高中数学大题规范解答-全得分系列之(十)概率与统计的综合问题答题模板

合集下载

高考大题规范解答系列(六)——概率与统计

高考大题规范解答系列(六)——概率与统计
第十章 概率(文)
高考一轮总复习 • 数学
考点一
随机抽样、频率分布直方图及其应用(文)
例 1 (2021·河南质量测评)“不忘
初心、牢记使命”主题教育活动正在全国
开展,某区政府为统计全区党员干部一周
参与主题教育活动的时间,从全区的党员
干部中随机抽取n名,获得了他们一周参
加主题教育活动的时间(单位:时)的频率
所以 E(X)=0×210+1×290+2×290+3×210=32.·········6 分 得分点④
第十章 概率(文)
高考一轮总复习 • 数学
(2)当乙盒中红球个数为0时,P1=0, ··························7分 得分点⑤ 当乙盒中红球个数为1时,P2=290×16=430, ···············8分 得分点⑥ 当乙盒中红球个数为2,P3=290×26=230, ···················9分 得分点⑦ 当乙盒中红球个数为3时,P4=210×36=410, ·············10分 得分点⑧ 所以从乙盒中任取一球是红球的概率为P1+P2+P3+P4=41. ·····················································································12分 得分点⑨
第十章 概率(文)
高考一轮总复习 • 数学
所以 X 的分布列为
X
0
1
2
3
P
1 20
9 20
9 20
1 20
·························································································5 分 得分点③

高中数学概率统计(含详细答案)

高中数学概率统计(含详细答案)

1.某初级中学共有学生2000名,各年级男、女生人数如下表:已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1)求x 的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (3)已知y ≥245,z ≥245,求初三年级中女生比男生多的概率. 解:(1)0.192000x= ∴ 380x =(2)初三年级人数为y +z =2000-(373+377+380+370)=500, 现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:48500122000⨯= 名 (3)设初三年级女生比男生多的事件为A ,初三年级女生男生数记为(y ,z ); 由(2)知 500y z += ,且 ,y z N ∈, 基本事件空间包含的基本事件有:(245,255)、(246,254)、(247,253)、……(255,245)共11个事件A 包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245) 共5个∴ 5()11P A =2.为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查.6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体. (Ⅰ)求该总体的平均数;(Ⅱ)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率. 解:(Ⅰ)总体平均数为1(5678910)7.56+++++=. (Ⅱ)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”. 从总体中抽取2个个体全部可能的基本结果有:(56),,(57),,(58),,(59),,(510),,(67),,(68),,(69),,(610),,(78),,(79),,(710),,(89),,(810),,(910),.共15个基本结果.事件A 包括的基本结果有:(59),,(510),,(68),,(69),,(610),,(78),,(79),.共有7个基本结果. 所以所求的概率为7()15P A =.3.现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,,132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,, 231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,, 322331332()()()A B C A B C A B C ,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,,122131132()()()A B C A B C A B C ,,,,,,,,}事件M 由6个基本事件组成, 因而61()183P M ==. (Ⅱ)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件,由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成, 所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-=.4.某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.(I )求全班人数及分数在[)90,80之间的频数;(II )估计该班的平均分数,并计算频率分布直方图中[)90,80间的矩形的高; (III )若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.解:(I )由茎叶图知,分数在[)60,50之间的频数为2,频率为,08.010008.0=⨯ 全班人数为.2508.02= …………3分所以分数在[)90,80之间的频数为42107225=---- …………5分(II )分数在[)60,50之间的总分为56+58=114;分数在[)70,60之间的总分为60×7+2+3+3+5+6+8+9=456;(III )将[)90,80之间的4个分数编号为1,2,3,4,[90,100]之间的2个分数编号为5,6,在[80,100]之间的试卷中任取两份的基本事件为: (1,2),(1,3),(1,4),(1,5),(1,6) (2,3),(2,4),(2,5),(2,6), (3,4),(3,5),(3,6) (4,5),(4,6) (5,6)共15个, …………12分 其中,至少有一个在[90,100]之间的基本事件有9个, …………14分故至少有一份分数在[90,1000]之间的频率是6.0159= …………15分5.袋子中装有编号为b a ,的2个黑球和编号为e d c ,,的3个红球,从中任意摸出2个球。

高考数学统计与概率大题解题模板

高考数学统计与概率大题解题模板

统计与概率大题解题模板 一、随机抽样和用样本估计总体模板一、频率分布直方图1、频率分布直方图的性质:(1)小矩形的面积=组距×频率/组距=频率,所以各小矩形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小; (2)在频率分布直方图中,各小矩形的面积之和等于1; (3)频数/相应的频率=样本容量.2、频率分布直方图反映了样本在各个范围内取值的可能性,由抽样的代表性利用样本在某一范围内的频率,可近似地估计总体在这一范围内的可能性.3、频率分布直方图中的纵坐标为频率组距,而不是频率值.例1-1.某城市100户居民月平均用电量(单位:度),以[160180),、[180200),、[200220),、[220240),、[240260),、[260280),、]280[300,分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220240),、[240260),、[260280),、]280[300,的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220240),的用户中应抽取多少户? 【解析】(1)由(0.0020.00950.0110.01250.0050.0025)201x ++++++⨯=得:0.0075x =,∴直方图中x 的值是0.0075;(2)月平均用电量的众数是2202402302+=,∵(0.0020.00950.011)200.450.5++⨯=<,∴月平均用电量的中位数在[220240),内,设中位数为a , 由(0.0020.00950.011)200.0125(220)0.5a ++⨯+⨯-=得:224a =, ∴月平均用电量的中位数是224;(3)月平均用电量为[220240),的用户有0.01252010025⨯⨯=户, 月平均用电量为[240260),的用户有0.00752010015⨯⨯=户, 月平均用电量为[260280),的用户有0.0052010010⨯⨯=户, 月平均用电量为]280[300,的用户有0.0025201005⨯⨯=户, 抽取比例11125151055==+++,∴月平均用电量在[220,240)的用户中应抽取12555⨯=户.模板二、茎叶图1、绘制茎叶图的关键是分清茎和叶,如数据是两位数,十位数字为“茎”,个位数字为“叶”;如果是小数时,通常把整数部分作为“茎”,小数部分作为“叶”,解题时要根据数据的特点合理选择茎和叶.2、利用茎叶图进行数据分析时,一般从数据分布的对称性、中位数、稳定性等几个方面来考虑. 例1-2.某中学高二(2)班甲、乙两名学生自进入高中以来,每次数学考试成绩情况如下: 甲:95、81、75、91、86、89、71、65、76、88、94、110、107; 乙:83、86、93、99、88、103、98、114、98、79、78、106、101. 画出两人数学成绩的茎叶图,并根据茎叶图对两人的成绩进行比较. 【解析】甲、乙两人数学成绩的茎叶图如图所示:从这个茎叶图上可以看出,乙同学的得分情况是大致对称的, 中位数是98;甲同学的得分情况,也大致对称,中位数是88, 乙同学的成绩比较稳定,总体情况比甲同学好.模板三、散点图1、两个变量的关系2、散点图:将样本中n 个数据点()i i x y ,(1i =,2,…,n )描在平面直角坐标系中得到的图形.3、正相关与负相关:(1)正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关. 4、最小二乘法:设x 、y 的一组观察值为()i i x y ,(1i =,2,…,n ),且回归直线方程为ˆˆˆybx a =+.当x 取值i x (1i =,2,…,n )时,y 的观察值为i y ,差ˆi i y y -(1i =,2,…,n )刻画了实际观察值i y 与回归直线上相应点纵坐标之间的偏离程度,通常是用离差的平方和,即21()ni i i Q y a bx ==--∑作为总离差,并使之达到最小.这样,回归直线就是所有直线中Q 取最小值的那一条.由于平方又叫二乘方,所以这种使“离差平方和最小”的方法,叫做最小二乘法. 5、回归直线方程的系数计算公式例1-3.一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:(1)y 与x 是否具有线性相关关系?(2)如果y 与x 具有线性相关关系,求y 关于x 的回归直线方程. 审题路线图:→→→【解析】(1)画散点图如下:由图可知y 与x 具有线性相关关系;(2)列表、计算:1102211055950105591.70.66838500105520ˆ1iii ii x y x ybxx ==⋅-⋅⋅-⨯⨯==≈-⨯-⋅∑∑,91.70.668ˆ55.6ˆ549ay bx =-=-⨯=,即所求的回归直线方程为:0.66859ˆ 4.6y x =+.构建答题模板:第一步:列表i x 、i y 、i i x y ;第二步:计算x ,y ,21ni i x =∑,1ni i i x y =∑;第三步:代入公式计算ˆb 、ˆa 的值; 第四步:写出回归直线方程;第五步:反复回顾,查看是否有重复或遗漏情况,明确规范书写答题.模板四、古典概型例1-4.袋中有五张卡片,其中红色卡片三张,标号为1、2、3;蓝色卡片两张,标号为1、2. (1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标点之和小于4的概率.审题路线图:确定概率模型→列出所有取卡片的结果(基本事件)→构成事件的基本事件→求概率. 规范解答:【解析】(1)标号为1、2、3的三张红色卡片分别记为A 、B 、C , 标号为1、2的两张蓝色卡片分别记为D 、E , 从五张卡片中任取两张的所有可能的结果为:AB 、AC 、AD 、AE 、BC 、BD 、BE 、CD 、CE 、DE 共10种,由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的, 从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:AD 、AE 、BD ,共3种,∴这两张卡片颜色不同且它们的标号之和小于4的概率为310;(2)记F 是标号为0的绿色卡片,从六张卡中任取两张的所有可能的结果为:AB 、AC 、AD 、AE 、AF 、BC 、BD 、BE 、BF 、CD 、CE 、CF 、DE 、DF 、EF 共15种,用于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的, 从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:AD 、AE 、BD 、AF 、BF 、CF 、DF 、EF ,共8种, ∴这两张卡片颜色不同且它们的标号之和小于4的概率为815. 构建答题模板:第一步:列出所有基本事件,计算基本事件总数;第二步:将所求事件分解为若干个互斥的事件或转化为其对立事件(也许不用分解,但分解必要注意互斥);第三步:分别计算每个互斥事件的概率;第四步:利用概率的加法公式求出问题事件的概率;第五步:反复回顾,查看是否有重复或遗漏情况,明确规范书写答题.二、概率与统计之超几何分布与二项分布离散型随机变量的分布列、数学期望与方差1、关于离散型随机变量分布列的计算方法如下: (1)写出ξ的所有可能取值;(2)用随机事件概率的计算方法,求出ξ取各个值的概率; (3)利用(1)、(2)的结果写出ξ的分布列. 2、常见的特殊离散型随机变量的分布列:(1)两点分布,分布列为(0p -、1q -),其中01p <<,且1p q +=;(2)二项分布,分布列为(00p 、11p 、22p 、…、k kp 、…、n np ),其中k k n kk n p C p q -=,0k =、1、2、…、n ,且01p <<,1p q +=,k k n k k n p C p q -=可记为(,,)b k n p .3、对离散型随机变量的期望应注意:(1)期望是算术平均值概念的推广,是概念意义下的平均;(2)()E ξ是一个实数,由ξ的分布列唯一确定,即作为随机变量ξ是可变的,可取不同值,而()E ξ是不变的,它描述ξ取值的平均状态;(3)()1122n n E x p x p x p ξ=++⋅⋅⋅++⋅⋅⋅直接给出了E ξ的求法,即随机变量取值与相应概率值分别相乘后相加.4、对离散型随机变量的方差应注意:(1)()D ξ表示随机变量ξ对()E ξ的平均偏离程度,()D ξ越大表明平均偏离程度越大,说明ξ的取值越分散;反之()D ξ越小,ξ的取值越集中,在()E ξ来描述ξ的分散程度.(2)()D ξ与()E ξ一样也是一个实数,由ξ的分布列唯一确定.模板一、超几何分布——离散型随机变量的分布列、期望与方差(1)超几何分布的特征:①在小范围内不放回的随机抽取;②每次抽取相互影响;③每次抽取的可能性一直变化;(2)超几何分布的题型:在含有M 件次品的N 件产品中任取n 件(n M N ≤≤),其中恰有X 件次品;(3)超几何分布的分布列、期望与方差:①分布列:()k n k M N MnNC C P X k C --⋅==,012k n =⋅⋅⋅,,,,,k ∈N ;②期望:0()[()]nk nME X k P X k N ===⋅=∑; ③{}22()()()[()]()(1)nk nM N M N n D X k E x P X k N N =--==-⋅=-∑. 例2-1.已知一个袋中装有3个白球和3个红球,这些球除颜色外完全相同.(1)每次从袋中取一个球,取出后不放回,直到取到一个红球为止,求取球次数ξ的分布列和数学期望()E ξ;(2)每次从袋中取一个球,取出后放回接着再取一个球,这样取3次,求取出红球次数η的分布列、数学期望和方差()D η.审题路线图:取到红球为止→取球次数的所有可能1、2、3、4→求对应次数的概率→列分布列→求()E ξ.取出后放回,这是条件→每次取到红球的概率相同→三次独立重复试验→利用公式. 规范解答:【解析】(1)ξ的可能取值为1、2、3、4,31(1)62P ξ===,333(2)6510P ξ==⨯=, 3233(3)65420P ξ==⨯⨯=,32131(4)654320P ξ==⨯⨯⨯=,故ξ的分布列为:17()123421020204E ξ=⨯+⨯+⨯+⨯=;(2)取出后放回,取球3次,可看作3次独立重复试验,∴1~(2)2B η,,η的可能取值为0、1、2、3,0033111(0)()()228P C η==⋅⋅=,1123113(1)()()228P C η==⋅⋅=,2213113(2)()()228P C η==⋅⋅=,3303111(4)()()228P C η==⋅⋅=,故ξ的分布列为:∴()322E η=⨯=,113()3224D η=⨯⨯=. 构建答题模板:第一步:确定离散型随机变量的所有可能性; 第二步:求出每个可能性的概率; 第三步:画出随机变量的分布列; 第四步:求期望和方差;第五步:反复回顾,查看是否有重复或遗漏情况,明确规范书写答题.如本题可重点查看随机变量的所有可能值是否正确;根据分布列性质检查概率是否正确.模板二、二项分布及其应用(1)二项分布的特征:①在小范围内有放回的随机抽取或在大范围内任意随机抽取;②每次抽取相互独立;③每次抽取的可能性保持不变;(2)二项分布的题型:在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ;(3)二项分布的分布列、期望与方差:①分布列:~(,)X B n p ,n 为试验次数,p 为试验成功率,()(1)k kn k n P X k C p p -==-,0,1,2,,k n =⋅⋅⋅,k ∈N ;②期望:()E X np =; ③()(1)D X np p =-.例2-2.某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求3≤X 的概率; (2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【解析】(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响,记“这2人的累计得分3≤X ”的事件为A ,则事件A 的对立事件为“5X =”, ∵224(5)3515P X ==⨯=,∴11()1(5)15P A P X =-==, 即这两人的累计得分3≤X 的概率为1115; (2)设小明小红都选择方案甲抽奖中奖次数为1X ,都选择方案乙抽奖中奖次数为2X ,则这两人选择方案甲抽奖累计得分的数学期望为1()2E X ⨯, 选择方案乙抽奖累计得分的数学期望为2()3E X ⨯,由已知可得12~(2)3X B ,,22~(2)5X B ,,∴124()233E X =⨯=,224()255E X =⨯=,从而18()23E X ⨯=,212()35E X ⨯=,∴12()2()3E X E X ⨯>⨯,∴他们都选择方案甲进行抽奖时,累计得分的数学期望较大.模板三、统计概率的综合应用例2-3.某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为,(495500],,…,(510515],,由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求重量超过505克的产品数量.(2)在上述抽取的40件产品中任取2件,设X 为重量超过505克的产品数量,求X 的分布列及期望.(3)在上述抽取的40件产品中任取5件产品,求恰有2件产品的重量超过505克的概率. 【解析】(1)重量超过505克的产品数量是40(0.0550.015)12⨯⨯+⨯=件; (2)X 的所有可能取值为0、1、2,021********(0)130C C P X C ⋅===,11122824056(1)130C C P X C ⋅===,20122824011(2)130C C P X C ⋅===, X 的分布列为:X 的期望561139()01213013013065E X =⨯+⨯+⨯=; (3)设在上述抽取的40件产品中任取5件产品,恰有2件产品的重量超过505克为事件A ,则322812540231()703C C P A C ⋅==. 变式1:第三问改为:从流水线上任取5件产品,设Y 为重量超过505克的产品数量,求Y 的分布列、期望、方差.【解析】从流水线上任取5件产品服从二项分布:Y 可取:0、1、2、3、4、5;超过505克的产品发生的概率为0.3p =,则~(50.3)Y B ,, 005055(0)(1)0.70.16807P Y C p p -==-==, 115111455(1)(1)0.30.70.36015P Y C p p C -==-=⨯=,225222355(2)(1)0.30.70.3087P Y C p p C -==-=⨯=,335333255(3)(1)0.30.70.1323P Y C p p C -==-=⨯=,44544455(4)(1)0.30.70.02835P Y C p p C -==-=⨯=,555555(5)(1)0.30.00243P Y C p p -==-==,则Y 的分布列为:Y 的期望()50.3 1.5E Y =⨯=,方差()50.30.7 1.05D Y =⨯⨯=.变式2:某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条抽流水线上各抽取40件产品作为样本算出他们的重量(单位:克).重量落在(495510],的产品为合格品,否则为不合格.表一为甲流水线样本频率分布表,图一为乙流水线样本的频率分布直方图.(1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;(2)若以频率作为概率,试估计从乙流水线上任取5件产品,恰有3件产品为合格品的概率;(3)由以上统计数据完成下面22⨯列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.附:下面的临界值表供参考:(参考公式:22()()()()()n ad bcKa b a c c d b d-=++++,其中n a b c d=+++).在平面直角坐标系中做出频率分布直方图,甲流水线样本的频率分布直方图如下:(2)由图1知,乙样本中合格品为:(0.060.090.03)54036++⨯⨯=,故合格品的频率为360.940=, ∴可估计从乙流水线上任取一件产品该产品为合格品的概率0.9P =,设ξ为从乙流水线上任取5件产品中的合格品数,则~(50.9)B ξ,, ∴3325(3)0.90.10.0729P C ξ===,即从乙流水线上任取5件产品,恰有3件产品为合格品的概率为0.0729; (3)22⨯列联表如下:∵22()80(120360) 3.117 2.706()()()()66144040n ad bc K a b a c c d b d -⨯-==≈>++++⨯⨯⨯, ∴有90%的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.课后作业1. 某学生对其亲属30人的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)(1)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯;(2)根据以上数据完成下列22⨯列联表:(3)能否有99%的把握认为其亲属的饮食习惯与年龄有关,并写出简要分析.【答案】(1)30位亲属中50岁以上的人多以食蔬菜为主,50岁以下的人多以食肉为主;(2)表格见解析;(3)有,分析见解析.【解析】【分析】(1)根据茎叶图,分析题中数据即可得出结果.(2)根据茎叶图,补充完善列联表,计算观测值即可求解.【详解】(1)30位亲属中50岁以上的人多以食蔬菜为主,50岁以下的人多以食肉为主;(2)补全22⨯列联表:(3)230(42168)10 6.63512182010K ⨯⨯-⨯==>⨯⨯⨯,有99%的把握认为其亲属的饮食习惯与年龄有关.2. 某网站就“民众是否支持加大修建城市地下排水设施的资金投入”进行投票.按照北京暴雨前后两个时间收集有效投票,暴雨后的投票收集了50份,暴雨前的投票也收集了50份,所得统计结果如下表:已知工作人员从所有投票中任取一个,取到“不支持投入”的投票的概率为25. (1)求列联表中的数据x 、y 、A 、B 的值;(2)绘制条形统计图,通过图形判断本次暴雨是否影响到民众对加大修建城市地下排水设施的投入的态度?(3)能够有多大把握认为北京暴雨对民众是否赞成加大对修建城市地下排水设施的投入有关? 【答案】(1)40x =,10y =,60A =,40B =;(2)条形统计图答案见解析,暴雨影响到民众对加大修建城市地下排水设施的投入的态度;(3)有99.9%把握.【解析】【分析】(1)先求出y的值,再求,,B x A的值;(2)先求出暴雨前后的支持率和不支持率,画出条形统计图,再通过图形判断本次暴雨是否影响到民众对加大修建城市地下排水设施的投入的态度.(3)利用独立性检验求解即可.【详解】(1)设“从所有投票中抽取一个,取到不支持投入的投票”为事件A,由已知得302()1005yP A+==,∴10y=,40B=,40x=,60A=;(2)由(1)知北京暴雨后支持为404505=,不支持率为41155-=,北京暴雨前支持率为202505=,不支持率为23155-=,条形统计图如图:由图可以看出暴雨影响到民众对加大修建城市地下排水设施的投入的态度;(3)22100(30402010)5016.7810.828505040603K⨯⨯-⨯==≈>⨯⨯⨯,故至少有99.9%把握认为北京暴雨对民众是否赞成加大对修建城市地下排水设施的投入有关.【点睛】方法点睛:独立性检验的解题步骤:(1)2*2列联表;(2)提出假设:设p与q没有关系;(3)根据列联表中的数据2K计算的值;(4)根据计算得到的随机变量2K的观测值作出判断.3. 电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的22⨯列联表,并据此资料判断是否有95%的把握认为“体育迷”与性别有关?(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附:22()()()()()n ad bcKa b a c c d b d-=++++【答案】(1)列联表答案见解析,没有95%的把握认为“体育迷”与性别有关;(2)7 10 .【解析】 【分析】(1)根据频率分布直方图,计算体育迷的人数,再结合条件依次填入22⨯列联表,并计算2K ,并和临界值3.841比较后进行判断;(2)首先由频率分布直方图计算“超级体育迷”的人数,在通过编号列举的方法,利用古典概型的计算公式计算概率.【详解】(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而完成22⨯列联表如下:将22⨯列联表中的数据代入公式计算,得22100(30104515)100 3.030 3.8417525455533K ⨯⨯-⨯==≈<⨯⨯⨯,∴没有95%的把握认为“体育迷”与性别有关;(2)由频率分布直方图可知“超级体育迷”为5人,设123,,a a a 是3名男超级体育迷,12,b b 是2名女超级体育迷,从而一切可能结果所组成基本事件为:12()a a ,、13()a a ,、23()a a ,、11()a b ,、12()a b ,、 21()a b ,、22()a b ,、31()a b ,、32()a b ,、12()b b ,,则由10个基本事件组成,而且这些基本事件的出现是等可能的, 用A 表示“任选2人中,至少有1人是女性”这一事件,则A 由11()a b ,、12()a b ,、21()a b ,、22()a b ,、31()a b ,、32()a b ,、12()b b , 这7个基本事件组成,因而7()10P A =.4. 2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,给当地人民造成了巨大的财产损失,适逢暑假,大学生小张调查了当地某小区的100户居民由于台风造成的经济损失,将收集的数据分成[02000),、[2000,4000)、[4000,6000)、[6000,8000)、[800010000],五组作出频率分布直方图,如图:(1)台风后居委会号召小区居民为台风重灾区捐款,小张调查的100户居民捐款情况如表格,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?(2)将上述调查所得到的频率视为概率.现在从该地区大量受灾居民中,采用随机抽样方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过4000元的人数为ξ.若每次抽取的结果是相互独立的,求ξ的分布列,期望()E ξ和方差()D ξ.【答案】(1)答案见解析,有;(2)分布列见解析,()0.9E ξ=,()0.63D ξ=. 【解析】【分析】(1)由频率分布直方图可求出抽取的100户中,经济损失不超过4000元的户数,经济损失超过4000元的户数, 从而可补全列联表,进而可求出2K ,得出结论;(2)由题意知ξ的取值可能有0、1、2、3,符合二项分布,则3~(3)10B ξ,,从而利用二项分布的概率公式求出各自对应的概率,进而可得ξ的分布列,期望()E ξ和方差()D ξ. 【详解】(1)由频率分布直方图可知,在抽取的100户中,经济损失不超过4000元的有1002000(0.000150.00020)70⨯⨯+=户,则经济损失超过4000元的有30户, 则表格数据如下:22100(60102010) 4.76280207030K ⨯⨯-⨯=≈⨯⨯⨯,∵4.762 3.841>,2( 3.841)0.05P K ≥=,∴有95%以上把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关; (2)由频率分布直方图可知抽到自身经济损失超过4000元居民的频率为0.3,将频率视为概率,由题意知ξ的取值可能有0、1、2、3,符合二项分布,则3~(3)10B ξ,,003337343(0)()()10101000P C ξ==⋅⋅=,112337441(1)()()10101000P C ξ==⋅⋅=,221337189(2)()()10101000P C ξ==⋅⋅=,33033727(3)()()10101000P C ξ==⋅⋅=,从而ξ的分布列为:3()30.910E np ξ==⨯=,37()(1)30.631010D np p ξ=-=⨯⨯=. 5. 私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:(1)完成被调查人员的频率分布直方图.(2)若从年龄在[15,25)([25,35)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率.(3)在(2)在条件下,再记选中的4人中不赞成...“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.【答案】(1)见解析(2(2275(3)见解析 【解析】【详解】试题分析:(1)根据频率等于频数除以总数,再求频率与组距之比得纵坐标,画出对应频率分布直方图.(2)先根据2人分布分类,再对应利用组合求概率,最后根据概率加法求概率,(3)先确定随机变量,再根据组合求对应概率,列表可得分布列,最后根据数学期望公式求期望. 试题解析:(1((2(由表知年龄在[)15,25内的有5人,不赞成的有1人,年龄在[)25,35 内的有10人,不赞成的有4人,恰有2人不赞成的概率为:()11122464442222510510C C C C C 4246666222C C C C 1025104522575P ξ==⋅+⋅=⋅+⋅==((3( ξ的所有可能取值为:0(1(2(3(()226422510C C 45150C C 22575P ξ==⋅==(()21112646442222510510C C C C C 415624102341C C C C 1045104522575P ξ⋅==⋅+⋅=⋅+⋅==( ()124422510C C 461243C C 104522575P ξ==⋅=⋅==( 所以ξ的分布列是:所以ξ的数学期望5E ξ=( 6. 某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).【答案】(1)(2)X的分布列为EX==4元【解析】【详解】(1)设A i表示摸到i个红球,B i表示摸到i个蓝球,则与相互独立(i=0,1,2,3)∴P(A1)==(2)X的所有可能取值为0,10,50,200P(X=200)=P(A3B1)=P(A3)P(B1)=P(X=50)=P(A3)P(B0)==P(X=10)=P(A2)P(B1)==P(X=0)=1﹣=∴X的分布列为EX==4元7. 以下茎叶图记录了甲、乙两组个四名同学的植树棵树、乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果8X=,求乙组同学植树棵树的平均数和方差;(2)如果9X=,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y的分布列和数学期望.【答案】(1)平均数为354,方差为1116;(2)分布列答案见解析,数学期望:19.【解析】【分析】(1)利用平均数和方差公式求出即可;(2)根据题意可得Y 的可能取值为17,18,19,20,21,分别求出Y 取不同值的概率,即可得出分布列,求出期望.【详解】(1)当8X =时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, ∴平均数为889103544x +++==,方差为2222213535353511[(8)(8)(9)(10)]4444416s =-+-+-+-=;(2)当9X =时,由茎叶图可知,甲组同学的植树棵树是:9,9,11,11, 乙组同学的植树棵数是:9,8,9,10,分别从甲、乙两组中随机选取一名同学,共有4416⨯=种可能的结果, 这两名同学植树总棵数Y 的可能取值为17,18,19,20,21,事件“17Y =”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”, ∴该事件有2种可能的结果,21(17)168P Y ===, 事件“18Y =”等价于“甲组选出的同学植树9棵,乙组选出的同学植树9棵”, ∴该事件有4种可能的结果,41(18)164P Y ===, 事件“19Y =”等价于“甲组选出的同学植树9棵,乙组选出的同学植树10棵, 或甲组选出的同学植树11棵,乙组选出的同学植树8棵”, ∴该事件有224+=种可能的结果,41(19)164P Y ===, 事件“20Y =”等价于“甲组选出的同学植树11棵,乙组选出的同学植树9棵”, ∴该事件有4种可能的结果,41(20)164P Y ===, 事件“21Y =”等价于“甲组选出的同学植树11棵,乙组选出的同学植树10棵”, ∴该事件有2种可能的结果,21(21)168P Y ===,∴随机变量Y 的分布列为:∴11()17181920211984448E Y =⨯+⨯+⨯+⨯+⨯=.8. 语文成绩服从正态分布2(100,17.5)N ,数学成绩的频率分布直方图如图,如果成绩大于135的则认为特别优秀.(1)这500名学生中本次考试语文、数学特别优秀的大约各多少人?(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望.(附公式:若2~(,)X N μσ,则()0.68P X μσμσ-<≤+=,(22)0.96P X μσμσ-<≤+=).【答案】(1)语文有10人,数学有12人;(2)分布列见解析,98.【解析】【分析】(1)利用正态分布的对称性求出语文成绩特别优秀的概率,从而可估计出语文成绩特别优秀人数,由频率分布直方图可求出数学成绩特别优秀的频率,用频率来衡量概率,从而可求出数学成绩特别优秀的人数;(2)结合(1)可知数学语文单科优秀的有10人,则X 的所有可能取值为0、1、2、3,然后求出各自对应的概率即可列出分布列,求得数学期望【详解】(1)∵语文成绩服从正态分布2(10017.5)N ,,∴语文成绩特别优秀概率为11(135)(10.96)0.022P P X =≥=-⨯=, ∴数学成绩特别优秀的概率为230.0016200.0244P =⨯⨯=, ∴语文特别优秀的同学有5000.0210⨯=人,数学特别优秀的同学有5000.02412⨯=人; (2)语文数学两科都优秀的有6人,单科优秀的有10人,X 的所有可能取值为0、1、2、3,3103163(0)14C P X C ===,2110631627(1)56C C P X C ⋅===, 1210631615(2)56C C P X C ⋅===,363161(3)28C P X C ===, ∴X 的分布列为:19()0123145656288E X =⨯+⨯+⨯+⨯=. 9. 张明要参加某单位组织的招聘面试.面试要求应聘者有7次选题答题的机会(选一题答一题),若答对4题即终止答题,直接进入下一轮,否则被淘汰.已知张明答对每一道题的概率都为12. (1)求张明进入下一轮的概率;(2)设张明在本次面试中答题的个数为ξ,试写出ξ的分布列,并求ξ的数学期望. 【答案】(1)12;(2)分布列答案见解析,数学期望:9316. 【解析】 【分析】(1)分情况讨论张明进入下一轮的概率;(2)由条件可知4,5,6,7ξ=,理解随机变量对应的事件,写出概率分布列,计算数学期望.。

2016高考(北师大版)数学(文理通用)课件 答题模板七:概率与统计的综合问题

2016高考(北师大版)数学(文理通用)课件 答题模板七:概率与统计的综合问题
3步:建联系,找解题突破口
至少抽到一名“25 周岁以下组”工人的结果数 概率= . 设“25 周岁以上组”3 人为 A1,A2,A3;“25 周岁 所有可能结果数 以下组”2 人为 B1,B2 .则共有(A1,A2) ,(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3, B1) ,(A3,B2) ,(B1,B2),10 种结果,其中至少抽到一名“25 周岁以下组”有(A1,B1) ,(A1,B2) ,(A2,B1), (A2,B2),(A3,B1),(A3,B2) ,(B1,B2),共 7 种结果.即问题解决.
答题模板(七)概率与统计的综合问题
教你快速规范审题
[典例] (2013·福建高考)(12 分 )某工厂有 25 周岁以上( 含 25 周岁 )工人 300 名,25 周岁以下工 人 200 名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了 100 名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25 周岁以上(含 25 周岁)”和 “25 周岁以下”分为两组,再将两组工人的日平均生产件数分成 5 组:[50,60),[60,70),[70,80), [80,90), [90,100]分别加以统计,得到如图所示的频率分布直方图. (1)从样本中日平均生产件数不足 60 件的工人中随机抽 取 2 人,求至少抽到一名“25 周岁以下组”工人的概率; (2)规定日平均生产件数不少于 80 件者为“生产能手”, 请你根据已知条件完成 2× 2 列联表,并判断是否有 90%的 把握认为“生产能手与工人所在的年龄组有关”?
答题模板(七)概率与统计的综合问题
教你快速规范审题流程汇总
第(1)问 【审题规范】第1步:审结论,明解题方向 观察所求结论:求至少抽到一 名“25周岁以下组”工人的概 率 第(1)问

高考数学概率统计解答题专题

高考数学概率统计解答题专题

高考数学概率统计解答题专题一、归类解析题型一:离散型随机变量的期望与方差【解题指导】离散型随机变量的期望和方差的求解,一般分两步:一是定型,即先判断随机变量的分布是特殊类型,还是一般类型,如两点分布、二项分布、超几何分布等属于特殊类型;二是定性,对于特殊类型的期望和方差可以直接代入相应公式求解,而对于一般类型的随机变量,应先求其分布列然后代入相应公式计算,注意离散型随机变量的取值与概率的对应.【例】某品牌汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如下表所示.已知分9期付款的频率为0.2.4S店经销一辆该品牌的汽车,顾客分3期付款,其利润为1万元;分6期或9期付款,其利润为1.5万元;分12期或15期付款,其利润为2万元.用η表示经销一辆汽车的利润.(1)求上表中的a,b值;(2)若以频率作为概率,求事件A“购买该品牌汽车的3位顾客中,至多有1位采用分9期付款”的概率P(A);(3)求η的分布列及期望E(η).【变式训练】某项大型赛事,需要从高校选拔青年志愿者,某大学生实践中心积极参与,从8名学生会干部(其中男生5名,女生3名)中选3名参加志愿者服务活动.若所选3名学生中的女生人数为X,求X的分布列及期望.题型二:概率与统计的综合应用【解题指导】概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.它与其他知识融合、渗透,情境新颖,充分体现了概率与统计的工具性和交汇性.【例】某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P (X ≤n )≥0.5,确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个? 【变式训练】经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获得利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位:t,100≤X ≤150)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的期望. 题型三:概率与统计案例的综合应用【解题指导】 概率与统计案例的综合应用常涉及相互独立事件同时发生的概率、频率分布直方图的识别与应用、数字特征、独立性检验等基础知识,考查学生的阅读理解能力、数据处理能力、运算求解能力及应用意识.【例】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:每周移动支付次数1次 2次 3次 4次 5次 6次及以上总计 男 10 8 7 3 2 15 45 女 5 4 6 4 6 30 55 总计1512137845100(1)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,能否在犯错误概率不超过0.005的前提下,认为是否为“移动支付活跃用户”与性别有关?(2)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,视频率为概率,在我市所有“移动支付达人”中,随机抽取4名用户.①求抽取的4名用户中,既有男“移动支付达人”又有女“移动支付达人”的概率;②为了鼓励男性用户使用移动支付,对抽出的男“移动支付达人”每人奖励300元,记奖励总金额为X ,求X 的分布列及期望. 附公式及表如下:χ2=nn 11n 22-n 12n 212n 1+n 2+n +1n +2.P (χ2≥k 0) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828【变式训练】电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(1)根据已知条件完成下面的2×2列联表,并据此资料是否可以认为“体育迷”与性别有关?非体育迷体育迷合计 男 女 10 55 合计(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列、期望E (X )和方差D (X ). 附:χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2.P (χ2≥k 0) 0.10 0.05 0.01 k 02.7063.8416.635二、专题突破训练1.为了增强消防安全意识,某中学对全体学生做了一次消防知识讲座,从男生中随机抽取50人,从女生中随机抽取70人参加消防知识测试,统计数据得到如下列联表:优秀 非优秀 合计 男生 15 35 50 女生 30 40 70 合计4575120(1)试判断能否有90%的把握认为消防知识的测试成绩优秀与否与性别有关?(2)为了宣传消防知识,从该校测试成绩获得优秀的同学中采用分层抽样的方法,随机选出6人组成宣传小组.现从这6人中随机抽取2人到校外宣传,求到校外宣传的同学中男生人数X 的分布列和期望. 附:χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2.2(1)求出y关于x的回归直线方程y=b x+a,并在坐标系中画出回归直线;(2)试预测加工10个零件需要的时间.3.为了评估天气对某市运动会的影响,制定相应预案,该市气象局通过对最近50多年气象数据资料的统计分析,发现8月份是该市雷电天气高峰期,在31天中平均发生雷电14.57天(如图所示).如果用频率作为概率的估计值,并假定每一天发生雷电的概率均相等,且相互独立.(1)求在该市运动会开幕(8月12日)后的前3天比赛中,恰好有2天发生雷电天气的概率(精确到0.01);(2)设运动会期间(8月12日至23日,共12天),发生雷电天气的天数为X,求X的期望和方差(精确到0.01).4.某婴幼儿游泳馆为了吸引顾客,推出优惠活动,即对首次消费的顾客按80元收费,并注册成为会员,对会员消费的不同次数给予相应的优惠,标准如下:假设每位顾客游泳1(1)估计该游泳馆1位会员至少消费2次的概率;(2)某会员消费4次,求这4次消费中,游泳馆获得的平均利润;(3)假设每个会员最多消费4次,以事件发生的频率作为相应事件发生的概率,从该游泳馆的会员中随机抽取2位,记游泳馆从这2位会员的消费中获得的平均利润之差的绝对值为X,求X的分布列和期望E(X).。

2022高考数学概率类题目解题思路万能答题模板

2022高考数学概率类题目解题思路万能答题模板

2022⾼考数学概率类题⽬解题思路万能答题模板
⾼考数学解答题要步步为营,分段得分,解答题阅卷的评分原则⼀般是:第⼀问,错或未做,⽽第⼆问对,则第⼆问得分全给;前⾯错引起后⾯⽅法⽤对但结果出错,则后⾯给⼀半分。

离散型随机变量的均值与⽅差
1.解题路线图
(1)①标记事件;②对事件分解;③计算概率。

(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。

2.构建答题模板
①定元:根据已知条件确定离散型随机变量的取值。

②定性:明确每个随机变量取值所对应的事件。

③定型:确定事件的概率模型和计算公式。

④计算:计算随机变量取每⼀个值的概率。

⑤列表:列出分布列。

⑥求解:根据均值、⽅差公式求解其值。

⾼考数学答题技巧
寻求中间环节,挖掘隐含条件:
在些结构复杂的综合题,就其⽣成背景⽽论,⼤多是由若⼲⽐较简单的基本题,经过适当组合抽去中间环节⽽构成的。

因此,从题⽬的因果关系⼊⼿,寻求可能的中间环节和隐含条件,把原题分解成⼀组相互联系的系列题,是实现复杂问题简单化的⼀条重要途径。

高考数学解答题模板:高考数学解答题得分模板——概率与统计Word版含解析

高考数学解答题模板:高考数学解答题得分模板——概率与统计Word版含解析

数学解答题是高考数学试卷中特别重要的题型,往常有 6 个大题,分值在70 分及以上,比如历年的课标全国卷,解答题为 6 道题,分值为70 分,几乎占总分150 分的一半 .解答题的考点相对许多、综合性强,所以解答题的区分度高,做解答题时,不单要得出最后的结论,还要写出重点步骤,而且每步通情达理,所以如何解答、掌握步骤的得分点就特别重要了 .我们能够把解数学解答题的思想过程区分为一个个小题来分步解答,总结适合的“解答题模板”,依照必定的解题程序和答题格式分步解答,在短时间内获得最高的答题效率.(一)难度、分值及考察内容:1.难度:以中等题为主 .2.分值: 12 分(以课标全国卷为例) .3.考察内容:(1)统计主要考察抽样的统计剖析、变量的有关关系,独立性查验、用样本预计整体及其特点的思想 .(2)概率考察概率的计算,能够与统计相联合,或许以摆列组合为工具求解概率,主要考察对五种概率事件的判断辨别及其概率的计算.(二)解题模板(理科):模板一:统计和古典概型的综合问题第一步:定模型,依据统计知识确立元素( 整体、个体 ) 以及要解决的概率模型.第二步:列事件,将所有基本领件列举出来( 可用树状图 ) .m 第三步:算概率,计算基本领件总数n,事件 A 包括的基本领件数m,代入公式P( A)=n.第四步:规范答,要回到所求问题,规范作答.练习:某校高三(1) 班共有40 名学生,他们每日自主学习的时间所有在180 分钟到330 分钟之间,按他们学习时间的长短分 5 个组统计,获得以下频次散布表:组别分组频数频次第一组[180, 210)0.1第二组[210, 240)8s第三组[240, 270)120.3第四组[270, 300)100.25第五组[300, 330)t(1) 求散布表中s, t 的值;(2) 王老师为达成一项研究,按学习时间用分层抽样的方法从这40 名学生中抽取20 名进行研究,问应抽取多少名第一组的学生?(3) 已知第一组学生中男、女生人数同样,在(2) 的条件下抽取的第一组学生中,既有男生又有女生的概率是多少?答案:8(1)s=40=0.2, t =1-0.1- s-0.3-0.25=0.15.x20(2)设应抽取 x 名第一组的学生,则4=40,得 x=2.故应抽取2名第一组的学生.模板二:失散型随机变量的希望与方差第一步:确立随机变量的所有可能取值.第二步:求每一个可能值对应的概率.第三步:列出失散型随机变量的散布列.第四步:利用公式求出均值和方差.第五步:反省回首.查察重点点、易错点和答题规范.练习:【2016 天津理, 16,13 分】某小组共10 人,利用假期参加义工活动,已知参加义工活动次数为 1,2,3的人数分别为3, 3, 4. 现从这 10 人中随机选出2 人作为该组代表参加座谈会 .(Ⅰ)设 A 为事件“选出的2 人参加义工活动次数之和为4”,求事件 A 发生的概率;(Ⅱ)设X为选出的2 人参加义工活动次数之差的绝对值,求随机变量X的散布列和数学期望 .模板三:利用希望与方差的决议问题第一步:求失散型随机变量的数学希望,重点是求出随机变量 X 的散布列 . 希望求解公式:EXx 1p 1x 2p2x npn .第二步:碰到决议问题,选哪一种状况的,先比较数学希望,希望高的较好.第三步:若希望相等,则比较方差.第四步:失散型随机变量方差求解公式:222DXx 1EXp 1x 2EXp 2x n EXp n .练习:【2016 课标全国Ⅰ理, 19, 12 分】某企业计划购置 2 台机器,该种机器使用三年后即被裁减 . 机器有一易损部件,在购进机器时,能够额外购置这类部件作为备件,每个 200 在机器使用时期,假如备件不足再购置,则每个 500 元 . 现需决议在购置机器时应同时购置几个易损部件,为此收集并整理了 100 台这类机器在三年使用期内改换的易损部件数,得下边柱状图:元.以这 100 台机器改换的易损部件数的频次取代 1 台机器改换的易损部件数发生的概率,记 X 表示 2 台机器三年内共需改换的易损部件数, n表示购置 2 台机器的同时购置的易损部件数 .(Ⅰ)求 X 的散布列;(Ⅱ)若要求P( Xn) 0.5,确立 n 的最小值;(Ⅲ)以购置易损部件所需花费的希望值为决议依照,在 n 19与n 20之中选其一,应选用哪个?。

高中数学第十章概率解题技巧总结(带答案)

高中数学第十章概率解题技巧总结(带答案)

高中数学第十章概率解题技巧总结单选题1、若随机事件A,B互斥,且P(A)=2−a,P(B)=3a−4,则实数a的取值范围为()A.(43,32]B.(1,32]C.(43,32)D.(12,43)答案:A分析:根据随机事件概率的范围以及互斥事件概率的关系列出不等式组,即可求解.由题意,知{0<P(A)<1 0<P(B)<1P(A)+P(B)≤1,即{0<2−a<10<3a−4<12a−2≤1,解得43<a≤32,所以实数a的取值范围为(43,32].故选:A.2、若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2−a,P(B)=4a−5,则实数a的取值范围是A.(1,2)B.(54,32)C.(54,43)D.(54,43]答案:D分析:由随机事件A、B互斥,A、B发生的概率均不等于0,知{0<P(A)<1 0<P(B)<1P(A)+P(B)⩽1,由此能求出实数a的取值范围.∵随机事件A、B互斥,A、B发生的概率均不等于0,且P(A)=2−a,P(B)=4a−5,∴{0<P(A)<10<P(B)<1P(A)+P(B)⩽1,即{0<2−a<10<4a−5<13a−3⩽1,解得54<a⩽43,即a∈(54,43].故选:D.小提示:本题考查互斥事件的概率的应用,属于基础题.解题时要认真审题,仔细解答.3、设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A解析:将两个条件相互推导,根据能否推导的情况选出正确答案.①若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P (A )+P (B )=1; ②投掷一枚硬币3次,满足P (A )+P (B )=1,但A ,B 不一定是对立事件,如:事件A :“至少出现一次正面”,事件B :“出现3次正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件.所以甲是乙的充分不必要条件. 故选:A小提示:本小题主要考查充分、必要条件的判断,考查对立事件的理解,属于基础题.4、某商场举行购物抽奖活动,抽奖箱中放有编号分别为1,2,3,4,5的五个小球.小球除编号不同外,其余均相同.活动规则如下:从抽奖箱中随机抽取一球,若抽到的小球编号为3,则获得奖金100元;若抽到的小球编号为偶数,则获得奖金50元;若抽到其余编号的小球,则不中奖.现某顾客依次有放回地抽奖两次,则该顾客两次抽奖后获得奖金之和为100元的概率为( ) A .425B .15C .625D .825 答案:D分析:列出两次抽奖的样本空间,从中找出奖金和为100元的样本点,利用古典概率模型和互斥事件概率的计算公式即可求出结果.由题意得,该顾客有放回地抽奖两次的样本空间Ω={(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),⋅⋅⋅,(5,3),(5,4),(5,5)},共25个样本点.两次抽奖奖金之和为100元包括三种情况: ①第一次奖金为100元,第二次没有中奖, 其包含的情况为(3,1),(3,5),概率为P 1=225; ②第一次没中奖,第二次奖金为100元, 其包含的情况为(1,3),(5,3),概率为P 2=225;③两次各获奖金50元,包含的情况有(2,2),(2,4),(4,2),(4,4),概率为P 3=425.根据互斥事件的加法公式得该顾客两次抽奖后获得奖金之和为100元的概率为P =P 1+P 2+P 3=825.故选:D.5、《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马劣于齐王的上等马,优于齐王的中等马,田忌的中等马劣于齐王的中等马,优于齐王的下等马,田忌的下等马劣于齐王的下等马,现两人进行赛马比赛,比赛规则为:每匹马只能用一次,每场比赛双方各出一匹马,共比赛三场.每场比赛中胜者得1分,否则得0分.若每场比赛之前彼此都不知道对方所用之马,则比赛结束时,田忌得2分的概率为( ). A .13B .23C .16D .12 答案:C分析:根据题意,设齐王的上,中,下三个等次的马分别为a , b ,c ,田忌的上,中,下三个等次的马分别为记为A ,B ,C ,用列举法列举齐王与田忌赛马的情况,进而可得田忌胜出的情况数目,进而由等可能事件的概率计算可得答案.设齐王的上,中,下三个等次的马分别为a ,b ,c ,田忌的上,中,下三个等次的马分别为记为A ,B ,C ,双方各出上、中、下等马各1匹分组分别进行1场比赛, 所有的可能为:Aa ,Bb ,Cc ,田忌得0分; Aa ,Bc ,Cb ,田忌得1分 Ba ,Ab ,Cc ,田忌得1分 Ba ,Ac ,Cb ,田忌得1分; Ca ,Ab ,Bc ,田忌得2分, Ca ,Ac ,Bb ,田忌得1分田忌得2分概率为P =16, 故选:C6、已知集合M ={−1,0,1,−2},从集合M 中有放回地任取两元素作为点P 的坐标,则点P 落在坐标轴上的概率为( )A .516B .716C .38D .58 答案:B分析:利用古典概型的概率求解.由已知得,基本事件共有4×4=16个,其中落在坐标轴上的点为:(−1,0),(0,−1),(0,0),(1,0),(0,1),(−2,0),(0,−2),共7个, ∴所求的概率P =716,故选:B .7、从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( ) A .15B .13C .25D .23 答案:C分析:方法一:先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可. [方法一]:【最优解】无序从6张卡片中无放回抽取2张,共有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)15种情况,其中数字之积为4的倍数的有(1,4),(2,4),(2,6),(3,4),(4,5),(4,6)6种情况,故概率为615=25. [方法二]:有序从6张卡片中无放回抽取2张,共有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(2,1),(3,1),(4,1),(5,1),(6,1),(3,2),(4,2),(5,2),(6,2),(4,3),(5,3),(6,3),(5,4),(6,4),(6,5)30种情况,其中数字之积为4的倍数有(1,4),(2,4),(2,6),(3,4),(4,1),(4,2),(4,3),(4,5),(4,6),(5,4),(6,2),(6,4)12种情况,故概率为1230=25. 故选:C.【整体点评】方法一:将抽出的卡片看成一个组合,再利用古典概型的概率公式解出,是该题的最优解; 方法二:将抽出的卡片看成一个排列,再利用古典概型的概率公式解出;8、甲、乙二人玩猜数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a,b ∈{1,2,3,4},若|a −b|≤1,则称甲乙“心有灵犀”.现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为( ) A .38B .58C .316D .516答案:B分析:利用列举法根据古典概型公式计算即可.B 两人分别从1,2,3,4四个数中任取一个,共有16个样本点,为:(1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3) ,(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2) (4,3),(4,4),这16个样本点发生的可能性是相等的.其中满足|a −b|≤1的样本点有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),共10个,故他们“心有灵犀”的概率为P =1016=58. 故选:B 多选题9、从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率12,从两袋各摸出一个球,则( )A .2个球都是红球的概率为16B .2个球中恰有1个红球的概率为12C .2个球至多有一个红球的概率为23D .2个球中至少有1个红球的概率为56 答案:AB分析:根据给定条件,利用相互独立事件、互斥事件、对立事件的概率逐项分析计算即可判断作答. 记从甲袋中摸出一个红球的事件为A ,从乙袋中摸出一个红球的事件为B ,则P(A)=13,P(B)=12,A ,B 相互独立,2个球都是红球的事件为AB ,则有P(AB)=P(A)⋅P(B)=16,A 正确;2个球中恰有1个红球的事件为AB +AB ,则P(AB +AB)=P(AB)+P(AB)=13×(1−12)+(1−13)×12=12,B 正确;2个球至多有一个红球的事件的对立事件为AB ,故2个球至多有一个红球的概率为1−16=56,故C 错误;至少有1个红球的事件的对立事件是AB ,则P(AB)=P(A)⋅P(B)=(1−13)×(1−12)=13,所以至少有1个红球的概率为23,故D 错误. 故选:AB.10、下列说法中正确的有( )A .若事件A 与事件B 是互斥事件,则P(AB)=0 B .若事件A 与事件B 是对立事件,则P(A +B)=1C .某人打靶时连续射击三次,则事件“至少有两次中靶”与事件“至多有一次中靶”是对立事件D .把红、橙、黄3张纸牌随机分给甲、乙、丙3人,每人分得1张,则事件“甲分得的不是红牌”与事件“乙分得的不是红牌”是互斥事件 答案:ABC分析:根据互斥事件、对立事件的概念判断即可.解:事件A 与事件B 互斥,则不可能同时发生,所以P(AB)=0,故A 正确; 事件A 与事件B 是对立事件,则事件B 即为事件A ,所以P(A +B)=1,故B 正确;事件“至少两次中靶”与“至多一次中靶”不可能同时发生,且二者必发生其一,所以为对立事件,故C 正确; “甲分得的不是红牌”与事件“乙分得的不是红牌”可能同时发生,即“丙分得的是红牌”,所以不是互斥事件,故D 错误. 故选:ABC11、(多选)以下对各事件发生的概率判断正确的是( ). A .甲、乙两人玩剪刀、石头、布的游戏,则玩一局甲不输的概率是13B .每个大于2的偶数都可以表示为两个素数的和,例如8=3+5,在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115C .将一个质地均匀的正方体骰子(每个面上分别写有数字l ,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的概率是536D .从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是12答案:BCD分析:利用古典概型公式分别计算四个选项中的概率,从而得解. 对于A ,画树形图如下:从树形图可以看出,所有可能出现的结果共有9种,这些结果出现的可能性相等,P (甲获胜)=13,P (乙获胜)=13,故玩一局甲不输的概率是23,故A 错误;对于B ,不超过14的素数有2,3,5,7,11,13共6个,从这6个素数中任取2个,有2与3,2与5,2与7,2与11,2与13,3与5,3与7,3与11,3与13,5与7,5与11,5与13,7与11,7与13,11与13共15种结果,其中和等于14的只有一组3与11,所以在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115,故B 正确;对于C ,基本事件总共有6×6=36种情况,其中点数之和是6的有(1,5),(2,4),(3,3),(4,2),(5,1),共5种情况,则所求概率是536,故C 正确;对于D ,记三件正品为A 1,A 2,A 3,一件次品为B ,任取两件产品的所有可能为A 1A 2,A 1A 3,A 1B ,A 2A 3,A 2B ,A 3B ,共6种,其中两件都是正品的有A 1A 2,A 1A 3,A 2A 3,共3种,则所求概率为P =36=12,故D 正确.故选BCD.小提示:本题主要考查了古典概型的计算,属于基础题. 12、下列说法正确的有( ) A .对任意的事件A ,都有P (A )>0B .随机事件A 发生的概率是频率的稳定值,频率是概率的近似值C .必然事件的概率为1,不可能事件的概率为0D .若事件A ⊆事件B ,则P (A )≤P (B ) 答案:BCD分析:根据题意,由概率的定义依次分析选项,即可得答案.解:对任意的事件A,都有0≤P(A)≤1,必然事件的概率为1,不可能事件的概率为0,故A错误,C正确;对于B,随机事件A发生的概率是频率的稳定值,频率是概率的近似值,B正确,对于D,若事件A⊆事件B,则P(A)≤P(B),故D正确;故选:BCD13、下列关于概率的命题,正确的有()A.若事件A,B满足P(A)=13,P(B)=23,则A,B为对立事件B.若事件A,B满足P(A)=13,P(B)=23,P(AB)=29,则A,B相互独立C.若对于事件A,B,C,P(A)=P(B)=P(C)=12,P(ABC)=18,则A,B,C两两独立D.若对于事件A,B,A与B相互独立,且P(A)=0.7,P(B)=0.6,则P(AB)=0.42,P(A∪B)=0.88答案:BD分析:A.举例说明;B.根据P(AB)=P(A)⋅P(B)是判断A,B是否相互独立的条件判断; C. 由A,B,C两两独立,则AB,AC,BC相互独立判断; D.根据独立事件和互斥事件的概率求法判断.A.因为P(A)+P(B)=1,是A,B为对立事件的必要条件,不是充分条件,如单位圆的一条直径把圆分成两部分,即区域M和区域N(不包括边界),向这两个区域投一枚绣花针,如针尖落在区域M内记为事件A,针尖落在区域N内记为事件B,满足P(A)+P(B)=1,但A,B不是对立事件,因为针尖还有可能落在直径上,故错误;B. 若P(AB)=P(A)⋅P(B),则A,B相互独立,故正确;C. 若A,B,C两两独立,则P(AB)=P(A)⋅P(B),P(AC)=P(A)⋅P(C),P(BC)=P(B)⋅P(C),故错误;D.若事件A与B相互独立,则P(AB)=P(A)⋅P(B)=0.42,P(A∪B)=P(A)+P(B)−P(AB)=0.88,故正确;故选:BD填空题14、已知随机事件A,B互为对立事件,且P(A)=3P(B),则P(A)=___________.答案:3 4解析:根据对立事件的概率关系可求P (A ).因为随机事件A ,B 互为对立事件,故P (A )+P (B )=1,而故P (A )=3P (B ), 故P (A )=34,所以答案是:.15、若随机事件A 、B 互斥,A ,B 发生的概率均不等于0,且P (A )=2−a ,P (B )=4a −5,则实数a 的取值范围是______. 答案:(54,43]分析:由互斥事件的性质,列不等式组求a 的范围.由题意,{0<P (A )<10<P (B )<1P (A )+P (B )≤1,即{0<2−a <10<4a −5<13a −3≤1,解得54<a ≤43.所以答案是:(54,43]16、某校为了庆祝六一儿童节,计划在学校花坛的左右两边布置红色、黄色、蓝色、绿色4种颜色的气球,要求每一边布置两种颜色的气球,则红色气球和黄色气球恰好在同一边的概率为___________. 答案:13分析:列举出所有结果,然后由古典概型的概率公式可得.在学校花坛的左右两边布置气球的所有可能结果有(红黄,蓝绿),(红蓝,黄绿),(红绿,黄蓝),(黄蓝,红绿),(黄绿,红蓝),(蓝绿,红黄),共6种,其中红色气球和黄色气球恰好在同一边的所有可能结果有(红黄,蓝绿),(蓝绿,红黄),共2种,所以红色气球和黄色气球恰好在同一边的概率为26=13.所以答案是:13 解答题17、已知函数f(x)=ax 2+2bx −1.(1)若a ,b 都是从集合{1,2,3}中任取的一个数,求函数f(x)在(−∞,−1)上单调递减的概率;(2)若a 是从集合{1,2,3}中任取的一个数,b 是从集合{1,2,3,4}中任取的一个数,求方程f(x)=0在区间34(−∞,−3)上有实数根的概率. 答案:(1)23;(2)512.分析:(1)先将所求的事件记为事件A ,再列出a ,b 所有可能的取值情况,根据函数f(x)在区间(−∞,−1)上单调递减得出b ≤a ,再找出符合事件A 的情况,最后利用古典概率模型公式求概率;(2)先将所求的事件记为事件B ,再列出a ,b 所有可能的取值情况,根据方程f(x)=0在区间(−∞,−3)上有实数根得出9a −6b −1<0,再找出符合事件B 的情况,最后利用古典概率模型公式求概率. (1)记函数f(x)在区间(−∞,−1)上单调递减为事件A . 由于a ,b 都是从集合{1,2,3}中任取的一个数,基本事件有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共9种. 因为a 的取值为正数,所以函数f (x )图象开口向上,若函数f(x)在区间(−∞,−1)上单调递减,则有−2b2a ≥−1,即ba ≤1,b ≤a , 满足条件的有(1,1),(2,1),(2,2),(3,1),(3,2),(3,3), 所以事件A 包含其中的6个基本事件. 所以所求的概率为P(A)=69=23.(2)记方程f(x)=0在区间(−∞,−3)上有实数根为事件B .由于a 是从集合{1,2,3}上任取的一个数,b 是从集合{1,2,3,4}上任取的一个数, 基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4),共12种. 由题意知a >0,f(0)=−1,所以方程f(x)=0在区间(−∞,−3)上有实数根, 则有f(−3)<0,即9a −6b −1<0,满足条件的有(1,2),(1,3),(1,4),(2,3),(2,4), 所以事件B 包含其中的5个基本事件, 所以所求的概率为P(B)=512.18、从长沙高铁南站到黄花机场共有两条路径L 1和L 2,现随机抽取100位从高铁站到机场的人进行调查,调查结果如下:(2)某医疗团队急需从高铁站去机场支援某地疫情防控,需在40分钟内到达机场,为了尽最大可能在允许时间内赶到机场.请你从用时的角度,通过计算说明他们该如何选择路径.答案:(1)p=8+18100=1350;(2)选择路径L2.分析:(1)直接从表格得到频数为26,再除以总数,即可得到答案;(2)从表格计算走L1路线40分钟内到达的概率为35,走L2路线40分钟内到达的概率为,比较概率大小,即可得到答案;(1)由题意得:p=8+18100=1350;(2)选择L1:p1=2440=35,选择L2:p2=4560=34由于P1<P2,选择路径L2. 3 4。

(精选试题附答案)高中数学第十章概率解题方法技巧

(精选试题附答案)高中数学第十章概率解题方法技巧

(名师选题)(精选试题附答案)高中数学第十章概率解题方法技巧单选题1、某省在新的高考改革方案中规定:每位考生的高考成绩是按照3(语文、数学、英语)+2(物理、历史)选1+4(化学、生物、地理、政治)选2的模式设置的,则某考生选择全理科的概率是( ) A .310B .35C .710D .112 答案:D分析:列举法求得选物理和历史的所有种数,再利用古典概型求解 在2(物理,历史)选1+4(化学、生物、地理、政治)选2中, 选物理的有6种,分别为:物化生、物化地、物化政、物生地、物生政、物地政, 同时,选历史的也有6种,共计12种, 其中选择全理科的有1种, ∴某考生选择全理科的概率是P =112. 故选:D2、下列各对事件中,不互为相互独立事件的是( )A .掷一枚骰子一次,事件M “出现偶数点”;事件N “出现3点或6点”B .袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M “第一次摸到白球”,事件N “第二次摸到白球”C .袋中有3白、2黑共5个大小相同的小球,依次不放回地摸两球,事件M “第一次摸到白球”,事件N “第二次摸到黑球”D.甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M“从甲组中选出1名男生”,事件N“从乙组中选出1名女生”答案:C分析:利用对立事件和相互独立事件的概念求解.解:对于选项A,事件M={2,4,6},事件N={3,6},事件MN={6},基本事件空间Ω={1,2,3,4,5,6},所以P(M)=36=12,P(N)=26=13,P(MN)=16=12×13,即P(MN)=P(N)P(M),因此事件M与事件N是相互独立事件;对于选项B,袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到白球”,则事件M发生与否与N无关,同时,事件N发生与否与M无关,则事件M与事件N是相互独立事件;对于选项C,袋中有3白、2黑,5个大小相同的小球,依次不放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到黑球”,则事件M发生与否和事件N有关,故事件M和事件N与不是相互独立事件;对于选项D,甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M“从甲组中选出1名男生”,事件N“从乙组中选出1名女生”,则事件M发生与否与N无关,同时,事件N发生与否与M无关,则事件M与事件N是相互独立事件;故选:C.3、如图,“红旗-9”在国内外都被认为属于第三代防空导弹系统,其杀伤空域大,抗干扰和抗多目标饱和攻击能力强,导引系统先进(有两级指挥管制体制),最高速度4.2马赫,最大射程为200公里,射高0.5至30公里,主要攻击高空敌机或导弹,是我国高空防空导弹的杰出代表.现假设在一次实战对抗演习中,单发红旗-9防空导弹对敌方高速飞行器的拦截成功率为0.8,则两发齐射(是否成功拦截互不干扰),敌方高速飞行器被拦截的概率为()A.0.96B.0.88C.1.6D.0.64答案:A分析:根据对立事件及相互独立事件的概率公式计算可得;解:依题意敌方高速飞行器被拦截的概率为1−(1−0.8)×(1−0.8)=0.96 故选:A4、“某彩票的中奖概率为1100”意味着( )A .购买彩票中奖的可能性为1100 B .买100张彩票能中一次奖 C .买100张彩票一次奖也不中 D .买100张彩票就一定能中奖 答案:A分析:根据概率的定义,逐项判定,即可求解.对于A 中,根据概率的定义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,由某彩票的中奖概率为1100,可得购买彩票中奖的可能性为1100,所以A 正确;对于B 、C 中,买任何1张彩票的中奖率都是1100,都具有偶然性,可能中奖,还可能中奖多次,也可能不中奖,故B 、C 错误;对于D 选项、根据彩票总数目远大于100张,所以买100张也不一定中一次奖,故D 错误. 故选:A.5、齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现双方各出上、中、下等马各一匹分组分别进行一场比赛,胜两场及以上者获胜,若双方均不知道对方马的出场顺序,则田忌获胜的概率为( ) A .13B .14 C .15D .16 答案:D分析:将齐王与田忌的上、中、下等马编号,列出双方各出上、中、下等马各一匹分组分别进行一场比赛的基本事件即可利用古典概率计算作答.齐王的上等马、中等马、下等马分别记为A,B,C,田忌的上等马、中等马、下等马分别记为a,b,c,双方各出上、中、下等马各一匹分组分别进行一场比赛,胜两场及以上者获胜,依题意,共赛3场,所有基本事件为:(Aa,Bb,Cc),(Aa,Bc,Cb),(Ab,Ba,Cc),(Ab,Bc,Ca),(Ac,Bb,Ca),(Ac,Ba,Cb),共6个基本事件,它们等可能,田忌获胜包含的基本事件为:(Ac,Ba,Cb),仅只1个,所以田忌获胜的概率p=1.6故选:D6、甲、乙两个气象站同时作气象预报,如果甲站、乙站预报的准确率分别为0.8和0.7,那么在一次预报中两站恰有..一次准确预报的概率为()A.0.8B.0.7C.0. 56D.0. 38答案:D解析:利用相互独立事件概率乘法公式和互斥事件概率加法公式运算即可得解.因为甲、乙两个气象站同时作气象预报,甲站、乙站预报的准确率分别为0.8和0.7,所以在一次预报中两站恰有一次准确预报的概率为:P=0.8×(1−0.7)+(1−0.8)×0.7=0.38.故选:D.7、已知袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片,则下列判断不正确的是()A.事件“都是红色卡片”是随机事件B.事件“都是蓝色卡片”是不可能事件C.事件“至少有一张蓝色卡片”是必然事件D .事件“有1张红色卡片和2张蓝色卡片”是随机事件 答案:C分析:根据随机事件、必然事件、不可能事件的定义判断.袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片, 在A 中,事件“都是红色卡片”是随机事件,故A 正确; 在B 中,事件“都是蓝色卡片”是不可能事件,故B 正确; 在C 中,事件“至少有一张蓝色卡片”是随机事件,故C 错误;在D 中,事件“有1张红色卡片和2张蓝色卡片”是随机事件,故D 正确. 故选:C .8、抛掷一颗均匀骰子两次,E 表示事件“第一次是奇数点”,F 表示事件“第二次是3点”,G 表示事件“两次点数之和是9”,H 表示事件“两次点数之和是10”,则( ) A .E 与G 相互独立B .E 与H 相互独立 C .F 与G 相互独立D .G 与H 相互独立 答案:A分析:先根据古典概型的概率公式分别求出四个事件的概率,再利用独立事件的定义P(AB)=P(A)P(B)判断个选项的正误. 解:由题意得: P(E)=1836=12,P(F)=636=16,P(G)=436=19,P(H)=336=112对于选项A :P(EG)=236=118,P(E)P(G)=12×19=118,P(EG)=P(E)P(G),所以E 和G 互相独立,故A 正确; 对于选项B :P(EH)=136,P(E)P(H)=12×112=124,P(EH)≠P(E)P(H),所以E 和H 不互相独立,故B 错误; 对于选项C :P(FG)=136,P(F)P(G)=16×19=154,P(FG)≠P(F)P(G),所以F 和G 不互相独立,故C 错误; 对于选项D :P(GH)=0,P(G)P(H)=19×112=1108,P(GH)≠P(G)P(H),所以G 和H 不互相独立,故D 错误; 故选:A9、已知样本空间为Ω,x 为一个基本事件.对于任意事件A ,定义f (A )={0,x ∉A 1,x ∈A,给出下列结论:①f(Ω)=1,f(∅)=0;②对任意事件A ,0≤f(A)≤1;③如果A ∩B =∅,那么f(A ∪B)=f(A)+f(B);④f(A)+f(A )=1.其中,正确结论的个数是( ) A .1个B .2个C .3个D .4个 答案:D分析:根据f (A )的定义,利用分类讨论思想进行分析判定.∵任意x ∈Ω恒成立,任意x ∈∅恒不成立,∴f(Ω)=1,f(∅)=0,故①正确; 对任意事件A ,f (A )={0,x ∉A 1,x ∈A,∴f (A )∈{0,1},∴0≤f(A)≤1成立,故②正确;如果A ∩B =∅,当x ∈A ∪B 时,f (A ∪B )=1,此时x ∈A 或x ∈B .若x ∈A ,则x ∉B ,f (A )=1,f (B )=0,f (A )+f (B )=1,f(A ∪B)=f(A)+f(B)成立;x ∈B 时,x ∉A ,f (A )=0,f (B )=1,f (A )+f (B )=1,f(A ∪B)=f(A)+f(B)成立;当x ∉A ∪B 时,x ∉A ,x ∉B ,∴f (A ∪B )=0,f (A )=0,f (B )=0,那么f(A ∪B)=f(A)+f(B)成立,∴③正确;当x ∈A 时,x ∉A ,此时f (A )=1,f (A )=0, f(A)+f(A )=1成立;当x ∉A 时,x ∈A ,此时f (A )=0,f (A )=1, f(A)+f(A )=1成立,故④正确. 综上,正确的结论有4个, 故选:D10、已知100件产品中有5件次品,从这100件产品中任意取出3件,设E 表示事件“3件产品 全不是次品”,F 表示事件“3件产品全是次品”,G 表示事件“3件产品中至少有1件是 次品”,则下列结论正确的是( ) A .F 与G 互斥B .E 与G 互斥但不对立 C .E,F,G 任意两个事件均互斥D .E 与G 对立 答案:D分析:列出基本事件,再结合互斥事件,对立事件的定义即可判断.设1表示取到正品, 0 表示取到次品,所有事件Ω={(1,1,1),(1,1,0),(1,0,0),(0,0,0)}.则E={(1,1,1)},F={(0,0,0)},G={(1,1,0),(1,0,0),(0,0,0)}F∩G=F,故F与G不互斥,故A,C错E∩G=∅,E∪G=Ω,故E与G互斥且对立,故B错,D正确故选:D填空题11、排球比赛的规则是5局3胜制,在某次排球比赛中,甲队在每局比赛中获胜的概率均为35,若前2局结束后乙队以2:0领先,则最后乙队获胜的概率是___________.答案:98125##0.784##78.4%分析:最后乙队获胜,则需要在剩下的三局比赛中赢一局,分情况计算概率即可.最后乙队获胜,则需要在剩下的三局比赛中赢一局即可.若第三局乙队获胜,其概率为P1=25;若第三局乙队负,第四局乙队获胜,其概率为P2=35×25=625;若第三、四局乙队负,第五局乙队获胜,其概率为P3=35×35×25=18125.所以最后乙队获胜的概率为P=P1+P2+P3=25+625+18125=50+30+18125=98125.所以答案是:98125.12、已知甲盒装有3个红球,m个白球,乙盒装有3个红球, 1个白球,丙盒装有2个红球, 2个白球,这些球除颜色以外完全相同. 先随机取一个盒子,再从该盒子中随机取一个球,若取得白球的概率是3784,则m=_____.答案:4分析:分别求出从甲、乙、丙盒中机取一个球取得白球的概率,再表示出随机取一个盒子,再从该盒子中随机取一个球,取得白球的概率即可求出m的值.从甲盒中机取一个球,取得白球的概率是P1=m3+m,从乙盒中机取一个球,取得白球的概率是P 2=14,从丙盒中机取一个球,取得白球的概率是P 2=12, 因为随机取一个盒子,再从该盒子中随机取一个球,取得白球的概率是3784,所以1C 31·(P 1+P 2+P 3)=13×(m 3+m +14+12)=3784,解得:m =4. 所以答案是:4.13、一台设备由三个部件构成,假设在一天的运转中,部件1,2,3需要调整的概率分别为0.1,0.2,0.3,各部件的状态相互独立,则设备在一天的运转中,至少有1个部件需要调整的概率为________. 答案:0.496分析:先求没有1个部件需要调整的概率,再用1减即可.设A,B,C 分别为部件1,2,3需要调整的事件,则至少有1个部件需要调整的概率为 P =1−P (A )⋅P (B ̅)⋅P (C )=1−0.504=0.496 所以答案是:0.49614、对于一个古典概型的样本空间Ω和事件A ,B ,其中n(Ω)=60,n(A)=30,n(B)=20,n(A ∩B)=10,则P(A ∪B)=___________. 答案:23分析:求出A ∪B 所包含的基本事件数,从而求出相应的概率. 由题意得:n (A ∪B )=30+20−10=40,所以P (A ∪B )=4060=23. 所以答案是:2315、一家药物公司试验一种新药,在500个病人中试验,其中307人有明显疗效,120人有疗效但疗效一般,剩余的人无疗效,则没有明显疗效的频率是______. 答案:0.386##193500分析:根据题意得到没有明显疗效的人数,然后利用频率的计算公式即可得到答案解:由题意可得没有明显疗效的人数为500−307=193,=0.386,所以没有明显疗效的频率为193500所以答案是:0.386解答题16、要产生1~25之间的随机整数,你有哪些方法?答案:答案见解析.分析:方法一:把25个大小形状相同的小球分别标上1,2,3,…,24,25,放入一个袋中,充分搅拌,从中摸出一个,这个球上的数就称为随机数;方法二:利用计算机产生随机数.法一:可以把25个大小形状相同的小球分别标上1,2,3,…,24,25,放入一个袋中,把它们充分搅拌,然后从中摸出一个,这个球上的数就称为随机数,放回后重复以上过程,就得到一系列的1~25之间的随机整数.法二:可以利用计算机产生随机数,以Excel为例:(1)选定A1格,输入“=RANDBETWEEN(1,25)”,按Enter键,则在此格中的数是随机产生的;(2)选定A1格,点击复制,然后选定要产生随机数的格,比如A2至A100,点击粘贴,则在A2至A100的格中均为随机产生的1~25之间的数,这样我们就很快得到了100个1~25之间的随机数,相当于做了100次随机试验.小提示:本题考查了随机数的产生,考查了基本知识的掌握情况,属于基础题.17、小宁某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率;(2)这三列火车至少有一列正点到达的概率.答案:(1)0.398;(2)0.994.分析:结合独立事件的乘法公式即可.解:用A,B,C分别表示这三列火车正点到达的事件.则P(A)=0.8,P(B)=0.7,P(C)=0.9,所以P(A)=0.2,P(B)=0.3,P(C)=0.1.(1)由题意得A,B,C之间互相独立,所以恰好有两列正点到达的概率为P1=P(ABC)+P(ABC)+P(ABC)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)三列火车至少有一列正点到达的概率为P2=1-P(A B C)=1-P(A)P(B)P(C)=1-0.2×0.3×0.1=0.994.18、某汽车品牌为了了解客户对于其旗下的五种型号汽车的满意情况,随机抽取了一些客户进行回访,调查结果如下表:其中,满意率是指某种型号汽车的回访客户中,满意人数与总人数的比值.(1)从Ⅲ型号汽车的回访客户中随机选取1人,求这个客户不满意的概率;(2)从所有客户中随机选取1个人,估计这个客户满意的概率.答案:(1)0.4(2)111320分析:(1)利用对立事件的概率公式求解计算即可.(2)先求出样本中的回访客户的总数和样本中满意的客户人数,由此估计客户的满意概率.(1)由表中数据知,Ⅲ型号汽车的回访客户的满意率为0.6,则从Ⅲ型号汽车的回访客户中随机选取1人,这个客户不满意的概率为1−0.6=0.4.(2)由题意知,回访客户的总人数是250+100+200+700+350=1600,回访客户中满意的客户人数是250×0.5+100×0.3+200×0.6+700×0.3+350×0.2=125+30+120+ 210+70=555,所以回访客户中客户的满意率为5551600=111320,所以从所有客户中随机选取1个人,估计这个客户满意的概率约为P=111320.19、2022年新冠肺炎仍在世界好多国家肆虐,尽管我国抗疫取得了很大的成绩,疫情也得到了很好的遏制,但由于整个国际环境的影响,时而也会出现一些散发病例,故而抗疫形势依然艰巨.我市某小区为了防止疫情在小区出现,严防外来人员进入小区,切实保障居民正常生活,设置“特殊值班岗”.现有包含甲、乙在内的4名志愿者参与该工作,每人安排一天,每4天一轮.在一轮的“特殊值班岗”安排中,求:(1)甲、乙两人相邻值班的概率;(2)甲或乙被安排在前2天值班的概率.答案:(1)12(2)56分析:(1)利用列举法求解即可;(2)利用列举法求解即可.(1)由题意,设4名志愿者为甲,乙,丙,丁,4天一轮的值班安排所有可能的结果是:(甲,乙,丙,丁),(甲,乙,丁,丙),(甲,丙,乙,丁),(甲,丙,丁,乙),(甲,丁,乙,丙),(甲,丁,丙,乙),(乙,甲,丙,丁),(乙,甲丁,丙),(乙,丙,甲,丁),(乙,丙,丁,甲),(乙,丁,甲,丙),(乙,丁,丙,甲),(丙,甲,乙,丁),(丙,甲,丁,乙),(丙,乙,甲,丁),(丙,乙,丁,甲),(丙,丁,乙,甲),(丙,丁,甲,乙),(丁,甲,乙,丙),(丁,甲,丙,乙),(丁,乙,甲,丙),(丁,乙,丙,甲),(丁,丙,乙,甲),(丁,丙,甲,乙),共24个样本点设甲乙相邻为事件A,则事件A包含:(甲,乙,丙,丁),(甲,乙,丁,丙),(乙,甲,丙,丁),(乙,甲,丁,丙),(丙,甲,乙,丁),(丙,乙,甲,丁),(丙,丁,乙,甲),(丙,丁,甲,乙),(丁,甲,乙,丙),(丁,乙,甲,丙),(丁,丙,乙,甲),(丁,丙,甲,乙),共12个样本点,故p(A)=1224=12(2)设甲或乙被安排在前两天值班的为事件B.则事件B包含:(甲,乙,丙,丁),(甲,乙,丁,丙),(甲,丙,乙,丁),(甲,丙,丁,乙),(甲,丁,乙,丙),(甲,丁,丙,乙),(乙,甲,丙,丁),(乙,甲,丁,丙),(乙,丙,甲,丁),(乙,丙,丁,甲),(乙,丁,甲,丙),(乙,丁,丙,甲),(丙,甲,乙,丁),(丙,甲,丁,乙),(丙,乙,甲,丁),(丙,乙,丁,甲),(丁,甲,乙,丙),(丁,甲,丙,乙),(丁,乙,甲,丙),(丁,乙,丙,甲),共20个样本点,故p(B)=2024=56.。

高中数学高考专题(7)概率与统计的高考解答题型及求解策略

高中数学高考专题(7)概率与统计的高考解答题型及求解策略

高中数学高考专题(7)概率与统计的高考解答题型及求解策略1.概率与统计是高考中相对独立的一个内容,该类问题以应用题为载体,注重考查应用意识及阅读理解能力、分类讨论与化归转化能力;2.概率问题的核心是概率计算.其中事件的互斥、对立是概率计算的核心,古典概型、几何概型是进行概率计算的工具.统计问题的核心是样本数据的获得及分析方法,重点是频率分布直方图、茎叶图和样本的数字特征,但近两年全国课标卷突出回归分析的考查.3.离散型随机变量的分布列及其均值的考查是历来高考的重点,难度多为中低档类题目,特别是与统计内容的渗透,背境新颖,充分体现了概率与统计的工具性和交汇性.题型一古典概型的综合应用题型概览:古典概型的应用是数学高考的一大热点,复习中应强化应用题目的理解与掌握,弄清基本事件的个数是正确解答的关键,常借助表格、树状图以及列举法进行计算,对概型的确定与转化是解题的基础,准确列举计算是解题的核心,在备考中强化解答题的规范训练.(2015·山东卷)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团概率;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3,现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.[审题程序]第一步:审清题意,确定基本事件;第二步:列举基本事件;第三步:利用古典概型的概率公式求解.[规范解答] (1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加上述一个社团的共有45-30=15人,所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P =1545=13.(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 5,B 1},{A 5,B 2},{A 5,B 3},共15个.根据题意,这些基本事件的出现是等可能的.事件“A 1被选中且B 1未被选中”所包含的基本事件有:{A 1,B 2},{A 1,B 3},共2个.因此A 1被选中且B 1未被选中的概率为P =215.[答题模板] 解决这类问题的答题模板如下: 转化信息—仔细阅读题目,收集题目中的各种信息,理解题意,把文字叙述转化为数学语言或数学表达式.↓ 列举事件—在理解题意的基础上,将基本事件一一列出,求出基本事件的个数n ,并在这些基本事件中找出题目要求的事件所包含的基本事件并求出其个数m .↓计算结果—利用古典概型的概率公式求出事件的概率,较为复杂的概率问题往往利用互斥事件概率的加法公式求解,也可以先求事件A 的对立事件A -的概率,再由P (A )=1-P (A -)求解.1.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A 1,A 2和1个白球B 的甲箱与装有2个红球a 1,a 2和2个白球b 1,b 2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖.(1)用球的标号列出所有可能的摸出结果;(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.[解] (1)所有可能的摸出结果是{A 1,a 1},{A 1,a 2},{A 1,b 1},{A 1,b 2},{A 2,a 1},{A 2,a 2},{A 2,b 1},{A 2,b 2},{B ,a 1},{B ,a 2},{B ,b 1},{B ,b 2}.(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为{A 1,a1},{A 1,a 2},{A 2,a 1},{A 2,a 2},共4种,所以中奖的概率为412=13,不中奖的概率为1-13=23>13.故这种说法不正确.题型二 统计与统计案例题型概览:(1)用样本频率分布来估计总体分布的重点是,频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布,难点是频率分布表和频率分布直方图的理解及应用.(2)求解回归方程的关键是确定回归系数a ^,b ^,因求解b ^的公式计算量太大,一般题目中给出相关的量,可直接代入求解.充分利用回归直线过样本中心点(x -,y -),即有y -=b ^x -+a ^,可确定a ^.另外,非线性回归问题可以通过变换转化为用线性回归方法去解决,转化过程中,注意数据也相应地跟着变化.(3)在判断两个分类变量关系的可靠性时,一般利用随机变量K 2来确定;把计算出的K 2的值与有关的临界值作比较,确定出“X 与Y 有关系”的把握.(2016·唐山一中期末)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:(1)求y 关于x 的回归方程y =b x +a ;(2)用所求的回归方程预测该地区2017年的人民币储蓄存款. 注:b ^=∑i =1n (x i -x -)(y i-y -)∑i =1n (x i -x -)2=∑i =1nx i y i -n x -y -∑i =1n x 2i -n x -2,a ^=y --b ^x -. [审题程序]第一步:利用公式求出相关数值;第二步:求回归方程;第三步:代入回归方程,作出预测.[规范解答] (1)设时间代号t =x -2011,则t 分别为1,2,3,4,5.根据题意,t -=3,y -=7.2,∑i =15t 2i -5t -2=55-5×32=10,∑i =15t i y i -5t - y-=120-5×3×7.2=12,∴b ^1=1.2,a ^1=7.2-1.2×3=3.6,∴y 关于t 的回归方程为y ^=1.2t +3.6,∴y 关于x 的回归方程为y ^=1.2(x -2011)+3.6,即y ^=(1.2x -2409.6).(2)当x =2017,即t =6时,y ^=1.2×6+3.6=10.8.故预测该地区2017年的人民币储蓄存款为10.8千亿元.[答题模板] 解决这类问题的答题模板如下: 数据处理—结合图表信息对题目中的数据进行归类处理,并准确的进行计算.↓确定结果—把相关数据代入对应公式,得出线性回归方程或独立性检验中的随机变量K 2.↓作出判断—线性回归分析中,利用线性回归方程作出预测;独立性检验中,利用K2的值与临界值作比较,作出判断.2.(2016·福建厦门三中模拟)某大型企业人力资源部为了研究企业员工工作积极性和对待企业改革的关系,随机抽取了100名员工进行调查,其中支持企业改革的调查者中,工作积极的有46人,工作一般的有35人,而不太赞成企业改革的调查者中,工作积极的有4人,工作一般的有15人.(1)根据以上数据建立一个2×2列联表;(2)对于人力资源部的研究项目,根据以上数据可以认为企业的全体员工对待企业改革的态度与其工作积极性是否有关系?参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)(其中n=a+b+c+d)极性无关.根据(1)中的数据,可以求得K2=100×(15×46-35×4)250×50×19×81≈7.862>6.635,所以有99%的把握说抽样员工对待企业改革的态度与工作积极性有关,从而认为企业的全体员工对待企业改革的态度与其工作积极性有关.题型三概率与统计的综合应用题型概览:统计以考查抽样方法、样本的频率分布、样本特征数的计算为主,概率以考查概率计算为主,往往和实际问题相结合,要注意理解实际问题的意义,使之和相应的概率计算对应起来,只有这样才能有效地解决问题.(2015·安徽卷)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.[审题程序]第一步:利用统计知识进行数据处理;第二步:利用概率知识进行求解判断.[规范解答](1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以a=0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以估计该企业的职工对该部门评分不低于80的概率为0.4.(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},又因为所抽取2人的评分都在[40,50)的结果有1种,即{B1,B2},故所求的概率为110.[答题模板]解决这类问题的答题模板如下:统计分析—借助统计知识对图表、数据进行分析处理,求出相关的数值.↓列举事件—列举出所有的基本事件和满足要求的基本事件.↓概率计算—利用频率与概率的关系、古典概型概率公式等进行概率计算.↓反思回顾—查看关键点、易错点和答题是否规范.3.某班甲、乙两名同学参加100米达标训练,在相同条件下两人10次训练的成绩(单位:秒)如下:100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论);(2)经过对甲、乙两位同学的若干次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率.[解](1)甲、乙两人10次训练的成绩的茎叶图如下:从统计图中可以看出,乙的成绩较为集中,差异程度较小,所以选派乙同学代表班级参加比赛更好.(2)设甲同学的成绩为x,乙同学的成绩为y,则|x-y|<0.8,得x-0.8<y<0.8+x,如图,阴影部分面积即为3×3-2.2×2.2=4.16,则P(|x-y|<0.8)=P(x-0.8<y<0.8+x)=4.163×3=104225.。

高考数学概率统计大题综合试题含答案解析

高考数学概率统计大题综合试题含答案解析

概率统计大题综合知识点总结1.数字样本特征(1)众数:在一组数据中出现次数最多的数(2)中位数:将一组数据按从小到大(或从大到小)的顺序排列,如果为奇数个,中位数为中间数;若为偶数个,中位数为中间两个数的平均数(3)平均数:x =x 1+x 2+⋯⋯+x nn ,反映样本的平均水平(4)方差:s 2=(x 1−x )2+(x 2−x )2+⋯⋯(x n −x )2n反映样本的波动程度,稳定程度和离散程度;s 2越大,样本波动越大,越不稳定;s 2越小,样本波动越小,越稳定;(5)标准差:σ=s 2,标准差等于方差的算术平方根,数学意义和方差一样(6)极差:等于样本的最大值−最小值2.求随机变量X 的分布列的步骤:(1)理解X 的意义,写出X 可能取得全部值;(2)求X 取每个值的概率;(3)写出X 的分布列;(4)根据分布列的性质对结果进行检验.还可判断随机变量满足常见分布列:两点分布,二项分布,超几何分布,正态分布.3.求随机变量的期望和方差的基本方法:(1)已知随机变量的分布列,直接利用期望和方差公式直接求解;(2)已知随机变量X 的期望、方差,求aX +b a ,b ∈R 的期望与方差,利用期望和方差的性质E aX +b =aE X +b ,D aX +b =a 2D X 进行计算;(3)若能分析出所给的随机变量服从常用的分布(如:两点分布、二项分布等),可直接利用常用分布列的期望和方差公式进行计算,若ξ~B (n ,p ),则Eξ=np ,Dξ=np (1-p ).4.求解概率最大问题的关键是能够通过P ξ=k ≥P ξ=k +1P ξ=k ≥Pξ=k -1构造出不等关系,结合组合数公式求解结果5.线性回归分析解题方法:(1)计算x ,y,ni =1x i 2 ,ni =1x i y i 的值;(2)计算回归系数a ,b ;(3)写出回归直线方程y =b x +a.线性回归直线方程为:y =b x +a ,b=ni =1x i −x y i −yni =1x i −x2=ni =1x i y i −nx yni =1x i 2−nx2,a =y −b x其中x ,y为样本中心,回归直线必过该点(4)线性相关系数(衡量两个变量之间线性相关关系的强弱)r=ni=1x i−xy i−yni=1x i−x2ni=1y i−y2=ni=1x i y i−nx yni=1x i2−nx 2ni=1y i2−ny 2r>0,正相关;r<0,负相关r ≤1,且r 越接近于1,线性相关性越强;r 越接近于0,线性相关性越弱,几乎不存在线性相关性6.独立性检验解题方法:(1)依题意完成列联表;(2)用公式求解;(3)对比观测值即可得到所求结论的可能性独立性检验计算公式:K2=n ad-bc2a+bc+da+cb+d模拟训练一、解答题1.(2023·福建三明·统考三模)在二十大报告中,体育、健康等关键词被多次提及,促进群众体育和竞技体育全面发展,加快建设体育强国是全面建设社会主义现代化国家的一个重要目标.某校为丰富学生的课外活动,加强学生体质健康,拟举行羽毛球团体赛,赛制采取3局2胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且是否上场是随机的,每局比赛结果互不影响.经过小组赛后,最终甲、乙两队进入最后的决赛,根据前期比赛的数据统计,甲队种子选手M对乙队每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(1)求甲队最终2:1获胜且种子选手M上场的概率;(2)已知甲队2:1获得最终胜利,求种子选手M上场的概率.2.(2023·湖北武汉·统考模拟预测)“英才计划”最早开始于2013年,由中国科协、教育部共同组织实施,到2022年已经培养了6000多名具有创新潜质的优秀中学生,为选拔培养对象,某高校在暑假期间从武汉市的中学里挑选优秀学生参加数学、物理、化学、信息技术学科夏令营活动.(1)若化学组的12名学员中恰有5人来自同一中学,从这12名学员中选取3人,ξ表示选取的人中来自该中学的人数,求ξ的分布列和数学期望;(2)在夏令营开幕式的晚会上,物理组举行了一次学科知识竞答活动.规则如下:两人一组,每一轮竞答中,每人分别答两题,若小组答对题数不小于3,则取得本轮胜利,假设每轮答题结果互不影响.已知甲、乙两位同学组成一组,甲、乙答对每道题的概率分别为p1,p2,且p1+p2=43,如果甲、乙两位同学想在此次答题活动中取得6轮胜利,那么理论上至少要参加多少轮竞赛?3.(2023·福建宁德·校考二模)某科研团以为了考察某种药物预防疾病的效果,进行动物实验,得到如下列联表.患病未患病总计服用药物1045末服用药物50总计30(1)请将上面的列联表补充完整.(2)认为“药物对预防疾病有效”犯错误的概率是多少?(3)为了进一步研究,现按分层抽样的方法从未患病动物中抽取10只,设其中未服用药物的动物数为ξ,求ξ的分布列与期望.下面的临界值表供参考:P(K2≥k)0.150.100.050.0250.0100.0050.001k 2.0722706 3.841 5.024 6.6357.87910.828(参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d)4.(2023·江苏常州·校考一模)设X,Y是一个二维离散型随机变量,它们的一切可能取的值为a i,b j,其中i,j∈N*,令p ij=P X=a i,Y=b j,称p ij i,j∈N*是二维离散型随机变量X,Y的联合分布列,与一维的情形相似,我们也习惯于把二维离散型随机变量的联合分布列写成下表形式;X,Yb1b2b3⋅⋅⋅a1p11p12p13⋅⋅⋅a2p21p22p23⋅⋅⋅a3p31p32p33⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅现有n n∈N*个球等可能的放入编号为1,2,3的三个盒子中,记落入第1号盒子中的球的个数为X,落入第2号盒子中的球的个数为Y.(1)当n=2时,求X,Y的联合分布列,并写成分布表的形式;(2)设p k=nm=0P X=k,Y=m,k∈N且k≤n,求nk=0kp k的值.(参考公式:若X~B n,p,则nk=0kC k np k1-pn-k=np)5.(2023·江苏南京·南京市第九中学校考模拟预测)某种疾病可分为A,B两种类型,为了解该疾病的类型与患者性别是否相关,在某地区随机抽取了若干名该疾病的患者进行调查,发现女性患者人数是男性患者的2倍,男性患A型疾病的人数占男性患者的56,女性患A型疾病的人数占女性患者的13.A型病B型病合计男女合计(1)填写2×2列联表,若本次调查得出“在犯错误的概率不超过0.005的前提下认为‘所患疾病的类型'与‘性别'有关”的结论,求被调查的男性患者至少有多少人?(2)某团队进行预防A型疾病的疫苗的研发试验,试验期间至多安排2个周期接种疫苗,每人每个周期接种3次,每次接种费用为m m>0元.该团队研发的疫苗每次接种后产生抗体的概率为p0<p<1,如果一个周期内至少2次出现抗体,则该周期结束后终止试验,否则进入第二个周期.若p=23,试验人数为1000人,试估计该试验用于接种疫苗的总费用.K2=n ad-bc2a+bc+da+cb+d,P K2≥k00.100.050.010.0050.001k0 2.706 3.841 6.6357.87910.8286.(2023·安徽蚌埠·统考三模)某校为了丰富学生课余生活,组建了足球社团.为了解学生喜欢足球是否与性别有关,随机抽取了男、女同学各100名进行调查,部分数据如表所示:喜欢足球不喜欢足球合计男生40女生30合计(1)根据所给数据完成上表,依据α=0.001的独立性检验,能否认为该校学生喜欢足球与性别有关?(2)社团指导老师从喜欢足球的学生中抽取了2名男生和1名女生示范点球射门.已知这两名男生进球的概率均为23,这名女生进球的概率为12,每人射门一次,假设各人射门相互独立,求3人进球总次数X的分布列和数学期望.附:χ2=n ad-bc2a+bc+da+cb+dα0.10.050.010.0050.001 xα 2.706 3.841 6.6357.87910.8287.(2023·海南海口·海南华侨中学校考模拟预测)在以视觉为主导的社交媒体时代,人们常借助具有美颜功能的产品对自我形象进行美化.移动端的美颜拍摄类APP 主要有两类:A 类是以自拍人像、美颜美妆为核心功能的APP ;B 类是图片编辑、精修等图片美化类APP .某机构为调查市民对上述A ,B 两类APP 的使用情况,随机调查了部分市民.已知被调查的市民中使用过A 类APP 的占60%,使用过B 类APP 的占50%,设个人对美颜拍摄类APP 类型的选择及各人的选择之间相互独立.(1)从样本人群中任选1人,求该人使用过美颜拍摄类APP 的概率;(2)从样本人群中任选5人,记X 为5人中使用过美颜拍摄类APP 的人数,设X 的数学期望为E X ,求P X =E X ;(3)在单独使用过A ,B 两类APP 的样本人群中,按类型分甲、乙两组,并在各组中随机抽取8人,甲组对A 类APP ,乙组对B 类APP 分别评分如下:甲组评分9486929687939082乙组评分8583859175908380记甲、乙两组评分的平均数分别为x 1 ,x 2 ,标准差分别为s 1,s 2,试判断哪组评价更合理.(设V i=s ix i (i =1,2),V i 越小,则认为对应组评价更合理.)参考数据:0.1925≈0.439,0.2325≈0.482.8.(2023·广东·统考模拟预测)某工厂车间有6台相同型号的机器,各台机器相互独立工作,工作时发生故障的概率都是14,且一台机器的故障由一个维修工处理.已知此厂共有甲、乙、丙3名维修工,现有两种配备方案,方案一:由甲、乙、丙三人维护,每人负责2台机器;方案二:由甲乙两人共同维护6台机器,丙负责其他工作.(1)对于方案一,设X 为甲维护的机器某一时刻发生故障的台数,求X 的分布列与数学期望E (X );(2)在两种方案下,分别计算某一时刻机器发生故障时不能得到及时维修的概率,并以此为依据来判断,哪种方案能使工厂的生产效率更高?9.(2023·福建福州·福建省福州第一中学校考模拟预测)相关统计数据显示,中国经常参与体育锻炼的人数比例为37.2%,城乡居民达到《国民体质测定标准》合格以上的人数比例达到90%以上.某健身连锁机构对其会员的年龄等级和一个月内到健身房健身次数进行了统计,制作成如下两个统计图.图1为会员年龄分布图(年龄为整数),其中将会员按年龄分为“年轻人”(20岁-39岁)和“非年轻人”(19岁及以下或40岁及以上)两类;图2为会员一个月内到健身房次数分布扇形图,其中将一个月内到健身房锻炼16次及以上的会员称为“健身达人”,15次及以下的会员称为“健身爱好者”,且已知在“健身达人”中有56是“年轻人”.(1)现从该健身连锁机构会员中随机抽取一个容量为100的样本,根据图表数据,补全2×2列联表,并依据小概率值α=0.05的独立性检验,是否可以认为“健身达人”与年龄有关?年轻人非年轻人合计健身达人健身爱好者合计(2)该健身机构在今年年底将针对全部的150名会员举办消费返利活动,预设有如下两种方案.方案1:按分层抽样从健身爱好者和健身达人中总共抽取20位“幸运之星”给予奖励.其中,健身爱好者和健身达人中的“幸运之星”每人分别奖励500元和800元.方案2:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球.若摸到红球的总数为2,则可获得100元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.如果每位健身爱好者均可参加1次摸奖游戏;每位健身达人均可参加3次摸奖游戏(每次摸奖的结果相互独立).以方案的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.附:χ2=n(ad-bc)2a+bc+da+cb+d.α0.100.050.0250.0100.0050.001χα 2.706 3.841 5.024 6.6357.87910.82810.(2023·云南昭通·校联考模拟预测)为了检测某种抗病毒疫苗的免疫效果,需要进行临床人体试验.研究人员将疫苗注射到200名志愿者体内,一段时间后测量志愿者的某项指标值,按0,20 ,20,40 ,40,60 ,60,80 ,80,100 分组,绘制频率分布直方图如图所示.试验发现志愿者体内产生抗体的共有160人,其中该项指标值不小于60的有110人.假设志愿者注射疫苗后是否产生抗体相互独立.(1)填写下面的2×2列联表,并根据列联表及小概率值α=0.05的独立性检验,判断能否认为注射疫苗后志愿者产生抗体与指标值不小于60有关.抗体指标值合计小于60不小于60有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40名志愿者进行第二次注射疫苗,结果又有m 名志愿者产生抗体.(i )用频率估计概率,已知一名志愿者注射2次疫苗后产生抗体的概率p =0.9,求m 的值;(ⅱ)以(i )中的概率p 作为人体注射2次疫苗后产生抗体的概率,再进行另一组人体接种试验,记110名志愿者注射2次疫苗后产生抗体的数量为随机变量X ,求P X =k 最大时的k 的值.参考公式:χ2=n ad -bc 2a +b c +d a +c b +d(其中n =a +b +c +d 为样本容量).α0.500.400.250.150.1000.0500.025x α0.4550.7081.3232.0722.7063.8415.02411.(2023·湖南长沙·长沙市实验中学校考二模)首批全国文明典范城市将于2023年评选,每三年评选一次,2021年长沙市入选为全国文明典范城市试点城市,目前我市正全力争创首批全国文明典范城市,某学校号召师生利用周末从事创建志愿活动.高一(1)班一组有男生4人,女生2人,现随机选取2人作为志愿者参加活动,志愿活动共有交通协管员、创建宣传员、文明监督员三项可供选择,每名女生至多从中选择参加2项活动,且选择参加1项或2项的可能性均为12;每名男生至少从中选择参加2项活动,且选择参加2项或3项的可能性也均为12,每人每参加1项活动可获得综合评价10分,选择参加几项活动彼此互不影响,求:(1)在有女生参加活动的条件下,恰有一名女生的概率;(2)记随机选取的两人得分之和为X,求X的期望.12.(2023·江苏南京·南京市第一中学校考模拟预测)为了宣传航空科普知识,某校组织了航空知识竞赛活动.活动规定初赛需要从8道备选题中随机抽取4道题目进行作答.假设在8道备选题中,小明正确完成每道题的概率都是34且每道题正确完成与否互不影响,小宇能正确完成其中6道题且另外2道题不能完成.(1)求小明至少正确完成其中3道题的概率;(2)设随机变量X表示小宇正确完成题目的个数,求X的分布列及数学期望;(3)现规定至少完成其中3道题才能进入决赛,请你根据所学概率知识,判断小明和小宇两人中选择谁去参加市级比赛(活动规则不变)会更好,并说明理由.13.(2023·广东·校联考模拟预测)某商场在五一假期间开展了一项有奖闯关活动,并对每一关根据难度进行赋分,竞猜活动共五关,规定:上一关不通过则不进入下一关,本关第一次未通过有再挑战一次的机会,两次均未通过,则闯关失败,且各关能否通过相互独立,已知甲、乙、丙三人都参加了该项闯关活动.(1)若甲第一关通过的概率为23,第二关通过的概率为56,求甲可以进入第三关的概率;(2)已知该闯关活动累计得分服从正态分布,且满分为450分,现要根据得分给共2500名参加者中得分前400名发放奖励.①假设该闯关活动平均分数为171分,351分以上共有57人,已知甲的得分为270分,问甲能否获得奖励,请说明理由;②丙得知他的分数为430分,而乙告诉丙:“这次闯关活动平均分数为201分,351分以上共有57人”,请结合统计学知识帮助丙辨别乙所说信息的真伪.附:若随机变量Z∼Nμ,σ2,则Pμ-σ≤X≤μ+σ≈0.6827;Pμ-2σ≤X≤μ+2σ≈0.9545;Pμ-3σ≤X≤μ+3σ≈0.9973.14.(2023·广东韶关·统考模拟预测)研究表明,如果温差本大,人们不注意保暖,可能会导致自身受到风寒刺激,增加感冒患病概率,特别是对于几童以及年老体弱的人群,要多加防范某中学数学建模社团成员研究了昼夜温差大小与某小学学生患感冒就诊人数多少之间的关系,他们记录了某六天的温差,并到校医室查阅了这六天中每天学生新增感冒就诊的人数,得到数据如下:日期第一天第二天第三天第四天第五天第六天昼夜温差x (°C )47891412新增感就诊人数y (位)y 1y 2y 3y 4y 5y 6参考数据:6iy 2i=3463,6iy i -y 2=289(1)已知第一天新增感冒就的学生中有4位男生,从第一天多增的感冒就诊的学生中随机取2位,其中男生人数记为X ,若抽取的2人中至少有一位女生的概率为56,求随机变量X 的分布列和数学期望;(2)已知两个变量x 与y 之间的样本相关系数r =1617,请用最小二乘法求出y 关于x 的经验回归方程y =b x +a ,据此估计昼夜温差为15°C 时,该校新增感冒就诊的学生人数. 参考数据:r =n ix i -x y i -y n i =1x i -x 2 ⋅ni =1y i -y2,b =ni x i -x y i -yni =1x i -x 2 15.(2023·重庆·统考模拟预测)某地区由于农产品出现了滞销的情况,从而农民的收入减少,很多人开始在某直播平台销售农产品并取得了不错的销售量.有统计数据显示2022年该地利用网络直播形式销售农产品的销售主播年龄等级分布如图1所示,一周内使用直播销售的频率分布扇形图如图2所示,若将销售主播按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用直播销售用户”,使用次数为5次或不足5次的称为“不常使用直播销售用户”,且“经常使用直播销售用户”中有34是“年轻人”.(1)现对该地相关居民进行“经常使用网络直播销售与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,完成2×2列联表,依据小概率值α=0.05的χ2独立性检验,能否认为经常使用网络直播销售与年龄有关?使用直播销售情况与年龄列联表年轻人非年轻人合计经常使用直播销售用户不常使用直播销售用户合计(2)某投资公司在2023年年初准备将1000万元投资到“销售该地区农产品”的项目上,现有两种销售方案供选择:方案一:线下销售、根据市场调研,利用传统的线下销售,到年底可能获利30%,可能亏损15%,也可能不是不赚,且这三种情况发生的概率分别为35,15,15;方案二:线上直播销售,根据市场调研,利用线上直播销售,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为12,310,15.针对以上两种销售方案,请你从期望和方差的角度为投资公司选择一个合理的方案,并说明理由.参考数据:独立性检验临界值表α0.150.100.050.0250.0100.0050.001xα 2.072 2.706 3.841 5.024 6.6357.87910.828其中χ2=n ad-bc2a+bc+da+cb+d,n=a+b+c+d.16.(2023·河北衡水·衡水市第二中学校考三模)某医疗科研小组为研究某市市民患有疾病A 与是否具有生活习惯B 的关系,从该市市民中随机抽查了100人,得到如下数据:疾病A 生活习惯B 具有不具有患病2515未患病2040(1)依据α=0.01的独立性检验,能否认为该市市民患有疾病A 与是否具有生活习惯B 有关?(2)从该市市民中任选一人,M 表示事件“选到的人不具有生活习惯B ”,N 表示事件“选到的人患有疾病A ”,试利用该调查数据,给出P N M的估计值;(3)从该市市民中任选3人,记这3人中具有生活习惯B ,且末患有疾病A 的人数为X ,试利用该调查数据,给出X 的数学期望的估计值.附:χ2=n (ad -bc )2a +b c +d a +c b +d,其中n =a +b +c +d .α0.100.050.0100.001 x α2.7063.8416.63510.82817.(2023·江苏扬州·统考模拟预测)随着网络技术的迅速发展,各种购物群成为网络销售的新渠道.在凤梨销售旺季,某凤梨基地随机抽查了100个购物群的销售情况,各购物群销售凤梨的数量情况如下:凤梨数量(盒)100,200 200,300 300,400 400,500 500,600购物群数量(个)12m2032m(1)求实数m的值,并用组中值估计这100个购物群销售风梨总量的平均数(盒);(2)假设所有购物群销售凤梨的数量X服从正态分布Nμ,σ2,其中μ为(1)中的平均数,σ2=12100.若该凤梨基地参与销售的购物群约有1000个,销售风梨的数量在266,596(单位:盒)内的群为“一级群”,销售数量小于266盒的购物群为“二级群”,销售数量大于等于596盒的购物群为“优质群”.该凤梨基地对每个“优质群”奖励1000元,每个“一级群”奖励200元,“二级群”不奖励,则该风梨基地大约需要准备多少资金?(群的个数按四舍五入取整数)附:若X服从正态分布X~Nμ,σ2,则P(μ-σ<X<μ+σ)≈0.683,P(μ-2σ<X<μ+2σ)≈0.954,P(μ-3σ<X<μ+3σ)≈0.997.18.(2023·浙江·校联考模拟预测)某校有一个露天的篮球场和一个室内乒乓球馆为学生提供锻炼场所,甲、乙两位学生每天上下午都各花半小时进行体育锻炼,近50天天气不下雨的情况下,选择体育锻炼情况统计如下:上下午体育锻炼项目的情况(上午,下午)(篮球,篮球)(篮球,乒乓球)(乒乓球,篮球)(乒乓球,乒乓球)甲20天15天5天10天乙10天10天5天25天假设甲、乙选择上下午锻炼的项目相互独立,用频率估计概率.(1)分别估计一天中甲上午和下午都选择篮球的概率,以及甲上午选择篮球的条件下,下午仍旧选择篮球的概率;(2)记X 为甲、乙在一天中选择体育锻炼项目的个数,求X 的分布列和数学期望E (X );(3)假设A 表示事件“室外温度低于10度”,B 表示事件“某学生去打乒乓球”,P (A )>0,一般来说在室外温度低于10度的情况下学生去打乒乓球的概率会比室外温度不低于10度的情况下去打乒乓球的概率要大,证明:P (A |B )>P (A |B).19.(2023·广东深圳·统考二模)某校体育节组织定点投篮比赛,每位参赛选手共有3次投篮机会.统计数据显示,每位选手投篮投进与否满足:若第k 次投进的概率为p (0<p <1),当第k 次投进时,第k +1次也投进的概率保持p 不变;当第k 次没能投进时,第k +1次能投进的概率降为p2.(1)若选手甲第1次投进的概率为p (0<p <1),求选手甲至少投进一次的概率;(2)设选手乙第1次投进的概率为23,每投进1球得1分,投不进得0分,求选手乙得分X 的分布列与数学期望.20.(2023·湖北武汉·华中师大一附中校考模拟预测)2021年春节前,受疫情影响,各地鼓励外来务工人员选择就地过年.某市统计了该市4个地区的外来务工人数与就地过年人数(单位:万),得到如下表格:A 区B 区C 区D 区外来务工人数x /万3456就地过年人数y /万2.5344.5(1)请用相关系数说明y 与x 之间的关系可用线性回归模型拟合,并求y 关于x 的线性回归方程y =a +bx 和A 区的残差(2)假设该市政府对外来务工人员中选择就地过年的每人发放1000元补贴.①若该市E 区有2万名外来务工人员,根据(1)的结论估计该市政府需要给E 区就地过年的人员发放的补贴总金额;②若A 区的外来务工人员中甲、乙选择就地过年的概率分别为p ,2p -1,其中12<p <1,该市政府对甲、乙两人的补贴总金额的期望不超过1400元,求p 的取值范围.参考公式:相关系数r =ni =1x i y i -nx yn i =1x 2i -nx 2ni =1y 2i -ny2,回归方程y =a +bx 中斜率和截距的最小二乘估计公式分别为b =ni =1x i y i -nx yni =1x 2i -nx2,a =y -b x .21.(2023·山西运城·山西省运城中学校校考二模)甲、乙两人进行象棋比赛,赛前每人发3枚筹码.一局后负的一方,需将自己的一枚筹码给对方;若平局,双方的筹码不动,当一方无筹码时,比赛结束,另一方最终获胜.由以往两人的比赛结果可知,在一局中甲胜的概率为0.3、乙胜的概率为0.2.(1)第一局比赛后,甲的筹码个数记为X,求X的分布列和期望;(2)求四局比赛后,比赛结束的概率;(3)若P i i=0,1,⋯,6表示“在甲所得筹码为i枚时,最终甲获胜的概率”,则P0=0,P6=1.证明:P i+1-P ii=0,1,2,⋯,5为等比数列.22.(2023·湖北襄阳·襄阳四中校考三模)为倡导公益环保理念,培养学生社会实践能力,某中学开展了旧物义卖活动,所得善款将用于捐赠“圆梦困境学生”计划.活动共计50多个班级参与,1000余件物品待出售.摄影社从中选取了20件物品,用于拍照宣传,这些物品中,最引人注目的当属优秀毕业生们的笔记本,已知高三1,2,3班分别有12,13,14的同学有购买意向.假设三个班的人数比例为6:7:8.(1)现从三个班中随机抽取一位同学:(i)求该同学有购买意向的概率;(ii)如果该同学有购买意向,求此人来自2班的概率;(2)对于优秀毕业生的笔记本,设计了一种有趣的“掷骰子叫价确定购买资格”的竞买方式:统一以0元为初始叫价,通过掷骰子确定新叫价,若点数大于2,则在已叫价格基础上增加1元更新叫价,若点数小于3,则在已叫价格基础上增加2元更新叫价;重复上述过程,能叫到10元,即获得以10元为价格的购买资格,未出现叫价为10元的情况则失去购买资格,并结束叫价.若甲同学已抢先选中了其中一本笔记本,试估计其获得该笔记本购买资格的概率(精确到0.01).23.(2023·广东茂名·统考二模)春节过后,文化和旅游业逐渐复苏,有意跨省游、出境游的旅客逐渐增多.某旅游景区为吸引更多游客,计划在社交媒体平台和短视频平台同时投放宣传广告并进行线上售票,通过近。

2020高考数学解答题核心素养题型《专题11 概率与统计综合问题》+答题指导)(解析版)

2020高考数学解答题核心素养题型《专题11 概率与统计综合问题》+答题指导)(解析版)

专题11 概率与统计综合问题【题型解读】几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件、互斥事件常作为解答题的一问考查,也是进一步求分布列、期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】 (2018·天津卷)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16,现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. ①用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望;②设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率. 【答案】见解析【解析】(1)由题意得,甲、乙、丙三个部门的员工人数之比为3∶2∶2.由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人、2人、2人. (2)①随机变量X 的所有可能取值为0,1,2,3. P (X =k )=C k 4C 3-k3C 37(k =0,1,2,3).所以随机变量X 的分布列为随机变量X 的数学期望E (X )=0×35+1×35+2×35+3×35=7.②设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A =B ∪C ,且B 与C 互斥. 由①知,P (B )=P (X =2),P (C )=P (X =1), 故P (A )=P (B ∪C )=P (X =2)+P (X =1)=67.所以事件A 发生的概率为67.【素养解读】本题考查分层抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式,考查分析问题和解决问题的能力,体现了数学运算和数据分析等核心素养.试题难度:中.【突破训练1】 (2017·天津卷)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【答案】见解析【解析】(1)随机变量X 的所有可能取值为0,1,2,3.P (X =0)=⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-14=14,P (X =1)=12×⎝⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×13×⎝⎛⎭⎪⎫1-14+⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-13×14=1124,P (X =2)=⎝⎛⎭⎪⎫1-12×13×14+12×⎝ ⎛⎭⎪⎫1-13×14+12×13×⎝ ⎛⎭⎪⎫1-14=14,P (X =3)=12×13×14=124.所以随机变量X 的分布列为所以E (X )=0×4+1×24+2×4+3×24=12.(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0)=P (Y =0)P (Z =1)+P (Y =1)P (Z =0) =14×1124+1124×14=1148. 所以这2辆车共遇到了1个红灯的概率为1148.▶▶题型二 离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,常有解答题的考查,属于中档题.复习中应强化应用类习题的理解与掌握,弄清随机变量的所有取值,它是正确求随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中应强化解答题的规范性训练.【例2】 (2018·北京卷)电影公司随机收集了电影的有关数据,经分类整理得到下表:假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk =1”表示第k 类电影得到人们喜欢,“ξk =0”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差Dξ1,Dξ2,Dξ3,Dξ4,Dξ5,Dξ6的大小关系.【答案】见解析【解析】 (1)设“从电影公司收集的电影中随机选取1部,这部电影是获得好评的第四类电影”为事件A . 因为第四类电影中获得好评的电影有200×0.25=50(部), 所以P (A )=50140+50+300+200+800+510=502 000=0.025.(2)设“从第四类电影和第五类电影中各随机选取1部,恰有1部获得好评”为事件B ,则P (B )=0.25×(1-0.2)+(1-0.25)×0.2=0.35.(3)由题意可知,定义随机变量如下:ξk =⎩⎪⎨⎪⎧0,第k 类电影没有得到人们喜欢,1,第k 类电影得到人们喜欢,则ξk 显然服从两点分布,故Dξ1=0.4×(1-0.4)=0.24,Dξ2=0.2×(1-0.2)=0.16, Dξ3=0.15×(1-0.15)=0.127 5,Dξ4=0.25×(1-0.25)=0.187 5, Dξ5=0.2×(1-0.2)=0.16, Dξ6=0.1×(1-0.1)=0.09.综上所述,Dξ1>Dξ4>Dξ2=Dξ5>Dξ3>Dξ6.【素养解读】本题考查统计中的概率计算、随机变量的方差计算,考查运算求解能力,体现了数据分析、数学运算等核心素养.试题难度:中.【突破训练2】 (2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列.(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值? 【答案】见解析【解析】(1)由题意知,X 所有可能取值为200,300,500, 由表格数据知P (X =200)=2+1690=0.2,P (X =300)=3690=0.4, P (X =500)=25+7+490=0.4, 因此X 的分布列为当300≤n ≤500时,若最高气温不低于25,Y =6n -4n =2n ; 若最高气温位于区间[20,25),则Y=6×300+2(n-300)-4n=1 200-2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n,因此E(Y)=2n×0.4+(1 200-2n)×0.4+(800-2n)×0.2=640-0.4n.当200≤n<300时,若最高气温不低于20,则Y=6n-4n=2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.因此E(Y)=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.所以当n=300时,Y的数学期望达到最大值,最大值为520元.▶▶题型三概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】(2017·全国卷Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下.(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg”,估计A的概率;(2)填写下面的列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;附:K 2=(a +b)(c +d)(a +c)(b +d).【答案】见解析【解析】(1)记B 表示事件“旧养殖法的箱产量低于50 kg”,C 表示事件“新养殖法的箱产量不低于50 kg”. 由题意知P (A )=P (BC )=P (B )P (C ). 旧养殖法的箱产量低于50 kg 的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62, 故P (B )的估计值为0.62.新养殖法的箱产量不低于50 kg 的频率为 (0.068+0.046+0.010+0.008)×5=0.66, 故P (C )的估计值为0.66.因此,事件A 的概率估计值为0.62×0.66=0.409 2. (2)根据箱产量的频率分布直方图得如下列联表.K 2=100×100×96×104≈15.705.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50 kg 的直方图面积为(0.004+0.020+0.044)×5=0.34<0.5,箱产量低于55 kg 的直方图面积为(0.004+0.020+0.044+0.068)×5=0.68>0.5, 故新养殖法箱产量的中位数的估计值为 50+0.5-0.340.068≈52.35(kg).【素养解读】本题考查频率分布直方图、独立性检验、中位数、相互独立事件的概率,考查学生的阅读理解能力、数据处理能力.主要体现了数据分析,数学运算等核心素养.【突破训练3】 (2017·北京卷)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望E (ξ);(3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小(只需写出结论). 【答案】见解析【解析】(1)由题图知,在服药的50名患者中,指标y 的值小于60的有15人. 所以从服药的50名患者中随机选出一人,此人指标y 的值小于60的概率为1550=0.3.(2)由题图知,A ,B ,C ,D 四人中,指标x 的值大于1.7的有2人:A 和C . 所以ξ的所有可能取值为0,1,2.P (ξ=0)=C 22C 24=16,P (ξ=1)=C 12C 12C 24=23,P (ξ=2)=C 22C 24=16.所以ξ的分布列为故ξ的期望E (ξ)=0×6+1×3+2×6=1.(3)在这100名患者中,服药者指标y 数据的方差大于未服药者指标y 数据方差. 题型四 统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差等)的考查,解答题中也有所考查.【例4】 (2018·全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:y ^=-30.4+13.5t ;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^=99+17.5t . (1)分析利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?请说明理由. 【答案】见解析【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y ^=-30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施资源额的预测值为y ^=99+17.5×9=256.5(亿元). (2)利用模型②得到的预测值更可靠.理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =-30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势,2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y ^=99+17.5t 可以较好地描述2010年的数据建立基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. (以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.)【素养解读】本题以统计图为背景,考查线性回归方程,考查运算求解能力和数形结合思想,体现了数学运算的核心素养.【突破训练4】 下图是我国2011年至2017年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2019年我国生活垃圾无害化处理量. 附注:参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,∑i =17(y i -y)2=0.55,7≈2.646.参考公式:相关系数r =∑i =1n(t i -t)(y i -y )∑i =1n(t i -t )2∑i =1n(y i -y)2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为b ^=∑i =1n(t i -t)(y i -y )∑i =1n(t i -t )2,a ^=y -b ^t .【答案】见解析【解析】(1)由折线图中数据和附注中参考数据得t =4,∑i =17(t i -t )2=28,∑i =17(y i -y -)2=0.55,∑i =17(t i -t -)(y i -y -)=∑i =17t i y i -t -∑i =17y i =40.17-4×9.32=2.89,r ≈2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y -=9.327≈1.331及(1)得b ^=∑i =17(t i -t -)(y i -y -)∑i =17(t i -t -)2=2.8928≈0.103,a ^=y --b ^t -=1.331-0.103×4≈0.92.所以y 关于t 的回归方程为y ^=0.92+0.10t .将2019年对应的t =9代入回归方程,得y ^=0.92+0.10×9=1.82.所以预测2019年我国生活垃圾无害化处理量约为1.82亿吨.。

202X年人教版高中数学第十章概率题型总结及解题方法

202X年人教版高中数学第十章概率题型总结及解题方法

千里之行,始于足下。

202X年人教版高中数学第十章概率题型总结及解题方法大纲如下:概率的定义及基本原理1. 概率的定义2. 试验、样本空间、大事3. 概率的基本原理:古典概型、几何概型、无限概型概率的计算方法1. 相对频率法2. 全概率公式3. 加法定理4. 乘法定理排列与组合1. 排列的概念及计算2. 组合的概念及计算3. 各种状况下的排列组合问题概率的应用1. 条件概率2. 大事的独立性3. 贝叶斯定理4. 二项分布及其应用5. 泊松分布及其应用第1页/共3页锲而不舍,金石可镂。

解题方法1. 生疏概率的基本概念和公式2. 系统学习概率的计算方法3. 多练习排列组合题目,把握解题技巧4. 学会运用条件概率和贝叶斯定理解决实际问题5. 理解二项分布和泊松分布的概念及应用以下是一些常见的概率题型及解题方法:1. 古典概型问题例题:从10个不同的纸片中随机抽出3个,求抽出的3个纸片都是红色的概率。

解题思路:首先确定样本空间为C(10,3),即从10个纸片中选出3个的组合数。

然后确定符合条件的大事,即从纸片中选出3个红色的组合数C(5,3)。

最终计算概率为C(5,3)/C(10,3)。

2. 几何概型问题例题:平面上有一条长为4的线段AB,从AB上随机取一点C,求AC>1的概率。

解题思路:确定样本空间为AB的长度4,然后确定符合条件的大事,即C 点到A点的距离大于1。

最终计算概率为(4-1)/4。

3. 无限概型问题例题:一批产品中有1%的次品,现在要从中抽检10个,求抽检出的次品数量大于等于2的概率。

解题思路:首先确定样本空间为从批次中抽取10个产品的全部可能性。

然后确定符合条件的大事,即抽检出的次品数量大于等于2。

最终计算概率为抽检出2个、3个、4个...10个次品的概率之和。

4. 全概率公式问题千里之行,始于足下。

例题:产品A的次品率为10%,产品B的次品率为5%,现在从A和B两批产品中各抽取一件,求抽取的产品不合格的概率。

全国通用版高中数学第十章概率题型总结及解题方法

全国通用版高中数学第十章概率题型总结及解题方法

(名师选题)全国通用版高中数学第十章概率题型总结及解题方法单选题1、某中学举行党史学习教育知识竞赛,甲队有A 、B 、C 、D 、E 、F 共6名选手其中4名男生2名女生,按比赛规则,比赛时现场从中随机抽出2名选手答题,则至少有1名女同学被选中的概率是( )A .13B .25C .12D .35答案:D分析:现场选2名选手,共15种情况,设A ,B ,C ,D 四位同学为男同学则没有女同学被选中的情况,共有6种,利用对立事件进行求解,即可得到答案;现场选2名选手,基本事件有:(A,B ),(A,C ),(A,D ),(A,E ),(A,F ),(B,C ),(B,D ),(B,E ),(B,F ),(C,D ),(C,E ),(C,F ),(D,E ),(D,F ),(E,F )共15种情况,不妨设A ,B ,C ,D 四位同学为男同学则没有女同学被选中的情况是:(A,B ),(A,C ),(A,D ),(B,C ),(B,D ),(C,D )共6种, 则至少有一名女同学被选中的概率为1−615=35.故选:D .2、已知事件A 与事件B 是互斥事件,则( )A .P (A ∩B̅) =0B .P (A ∩B ) =P (A ) P (B ) C .P (A ) =1−P (B ) D .P (A ∪B̅) =1 答案:D分析:根据互斥事件、对立事件、必然事件的概念可得答案.因为事件A 与事件B 是互斥事件,A 、B̅不一定是互斥事件,所以P (A ∩B ̅)不一定为0,故A 错误; 因为A ∩B =∅,所以P (A ∩B )=0,而P (A )P (B )不一定为0,故B 错误;因为事件A与事件B是互斥事件,不一定是对立事件,所以C错误;因为事件A与事件B是互斥事件,A∪B是必然事件,所以P(A∪B̅)=1,故D正确.故选:D.3、若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2−a,P(B)=4a−5,则实数a的取值范围是()A.(54,2)B.(54,32)C.(54,43]D.[54,32]答案:C分析:利用互斥事件的加法公式及概率的基本性质列式即可作答. 因随机事件A,B互斥,则P(A+B)=P(A)+P(B)=3a−3,依题意及概率的性质得{0<P(A)<1 0<P(B)<10<P(A+B)≤1,即{0<2−a<10<4a−5<10<3a−3≤1,解得54<a≤43,所以实数a的取值范围是(54,4 3 ].故选:C4、如图所示,1,2,3表示三个开关,若在某段时间内它们每个正常工作的概率都是0.9,那么此系统的可靠性是()A.0.999B.0.981C.0.980D.0.729答案:B解析:求出开关1、2均正常工作的概率及开关3正常工作的概率,由相互独立事件概率公式、对立事件的概率公式即可得解.由题意,开关1、2在某段时间内均正常工作的概率P1=0.9×0.9=0.81,开关3正常工作的概率P2=0.9,故该系统正常工作的概率P =1−(1−P 1)(1−P 2)=1−(1−0.81)×(1−0.9)=0.981,所以该系统的可靠性为0.981.故选:B.5、“某彩票的中奖概率为1100”意味着( )A .购买彩票中奖的可能性为1100B .买100张彩票能中一次奖C .买100张彩票一次奖也不中D .买100张彩票就一定能中奖答案:A分析:根据概率的定义,逐项判定,即可求解.对于A 中,根据概率的定义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,由某彩票的中奖概率为1100,可得购买彩票中奖的可能性为1100,所以A 正确;对于B 、C 中,买任何1张彩票的中奖率都是1100,都具有偶然性,可能中奖,还可能中奖多次,也可能不中奖,故B 、C 错误;对于D 选项、根据彩票总数目远大于100张,所以买100张也不一定中一次奖,故D 错误.故选:A.6、关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m 名同学每人随机写下一个都小于1的正实数对(x,y );再统计两数能与1构成钝角三角形三边的数对(x,y )的个数a ;最后再根据统计数a 估计π的值,那么可以估计π的值约为( )A .4a mB .a+2m C .a+2m m D .4a+2m m答案:D解析:由试验结果知m 对0~1之间的均匀随机数x,y ,满足{0<x <10<y <1 ,面积为1,再计算构成钝角三角形三边的数对(x,y),满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计π的值.解:根据题意知,m 名同学取m 对都小于1的正实数对(x,y ),即{0<x <10<y <1, 对应区域为边长为1的正方形,其面积为1,若两个正实数x,y 能与1构成钝角三角形三边,则有{x 2+y 2<1x +y >10<x <10<y <1, 其面积S =π4−12;则有a m =π4−12,解得π=4a+2m m故选:D .小提示:本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.7、“不怕一万,就怕万一”这句民间谚语说明( ).A .小概率事件虽很少发生,但也可能发生,需提防;B .小概率事件很少发生,不用怕;C .小概率事件就是不可能事件,不会发生;D .大概率事件就是必然事件,一定发生.答案:A分析:理解谚语的描述,应用数学概率知识改写即可.“不怕一万,就怕万一” 表示小概率事件很少发生,但也可能发生,需提防;故选:A8、已知100件产品中有5件次品,从这100件产品中任意取出3件,设E 表示事件“3件产品 全不是次品”,F 表示事件“3件产品全是次品”,G 表示事件“3件产品中至少有1件是 次品”,则下列结论正确的是( )A .F 与G 互斥B .E 与G 互斥但不对立C.E,F,G任意两个事件均互斥D.E与G对立答案:D分析:列出基本事件,再结合互斥事件,对立事件的定义即可判断.设1表示取到正品, 0 表示取到次品,所有事件Ω={(1,1,1),(1,1,0),(1,0,0),(0,0,0)}.则E={(1,1,1)},F={(0,0,0)},G={(1,1,0),(1,0,0),(0,0,0)}F∩G=F,故F与G不互斥,故A,C错E∩G=∅,E∪G=Ω,故E与G互斥且对立,故B错,D正确故选:D9、有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立答案:B分析:根据独立事件概率关系逐一判断P(甲)=16,P(乙)=16,P(丙)=536,P(丁)=636=16,,P(甲丙)=0≠P(甲)P(丙),P(甲丁)=136=P(甲)P(丁),P(乙丙)=136≠P(乙)P(丙),P(丙丁)=0≠P(丁)P(丙),故选:B小提示:判断事件A,B是否独立,先计算对应概率,再判断P(A)P(B)=P(AB)是否成立10、下列各对事件中,不互为相互独立事件的是()A.掷一枚骰子一次,事件M“出现偶数点”;事件N“出现3点或6点”B.袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到白球”C .袋中有3白、2黑共5个大小相同的小球,依次不放回地摸两球,事件M “第一次摸到白球”,事件N “第二次摸到黑球”D .甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M “从甲组中选出1名男生”,事件N “从乙组中选出1名女生”答案:C分析:利用对立事件和相互独立事件的概念求解.解:对于选项A ,事件M ={2,4,6},事件N ={3,6},事件MN ={6},基本事件空间Ω={1,2,3,4,5,6},所以P (M )=36=12,P (N )=26=13,P (MN )=16=12×13,即P (MN )=P (N )P (M ),因此事件M 与事件N 是相互独立事件;对于选项B ,袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M “第一次摸到白球”,事件N “第二次摸到白球”, 则事件M 发生与否与N 无关,同时,事件N 发生与否与M 无关,则事件M 与事件N 是相互独立事件;对于选项C ,袋中有3白、2黑,5个大小相同的小球,依次不放回地摸两球, 事件M “第一次摸到白球”,事件N “第二次摸到黑球”, 则事件M 发生与否和事件N 有关,故事件M 和事件N 与不是相互独立事件;对于选项D ,甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M “从甲组中选出1名男生”,事件N “从乙组中选出1名女生”,则事件M 发生与否与N 无关,同时,事件N 发生与否与M 无关,则事件M 与事件N 是相互独立事件;故选:C.11、袋中有红、黄两种颜色的球各一个,这两个球除颜色外完全相同,从中任取一个,有放回地抽取3次,记事件A 表示“3次抽到的球全是红球”,事件B 表示“3次抽到的球颜色全相同”,事件C 表示“3次抽到的球颜色不全相同”,则( )A .事件A 与事件B 互斥B .事件B 与事件C 不对立C .P (A )=78D .P (A ∪C )=34答案:C分析:根据题意,结合互斥事件,对立事件概念以及概率公式依次讨论各选项即可得答案.解:对于A ,因为3次抽到的球全是红球为3次抽到的球颜色全相同的一种情况,所以事件A 与事件B 不互斥,故A 错误;对于B ,事件B 与事件C 不可能同时发生,但一定有一个会发生,所以事件B 与事件C 互为对立事件,故B 错误;对于C ,因为P (A )=18,所以P (A )=1−P (A )=78,故C 正确; 对于D ,因为事件A 与事件C 互斥,P (B )=28=14,所以P (C )=1−P (B )=34,所以P (A ∪C )=P (A )+P (C )=18+34=78,故D 错误. 故选:C12、某人将一枚硬币连抛20次,正面朝上的情况出现了12次.若用A 表示事件“正面向上”,则A 的( )A .频率为35B .概率为35C .频率为12D .概率接近35 答案:A分析:根据频率和概率的知识确定正确选项.依题意可知,事件A 的频率为1220=35,概率为12.所以A 选项正确,BCD 选项错误.故选:A填空题13、从1,2,3,4,5中随机取三个不同的数,则其和为奇数这一事件包含的样本点个数为___________. 答案:4分析:直接列举基本事件即可.从1,2,3,4,5中随机取三个不同的数有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种情况,其中(1,2,4),(1,3,5),(2,3,4),(2,4,5)中三个数字之和为奇数,共有4种.所以答案是:4.14、某工厂生产了一批节能灯泡,这批产品中按质量分为一等品,二等品,三等品.从这些产品中随机抽取一件产品测试,已知抽到一等品或二等品的概率为0.86,抽到二等品或三等品的概率为0.35,则抽到二等品的概率为___________.答案:0.21##21100分析:设抽到一等品,二等品,三等品的事件分别为A,B,C,利用互斥事件加法列出方程组即可求解.设抽到一等品,二等品,三等品分别为事件A,B,C则{P(A)+P(B)=0.86 P(B)+P(C)=0.35P(A)+P(B)+P(C)=1,则P(B)=0.21所以答案是:0.2115、A,B,C表示3种开关并联,若在某段时间内它们正常工作的概率分别0.9,0.8,0.7,那么此系统的可靠性为______________.答案:0.994解析:根据并联线路的特征,只有三个开关同时发生故障,系统才不正常,可以考虑对立事件求解.某段时间内三个开关全部坏掉的概率为(1−0.9)×(1−0.8)×(1−0.7)=0.006,所以系统正常工作的概率为1−0.006=0.994,所以此系统的可靠性为0.994.所以答案是:0.994.小提示:本题主要考查对立事件和独立事件的概率求解,正面考虑情况较多时,一般考虑对立事件来转化,侧重考查数学运算的核心素养.16、抛掷一枚均匀的骰子两次,得到的数字依次记作a、b,则实数a是方程2x−b=0的解的概率为_______.答案:112分析:利用列举法计数,然后根据古典概型求得结果.得到数字a,b,组成有序数对(a,b),其中,a,b∈{1,2,3,4,5,6},列举可得对应(a,b)共有36种不同的情况,每种情况都是等可能的,实数a是方程2x−b=0的解只有(2,1),(4,2),(6,3)三种情况,共其概率为336=112.所以答案是:11217、一台设备由三个部件构成,假设在一天的运转中,部件1,2,3需要调整的概率分别为0.1,0.2,0.3,各部件的状态相互独立,则设备在一天的运转中,至少有1个部件需要调整的概率为________.答案:0.496分析:先求没有1个部件需要调整的概率,再用1减即可.设A,B,C分别为部件1,2,3需要调整的事件,则至少有1个部件需要调整的概率为P=1−P(A)⋅P(B̅)⋅P(C)=1−0.504=0.496所以答案是:0.496解答题18、在人群流量较大的步行街,有一中年人吆喝“送钱咯,送钱咯”,只见他手拿一黑色布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完全相同),旁边立着一块小黑板写着摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(1)摸出的3个球为2个黄球1个白球的概率是多少?(2)假定一天中有500人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?答案:(1)920(2)6000元分析:(1)利用古典概型的概率公式求解;(2)先求得摸得同一颜色的概率,从而估计500人次中摸得同一颜色和非同一颜色的次数求解;(1)解:把3只黄色乒乓球标记为A、B、C,3只白色的乒乓球标记为1、2、3,从6个球中随机摸出3个的基本事件为:ABC、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20个,设事件F={摸出的3个球为2个黄球1个白球},事件F包含的基本事件有9个,则P(F)=920(2)设事件G ={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},则P (G )=220=110,假定一天中有500人次摸奖,由摸出的3个球为同一颜色的概率可估计事件G 发生有50次,不发生450次.则一天可赚450×1-50×5=200,每月可赚6000元.19、某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13s 内(称为合格)的概率分别为25,34,13.若对这三名短跑运动员的100跑的成绩进行一次检测,则求: (Ⅰ)三人都合格的概率;(Ⅱ)三人都不合格的概率;(Ⅲ)出现几人合格的概率最大.答案:(Ⅰ)110;(Ⅱ)110;(Ⅲ)1人.分析:记甲、乙、丙三人100米跑成绩合格分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P(A)=25,P(B)=34,P(C)=13,从而根据不同事件的概率求法求得各小题. 记甲、乙、丙三人100米跑成绩合格分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P(A)=25,P(B)=34,P(C)=13设恰有k 人合格的概率为P k (k =0,1,2,3).(Ⅰ)三人都合格的概率:P 3=P(ABC)=P(A)⋅P(B)⋅P(C)=25×34×13=110(Ⅱ)三人都不合格的概率:P 0=P(A B ̅C )=P(A )⋅P(B ̅)⋅P(C )=35×14×23=110. (Ⅲ)恰有两人合格的概率:P 2=P(ABC )+P(AB ̅C)+P(A BC)=25×34×23+25×14×13+35×34×13=2360. 恰有一人合格的概率:P 1=1−P 0−P 2−P 3=1−110−2360−110=2560=512.因为512>2360>110,所以出现1人合格的概率最大.20、垃圾分类(Garbage classification ),一般是指按一定规定或标准将垃圾分类储存、投放和搬运,从而转变成公共资源的一系列活动的总称.垃圾分类具有社会、经济、生态等多方面的效益.小明和小亮组成“明亮队”参加垃圾分类有奖答题活动,每轮活动由小明和小亮各答一个题,已知小明每轮答对的概率为p ,小亮每轮答对的概率为23,且在每轮答题中小明和小亮答对与否互不影响,各轮结果也互不影响.已知一轮活动中,“明亮队”至少答对1道题概率为1112. (1)求p 的值;(2)求“明亮队”在两轮活动中答对3道题的概率.答案:(1)p =34(2)512 分析:(1)设C =“一轮活动中,“明亮队”至少答对的1道题”,利用对立事件两人都没有答对可求解.(2)设A i =“两轮活动中小明答对了1道题”,B i =“两轮活动中小亮答对了1道题”,i =0,1,2,分别求出其概率,设E =“明亮队”在两轮活动中答对3道题”,则E =A 1B 2+A 2B 1从而可得答案.(1)设A = “一轮活动中小明答对一题”,B =“一轮活动中小亮答对一题”,则P(A)=p ,P(B)=23. 设C =“一轮活动中,“明亮队”至少答对的1道题”,则C =AB̅̅̅̅,由于每轮答题中小明和小亮答对与否不影响, 所以A 与B 相互独立,从而A 与B̅相互独立, 所以P(C )=P(AB ̅̅̅̅)=P(A )P(B ̅)=(1−p)×13=1−P(C)=112, 所以p =34(2)设A i =“两轮活动中小明答对了1道题”,B i =“两轮活动中小亮答对了1道题”,i =0,1,2.由题意得,P(A1)=14×34+34×14=38,P(A2)=34×34=916P(B1)=23×13+13×23=49,P(B2)=23×23=49设E=“明亮队”在两轮活动中答对3道题”,则E=A1B2+A2B1.由于A i和B i相互独立,则A1B2与A2B1互斥,所以P(E)=P(A1B2)+P(A2B1)=P(A1)P(B2)+P(A2)P(B1)=38×49+916×49=512.所以,“明亮队”在两轮活动中答对3道题的概率为512.。

高中数学概率与统计中的常见问题与解题技巧总结

高中数学概率与统计中的常见问题与解题技巧总结

高中数学概率与统计中的常见问题与解题技巧总结概率与统计是高中数学中重要的一部分,它涉及到我们日常生活中许多实际问题的分析与解决。

本文将总结高中数学概率与统计中的常见问题,并提供解题技巧,帮助学生更好地理解和应用这一知识点。

一、概率与统计中的常见问题1. 抽样问题抽样是统计中常用的一种方法,用于研究大量事物中的一部分。

在实际问题中,有时我们需要从一个样本中了解整体的情况。

抽样问题涉及如何选择样本以及如何通过样本推断总体的特征等。

2. 事件与概率在概率问题中,我们常常需要计算事件发生的概率。

事件是指对某个随机试验的结果的描述,而概率则是该事件发生的可能性大小。

常见的问题有计算单个事件的概率、计算多个事件的联合概率、计算事件的互斥与独立等。

3. 随机变量与概率分布随机变量是指取值不确定的变量,概率分布则描述了这些变量可能取得各个值的概率情况。

在概率与统计中,我们通过研究随机变量的概率分布,来了解其特征和规律。

常见问题有计算随机变量的期望和方差、找到随机变量的概率分布等。

4. 样本空间与事件样本空间是指一个随机试验中所有可能结果的集合,事件是对样本空间中的某些结果的描述。

在概率问题中,我们常常需要确定样本空间和事件,并通过它们来计算概率。

常见问题有确定样本空间的大小、确定事件发生的概率等。

二、解题技巧1. 画图辅助分析在解决概率与统计问题时,画图是一种常用的辅助分析工具。

通过画图,可以更直观地理解问题,并找到解题的思路。

比如,在计算事件的概率时,可以通过画出样本空间和事件的关系图来计算。

2. 分类讨论许多概率与统计问题是复杂的,需要进行分类讨论,才能找到解题的方法。

将问题进行分解,将复杂的情况分成几种简单情况,然后逐一解决。

通过分类讨论,可以将问题变得更简单,容易理解和解决。

3. 利用性质和公式在解概率与统计问题时,我们常常可以利用一些性质和公式来简化计算或推导过程。

比如,利用事件的互斥性和独立性,可以简化计算多个事件的联合概率;利用随机变量的线性性质,可以计算期望和方差等。

高中数学大题规范解答-全得分系列之(十)概率与统计的综合问题答题模板

高中数学大题规范解答-全得分系列之(十)概率与统计的综合问题答题模板

概率与统计是高中数学的重要学习内容,在高考试卷中,每年都有所涉及,以解答题形式出现的试题常常设计成包含概率计算,统计图表的识别等知识为主的综合题,以考生比较熟悉的实际应用问题为载体,注重考查基础知识和基本方法;以排列组合和概率统计等基础知识为工具,考查对概率事件的识别及概率计算.“大题规范解答——得全分”系列之(十)概率与统计的综合问题答题模板[典例](2012辽宁高考改编·满分12分)电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料判断是否有95%的把握认为“体育迷”与性别有关?(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),[教你快速规范审题]1.审条件,挖解题信息 观察条件―→−−−−−−→借助直方可确定图非体育迷及体育迷人数2.审结论,明解题方向观察所求结论―→完成2×2列联表并判断“体育迷”与性别的相关性 −−−→需要确定a ,b ,c ,d 及K 2的值3.建联系,找解题突破口由直方图及条件确定体育迷与非体育迷人数―→完成列联表―→计算K 2可判断结论1.审条件,挖解题信息观察条件―→确定“超级体育迷”标准且有2名女性“超级体育迷” −−−−−−→由率分布直方频图 确定“超级体育迷”的人数2.审结论,明解题方向观察所求结论―→从“超级体育迷”中任取2人求至少有1名女性观众的概率 −−−−→分分析类1名女性观众或两名女性观众3.建联系,找解题突破口由频率分布直方图确定“超级体育迷”的人数−−−−−→列法列出举举所有基本事件并计数为n 和至少有1名女性的基本事件,计数为m mP n−−−−→代入=求概率[教你准确规范解题](1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而完成2×2列联表如下:(3分)将2×2列联表中的数据代入公式计算,得K 2=100×(30×10-45×15)275×25×45×55=10033≈3.030.因为3.030<3.841,所以我们没有95%的把握认为“体育迷”与性别有关.(6分)(2)由频率分布直方图可知,“超级体育迷”为5人,从而一切可能结果所组成的基本事件为(a 1,a 2),(a 1,a 3),(a 2,a 3),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2),其中a i 表示男性,i =1,2,3,b j 表示女性,j =1,2.由10个基本事件组成,而且这些基本事件的出现是等可能的.(9分)用A 表示“任选2人中,至少有1人是女性”这一事件,则A ={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)},(11分)事件A 由7个基本事件组成,因而P (A )=710.(12分)[常见失分探因]忽视直方图纵轴表示为频率组距导致每组人数计算失误.K 2的计算不准确、导致结果判断出错.1.“超级体育迷”人数计算错误导致失误.2.由5人中任取2人列举出所有可能结果时重复或遗漏某一情况导致失误.————————————[教你一个万能模板]—————————————————―→―→―→―→1.(2012·佛山模拟)已知某车间加工零件的个数x 与所花费时间y (h)之间的线性回归方程为y ^=0.01x +0.5,则加工600个零件大约需要的时间为( )A .6.5 hB .5.5 hC .3.5 hD .0.3 h解析:选A 将600代入线性回归方程y ^=0.01x +0.5中得需要的时间为6.5 h. 2.(2013·衡阳联考)已知x 与y 之间的一组数据:已求得关于y 与x 的线性回归方程y ^=2.1x +0.85,则m 的值为( ) A .1 B .0.85 C .0.7D .0.5解析:选D 回归直线必过样本中心点(1.5,y ),故y =4,m +3+5.5+7=16,得m =0.5.3.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:已知在全部105人中随机抽取1人,成绩优秀的概率为27,则下列说法正确的是( )A .列联表中c 的值为30,b 的值为35B .列联表中c 的值为15,b 的值为50C .根据列联表中的数据,若按95%的可靠性要求,能认为“成绩与班级有关系”D .根据列联表中的数据,若按95%的可靠性要求,不能认为“成绩与班级有关系” 解析:选C 由题意知,成绩优秀的学生数是30,成绩非优秀的学生数是75,所以c =20,b =45,选项A 、B 错误.根据列联表中的数据,得到K 2=105×(10×30-20×45)255×50×30×75≈6.109>3.841,因此有95%的把握认为“成绩与班级有关系”.4.已知x 、y 的取值如下表:从所得的散点图分析,y 与x 线性相关,且y =0.95x +a ,则a ^=( ) A .2.5 B .2.6 C .2.7D .2.8解析:选B 因为回归方程必过样本点的中心(x ,y ),又x =2,y =4.5,则将(2,4.5)代入y ^=0.95x +a ^可得a ^=2.6.5.(2012·湖南高考)设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不.正确的是( ) A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg解析:选D 由于回归直线的斜率为正值,故y 与x 具有正的线性相关关系,选项A 中的结论正确;回归直线过样本点的中心,选项B 中的结论正确;根据回归直线斜率的意义易知选项C 中的结论正确;由于回归分析得出的是估计值,故选项D 中的结论不正确.6.(2013·合肥检测)由数据(x 1,y 1),(x 2,y 2),…,(x 10,y 10)求得线性回归方程y ^=b ^x +a ^,则“(x 0,y 0)满足线性回归方程y ^=b ^x +a ^”是“x 0=x 1+x 2+…+x 1010,y 0=y 1+y 2+…+y 1010”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B x 0,y 0为这10组数据的平均值,又因为回归直线y ^=b ^x +a ^必过样本中心点(x ,y ),因此(x 0,y 0)一定满足线性回归方程,但坐标满足线性回归方程的点不一定是(x ,y ).7.(2012·唐山模拟)考古学家通过始祖鸟化石标本发现:其股骨长度x (cm)与肱骨长度y (cm)的线性回归方程为y ^=1.197x -3.660,由此估计,当股骨长度为50 cm 时,肱骨长度的估计值为________ cm.解析:根据回归方程y ^=1.197x -3.660,将x =50代入,得y =56.19,则肱骨长度的估计值为56.19 cm.答案:56.198.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算K 2的观测值k =27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的.(有关,无关)解析:由观测值k =27.63与临界值比较,我们有99%的把握说打鼾与患心脏病有关. 答案:有关9.(2012·宁夏模拟)某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得线性回归方程y ^=bx +a 中b =-2,预测当气温为-4℃时,用电量的度数约为________.解析:x =10,y =40,回归方程过点(x ,y ), ∴40=-2×10+a . ∴a =60.∴y ^=-2x +60.令x =-4,∴y ^=(-2)×(-4)+60=68. 答案:6810.已知x ,y 的一组数据如下表:(1)从x ,y (2)对于表中数据,甲、乙两同学给出的拟合直线分别为y =13x +1与y =12x +12,试利用“最小平方法(也称最小二乘法)”判断哪条直线拟合程度更好.解:(1)从x ,y 中各取一个数组成数对(x ,y ),共有25对,其中满足x +y ≥10的有(6,4),(6,5),(7,3),(7,4),(7,5),(8,2),(8,3),(8,4),(8,5),共9对.故所求概率P =925.(2)用y =13x +1作为拟合直线时,所得y 值与y 的实际值的差的平方和为S 1=⎝⎛⎭⎫43-12+(2-2)2+(3-3)2+⎝⎛⎭⎫103-42+⎝⎛⎭⎫113-52=73.用y =12x +12作为拟合直线时,所得y 值与y 的实际值的差的平方和为S 2=(1-1)2+(2-2)2+⎝⎛⎭⎫72-32+(4-4)2+⎝⎛⎭⎫92-52=12. ∵S 2<S 1,∴直线y =12x +12的拟合程度更好.11.(2012·东北三省联考)某学生对其亲属30人的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)(1)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯; (2)根据以上数据完成下列2×2的列联表:(3)能否有99%的把握认为其亲属的饮食习惯与年龄有关,并写出简要分析. 解:(1)30位亲属中50岁以上的人多以食蔬菜为主,50岁以下的人多以食肉为主. (2)(2)K 2=30(8-128)12×18×20×10=30×120×12012×18×20×10=10>6.635,有99%的把握认为亲属的饮食习惯与年龄有关.12.某电脑公司有6名产品推销员,其工作年限与年推销金额的数据如下表:(1)(2)求年推销金额y 关于工作年限x 的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额. 解:(1)依题意,画出散点图如图所示,(2)从散点图可以看出,这些点大致在一条直线附近,设所求的线性回归方程为y ^=b ^x +a ^.则b ^=∑x =15(x i -x )(y i -y -)∑x =15 (x i -x )2=1020=0.5,a ^=y -b ^x -=0.4, ∴年推销金额y 关于工作年限x 的线性回归方程为 y ^=0.5x +0.4.(3)由(2)可知,当x =11时,y ^=0.5x +0.4=0.5×11+0.4=5.9(万元).∴可以估计第6名推销员的年推销金额为5.9万元.1.某研究机构对高三学生的记忆力x 和判断力y 进行统计分析,所得数据如下表:则y 对x 的线性回归直线方程为( ) A.y ^=2.3x -0.7 B.y ^=2.3x +0.7 C.y ^=0.7x -2.3D.y ^=0.7x +2.3解析:选C ∵∑i =14x i y i =6×2+8×3+10×5+12×6=158,x =6+8+10+124=9,y =2+3+5+64=4.∴b ^=158-4×9×436+64+100+144-4×81=0.7,a ^=4-0.7×9=-2.3.故线性回归直线方程为y ^=0.7x -2.3.2.(2012·东北三校联考)某校为了研究学生的性别和对待某一活动的态度(支持和不支持两种态度)的关系,运用2×2列联表进行独立性检验,经计算K 2=7.069,则有________的把握认为“学生性别与是否支持该活动有关系”.附:解析:因为7.069与附表中的6.635最接近(且大于6.635),所以得到的统计学结论是:有99%的把握认为“学生性别与是否支持该活动有关系”.答案:99%3.某网站就“民众是否支持加大修建城市地下排水设施的资金投入”进行投票.按照北京暴雨前后两个时间收集有效投票,暴雨后的投票收集了50份,暴雨前的投票也收集了50份,所得统计结果如下表:已知工作人员从所有投票中任取一个,取到“不支持投入”的投票的概率为25.(1)求列联表中的数据x ,y ,A ,B 的值;(2)绘制条形统计图,通过图形判断本次暴雨是否影响到民众对加大修建城市地下排水设施的投入的态度?(3)能够有多大把握认为北京暴雨对民众是否赞成加大对修建城市地下排水设施的投入有关?附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )解:(1)设“从所有投票中抽取一个,取到不支持投入的投票”为事件A , 由已知得P (A )=y +30100=25,所以y =10,B =40,x =40,A =60.(2)由(1)知北京暴雨后支持为4050=45,不支持率为1-45=15,北京暴雨前支持率为2050=25,不支持率为1-25=35.条形统计图如图所示,由图可以看出暴雨影响到民众对加大修建城市地下排水设施的投入的态度.(3)K 2=100(30×40-20×10)250×50×40×60=1000 00050×20×60=503≈16.78>10.828.故至少有99.9%的把握认为北京暴雨对民众是否赞成加大对修建城市地下排水设施的投入有关.1.以下是某地最新搜集到的二手楼房的销售价格y (单位:万元)和房屋面积x (单位:m 2)的一组数据:若销售价格y 和房屋面积x 具有线性相关关系. (1)求销售价格y 和房屋面积x 的回归直线方程;(2)根据(1)的结果估计当房屋面积为150 m 2时的销售价格.解:(1)由题意知,x =80+105+110+115+1355=109,y =18.4+22+21.6+24.8+29.25=23.2.设所求回归直线方程为y ^=bx +a ,则b =∑i =1n(x i -109)(y i -23.2)∑i =1n(x i -109)2=3081 570≈0.196 2, a =y -b x ≈23.2-0.196 2×109=1.814 2,故回归直线方程为y ^=0.196 2x +1.814 2. (2)由(1)知,当x =150时,估计房屋的销售价格为y ^=0.196 2×150+1.814 2=31.244 2(万元).2.(2012·徐州二模)在研究色盲与性别的关系调查中,调查了男性480人,其中有38人患色盲,调查的520名女性中,有6人患色盲.(1)根据以上数据建立一个2×2列联表;(2)若认为“性别与患色盲有关系”,求出错的概率. 解:(1)2×2列联表如下:(2)假设H 0:“性别与患色盲没有关系”,根据(1)中2×2列联表中数据,可求得K 2=1 000×(38×514-6×442)2480×520×44×956≈27.14,又P (K 2≥10.828)=0.001,即H 0成立的概率不超过0.001,故若认为“性别与患色盲有关系”,则出错的概率为0.1%.。

2023年人教版高考数学总复习规范答题系列——统计与概率综合问题

2023年人教版高考数学总复习规范答题系列——统计与概率综合问题

结果正确,不扣分.
③列表,得1分.不列表不得分.
阅卷现场
④准确求解数值,得1分. ⑤写全Y的所有可能取值,得1分,不全不得分.
⑥写出所有的概率值,得3分,求对其中的1个或2个都只得1分,若用分数表示,只要
结果正确,不扣分.
⑦准确求解数值,得1分.
⑧对比写出结果,得1分;只比较数据,不写结果不得分.
1.求离散型随机变量的均值与方差
(2)A 参加比赛获胜的局数 X 的取值有 0,1,2,3.
P(X=0)=13 ,P(X=1)=23 23×122+31×522 =7115 ,
P(X=2)=23
2 ×[3
×C12
1 (2
)2×12
+13
×C12
3 ×5
×25
2]=1117235,ຫໍສະໝຸດ P(X=3)=232 ×{3
×C12
122×12+212
二轮由上轮的胜者进行 BO3,胜者为冠军.已知 A 与 B,C,D 比赛,A 的胜率分别为23 ,
1 2
,35
;B
与 C,D
比赛,B 的胜率分别12
,25
;C 与
D
比赛,C 的胜率为23
.任意两局比
赛之间均相互独立.
(1)在 C 进入第二轮的前提下,求 A 最终获得冠军的概率;
(2)记 A 参加比赛获胜的局数为 X,求 X 的分布列与数学期望.
规范答题提分课
规范答题系列 ——统计与概率综合问题
[典例](12 分)(2021·新高考卷Ⅰ)某学校组织“一带一路”知识竞赛,有 A,B 两类问题.每 位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答 错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答, 无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得 20 分,否 则得 0 分;B 类问题中的每个问题回答正确得 80 分,否则得 0 分. 已知小明能正确回答 A 类问题的概率为 0.8,能正确回答 B 类问题的概率为 0.6,且 能正确回答问题的概率与回答次序无关. (1)若小明先回答 A 类问题,记 X 为小明的累计得分,求 X 的分布列; (2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.

高中数学列举法解概率题格式

高中数学列举法解概率题格式

高中数学列举法解概率题格式篇一:新课标九年级数学《列举法求概率》教学设计25.2 用列举法求概率(第2课时)一、教材分析1、内容分析:《用列举法求概率》是人教版新教材九年级上册第二十五章第二节。

本节课是第2课时的教学,其主要内容是学习用列表法和树形图法求概率。

2、地位与作用:概率与人们的日常生活密切相关,应用十分广泛。

因此,初中教材增加了这部分内容。

了解和掌握一些概率统计的基本知识,是学生初中毕业后参加实际工作的需要,也是高中进一步学习概率统计的基础,在教材中处于非常重要的位置。

3、教学重点:学习运用列表法或树形图法计算事件的概率。

4、教学难点:能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。

二、目标分析依据《数学课程标准》,以教材特点和学生认知水平为出发点,确定以下三方面为本节课的教学目标。

1、知识与技能目标:学习用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策。

2、过程与方法目标:经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率。

渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。

3、情感与态度目标:通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯。

三、过程分析《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。

”为了向学生提供更多从事数学活动的机会,我将本节课的教学过程设定为以下五个环节:图1 教学过程五环节教学过程设计:1.创设情景,发现新知问题:同时抛掷两枚硬币,请写出所有可能的结果。

①学生利用列举法写出所有的结果,教师请学生代表汇报。

②教师提问:同学们在列举所有结果时,很容易重复和遗漏,有没有更好的方法列举随机事件发生的可能性呢?使列举既直观又简洁?③学生讨论,教师引导学生运用列表的方法列举结果。

(课件动画逐一展示表格的建立过程)【设硬币为A,B两枚】【设计意图】利用第1课时的例2同时抛掷两枚硬币出现的正反的所有结果,是为了让学生先运用一般列举的方法列出所有的结果,然后教师引导学生分析在列举的过程中很容易遗漏、重复,列举不一定很方便,为了形象、直观、简洁列举结果,从而自然引出列表法,从而使学生认识到列表法的作用,激发学生的求知欲望。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率与统计是高中数学的重要学习内容,在高考试卷中,每年都有所涉及,以解答题形式出现的试题常常设计成包含概率计算,统计图表的识别等知识为主的综合题,以考生比较熟悉的实际应用问题为载体,注重考查基础知识和基本方法;以排列组合和概率统计等基础知识为工具,考查对概率事件的识别及概率计算.“大题规范解答——得全分”系列之(十)概率与统计的综合问题答题模板[典例](2012辽宁高考改编·满分12分)电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料判断是否有95%的把握认为“体育迷”与性别有关?(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),[教你快速规范审题]1.审条件,挖解题信息 观察条件―→−−−−−−→借助直方可确定图非体育迷及体育迷人数2.审结论,明解题方向观察所求结论―→完成2×2列联表并判断“体育迷”与性别的相关性 −−−→需要确定a ,b ,c ,d 及K 2的值3.建联系,找解题突破口由直方图及条件确定体育迷与非体育迷人数―→完成列联表―→计算K 2可判断结论1.审条件,挖解题信息观察条件―→确定“超级体育迷”标准且有2名女性“超级体育迷” −−−−−−→由率分布直方频图 确定“超级体育迷”的人数2.审结论,明解题方向观察所求结论―→从“超级体育迷”中任取2人求至少有1名女性观众的概率 −−−−→分分析类1名女性观众或两名女性观众3.建联系,找解题突破口由频率分布直方图确定“超级体育迷”的人数−−−−−→列法列出举举所有基本事件并计数为n 和至少有1名女性的基本事件,计数为m mP n−−−−→代入=求概率[教你准确规范解题](1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而完成2×2列联表如下:(3分)将2×2列联表中的数据代入公式计算,得K 2=100×(30×10-45×15)275×25×45×55=10033≈3.030.因为3.030<3.841,所以我们没有95%的把握认为“体育迷”与性别有关.(6分)(2)由频率分布直方图可知,“超级体育迷”为5人,从而一切可能结果所组成的基本事件为(a 1,a 2),(a 1,a 3),(a 2,a 3),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2),其中a i 表示男性,i =1,2,3,b j 表示女性,j =1,2.由10个基本事件组成,而且这些基本事件的出现是等可能的.(9分)用A 表示“任选2人中,至少有1人是女性”这一事件,则A ={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)},(11分)事件A 由7个基本事件组成,因而P (A )=710.(12分)[常见失分探因]忽视直方图纵轴表示为频率组距导致每组人数计算失误.K 2的计算不准确、导致结果判断出错.1.“超级体育迷”人数计算错误导致失误.2.由5人中任取2人列举出所有可能结果时重复或遗漏某一情况导致失误.————————————[教你一个万能模板]—————————————————―→―→―→―→1.(2012·佛山模拟)已知某车间加工零件的个数x 与所花费时间y (h)之间的线性回归方程为y ^=0.01x +0.5,则加工600个零件大约需要的时间为( )A .6.5 hB .5.5 hC .3.5 hD .0.3 h解析:选A 将600代入线性回归方程y ^=0.01x +0.5中得需要的时间为6.5 h. 2.(2013·衡阳联考)已知x 与y 之间的一组数据:已求得关于y 与x 的线性回归方程y ^=2.1x +0.85,则m 的值为( ) A .1 B .0.85 C .0.7D .0.5解析:选D 回归直线必过样本中心点(1.5,y ),故y =4,m +3+5.5+7=16,得m =0.5.3.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:已知在全部105人中随机抽取1人,成绩优秀的概率为27,则下列说法正确的是( )A .列联表中c 的值为30,b 的值为35B .列联表中c 的值为15,b 的值为50C .根据列联表中的数据,若按95%的可靠性要求,能认为“成绩与班级有关系”D .根据列联表中的数据,若按95%的可靠性要求,不能认为“成绩与班级有关系” 解析:选C 由题意知,成绩优秀的学生数是30,成绩非优秀的学生数是75,所以c =20,b =45,选项A 、B 错误.根据列联表中的数据,得到K 2=105×(10×30-20×45)255×50×30×75≈6.109>3.841,因此有95%的把握认为“成绩与班级有关系”.4.已知x 、y 的取值如下表:从所得的散点图分析,y 与x 线性相关,且y =0.95x +a ,则a ^=( ) A .2.5 B .2.6 C .2.7D .2.8解析:选B 因为回归方程必过样本点的中心(x ,y ),又x =2,y =4.5,则将(2,4.5)代入y ^=0.95x +a ^可得a ^=2.6.5.(2012·湖南高考)设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不.正确的是( ) A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg解析:选D 由于回归直线的斜率为正值,故y 与x 具有正的线性相关关系,选项A 中的结论正确;回归直线过样本点的中心,选项B 中的结论正确;根据回归直线斜率的意义易知选项C 中的结论正确;由于回归分析得出的是估计值,故选项D 中的结论不正确.6.(2013·合肥检测)由数据(x 1,y 1),(x 2,y 2),…,(x 10,y 10)求得线性回归方程y ^=b ^x +a ^,则“(x 0,y 0)满足线性回归方程y ^=b ^x +a ^”是“x 0=x 1+x 2+…+x 1010,y 0=y 1+y 2+…+y 1010”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B x 0,y 0为这10组数据的平均值,又因为回归直线y ^=b ^x +a ^必过样本中心点(x ,y ),因此(x 0,y 0)一定满足线性回归方程,但坐标满足线性回归方程的点不一定是(x ,y ).7.(2012·唐山模拟)考古学家通过始祖鸟化石标本发现:其股骨长度x (cm)与肱骨长度y (cm)的线性回归方程为y ^=1.197x -3.660,由此估计,当股骨长度为50 cm 时,肱骨长度的估计值为________ cm.解析:根据回归方程y ^=1.197x -3.660,将x =50代入,得y =56.19,则肱骨长度的估计值为56.19 cm.答案:56.198.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算K 2的观测值k =27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的.(有关,无关)解析:由观测值k =27.63与临界值比较,我们有99%的把握说打鼾与患心脏病有关. 答案:有关9.(2012·宁夏模拟)某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得线性回归方程y ^=bx +a 中b =-2,预测当气温为-4℃时,用电量的度数约为________.解析:x =10,y =40,回归方程过点(x ,y ), ∴40=-2×10+a . ∴a =60.∴y ^=-2x +60.令x =-4,∴y ^=(-2)×(-4)+60=68. 答案:6810.已知x ,y 的一组数据如下表:(1)从x ,y (2)对于表中数据,甲、乙两同学给出的拟合直线分别为y =13x +1与y =12x +12,试利用“最小平方法(也称最小二乘法)”判断哪条直线拟合程度更好.解:(1)从x ,y 中各取一个数组成数对(x ,y ),共有25对,其中满足x +y ≥10的有(6,4),(6,5),(7,3),(7,4),(7,5),(8,2),(8,3),(8,4),(8,5),共9对.故所求概率P =925.(2)用y =13x +1作为拟合直线时,所得y 值与y 的实际值的差的平方和为S 1=⎝⎛⎭⎫43-12+(2-2)2+(3-3)2+⎝⎛⎭⎫103-42+⎝⎛⎭⎫113-52=73.用y =12x +12作为拟合直线时,所得y 值与y 的实际值的差的平方和为S 2=(1-1)2+(2-2)2+⎝⎛⎭⎫72-32+(4-4)2+⎝⎛⎭⎫92-52=12. ∵S 2<S 1,∴直线y =12x +12的拟合程度更好.11.(2012·东北三省联考)某学生对其亲属30人的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)(1)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯; (2)根据以上数据完成下列2×2的列联表:(3)能否有99%的把握认为其亲属的饮食习惯与年龄有关,并写出简要分析. 解:(1)30位亲属中50岁以上的人多以食蔬菜为主,50岁以下的人多以食肉为主. (2)(2)K 2=30(8-128)12×18×20×10=30×120×12012×18×20×10=10>6.635,有99%的把握认为亲属的饮食习惯与年龄有关.12.某电脑公司有6名产品推销员,其工作年限与年推销金额的数据如下表:(1)(2)求年推销金额y 关于工作年限x 的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额. 解:(1)依题意,画出散点图如图所示,(2)从散点图可以看出,这些点大致在一条直线附近,设所求的线性回归方程为y ^=b ^x +a ^.则b ^=∑x =15(x i -x )(y i -y -)∑x =15 (x i -x )2=1020=0.5,a ^=y -b ^x -=0.4, ∴年推销金额y 关于工作年限x 的线性回归方程为 y ^=0.5x +0.4.(3)由(2)可知,当x =11时,y ^=0.5x +0.4=0.5×11+0.4=5.9(万元).∴可以估计第6名推销员的年推销金额为5.9万元.1.某研究机构对高三学生的记忆力x 和判断力y 进行统计分析,所得数据如下表:则y 对x 的线性回归直线方程为( ) A.y ^=2.3x -0.7 B.y ^=2.3x +0.7 C.y ^=0.7x -2.3D.y ^=0.7x +2.3解析:选C ∵∑i =14x i y i =6×2+8×3+10×5+12×6=158,x =6+8+10+124=9,y =2+3+5+64=4.∴b ^=158-4×9×436+64+100+144-4×81=0.7,a ^=4-0.7×9=-2.3.故线性回归直线方程为y ^=0.7x -2.3.2.(2012·东北三校联考)某校为了研究学生的性别和对待某一活动的态度(支持和不支持两种态度)的关系,运用2×2列联表进行独立性检验,经计算K 2=7.069,则有________的把握认为“学生性别与是否支持该活动有关系”.附:解析:因为7.069与附表中的6.635最接近(且大于6.635),所以得到的统计学结论是:有99%的把握认为“学生性别与是否支持该活动有关系”.答案:99%3.某网站就“民众是否支持加大修建城市地下排水设施的资金投入”进行投票.按照北京暴雨前后两个时间收集有效投票,暴雨后的投票收集了50份,暴雨前的投票也收集了50份,所得统计结果如下表:已知工作人员从所有投票中任取一个,取到“不支持投入”的投票的概率为25.(1)求列联表中的数据x ,y ,A ,B 的值;(2)绘制条形统计图,通过图形判断本次暴雨是否影响到民众对加大修建城市地下排水设施的投入的态度?(3)能够有多大把握认为北京暴雨对民众是否赞成加大对修建城市地下排水设施的投入有关?附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )解:(1)设“从所有投票中抽取一个,取到不支持投入的投票”为事件A , 由已知得P (A )=y +30100=25,所以y =10,B =40,x =40,A =60.(2)由(1)知北京暴雨后支持为4050=45,不支持率为1-45=15,北京暴雨前支持率为2050=25,不支持率为1-25=35.条形统计图如图所示,由图可以看出暴雨影响到民众对加大修建城市地下排水设施的投入的态度.(3)K 2=100(30×40-20×10)250×50×40×60=1000 00050×20×60=503≈16.78>10.828.故至少有99.9%的把握认为北京暴雨对民众是否赞成加大对修建城市地下排水设施的投入有关.1.以下是某地最新搜集到的二手楼房的销售价格y (单位:万元)和房屋面积x (单位:m 2)的一组数据:若销售价格y 和房屋面积x 具有线性相关关系. (1)求销售价格y 和房屋面积x 的回归直线方程;(2)根据(1)的结果估计当房屋面积为150 m 2时的销售价格.解:(1)由题意知,x =80+105+110+115+1355=109,y =18.4+22+21.6+24.8+29.25=23.2.设所求回归直线方程为y ^=bx +a ,则b =∑i =1n(x i -109)(y i -23.2)∑i =1n(x i -109)2=3081 570≈0.196 2, a =y -b x ≈23.2-0.196 2×109=1.814 2,故回归直线方程为y ^=0.196 2x +1.814 2. (2)由(1)知,当x =150时,估计房屋的销售价格为y ^=0.196 2×150+1.814 2=31.244 2(万元).2.(2012·徐州二模)在研究色盲与性别的关系调查中,调查了男性480人,其中有38人患色盲,调查的520名女性中,有6人患色盲.(1)根据以上数据建立一个2×2列联表;(2)若认为“性别与患色盲有关系”,求出错的概率. 解:(1)2×2列联表如下:(2)假设H 0:“性别与患色盲没有关系”,根据(1)中2×2列联表中数据,可求得K 2=1 000×(38×514-6×442)2480×520×44×956≈27.14,又P (K 2≥10.828)=0.001,即H 0成立的概率不超过0.001,故若认为“性别与患色盲有关系”,则出错的概率为0.1%.。

相关文档
最新文档