理模型,如湍流模型、传热模型等。

学习如何选择适当的物理模型,并进行相应的设置。

运行模拟:在设置好边界条件和物理模型后,可以运行模拟并观察结果。

学习如何设置求解器参数、控制收敛性等。

结果分析和后处理:Fluent提供了丰富的结果分析和后处理工具,可以帮助你可视化和分析模拟结果。

学习如何使用这些工具,包括绘制图表、生成动画、导出数据等。

实践和练习:通过实践和练习,你可以更好地掌握Fluent软件。

尝试解决不同类型的流体力学问题,并逐步提高难度。

FLUENT学习方法精华总结

FLUENT学习方法精华总结

FLUENT学习方法精华总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(FLUENT学习方法精华总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为FLUENT学习方法精华总结(word版可编辑修改)的全部内容。

1.学习方法首先看两本教材,然后开始看软件的说明.如果说要提高效率的话,在阅读说明的时候可以先读完Getting Start Guide部分,然后大致先浏览一下User’s Guide,之后重点过一遍Tutorial Guide.而且我建议Tutorial Guide部分不要因为跟自己的实际使用的模块不一样就跳过,因为实际上每一个Tutorial都会有前处理后处理,这一部分是通用的.就算是模型部分,你也难保课题在进行过程中会需要换模型,你现在做一天算例,心里有数了,以后想尝试改变模型时心里也有底。

我个人前前后后应该是将Tutorial Guide部分的算例做了近三遍,第一遍基本按操作说明一步一步来。

第一遍做下来对于Fluent这个软件的大体逻辑就有个数了.注意这里有一个问题,那就是计算流体力学的逻辑和软件的操作逻辑还不能等同的。

这里涉及到一个数学模型在软件层面的具体实现路径的问题。

所以你即使学过计算流体力学的课程,细致地做一遍Tutorial Guide部分的算例我觉得也是有很大的必要的.完成Tutorial Guide的第一遍演练之后,我就回头开始看User's Guide部分,并且边看边做第二遍算例演练。

两个部分说明互相对照,开始明白每一步操作的实际目的是什么。

Fluent学习总结

Fluent学习总结

Fluent学习总结报告学号:班级:姓名:指导老师:前言FLUENT是世界上流行的商用CFD软件包,包括基于压力的分离求解器、基于压力的耦合求解器、基于密度的隐式求解器、基于密度的显示求解器。

它具有丰富的物理模型、先进的数值方法和强大的前后处理功能,可对高超音速流场、传热与相变、化学与相变、化学反应与燃烧、多相流、旋转机械、变/动网络、噪声、材料加工复杂激励等流动问题进行精确的模拟,具有较高的可信度,。

用户自定义函数也为改进和完善模型,处理个性化问题和给出更合理的边界条件提供了可能。

经过这一个学期对 Fluent的初步入门学习,我对其有了初步的了解,通过练习一些例子,掌握了用 Fluent 求解分析的大概步骤和对鼠标的操作,也大概清楚这些分析有什么用。

由于软件和指导资料几乎全部都是英文书写,还没能完全地理解软件上各个选项的意义和选项之间的联系,目前仅仅是照着实例练操作,要想解决实际问题还远远不够,不过孰能生巧,我相信经过大量的练习,思考,感悟,我一定可以熟练掌握并运用 Fluent。

本学习报告将从Fluent的应用总结分析和几个算例的操作来叙述。

fluent 简单操作指南1.读入文件file--read--case找到.msh文件打开2.网格检查grid-check网格检查会报告有关网格的任何错误,特别make sure最小体积不能使负值;3.平滑和交换网格grid-smooth/swap---点击smooth再点击swap,重复多次;4.确定长度单位grid-scale----在units conversion中的grid was created in中选择相应的单位,点击change length units给出相应的范围,点击scal,然后关闭;5.显示网格display--grid建立求解模型(求解器)2.设置湍流模型define-models-viscous3.选择能量方程define-models-energy4 设置流体物理属性define-materials,进行设置,然后点击change/create,弹出的对话框点NO。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Gambit简介
Gambit—GUI界面简介
菜单
命令面板
视图控制面板
命令显示窗
命令输入栏
命令解释窗
Gambit—菜单介绍
File
Solver
Fidap 基于有限元方法的通用CFD求解器
Fluent6.0 基于非结构化网格的通用CFD求解器
Edit
Fluent4.5 基于结构化网格的通用CFD求解器
Define菜单简介
Define Materials:材料属性设置(自定义/数据库)
Phases:对多相流进行耦合设置
Boundary Conditions:边界条件设置 Periodic Conditions:周期性流动或传热条件设置 User—Defined:用户自定义(C语言) 用于边界条件、材料属性、传递方 程、扩散方程、调整耦合值、初始 值、不同步过程、后处理等的设置。
图标 Fluent方案
选择模型维度及解的精度
2d
:二维单精度求解器
2ddp:二维双精度求解器 3d
菜单栏
:三维单精度求解器
3ddp:二维双精度求解器
操作显示窗口
Fluent中不能直接对GUI中模 型(几何、网格)进行操作
菜单说明
1、File 2、Grid 3、Define 4、Solve 5、Adapt
工作压强设置:0Pa 对于马赫数大于0.1的流动,工作压强 取0Pa
Fluent中材料属性设置
材料属性设置: Define Materials 材料属性:使用默认的理想气体属性 材料属性的获取: Fluent Database:从数据库直接导 入 User-Define Database:通过编写 材料属性方程
File菜单说明—Import栏
ABAQUS:InputFile — .inp ResultFile — .fil
File
Ansys:
InputFile — .ans / .neu / .cdb / .prep7 ResultFile —.rfl, .rst, .rth, or .rmg
DefinitionFile — .def ResultFile — .res CGNS: MeshFile — .cgns DataFile — .dat LSTC: InputFile — .k / .key / .dyn StateFile — .d3plot NASTRAN: BullkdataFile — .nas/ .dat / .bdf Op2File — .op2 PATRAN: NeutralFile — .neu / .out / .pat PLOT3D: GridFile — .g / .x / .xyz / .grd ResultFile — .g / .x / .xyz / .grd CFX:
2D/3D网格
边界或体网格
Fluent —网格输入及调整 —物理模型 —边界条件 —流体物性 —计算 —后处理
网格
TGrid —2D三角网格 —3D四面体网格 —2D和3D混合体网格
网格
Fluent应用范围
1、可压缩与不可压缩流动问题(低亚音速、近音速、超音速、高超音速) 2、稳态和瞬态流动问题
3、无黏流、层流和湍流问题
View Factors:读取由Fluent存成的.s2s文件,用于面对面的辐射模型
Profile:读取.prof文件,用于指定流体流经的边界轮廓 ISAT Table:读取.isat文件,用于混合燃烧的瞬态模型 Scheme: Journal:
注:write与read对应,一个是写文件一个是读文件,此不赘述。
Size:显示网格的组成部分及点、面、体的数量 Memory Usage:显示内存使用的总量 Zones:显示每个面域或体域节点的数量;网格 中面单元和体单元的数量;单元的类型 Partitions:显示网格各组成部分的信息
Polyhedra:将3D网格转换成多面体网格(六面体网格除外)
Grid菜单说明
这一步可以获取构成各边 界及内部区域的单元数量
检查网格:GridFra bibliotekCheck
这一步可以获取模型域的范围、 单元体积及面积的统计。 注意:最小体积不能为负,否 则无法计算。
Fluent中求解器、能量方程设置
求解器设置: Define 条件设置: Density Based:基于密度(耦合式求解器) Implicit:隐式求解 Models Solver
Solve菜单简介
Solve Solution:解参数设置(松弛度、离散) Limits:增加解稳定性的设置 Initializa:解的初始化(迭代前此步骤为必要步骤) Monitors:用于监视迭代过程相关参数的收敛曲线 ( 通过曲线情况决定后续迭代的次数)
Iterate:迭代求解(迭代次数及瞬态时间的设置)
种子布置
划分网格
网格划分时尽量划分结构化网格,这样便于收敛
Gambit中设置边界条件
此步中边界设置主要是为以后修提供方便,具体数据要到 Fluent中设置。这里只是将边界进行选择、命名及分类
固壁约束
速度入口条件 压力出口条件 此条件可以 不设,程序 默认。
Fluent中导入网格及检查网格
导入网格: File Read Case
指定边界类型
规定入口的质量流量 对于出口处流速和压力不知道的情况 无穷远处自由流的条件 给定流动入口的总压和其他标量 给定出口处的静压 对称边界条件 给定入口处的流速和其他标量
指定连续类型
流体/固体/多孔材料
Fluent简介
程序结构
GamBit
—几何设置 —2D/3D网格生成
几何/网格
CAD、CAE软件包
4、牛顿流体及非牛顿流体 5、对流换热问题(包括自然对流和混合对流)
6、导热与对流换热耦合问题
7、辐射换热 8、惯性坐标系和非惯性坐标系下的流动问题 9、用Lagrangian轨道模型模拟稀疏相 10、一维风扇、热交换器性能计算 11、两相流问题 12、复杂表面形状下的自由面流动问题
运行Fluent
Display菜单简介
Display
Grid:显示所选表面的节点、所选表面的边、所选 表面的面网格及多体的分割区域 Contours:结果的等高线及云图显示 Vectors:结果的矢量图显示
Plot菜单简介
Plot
XY Plot:在XY坐标轴上显示区域、表面及文件中 的数据
Histogram:所选区域中物理量幅值分配情况的直 方图
6、Surface
7、Display
8、Plot
9、Report
10、Parallet
File菜单说明—Read栏
File
Case:读取由Fluent存成的.cas文件(模型文件,记录网格、边界条件等) Data:读取由Fluent存成的.dat文件(结果文件。前提要先读取.cas文件) Case&Data:读取由Fluent存成的.cas文件并与.cas文件相对应的.dat文件 PDF:读取由Fluent生成的.pdf文件,此文件用于混合燃烧模型(PDF被激活 条件下可用) DTRM Rays:读取由Fluent生成的.ray文件,用于辐射模型(DTRM被激活 条件下可用)
(无粘/层流/湍流)
Radiation:热辐射模型及其相应参数设置 Species:燃烧模型及其相关参数设置 Discrete Phase:此设置是对连续流的补充,在连续 流中增加飞沫、气泡等非连续流 Solidification & Melting:凝固/融化 模型设置 Acoustics:声学模型及其相关参数设置
Gambit—几何造型(通用工具)
移动/复制
连接/打断连接
裂开/合并
指定颜色
布尔操作
光顺/转换
检查/查询/摘要
删除
Gambit—网格划分
网格划分方法:
1、Map 2、Submap 创建四边形的结构性网格 将一个不规则的区域划分为几个规则区域并分别划分 结构性网格。 创建非结构性网格 将一个三角形区域划分为三个四边形区域并划分规则 网格。 在一个楔形的尖端划分三角形网格,沿着楔形向 外辐射,划分四边形网格。
Merge:将多个具有同一类型的域合并成一个域
Grid
Separate:将一个域差分成多个具有相同类型的域(face/cell)
Fuse:一个域被分成几个域,并且在每个域上划分了网格。计算 之前要把这些单独的域装配成一个整体的域。 Surface Mesh:3D模型中允许读取表面网格 Reorder:对区域中的节点、面、体进行重新排序以提高内存使 用效率或方便用户界面操作 Scale:将不同尺度下的单位转换成SI制(放缩网格) Translate:移动网格
面网格
体网格
Gambit对于二维面的网格和三维提的网格划分提供了 四种布置种子的方法。 1、由边映射而成(二维)/由面映射而成(三维) 2、设置边(面)上的种子个数 3、设置边(面)上种子间的距离 4、设置边(面)单元尺寸占此边(面)尺寸的百分比
Gambit—定义边界条件及属性
固壁约束(默认边界条件)
设置入口为初 始化的部位
默认为经验值
Properties:在材料各属性对应的栏 目下面修改相应的数值
Fluent中边界条件设置
边界条件设置:
速度入口条件 适用于不可压 缩流体,而本 例中是可压缩 流体
Define
Boundary Conditions
亚音速设置
入口边界 出口边界
Fluent中解的初始化及残差监视
初始化: Solver Initialize Initialize 初始化仅是对内部流动的一 个猜测值,可以对其数值进 行更改,其结果影响到迭代 计算的收敛速度。 是迭代计算开始的部分。 残差监视: Solver Monitors Residual
相关文档
最新文档