贝雷片-潮白新河钢栈桥及钢平台计算说明书
15米跨钢栈桥结构受力计算书

钢栈桥结构受力计算书编制时间:二OO八年十二月十日栈桥计算书一、结构形式钢栈桥总长345m,宽6m,跨径15m。
栈桥横断面结构如下图:1、北栈桥北栈桥利用闽江北岸的防汛石堤作为起始平台,布置于桥上游,平台面顶高程+5.3m,设栈桥顶面高程为+5.88m,作用有二:一可抵御最高水位+5.71m(考虑涌水效应,预计最高水位实际达到+6.0m),二可就地利用防汛石堤作为进场道路。
北栈桥总长195m,桥跨选用13×15m,标准跨15m采用两根直径630mm的钢管桩基础,平均长度17m,桩间下横联采用一根直径350mm的钢桩,剪刀撑槽16,上横梁采用双I50a,主纵梁采用3排双贝雷桁梁,其上分配梁I20@1.5m,纵梁I12.6@0.4m,平台面采用厚10mm的钢板(5m宽)。
平台面宽6m,其中5m作为车行道,上游侧0.3m作为电缆通道,下游侧0.7m作为人行道及泵管通道。
钢栏杆布置在平台外侧。
北栈桥桥位处河底高程-3~-4m,大型施工船舶随时可以进场施工,拟准备租用回转扒杆浮吊进行震动沉钢桩、横梁安装、纵梁安装及桥面系安装。
预计施工时间20天。
2、南栈桥南栈桥利用浅滩回填33m后进行钢栈桥起始段施工,主要施工方法有两种:若河底高程大于-1.5m(图纸显示大约70m宽河滩高于此高程)采用回填至1.0m,履带吊低潮位涉水施工;若河底高程小于-1.5m(由于挖沙船施工,河滩水深近10m,即底高程-5m左右)采用浮吊施工。
南栈桥长150m,标准截面同北栈桥。
二、荷载布置1、上部结构恒重(6米宽计算)⑴δ10钢板:6×1×0.01×7.85×10=4.71KN/m⑵I12.6纵向分配梁:2.27KN/m⑶I20a横向分配梁:1.12KN/m⑷贝雷梁(每片287kg含支撑架、销子):287×6×10/3/1000=5.74KN/m⑸I50a下横梁:4.7KN/根2、活荷载⑴45t砼车⑵履带吊65t:自重60t+吊重20t⑶施工荷载及人群荷载:4KN/m2考虑栈桥实际情况,同方向车辆间距不小于24米,即一跨内同方向最多只布置一辆重车。
2-1钢栈桥计算书

目录1. 设计说明 (1)1.1 栈桥构造 (1)1.2 设计依据 (3)1.3 设计标准 (3)1.4主要材料力学性能 (3)2. 荷载 (4)2.1 永久荷载 (4)2.2 可变荷载 (4)2.2.1 履带吊 (4)2.2.2 混凝土罐车 (4)2.3 荷载工况 (5)3. 栈桥结构计算分析 (5)3.1 混凝土面板计算 (5)3.2 计算模型 (5)3.3 工况1计算分析 ........................................................ 错误!未定义书签。
3.4工况2计算分析 (8)3.7计算结果汇总 (12)I栈桥设计计算书1. 设计说明1.1 栈桥构造栈桥为钢管桩基础贝雷梁栈桥,采用钢板桥面板。
其中栈桥标准跨径21m,行车道宽7.0m(栈桥总宽8m)。
栈桥基础每排采用3根υ630,δ8mm钢管桩,;钢管桩上设2X45I型钢承重横梁。
根据栈桥宽度设置9排贝雷纵梁,每两排贝雷纵梁之间采用90花架连接。
栈桥面层采用10mm厚Q235刚板面板,并设置有防护栏杆、电缆通道等附属设施。
栈桥跨径布置及标准段横断面见下图。
栈桥总体立面图(单位:cm)栈桥总体侧面图(单位:cm)栈桥总体平面图(单位:cm)1.3 设计依据⑴《公路桥涵设计通用规范》(JTG D60-2004)⑵《港口工程桩基规范》(JTS 167-4-2012)⑶《公路桥涵施工技术规范》(JTG/T F50-2011)⑷《钢结构设计规范》(GB50017-2003)⑹《混凝土结构设计规范》(GB50010-2010)1.4 设计标准⑴设计荷载:80t履带吊,12m³混凝土罐车;⑵水位:20年一遇的最高洪水位+3.3m;⑶水流速度:2.3m/s;⑹河床高程:河床底标高为-1.30m,河堤顶标高为+5.20m,常水位为+1.80m,河床处地质情况依次为5m 厚淤泥质粘土、8m 厚粉细砂层、6m 厚中砂层和15m 厚圆砾层等,对应侧摩阻力分别为9kpa、25kpa、38kpa、70kpa,河床一般冲刷深度约2.0m。
下承式贝雷钢栈桥设计计算书

目录1 设计说明........................................................ - 1 -1.1 栈桥构造 ................................................... - 1 -1.1.2 贝雷梁............................................... - 2 -1.1.3 桩顶横梁............................................. - 2 -1.1.4 钢管桩基础........................................... - 2 -1.2 设计主要参考资料 ........................................... - 2 -1.3 设计标准 ................................................... - 3 -1.4 主要材料力学性能 ........................................... - 3 -2 作用荷载........................................................ -3 -2.1 永久作用 ................................................... - 3 -2.2 可变作用 ................................................... - 3 -2.2.1 混凝土罐车........................................... - 4 -2.2.2 流水压力............................................. - 4 -2.2.3 风荷载............................................... - 4 -2.2.4 制动力............................................... - 4 -2.3 荷载工况 ................................................... - 4 -3 栈桥结构计算分析................................................ -4 -3.1 计算模型 ................................................... - 5 -3.2 计算分析 ................................................... - 5 -3.3 计算结果汇总 ............................................... - 7 -4 基础计算........................................................ - 8 -4.1 钢管桩入土深度 ............................................. - 8 -4.2 钢管桩稳定性 .............................................. - 10 -5 结论........................................................... - 11 -栈桥计算书1 设计说明1.1 栈桥构造栈桥设计为下承式贝雷钢栈桥,负担施工中的材料、物资的运输功能、人员的通行通道。
钢栈桥计算书

目录1 编制依据 (1)2 工程概况 (1)3 钢栈桥及钢平台设计方案 (2)3.1钢栈桥布置图 (2)3.2钢平台布置图 (2)4 栈桥检算 (3)4.1设计方法 (3)4.2桥面板承载力验算 (4)4.3 I20a工字钢分配梁承载力验算 (5)4.4贝雷片纵梁承载力验算 (6)4.5 I45b工字钢横梁承载力验算 (9)4.6桥面护栏受力验算 (10)5 桩基检算 (13)5.1钢管桩承载力验算 (13)5.2桩基入土深度计算 (13)5.3钢管桩自身稳定性验算 (14)5.4钢管桩抗倾覆性验算 (14)5.5钢管桩水平位移验算 (14)6 钻孔平台 (15)*********钢栈桥计算书1 编制依据1、现场踏勘所获得的工程地质、水文地质、当地资源、交通状况及施工环境等调查资料;2、国家及地方关于安全生产及环境保护等方面的法律法规;3、《钢结构设计规范》GB50017-2011;4、《公路桥涵设计通用规范》JTG D60-20155、《公路桥涵地基与基础设计规范》JTG D63-20076、《公路工程施工安全技术规范》(JTG F90-2015)7、《路桥施工计算手册》(人民交通出版社)8、*********设计图纸。
2 工程概况*********位于顺昌县水南镇焕仔坑附近,跨越富屯溪。
本项目起点桩号K7+154,终点桩号K7+498.5,桥梁全长344.5m。
*********场区属于剥蚀丘陵夹冲洪积地貌,桥址区地形较起伏,起点台较坡度约15°-20°,终点台较坡度约5°-10°。
桥梁跨越富屯溪,勘查期间水深约3-9m,溪宽约180-190m。
*********桩基施工是本工程的控制工期工程,我项目部经过对富屯溪水文、地质及其现场情况的详细调查,为保证工期,加快施工进度,跨富屯溪水中主墩计划采用钢栈桥+钢平台施工方案。
*********河中墩共7组,距河岸边最近的8#墩距岸边约20m,根据富屯溪历年洪水水位,富屯溪上下游都有水电站,无通航要求,宜搭设全桥贯通栈桥。
贝雷梁钢栈桥设计计算书

1、工程概况本栈桥工程为广西北海金滩14K㎡场地施工用辅助通道。
设计宽度8米,设计长度1755.6米,跨径采用15米。
2、结构验算2.1 验算依据(1)《公路桥涵施工技术规范》(JTG/T F50-2015)(2)《公路钢结构桥梁设计规范》(JTG D64-2015)(3)《公路桥涵设计通用规范》(JTGD60-2015)(4)《公路桥涵地基与基础设计规范》(JTG D63-2007)(5)《公路桥涵钢结构设计规范》(GB50017-2003)(6)《建筑桩基技术规程》(JGJ94-2008)(7)《钢管桩施工技术规程》(YBJ233-1991)(8)《桥梁施工图设计文件》(9)《广西北海金滩14K㎡场地岩土勘察报告》2.2 荷载参数作用于栈桥的荷载分为恒荷载及可变荷载。
恒荷载主要为栈桥结构自重,可变验算荷载为设计荷载:55t渣土运输车。
2.2.1 恒载由计算程序自动考虑。
2.2.2 可变荷载(1)55 吨渣土运输车渣土运输车共3 轴,其具体尺寸如下图,前轮着地面积为0.3×0.2m,后轮着地面积为0.6×0.2m。
单轮最大设计荷载为5.5t。
55吨渣运输车轴距布置图(单位:mm)2.3 荷载工况按最不利的原则考虑以下控制工况:(1)验算控制工况考虑栈桥实际情况,单跨长度为15m,同一跨内最多布置两辆重车,贝雷梁、桥面系验算控制工况为:工况1:结构自重+55t渣土运输车荷载+55t渣土运输车荷载, 55t渣土运输车移动荷载作用于标准贝雷梁段;工况2:结构自重+55t渣土运输车荷载+55t渣土运输车荷载, 55t渣土运输车移动荷载作用于通航口加强弦杆贝雷梁段;2.4 结构材料1、钢弹性模量E=2.1×105 mpa;剪切模量G=0.81×105 mpa;密度ρ=7850 Kg/m;线膨胀系数α=1.2×10-5;泊松比μ=0.3;抗拉、抗压和抗弯强度设计值f d =190MPa;抗剪强度设计值fvd=110MPa;2、贝雷梁中各杆件理论容许应力:抗拉、抗压和抗弯强度设计值fd=200MPa;抗剪强度设计值fvd=120MPa。
贝雷梁栈桥及平台计算书

仁义桂江大桥贝雷梁栈桥及作业平台计算书编制:复核:审核:西部中大建设集团有限公司梧州环城公路工程N02合同段工程总承包项目经理部二○一五年十二月.目录一、工程概述 ........................................... 错误!未定义书签。
二、设计依据 ........................................... 错误!未定义书签。
三、计算参数 ........................................... 错误!未定义书签。
未定义书签。
!错误、材料参数 .........................................................未定义书签。
!错误、荷载参数 .........................................................、材料说明 ............................................. 错误!未定义书签。
未定义书签。
!错误、验算准则 .........................................................四、栈桥计算 ........................................... 错误!未定义书签。
未定义书签。
!错误、计算工况 .........................................................未定义书签。
误错!、建立模型 .........................................................未定义书签。
误! ......................................................... 错、面板计算未定义书签。
贝雷梁钢栈桥设计计算书

1、工程概况本栈桥工程为广西北海金滩14K㎡场地施工用辅助通道。
设计宽度8米,设计长度1755.6米,跨径采用15米。
2、结构验算2.1 验算依据(1)《公路桥涵施工技术规范》(JTG/T F50-2015)(2)《公路钢结构桥梁设计规范》(JTG D64-2015)(3)《公路桥涵设计通用规范》(JTGD60-2015)(4)《公路桥涵地基与基础设计规范》(JTG D63-2007)(5)《公路桥涵钢结构设计规范》(GB50017-2003)(6)《建筑桩基技术规程》(JGJ94-2008)(7)《钢管桩施工技术规程》(YBJ233-1991)(8)《桥梁施工图设计文件》(9)《广西北海金滩14K㎡场地岩土勘察报告》2.2 荷载参数作用于栈桥的荷载分为恒荷载及可变荷载。
恒荷载主要为栈桥结构自重,可变验算荷载为设计荷载:55t渣土运输车。
2.2.1 恒载由计算程序自动考虑。
2.2.2 可变荷载(1)55 吨渣土运输车渣土运输车共3 轴,其具体尺寸如下图,前轮着地面积为0.3×0.2m,后轮着地面积为0.6×0.2m。
单轮最大设计荷载为5.5t。
55吨渣运输车轴距布置图(单位:mm)2.3 荷载工况按最不利的原则考虑以下控制工况:(1)验算控制工况考虑栈桥实际情况,单跨长度为15m,同一跨内最多布置两辆重车,贝雷梁、桥面系验算控制工况为:工况1:结构自重+55t渣土运输车荷载+55t渣土运输车荷载, 55t渣土运输车移动荷载作用于标准贝雷梁段;工况2:结构自重+55t渣土运输车荷载+55t渣土运输车荷载, 55t渣土运输车移动荷载作用于通航口加强弦杆贝雷梁段;2.4 结构材料1、钢弹性模量E=2.1×105 mpa;剪切模量G=0.81×105 mpa;密度ρ=7850 Kg/m;线膨胀系数α=1.2×10-5;泊松比μ=0.3;抗拉、抗压和抗弯强度设计值f d =190MPa;抗剪强度设计值fvd=110MPa;2、贝雷梁中各杆件理论容许应力:抗拉、抗压和抗弯强度设计值fd=200MPa;抗剪强度设计值fvd=120MPa。
贝雷梁栈桥检算书

贝雷梁栈桥检算书一、栈桥设计本工程处于乡村河道下游,且洪水季节量大、速度快。
因此需搭设栈桥,以方便施工机械和人员的往来。
设计栈桥桥面宽4m,长24m,净跨度22m,1跨。
本桥采用国产1500× 3000型,高度 1.5m,单片长度 3m的工具式贝雷片。
栈桥采用C30混凝土钢筋网做基础,以达到设计承载力为准。
工字钢置于贝雷梁下弦梁上,在贝雷梁上沿横桥方向排布I28a工字钢,工字钢间距为0.8m,10cm槽钢按15cm间距2块槽钢合拼布设在工字钢上作为分配梁,最上层满铺δ6mm花纹钢板,焊接形成桥面。
为提高稳定性,工字钢与贝雷梁接触部位应在前者上焊限位三角铁,以防倾覆。
在桥两侧设置1.5m高人行栏杆,并挂设安全网。
本栈桥按照单车通行60T进行设计计算,考虑车辆在制动情况下后桥最不利情况为50T,前桥为10T,桥距为5m,车宽2.5m。
本桥选用两组三排单层加强型贝雷梁。
二、栈桥的受力验算1、贝雷梁的受力分析及验算:贝雷纵梁最大跨度为22m,受力分析和验算按22m计算。
钢板:47.1kg/m2=0.471KN/m24m宽均布荷载=1.88 KN/mⅠ28a工字钢:43.47kg/m0.8m纵向间距均布荷载=0.435KN/m贝雷架自重:270kg/片,长3m均布荷载=0.9KN/m加强弦杆:80 kg/支均布荷载=0.27KN/m10cm槽钢:10 kg/m0.15m纵向间距均布荷载=0.1KN/m钢板重量:47.1×4×24=4521.6kgⅠ28工字钢重量:43.47×6×31=8128.2kg贝雷架自重:48片×270kg/片=12960kg加强弦杆自重:96片×80=7680kg贝雷梁支撑架:18片×21kg/片=378kg10cm槽钢:24×27×2×10=12960 kg恒载:T=4521.6+8128.2+12960+7680+378+12960=46627.8kg=466.278KN恒载换算为均布荷载q=T/22=21.194KN/m ,恒载跨中弯距:M1=qL2/8=21.194×222/8=1282.237KN.m梁端恒载剪力:Q=1/2×21.194×22=233.134KN活载:施工中单车通行最大荷载为60T,考虑汽车制动、冲击等因数,系数为1.2,因此,计算活载为P=60×1.2=72T。
贝雷片计算书

大岗沥大桥L2、L4联支架跨水中段支撑体系施工计算一、工程概况大岗沥大桥8#~9#墩、10#~11#墩桥跨部分位于河道内,桥梁上部结构为现浇梁。
为便于施工,在紧靠9墩(小里程侧)、10#墩(大里程侧)分别设置一排钢管桩,钢管桩上放置工字钢,并在河岸上设置砼地梁,然后在砼地梁与工字网上设置贝雷片,贝雷片上铺设工字钢,槽钢上搭设WDJ碗扣支架进行现浇梁施工。
现就贝雷片与钢管桩内力分析,选取大岗沥大桥L4联进行计算。
二、结构简介1、在紧靠9墩(小里程侧)、10#墩(大里程侧)单幅分别设置一排Ф529mm 钢管桩(16根),在钢管桩上放置2根32a工字钢用于贝雷梁支点,工字钢顶标高为7.6m。
2、贝雷梁的另一个支点采用钢筋砼地梁,设置于河堤岸上,长*宽*高=24.6*0.6*2.5m,砼等级C30,基底换填1.0m厚片石并压实至180Kpa,地梁顶面标高为7.6m,方向平行于9#、10#墩盖梁中心线。
3、在地梁与工字钢上架设21m长321双排双层贝雷片,两片1组,组间每节及端头均用0.45m宽花窗连接,共11组,计算跨度18.2m,方向平行于道路中心线(详见平面布置图)。
4、贝雷梁上铺设每2根1组14工字钢(2根1组并列排放),间距按支架立杆间距定(详见平面布置图)。
三、构件力学计算(一)、荷载分析根据支架立杆布置图,跨水中段箱梁支架立杆纵、横向间距有60cm、90cm 两种。
鉴于安全考虑,计算时立杆纵向间距取90cm,横向间距取60cm,将支架计算书内的各项均布荷载相加,则:q=(q1+q2+q3+q4)/9.54+(q5+q6+q7)=(353.6+15.83+5.262+10.2)/9.54+(2.0+4.0+1.0)=47.35KN/m2单根立杆传递至水平分布槽钢的力为:P=47.35*0.6*0.9=25.57KN(二)、水平分布工字钢验算根据水平工字钢布置图,其最大跨度为1.8m,为简化计算,按最不利位置受集中力以简支梁建模,受力模型如下图:选取14工字钢(2根1组并列排放),单根自重16.9kg/m=0.169KN/m,I x=712cm4,W x=102cm3,t w=5.5mm,S=35mm,E=206*103N/mm2,截面塑性发展系数r x=1.05根据《路桥施工计算手册》,弯矩、剪力计算如下:M1=ql2/8=0.169*2*1.82/8=0.14KN.mM2=Pl/4+Pa=25.57*1.8/4+25.57*0.3=19.18KN.mM max=M1+M2=19.32KN.mV1=ql/2=0.169*2*1.8/2=0.30KNV2=P+P/2=25.57+25.57/2=38.36KNV max=V1+V2=38.66KN1、抗弯强度验算σmax=M max/(r x W x)=19.32*106/(1.05*102*2*103)=90.20MPa<[σw]=145MPa,满足要求。
贝雷片计算书案例

支架拼设方案检算说明1、该方案采用贝雷片拼设的支架进行现浇梁体的施工。
2、贝雷片上方铺设工字钢作为分配梁,工字钢上方直接铺设定型钢模板。
3、为确保模板顺利拆除,在钢管桩顶设置Φ=500mm的钢砂箱。
4、为加快支架安装的速度,所有分配梁、钢管桩、砂箱均统一使用同一规格。
设1排钢管桩立柱结构拼设检算成果书一、检算过程中用到的各种参数钢材E=2.1×105MPa=2.1×108KPa单排单层贝雷片I=250497.2cm4, W=3578.5 cm3[M]=788.2KN.m; [Q]=245.2KN贝雷片自重305/3=102kg/m=1.02KN/m22号工字钢I=3400cm4, W=309 cm3, 每延米自重q=42kg/m。
20号工字钢I=2370cm4, W=239 cm3, 每延米自重q=27.9kg/m。
28号工字钢I=7110cm4, W=508 cm3, 每延米自重q=43.4kg/m。
32号工字钢I=11620cm4, W=726 cm3, 每延米自重q=57.7kg/m。
二、腹板部分,设4排贝雷片钢材E=2.1×105MPa=2.1×108KPa4排单层贝雷片力学参数I=250497.2×4=1001988.8cm4,W=14314 cm3[M]=3152.8KN.m; [Q]=980.8KN检算过程所应考虑的各种荷载:1、贝雷片自重q1=102×4=408kg/m=4.08KN/m2、施工人员荷载q2=2.5×2.75×1=6.875 KN/m3、振捣荷载q3=2.0×2.75=5.5KN/m4、模板荷载(在腹板附近处)q4=腹板处模板重量+内模标准架+内模桁架+内模模板系+内模支架系+底模系=(34/2/32.6+0.1+0.11+0.15(内模暂考虑15t)+0.3+12/32.6/5×2.5)×10=13.655KN/m5、梁体自重腹板q5=(2.5+2.5)×0.45×1/2×25=28.125KN/m顶板q6=(0.65×0.45×1+(0.65+0.3)/2×1.635)×25=26.73KN/m底板q7=1×0.28×2.75×25=19.25KN/m6、分配型钢(暂按I22号工字钢间距0.6m)q8=0.042×2.75*1*0.6=0.1925KN/m贝雷片所受荷载q= q1+ q2 + q3 + q4 + q5 + q6 + q7 + q8 =(6.875+5.5)×1.4+(4.08+13.655+28.125+26.73+19.25+0.1925)×1.2=127.764KN/m,贝雷梁跨径按12.95m进行检算,检算时按两跨连续梁受均布荷载进行简化计算M=0.125ql2=0.125×127.764×12.952=2678.293KN.m<[M]=3152.8KN.m 满足要求Q=0.625ql=0.625×127.764×12.95=1034.0898<[Q] ×1.2=980.8KN×1.2 (剪力在临时结构中可不考虑荷载分项系数,而且可考虑应力提高系数1.2,在进行Q检算过程中如果将荷载分项系数不进行考虑,即能满足结构受力特性,不需考虑应力提高系数)满足要求f=0.521ql4/(100EI)=0.521×127.764 ×12.954/(100×2.1×108×1001988.8×10-8)=0.0089m=8.89mm<[f]=l/400=12950/400=32.375mm。
贝雷梁钢便桥计算书

峃口隧道钢栈桥计算书1、工程概况本施工便桥采用321型单层上承式贝雷桁架,栈桥0桥台与老56省道相连,6桥台位于峃口隧道起点位置,横跨泗溪;便桥孔跨布置为10m+515m,全长85米,桥面净宽6米,人行道宽度,纵向坡度+3%,桥面至河床面净高10米,至水面净空为米图1 为钢栈桥截面图;钢栈桥桥面系主体结构由δ=10 mm 花纹钢板、I10 工字钢纵梁间距 m、I20 工字钢横梁长,间距 m组成;桥面板与工字钢采用手工电弧焊焊接连接,桥面系布置于贝雷桁梁之上,与贝雷桁梁之间用U 型螺栓固定;贝雷桁梁由贝雷片拼制而成,横向设置6片,间距,贝雷片之间采用角钢支撑花架连接成整体;本桥基础为明挖基础,基础为7××的钢筋砼,扩大基础必须坐落于河床基岩上,且基础顶标高低于河床;基础上部墩身均采用φ630 mmδ=8 mm钢管,采用双排桩横桥向各布置2 根,钢管桩之间由平联、斜撑连接;钢管桩顶设双I32 工字钢分配梁;本桥基础设计为明挖基础,基础采用C25钢筋砼,钢管桩位于砼基础上与预埋钢板焊接牢固,在此不做计算;图1 钢栈桥截面图单位:mm2、计算目标本计算的计算目标为:1确定通行车辆荷载等级;2确定各构件计算模型以及边界约束条件;3验算各构件强度与刚度;3、计算依据本计算的计算依据如下:1 黄绍金, 刘陌生. 装配式公路钢桥多用途使用手册M. 北京: 人民交通出版社,20012 钢结构设计规范GB 50017-20033 公路桥涵设计通用规范JTG D60-20044 公路桥涵钢结构及木结构设计规范JTJ025-864、计算理论及方法本计算主要依据装配式公路钢桥多用途使用手册黄绍金,刘陌生著.北京:人民交通出版社,、钢结构设计规范GB 50017-2003、公路桥涵设计通用规范JTG D60-2004、公路桥涵钢结构及木结构设计规范JTJ025-86等规范中的相关规定,通过MIDAS/Civil 2012结构分析软件计算完成;5、计算参数取值设计荷载5.1.1 恒载本设计采用Midas Civil 建模分析,自重恒载由程序根据有限元模型设定的截面和尺寸自行计算施加;5.1.2 活载根据公路桥涵设计通用规范JTG D60-2004,汽车荷载按公路-Ⅰ级荷载计算,公路-Ⅰ荷载如图2:图2 公路-Ⅰ级荷载图程序分析时,汽车活载作为移动荷载分析,采用车道面加载;为确保行人车辆安全,桥面右侧护栏外侧增设人行道宽度,桥面宽度取值6m,车轮距为 m;汽车限速15 km/h 通过,通行的冲击系数由程序根据设定参数自动计算考虑,在“移动荷载分析控制”中,临时钢栈桥结构基频取值 Hz,根据公路工程技术标准JTG B01-2014规定,冲击系数为u=;Ⅰ20工字钢@75cm321型贝雷梁双I32承重梁联结系平联预埋钢板钢筋混凝土基础加劲板10mm花纹钢板护栏Ⅰ10工字钢@30cm 人行道桥面宽度图3 桥面车道布置图主要材料设计指标根据钢结构设计规范GB 50017-2003和装配式公路钢桥多用途使用手册黄绍金,刘陌生著.北京:人民交通出版社,,主要材料设计指标如下:6 计算分析计算模型及边界条件设置图4 为钢栈桥Midas 分析模型图;其中,桩基础采用梁单元,桥面板采用板单元;图4 分析模型边界条件设置如下:1桥面系构件连接:桥面板与I10 工字钢纵梁、纵梁与I20 工字钢横梁均采用共节点连接,横梁与贝雷桁梁采用仅受压弹性连接,连接刚度按经验取值100 kN/mm;由于存在仅受压弹性连接,模型对桥面板进行三处约束,各处约束自由度分别为:Dx,Dy,Rz;Dx,Rz;Dy,Rz;2其余构件连接:贝雷桁梁与2I32 工字钢分配梁采用弹性连接,分配梁与钢管桩采用共节点连接;钢管桩桩底按锚固模拟,约束Dx、Dy、Dz、Rx、Ry、Rz;计算结果分析由于Midas 计算结果中,桥面系构件总体变形与贝雷桁梁变形一致,导致桥面系构件变形输出结果远大于实际变形,另外再考虑到桥面系构件跨度均较小,故结果分析中桥面系构件仅以强度满足要求进行控制;贝雷桁梁、分配梁结果分析中以强度、刚度均满足要求进行控制;6.2.1 桥面板计算结果图5 为桥面板强度计算结果;由图可以看出桥面板最大应力为:σ = <f = 215MPa故桥面板设计满足安全要求;图5 桥面板强度6.2.2I10 工字钢纵梁计算结果图6 为I10 工字钢纵梁强度计算结果;由图可以看出I10 工字钢最大应力为:σ = <f = 215MPa故I10 工字钢纵梁设计满足安全要求;图6 I10工字钢纵梁强度6.2.3I20 工字钢横梁计算结果图7 为I20 工字钢横梁强度计算结果;由图可以看出I20 工字钢最大应力为:σ = 193MPa <f = 215MPa故I20 工字钢横梁设计满足安全要求;图7 I20工字钢横梁强度6.2.4 贝雷桁梁计算结果1贝雷桁梁强度图8 为贝雷桁梁强度计算结果;由图可以看出贝雷桁梁最大应力为:σ = 249MPa <f = 273MPa故贝雷桁梁强度设计满足安全要求;图8 I20贝雷梁强度2贝雷桁梁刚度图9 贝雷梁刚度图9 为贝雷桁梁刚度计算结果;由图可以看出贝雷桁梁最大变形为:f = 15.4mm <v = l / 400 = 37.5mm故贝雷桁梁刚度满足安全要求;2I32 工字钢分配梁计算结果1分配梁强度图10I32工字钢分配梁强度图10 为I32 工字钢分配梁强度计算结果;由图可以看出工字钢最大应力为:σ = <f = 215MPa故I32 工字钢分配梁强度设计满足安全要求;2分配梁刚度图11I32工字钢分配梁刚度图11 为I32 工字钢分配梁刚度计算结果;由图可以看出分配梁最大变形为:f = 2.86mm <v = l / 400 = 11.25mm故分配梁刚度满足安全要求;6.2.6钢管桩计算结果1钢管桩支反力图12钢管桩支反力图13 为钢管桩支反力计算结果;由图可以看出中墩钢管桩最大支反力为:F = ;2钢管桩强度计算图13钢管桩强度图14 为钢管桩强度计算结果;由图可以看出钢管桩最大应力为:σ = <f = 215MPa故钢管桩强度设计满足安全要求;钢管桩最大应力位于与分配梁连接处,为局部承压应力,其余处应力值范围为:~ MPa;3钢管桩稳定性计算钢管桩外露高度为5 m,横向采用10 槽钢连接,纵向未连接,自由高度取5 m;计算时钢管桩按一端自由,一端固定考虑;最大钢管桩反力为:F 中=495 kN=2h=2×5=10 m计算长度:l截面面积:A =回转半径:i =/ i =1000 / =长细比:λ = l查钢结构设计规范,可知轴心压杆容许长细比为:λ =150;稳定系数:φ= ,故有:λ = < λ = 150σ = N/A mφ= 495×103 / ×102×=<f=215 MPa综上,钢管桩稳定性设计满足安全要求;6.2.8 栈桥整体计算结果表2 栈桥各构件计算结果汇总表7 、施工注意事项由于现场施工中存在一些模拟计算中无法考虑到的不确定因素,如自然原因或人为原因造成的临时荷载等,为了尽可能的与模拟条件一致,确保施工安全,须注意以下事项:1. 桥面板与纵梁采用间断焊接连接,横梁两端与贝雷桁梁采用U 型螺栓连接固定,中间段与贝雷桁梁不连接;2. 贝雷桁梁与底分配梁采用角钢焊接限位固定措施,防止左右偏移扭转;3. 临时钢栈桥中支点处贝雷桁梁采用16 槽钢竖撑加强,并确保槽钢上下端与贝雷桁梁上下弦杆密贴;4. 分配梁安设在钢管桩槽口内,并且两侧及底部采用薄钢板与钢管焊接固定;5、实际施工中,钢栈桥桥跨间距按15m/跨进行施工;。
贝雷片钢栈桥受力计算书

钢栈桥受力计算8.1钢栈桥的验算8.1.1钢栈桥设计概况:1.钢栈桥桥面宽度为9.0m,全长203m,桥面标高为9.5米。
结构型式为:贝雷片钢栈桥。
栈桥结构见附图。
2.基础:钢栈桥采用钢管桩基础,每排采用3根直径为630mm的三根钢管桩组成,壁厚16mm,钢管桩的横向间距为4米,纵向间距为6米。
入土深度为12m。
钢管桩顶设置法兰盘支座。
3.桥面结构自上而下分别为:桥面:采用1.2cm的钢板,钢板采取满铺桥面,每隔10m留一道1cm的伸缩缝。
纵桥向分配梁:密布[25b槽钢,横桥向分配梁:采用I25a工字钢,间距为1.2m。
主纵梁:采用单层双排150cm高321型贝雷片,每组两片贝雷桁架采用45cm宽花架连接,间距2.85m。
形成装配式贝雷桁架主梁,共四组。
下横梁:采用H600型钢,与钢管桩顶法兰盘支座连接。
支撑:桩与桩之间、两贝雷片之间均用剪力撑进行加固连接,其他各部件之间均采用钢构件进行加固。
8.1.2基本荷载(恒荷载分项系数1.2,活荷载分项系数1.3)1、恒荷载1.2cm的钢板:0.012×78.5=0.942KN/m2[25b槽钢纵向分配梁:0.313KN/mI25a工字钢横向分配梁:0.42KN/m贝雷桁架主梁(1.5m高):6.66KN/m下横梁HN606(606×201×12×20):1.2KN/m(1)活荷载(1)100T履带吊整机质量为112T(基本臂带100T钩)+吊重16T,履带长度7.505m,履带宽度1.015m,履带接触桥面长度6.475m,履带宽度1.015m,接地比压0.0922MPa。
履带吊传给桥面的活荷载:92.2KN/m2。
(2)施工及人群活荷载:4KN/m2。
8.1.3构件内力计算与设计<一>1.2cm钢板采取满铺方式,纵桥向分配梁[25b槽钢采取满铺方式,因此,可以不对钢板进行受力分析计算。
<二>纵桥向分配梁[25b槽钢计算,槽钢(两肢朝下)采取满铺方式,Wx=32.7cm3,r=1.2,y履带带传力:92.2×0.25=23.05KN/m梁自重:0.313KN/m钢板重:0.942×0.25=0.236KN/mq=1.3x23.05+1.2(0.313+0.236)=30.62KN/m计算跨度:L=750mm内力计算:M=1/8×q×l2=1/8×30.62×0.752=2.153KN-m荷载工况一(恒载)内力图M=2.153KN-m强度验算:Wy=2.153×103/1.2×32.7=54.87N/mm2<f=215N/mm2.Ó=M/ry整体稳定验算:L1/b1=750/250=3<16整体稳定,安全,局部稳定无需验算,所选截面满足要求。
下承式贝雷钢栈桥设计计算书

牌号
σ
抗剪τ
Q235钢
Q235钢
215
125
贝雷销子
30CrMnTi
1105
208
贝雷梁
16锰钢
310
180
2作用荷载
2.1永久作用
本栈桥永久作用为材料自重恒载,型钢桥面系、贝雷梁及墩顶分配梁等结构自重,材料自重采用Midas Civil2013软件自动计入。
2.2可变作用
2.2.1混凝土罐车
工地使用的8m³混凝土罐车共3轴,空载时整机重量12.5t,为前一后二的形式,满载8m³混凝土总重量为32t,轴距为3.225+1.35,轮距1.8m,空载轴重为37.5+43.8+43.8kN,满载轴重为97+112+112kN,详见图2.2-1。
1.1.4钢管桩基础
基础采用Φ610×8mm钢管桩,每排2根,中心间距4650mm。
1.2设计主要参考资料
(1)《公路桥涵设计通用规范》(JTG D60-2004);
(2)《港口工程桩基规范》(JTS167-4-2012);
(3)《公路桥涵施工技术规范》(JTG/T F50-2011);
(4)《钢结构设计规范》(GB50017-2003)。
工22b纵梁
76.7
39.3
1.3
HN350横梁
110.8
45.1
1.3
贝雷梁
173.0
88.6
0.8
2HN450×200桩顶横梁
14.4
30.9
0.1
φ610钢管桩
25.9
1.5
0
Q345材质(贝雷):
最大正应力σmax=173.0MPa<[σw]=310MPa,满足要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贝雷片-潮白新河钢栈桥及钢平台计算说明书津汉高速公路工程1标段潮白新河钢栈桥(贝雷架)计算说明书工程名称:津汉高速公路工程1标段编制单位:津汉高速公路工程1标段项目经理部编制人:技术负责人:审批单位:审批人:中交一航局津汉高速公路工程1标段项目经理部2011年12月27日中交一航局津汉高速公路工程1标段项目经理部潮白新河特大桥钢栈桥计算说明书目录1、设计方案 (2)2、施工方案 (2)3、注意事项 (3)4、栈桥检算 (3)4.1、贝雷片纵梁检算 (5)4.1.1、荷载计算: (5)4.1.2、抗弯计算 (6)4.1.3、抗剪计算 (6)4.1.4、挠度计算 (6)4.2、工字钢横梁检算 (7)4.2.1、抗弯计算 (7)4.2.2、抗剪计算 (7)4.2.3、挠度计算 (7)4.3、钢管桩检算 (7)4.3.1、钢管桩承载能力检算 (7)4.3.2、钢管桩摩擦力检算 (8)4.3.3、钢管桩检算 (9)11、设计方案潮白新河为一级河道,主要功能为排洪、泄涝、供两岸工农业用水。
据天津市宁车沽闸管理所工作人员介绍,当潮白新河水位达到2.9m时即开闸泄洪,以防止周围农田鱼塘等受灾害。
综合考虑河道内现有水文地质情况及实际排洪、施工需要,根据现场地形,在潮白新河特大桥主河道范围内修筑钢栈桥便道。
在15#~16#墩之间预留航道,设计栈桥长180m,顶宽6m,钢管桩顶高程2.5m,栈桥顶面高程3.77m。
河滩部分采用山皮土便道连接钢栈桥与堤岸,便道宽6m。
施工期间做好汛期施工工作,并注意加强对便道、栈桥的维修及保养。
全桥分为17跨,共设16个墩。
桥梁跨度为第一跨和最后一跨为8m,从第二跨到第十六跨均为9m。
桥宽6米,平台宽8米。
主栈桥两侧基础采用混凝土扩大基础,中间均采用钢管桩,钢管桩规格为直径600毫米、壁厚8毫米、长21米的钢管。
每个墩设三根钢管桩作为基础。
钢管桩顶采用三根45工字钢作为横梁。
副栈桥两侧基础采用混凝土扩大基,中间均采用钢管桩,钢管桩规格为直径600毫米、壁厚8毫米、长21米的钢管。
每个墩设四根钢管桩作为基础。
钢管桩顶采用三根45工字钢作为横梁。
栈桥上部结构采用10排贝雷片作为纵梁,分为5组,用45厘米连接片进行连接,两侧纵梁之间采用90厘米连接片进行连接,以增强栈桥的整体稳定性。
钢平台上部结构采用10排贝雷片作为纵梁,分为5组,用45厘米连接片进行连接,两侧纵梁之间采用90厘米连接片进行连接,以增强平台的整体稳定性。
桥面系满铺20cm的方木,桥面两侧设防护栏杆。
2 施工方案(1)施工准备使用50吨汽车吊装器材,同时在岸上拼装贝雷片,精确计算测量桥台及钢管桩的位置。
(2)基础施工陆地部分采用50吨吊车和10吨震动锤打设,水中墩部分通过测量定位安装导向架,使用50吨吊车和10吨震动锤打入基础钢管桩,在施工中要保证钢管装的中心位置和垂直度,随时观察钢管桩的中心位置和惯入度,保证钢管桩基础的承载力。
便桥两边基础采用混凝土扩大基。
(3)横梁把钢管桩割成槽口,在槽口上焊接钢板然后架设三根45工字钢作为横梁,以用作贝雷片的垫梁,为了保证工字钢的稳定性,把工字钢和钢管桩进行焊接。
(4)梁部结构便桥共分为19跨,下部与横梁用U 形螺栓进行连接,贝雷片之间采用连接片连接。
贝雷片上每隔3米采用20的槽钢进行横向加固,以增强纵梁的稳定性。
(5)桥面结构在纵梁上铺满方木作为桥面,通过螺栓与下面20槽钢进行连接。
桥面两侧设防护栏杆,栏杆钢管直接焊接在20槽钢上。
3 注意事项(1)在便桥两端头设置限速牌,安全行驶标志,夜间警示标志。
便桥上每隔一定间距设置限速设施及照明灯、荧光标志等。
(2)各构件焊接要焊透,长度满足要求。
螺栓连接应将螺栓拧紧,使用一段时间后安排专人检查加固。
(3)临时便桥在使用期间,要安排专人负责管理、检查、维护、保养。
4 栈桥检算4.1 面板核算面板由200mm ×200mm 方木满铺组成,单根方木的线荷载为:m kN q 2.010002.02.010500=⨯⨯⨯=方木根据选用的材料为贝雷架。
故面板的计算跨度为m l 737.01.108.075.0=⨯-=)( 面板跨中弯矩为:m kN l q M •=⨯==014.08737.02.0822面板面板搅拌车共有三排轮胎,其中后两排有八个轮胎,按最不利荷载情况计算,则可认为由搅拌车产生的荷载全部由后两排轮胎承受。
荷载最大时为满载混凝土搅拌车的后两排轮胎中的两个轮胎在面板的跨中,轮胎尺寸示意图如下:轮胎尺寸示意图(单位:m )单个轮胎与地面的接触宽度为0.23m ,轮胎外侧间距为0.6m 。
在承受荷载后,轮胎将荷载向外传递,认为木方传递荷载的方式如下图所示:轮胎传递受力示意图(单位:m )则传递宽度为0.23+0.2+0.2=0.63m两侧并列轮胎传递长度为0.6+0.2+0.2=1m 。
作用在桥面方木两跨范围内。
搅拌车的荷载按分布荷载进行传递分布,则单侧轮胎的均布荷载为:m kN q 5.16241650=⨯= 按最不利荷载的跨段长度为0.75m 计算,计算长度为0.737m ,受力如下图:q=180.55kN/mm kN ql M •=⨯==03.118737.05.162822 32200133.062.02.06m bh W =⨯== 433000133.0122.02.012m bh I =⨯== a 3.800133.0)03.11014.0()(MP W M M =+=+=面板σ而根据面板选用的材料,根据《公路桥涵钢结构及木结构设计规范》(JTJ025-86)查得其容许应力值为9.5MPa,满足设计要求。
其弹性模量E=10GPa ,故面板产生的挠度值根据公式为:mm EI ql w 47.0000133.010********.05.16253845644=⨯⨯⨯⨯⨯== 根据钢栈桥所选取的结构形式,容许挠度值为mm Lw 228.1600737600][===,][w w <,满足挠度要求。
4.2 贝雷片纵梁检算4.2.1 荷载计算由于该桥在施工便道上,考虑施工中要过50t 履带吊和30t 满载的混凝土罐车,以及材料车等,考虑动荷载系数,所以活荷载按80吨计算,贝雷片每一片的重量为0.27吨,由于桥面自重转换为线性荷载后较小,计算过程中可以忽略不计。
贝雷桁架的有关数据从《公路施工手册》上查得:最不利荷载情况下受力示意图 q=1高×长=cm cm 300150⨯桁片惯性矩402.250497cm I = 桁架抵抗矩 305.3578cm W =弹性模量 23/10210mm N E ⨯=4.2.2 抗弯计算由于便桥跨径都是9米,按其中一跨进行检算,贝雷片梁跨度按9m 计算,则集中荷载所产生的弯矩:m kN Pl M ⋅=⨯==180********贝雷片自身所产生的弯矩:m kN q /93101027.0=÷⨯⨯=m kN ql M ⋅=⨯==125.918998222则:m KN M M M ⋅=+=125.189121max每排贝雷梁所能承受的最大弯矩为m KN ⋅2.788,m KN M m kN M •=>⋅=125.18917882][10max所以贝雷片梁抗弯满足要求。
4.2.3 抗剪计算每排贝雷梁支点处最大剪力,故kN P V 801080010===贝雷片最大抗剪为245.2KN ,KN V KN V 802.245][=>=所以贝雷片梁抗剪满足要求。
4.2.4 挠度计算集中荷载所产生的挠度:mm EI PL f 31.210102.250497102104810910800484393331=⨯⨯⨯⨯⨯⨯⨯⨯==贝雷片自身所产生的挠度:mm EI qL f 145.010102.250497102103841099538454312442=⨯⨯⨯⨯⨯⨯⨯⨯== 则:mm f mm f f f 5.224009000][455.221max ==<=+=所以贝雷片梁挠度满足要求。
4.3 工字钢横梁检算4.3.1 抗弯计算三根40b 工字钢梁跨度按2.7m 计算,荷载按集中力考虑:kN P 400=m kN Pl M ⋅=⨯==27047.24004max m kN W M ⋅=⨯⨯==6.15900114.010140][][3σ则:m KN M m kN M •=>⋅=2708.478][3max当采用两根工字钢布置时,m KN M m kN M •=>⋅=2702.319][2max所以工字钢梁抗弯满足要求。
4.3.2抗剪计算每根工字钢所承受的最大剪力MPa 85][=τ,kN S 952.7990094112.085][][=⨯==τσ 按照最大荷载全部由车辆后轴承受,则所受剪力为kN V 400=,由横梁双拼工字钢或三拼工字钢承受,则每根最大承受剪力为200kN 或者133.3kN ,均小于容许应力值,所以工字钢梁抗剪满足要求。
4.3.3 挠度计算mm f mm EI PL f 85.64002740][26.12103224110210481070.21040048439333==<=⨯⨯⨯⨯⨯⨯⨯⨯==所以工字钢梁挠度满足要求。
4.4 钢管桩检算4.4.1 钢管桩承载能力钢管桩直径60cm 、壁厚8mm ,钢管桩长21m ,钢管桩计算按打入河床下15m ,河床上外露6m 考虑。
方木面板自重:(6×9×0.2×0.5×10)/3=18kN贝雷片自重:30×0.27×10/3=27kN横梁自重:(0.073878×10×7×3)/3=5.17kN钢管桩自重:7850×21×(3.14×0.6×0.6/4-3.14×0.584×0.584/4)×10/1000=24.5KN分析各桩的最不利荷载情况为:将80t 的荷载平均分给三根桩考虑起作用,在作用过程中,若履带中心与钢管桩中心重合时,其所受力将达到最不利荷载,此时分析其受力则将有一半的力作用在此桩上,一根桩可能承受的最大荷载为:18+27+5.17+24.5+400=476kN钢管桩壁厚8mm ,外径D=600mm ,内径d=584mm 。
4.4.2 钢管桩摩擦力检算根据《港口工程桩基规范》,桩基宜选择在中密或密实砂层,硬粘性土层,碎石类土或分化岩等良好土层作为桩基持力层。
单桩垂直极限承载力设计值为:∑+=RAK l f U P i i u式中U 为桩身截面周长,U=3.14×0.6=1.884mi f 为桩在地基中穿过的各土层桩侧单位面积摩阻力(kPa )i l 为桩各层土的厚度R 单位桩端阻力(kPa )A 为桩身的截面面积K 为桩端闭塞系数,一般为0.8~0.85在最大深度处的地质情况如下:(15)根据桩长为21m 则在粉细砂、粉土层的桩端承载力为P=1.884×(0×5.9+27×9.1)+800×(3.14×0.36÷4×0.8)=643.8kN在淤泥质土深度最大处:(17.61)根据桩长为21m则在粉细砂、粉土层的桩端承载力为P=1.884×(0×7.9+27×9.71)+800×(3.14×0.36÷4×0.8)=674.8kN上述计算所得的桩端承载力均大于可能承受的最大荷载476kN。