2章_建筑金属材料

合集下载

建筑金属材料

建筑金属材料

建筑金属材料
建筑金属材料是指用于建筑结构和装饰的金属材料,主要包括钢材、铝材、铜
材等。

这些材料具有优良的物理性能和工艺性能,被广泛应用于建筑领域,为建筑物的稳固性和美观性提供了重要支撑。

本文将就建筑金属材料的特点、应用和发展趋势进行探讨。

首先,建筑金属材料具有优良的物理性能。

钢材是建筑中最常用的金属材料之一,其高强度、耐腐蚀、可塑性强等特点使其成为建筑结构中不可或缺的材料。

铝材轻质、耐腐蚀、易加工,常用于建筑外墙、屋面等装饰材料。

铜材具有良好的导热性和导电性,常用于建筑屋面、雨水系统等。

其次,建筑金属材料在建筑领域有着广泛的应用。

在建筑结构中,钢材常用于梁、柱、桁架等承重构件的制造,其高强度和可塑性使得建筑结构更加稳固。

在建筑装饰中,铝材常用于幕墙、天花、窗框等部位,其轻质和色彩丰富的特点为建筑增添了美观的外观。

铜材常用于建筑屋面、雨水系统等,其良好的耐候性和抗腐蚀性使得建筑更加耐久。

此外,建筑金属材料在未来有着广阔的发展前景。

随着建筑技术的不断进步,
对建筑材料的性能要求也越来越高。

建筑金属材料以其优良的物理性能和工艺性能,能够满足现代建筑的需求。

同时,随着建筑节能环保的理念不断深入人心,轻质、耐腐蚀的建筑金属材料将会得到更广泛的应用。

综上所述,建筑金属材料具有优良的物理性能和工艺性能,被广泛应用于建筑
结构和装饰中。

随着建筑技术的不断发展,建筑金属材料将会迎来更广阔的发展前景。

我们有理由相信,在未来的建筑领域,建筑金属材料将会发挥越来越重要的作用,为建筑行业的可持续发展做出更大的贡献。

工程材料力学性能第二章

工程材料力学性能第二章
❖ 6〕不仅适用于脆性也适用于塑性金属材料。
❖ 7〕 缺点 外表切应力大,心部小,变形不均匀。
二、扭转实验 扭转试样:圆柱形式〔d0=10mm,L0=50m或100mm〕 试验方法:对试样施加扭矩T,相对扭转角以Φ表示
弹性范围内外表的切应力和切应变
扭转试验可测定以下主要性能指标: (1) 切变模量G
在弹性范围内,Kt的数值决定于缺口的几何形状和 尺寸 与材料性质无关.
❖ 2.厚板: ❖ εz=0, σz≠0 ❖ 根部:两向拉伸力状态, ❖ 内侧:三向拉伸的立体应力平面应变状态, ❖ σz =ν〔σy+σx〕 ❖ σy>σz >σx
3.缺口效应: 1〕根部应力集中 2〕改变缺口的应力状态,由单向应力状态改变为两
思考题: ❖ 1 缺口效应及其产生原因; ❖ 2 缺口强化; ❖ 3 缺口敏感度。

第六节 硬度
前言 •古时,利用固体互相刻划来区分材料的软硬 •硬度仍用来表示材料的软硬程度。 •硬度值大小取决于材料的性质、成分和显微组织,测
量方法和条件不符合统一标准就不能反映真实硬度。 •目前还没有统一而确切的关于硬度的物理定义。 •硬度测定简便,造成的外表损伤小,根本上属于“无
可利用扭转试验研究或检验工件热处理的外表质量和各 种外表强化工艺的效果。
❖ 4)扭转时试样中的最大正应力与最大切应力在数值 上大体相等,而生产上所使用的大局部金属材料的 正断抗力 大于切断抗力 ,扭转试验是测定这些材 料切断抗力最可靠的方法。
❖ 5〕根据扭转试样的宏观断口特征,区分金属材料 最终断裂方式是正断还是切断。
油孔,台阶,螺纹,爆缝等对材料的性能影响有以下 四个方面: ❖ 1 缺口产生应力集中 ❖ 2 引起三向应力状态,使材料脆化 ❖ 3 由应力集中产生应变集中 ❖ 4 使缺口附近的应变速率增高

第2章 金属材料的组织与性能控制

第2章 金属材料的组织与性能控制
一般要求
1. 同素异构转变。 2. 匀晶相图的分析方法。 3. 合金相图与性能的关系。
思考题
1. 为什么要生产合金?与纯金属相比,合金有哪些优越性? 2. 固溶体中,溶质元素含量增加时,其晶体结构和性能会发生什么变化? 3. 试比较共晶反应和共析反应的异同点。 4. 为什么铸造合金常选用接近共晶成分的合金,而压力加工的合金常选用
ES线:C在A中的固溶线
PQ线:C在F中的固溶线
2.铁碳合金的平衡结晶过程
Fe-C 合金分类
工业纯铁 —— C % ≤ 0.0218 %
钢 —— 0.0218 % < C % ≤ 2.11 % 亚共析钢 < 0.77 % 共析钢 = 0.77 % 过共析钢 > 0.77 %
白口铸铁 —— 2.11 % < C % < 6.69 %
室温组织
F + Fe3CⅢ (微量)
500×
(2)共析钢 ( C % = 0.77 % )结晶过程
P中各相的相对量:
Fe3C % = ( 0.77 – xF ) / ( 6.69 – xF )
≈ 0.77 / 6.69 = 12 %
F % ≈ 1 – 12 % = 88 %
珠光体
强度较高,塑性、韧性和硬度介于 Fe3C 和 F 之间。
Ni 80 100
匀晶合金的结晶过程
L
T,C
T,C
L
1500
1455

L
1400 1300
c
a
L+
匀晶转变 L
1200d
1100 1000 1083
b

L

C匀u 晶合金与纯金属不同,它没有一个恒定的N熔i 点,

第二章建筑装饰材料的基本性质

第二章建筑装饰材料的基本性质
2.50~2.70 2.70~3.0 2.48~2.76 2.50~2.60 1.95~2.40 1.55~1.60 2.8~3.1 2.45~2.55 2.7~2.9
2100~2600
1600~1900 2500~2900 2300~2700 — — 400~800 — 2450~2550 2700~2900
表观密度,又称为干表观密度。
2.1 材料的物理性质
(3)堆积密度
堆积密度是下,单位体积的质量。用下式表 示:(1-3) 式中
' 0
0
'
m v0
'
——堆积密度,kg/m3; ——材料的质量,kg; ——材料的堆积体积,m3。
m ' vo
2.1材料的物理性质
(2)光的透射 光的透射又称为折射,光线在透过材料的前后,在材料表 面处会产生传播方向的转折。材料的透射比越大,表明材料的 透光性越好。如2mm厚的普通平板玻璃的透射比可达到88%。 当材料表面光滑且两表面为平行面时,光线束透过材料只 产生整体转折,不会产生各部分光线间的相对位移(见图11a)。此时,材料一侧景物所散发的光线在到达另一侧时不会 产生畸变,使景象完整地透过材料,这种现象称之为透视。大 多数建筑玻璃属于透视玻璃。当透光性材料内部不均匀、表面 不光滑或两表面不平行时,入射光束在透过材料后就会产生相 对位移(见图1-1b),使材料一侧景物的光线到达另一侧后不 能正确地反映出原景象,这种现象称为透光不透视。在装饰工 程中根据使用功能的不同要求也经常采用透光不透视材料,如 磨砂玻璃、压花玻璃等。
2.1材料的物理性质
(a)
(b) 图1-1 表面状态不同材料的透光折射性质
(a) 材料的透视原理;
(b) 材料的透光不透视原理

第二章 金属材料的塑性变形与性能

第二章 金属材料的塑性变形与性能

9
根据载荷作用性质不同:
a)拉深载荷 --拉力 b)压缩载荷 —压力 c)弯曲载荷 --弯力 d)剪切载荷--剪切力 e)扭转载荷--扭转力
10
2.内力 (1)定义 工件或材料在受到外部载荷作用时,为使其不变形,在 材料内部产生的一种与外力相对抗的力。 (2)大小 内力大小与外力相等。 (3)注意 内力和外力不同于作用力和反作用力。
2
§1.金属材料的损坏与塑性变形
1.常见损坏形式
a)变形
零件在外力作用下形状和尺寸所发生的变化。 (包括:弹性变形和塑性的现象。
c)磨损
因摩擦使得零件形状、尺寸和表面质量发生变化的现象。
3
2.常见塑性变形形式 1)轧制 (板材、线材、棒材、型材、管材)
28
2)应用范围 主要用于:测定铸铁、有色金属及退火、正火、 调质处理后的各种软钢或硬度较低的 材料。 3)优、缺点 优点:压痕直径较大,能比较正确反映材料的平均 性能;适合对毛坯及半成品测定。 缺点:操作时间比较长,不适宜测定硬度高的材料; 压痕较大不适合对成品及薄壁零件的测定。
29
2.洛氏硬度(HR)——生产上应用较广泛 1)定义 采用金刚石压头直接测量压痕深度来表示材料的硬度值。 2)表示方法
11
3.应力 (1)定义 单位面积上所受到的力。 (2)计算公式 σ= F/ S( MPa/mm2 ) 式中: σ——应力; F ——外力; S ——横截面面积。
12
二、金属的变形 金属在外力作用下的变形三阶段: 弹性变形 弹-塑性变形 断裂。 1.特点 弹性变形: 金属弹性变形后其组织和性能不发生变化。 塑性变形: 金属经塑性变形后其组织和性能将发生变化。 2.变形原理 金属在外力作用下,发生塑性变形是由于晶体内部 缺陷—位错运动的结果,宏观表现为外形和尺寸变化。

第二章 金属材料的凝固与固态相变

第二章 金属材料的凝固与固态相变
1.合金的使用性能与相图的关系 溶质的溶入量越多,晶格畸变越大,则 合金的强度、硬度越高,电阻越大。
两相组织合金的力学和物理性能与成分 呈直线关系变化。
2 .合金的工艺性能与相图的关系 铸造性能:纯组元和共晶成分的合金的流动 性最好,缩孔集中,铸造性能好。 锻造性能:单相合金的锻造性能好。单相组 织时变形抗力小,变形均匀,因而变形能力 大。双相组织的合金变形能力差些,特别是 组织中存在有较多的化合物相时。
固溶体结晶时成分是变化的,如果冷却较快,原子扩散不能充 分进行,则形成成分不均匀的固溶体。
2 .共晶相图
(1)相图分析 在共晶合金相图中,acb为液相线,adceb为固相线,合金系有 三种相,相图中有三个单相区(L、α 、β );三个两相区(L+α 、 L+β 、α +β );一条三相(L+α +β )共存线(水平线dce)。 dce为共晶线( c点为共晶点)。 Lc → α d+ β
2.2.3 铸锭(件)的凝固
把金属熔化注入铸模,冷却后获得一定形状的铸件的工艺叫做 铸造。 1.铸锭(件)结晶组织 最典型的铸造结构,整 个铸锭明显地分为三个各具 特征的晶区。 ⑴细等轴晶区 在铸锭的 表层形成的一层厚度不大、 晶粒很细的区域。
⑵柱状晶区
⑶粗等轴晶区
2.3 铁碳合金 2.3.1 Fe-Fe3C相图
2.3.2 铁碳合金在平衡状态下的相变
根据Fe—Fe3C相图,铁碳合金可分为三类: 1)工业纯铁[wc ≤0.0218%] 2)钢[0.0218%< wc ≤2.11%
3)白口铸铁[2.11%< wc <6.69%]
工业纯铁的室温平衡组织为铁素体(F),呈白色状。由于其强 度低、硬度低、不宜用作结构材料。

建筑材料-钢材-钢材基本性能

建筑材料-钢材-钢材基本性能

3)疲劳破坏是在低应力状态下突然发
生的,所以危害极大,往往造成灾难性 的事故。
钢材疲劳曲线示意图
4)疲劳影响因素
疲劳受内部组织和表面质量双重那个影 响。
2.2.1.4 钢材的硬度
1)定义:
硬度是指钢材抵抗硬物体压入钢材的表面的能 力。是材料弹性、塑性、变形强化率、强度和 韧性等参数的综合指标。
布氏法
2.2.1.2 冲击韧性
4)影响冲击韧性的因素
硫、磷含量高,存在化学偏析,
含非金属夹杂物,焊接形成裂纹, 温度降低等,均会降低冲击韧性。
内部组织缺陷、冶金和轧制焊接
质量等关系大。
失效敏感性越大钢材,时效后冲
击韧性和强度降低迅速。
对于承受冲击荷载和振动荷载部
位的钢材,必须考虑冲击韧性。
冲击荷载 钢板 脆断 塑性变形
土木工程材料 第二章 建筑钢材
学习目标
通过本章的学习: ( 1)掌握钢材力学 性能的几个指标参 数:抗拉、冷弯、 冲击韧性、耐疲劳 和硬度等;
本章内容
2.1 建筑钢材基本知识 2.1.1 建筑钢材概述
2.1.2 钢的冶炼加工及其对钢
材质量的影响 2.1.3 钢的分类 2.1.4 钢材的加工 2.2 建筑钢材的主要技术性能 2.2.1 力学性能 2.2.2 工艺性能
长度与原来长度的百分比,伸长率 按试棒长度的不同分为:试棒的标 距等于5倍直径,短试棒求得的伸长 率,代号为 δ5 ;试棒的标距等于 10 倍直径,长试棒求得的伸长率,代 号为δ10。伸长率是钢材发生断裂时 所能承受的永久变形的能力。

l1 l0 1000 0 l0
δ——试件的伸长率,%; l0——拉伸前的标距长度; l1——拉断后的标距长度; l0——拉伸前的标距长度; l1——拉断后的标距长度。

第二章金属材料力学性能基本知识及钢材的脆化

第二章金属材料力学性能基本知识及钢材的脆化

金属材料力学性能基本知识及钢材的脆化金属材料是现代工业、农业、国防以及科学技术各个领域应用最广泛的工程材料,这不仅是由于其来源丰富,生产工艺简单、成熟,而且还因为它具有优良的性能。

通常所指的金属材料性能包括以下两个方面:1.使用性能即为了保证机械零件、设备、结构件等能正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等),化学性能(耐蚀性、热稳定性等)。

使用性能决定了材料的应用范围,使用安全可靠性和使用寿命。

2 工艺性能即材料在被制成机械零件、设备、结构件的过程中适应各种冷、热加工的性能,例如锻造,焊接,热处理,压力加工,切削加工等方面的性能。

工艺性能对制造成本、生成效率、产品质量有重要影响。

1.1材料力学基本知识金属材料在加工和使用过程中都要承受不同形式外力的作用,当外力达到或超过某一限度时,材料就会发生变形以至断裂。

材料在外力作用下所表现的一些性能称为材料的力学性能。

锅炉压力容器材料的力学性能指标主要有强度、硬度、塑性、韧性等这些性能指标可以通过力学性能试验测定。

1.1.1 强度金属的强度是指金属抵抗永久变形和断裂的能力。

材料强度指标可以通过拉伸试验测出。

把一定尺寸和形状的金属试样(图1~2)装夹在试验机上,然后对试样逐渐施加拉伸载荷,直至把试样拉断为止。

根据试样在拉伸过程中承受的载荷和产生的变形量之间的关系,可绘出该金属的拉伸曲线(图1—3)。

在拉伸曲线上可以得到该材料强度性能的一些数据。

图1—3所示的曲线,其纵坐标是载荷P(也可换算为应力d),横坐标是伸长量AL(也可换算为应变e)。

所以曲线称为P—AL曲线或一一s曲线。

图中曲线A是低碳钢的拉伸曲线,分析曲线A,可以将拉伸过程分为四个阶段:1.弹性阶段即曲线的o-e段,在此段若加载不超过e点的应力值,卸载后试件的变形可全部消失,故e点的应力值为材料只产生弹性变形时应力的最高限,称为弹性极限,曲线的o~e’段为直线,在此段内应力与应变成正比,即材料符合虎克定律,该段称为线弹性阶段。

第2章金属材料的基础知识

第2章金属材料的基础知识
合金系是指由两个或两个以上组元按照不同比例配制成一系列不 同成分的合金。
相是指合金中具有同一的聚集状态、同一的结构和性质的均匀组 成部分。按照相的形态划分,分为液相和固相。固态合金中的相 结构,分为固溶体和金属化合物。
组织是指用肉眼或借助显微镜观察到材料具有独特微观形貌特征 的部分。组织反映材料的相组成、相形态、大小和分布状况,它 是决定材料最终性能的关键。
金属材料的基本知识
金属材料在不同的使用场合下,所要求的力 学性能、物理性能、化学性能以及工艺性能各 不相同。虽然都是金属材料,不同成分和不同 状态下的性能差异也非常大。造成金属材料性 能差异的主要原因是由于金属材料内部结构的 不同。
2.1 金属材料的基础知识
按照物质原子在三维空间排列方式的不同, 材料可分为晶体材料与非晶体材料两大类。
3)面缺陷
面缺陷是指晶体中有一维空间方向上尺寸 很小,另外两维方向上尺寸较大的缺陷。这类 缺陷主要是指晶界和亚晶界。
晶界和亚晶界处区域内的原子排列不整齐, 偏离其平衡位置,产生晶格畸变。
面缺陷对金属的塑性变形起着阻碍的作用, 强度、硬度较晶内高。因此金属内部的晶粒越 细小,晶界就越多,强度和硬度就越高。
(2)金属的实际晶体结构
在理想状态下,金属的晶体结构是原子排 列的位向或方式完全一致的晶格,这种晶体称 为单晶体。
单晶体需要通过特殊的方法才能获得,例 如生产半导体元件的单晶硅、单晶锗等。
单晶体在不同方向上具有不同性能的现象 称为各向异性。
多晶体:由许多位向不同的晶粒构成 的晶体。
晶粒:多晶体是由许多微小的单晶体 构成的,这单晶体称为晶粒。
液体
2.1.1 纯金属的晶体结构与结晶
纯金属是指仅由同一种金属元素组成的金属。 汽车中的各种导电体、传热器等大多由纯铜、 纯铝等纯金属材料制成。纯金属是典型的晶体材料。

第2章_金属功能材料-4-非晶态合金

第2章_金属功能材料-4-非晶态合金

基本工序
原料粉末的制备。机械法和物理化学法。应用最为广泛的是还原法、
雾化法和电解法。 粉末成型为所需形状的坯块。加压成型和无压成型。 坯块的烧结。是粉末冶金工艺中的关键性工序。单元系烧结和多元系 烧结。对于单元系和多元系的固相烧结,烧结温度比所用的金属及合
金的熔点低;对于多元系的液相烧结,烧结温度一般比其中难熔成分
类金属元素(或弱金属元素)与非金属元素的组合。形成诸如氧化物、 硫化物、硒化物、氟化物和氯化物等非晶态物质; 准金属元素和金属元素的组合。如Pd-Si、Co-P、Fe-C等; 金属元素和金属元素的组合。如Gd-Co、Nb-Ni、Zr-Pd、Ti-Be等。
6. 非晶态固体的制备方法
(1)一个机理
RC Tm Tn tn
(2)
式中Tm为熔点,Tn、tn分别为C曲线鼻尖所对应的温度和时间。
(3)结构学规律 从化学键类型看,离子键及金属键呈无饱和性、具有密堆积高配
位数,均不易形成非晶态;纯粹的共价键很少形成非晶态。只有处于
离子-共价过渡的混合键型物质,既有离子键容易变更键角易造成无 对称变形的趋势、又有共价键不易更改键长和键角的趋势,故此类物 质最易形成非晶态。大致可以分为3类:
2)液体急冷法 目前制备非晶态金属和合金的主要方法之一,已进入工业化生产 阶段。 实施原理 将液体以大于105℃/s的速度急冷,使液体中紊乱的原子排列保留
下来,成为固体,即得非晶。
要求条件 ① 液体必须与基板接触良好 ② 液体层必须相当薄 ③ 液体与基板从接触开始至凝固终止的时间尽量短
④ 基板导热性好
(2)电子信息领域 为了减小体积,计算机开关电源的工作频率已经从20kHz提高到 500kHz; 为了实现CPU的低电压大电流供电方式,采用磁放大器

土木工程概论第02章土木工程材料

土木工程概论第02章土木工程材料
用途:配制石灰砂浆或混合砂浆,作为砌筑材料。
二、石膏
概念:石膏的主要成分是硫酸钙。
特点:建筑石膏中含有许多自由水蒸发后留下的孔隙,故其表面密度小
、绝热性好、吸声性强,但这也使其具有强度较低、吸水率较大、抗渗性和 抗冻性差等缺点。
用途:建筑石膏除可用作室内抹灰、粉刷、水泥原料中的缓凝剂和激发
状,涂布后能够在结构物表面形成无接缝的完整防水膜的材料。 防水涂料适合于各种复杂、不规则部位的防水,可以采用冷施工 ,从而大大改善了劳动条件,施工方便、快捷。
二、 保温隔热材料 概念:保温隔热材料也称为绝热材料,主要用于建筑工程的
墙壁、屋面保温、热力管道保温、制冷工程隔热等。
建筑保温隔热材料按材质可分为:无机保温隔热材料和有机保
普通硅酸盐水泥:
由硅酸盐水泥熟料、6%~20%混合材料、适量石膏磨细而制成的水 硬性胶凝材料。其矿物组成成分和基本性能与硅酸盐水泥接近,是土 木工程中应用最广泛的水泥品种。
其它品种水泥:
有特殊需要的水泥,如道路硅酸盐水泥、中低热水泥、快硬硅酸 盐水泥、白色硅酸盐水泥与彩色硅酸盐水泥等。
四、沥青及其它胶凝材料
分类:按照生产工艺不同可分为烧结砖和非烧结砖。
烧结砖是以粘土、页岩、煤矸石、粉煤灰为主要原料,经过 焙烧而成的长方体块体。非烧结砖不需要焙烧,一般是以硅质材 料(如粉砂、粉煤灰)和钙质材料(如石灰、石膏)为主要原料 ,加入少量水泥或石灰作固结剂,再加入微量外加剂和适量水混 合搅拌压制成型,经自然养护或蒸养一定时间即成的块体材料。
2.5 木材
概念:
木材具有轻质高强、弹性和韧性好、耐冲击、导热性低、装 饰性强等优点,是土木工程的常用材料。
分类:木材加工后的材种可分为原木、原条、板方材、

建筑材料总结

建筑材料总结

篇一:建筑材料总结第一章建筑材料概论1. 按化学成分分类:(1)有机材料:植物、沥青、合成高分子(2)无机材料:金属—铁、钢、铝、铜非金属—烧土制品、胶凝材料、混凝土及硅酸盐制品(3)有机-无机复合材料:钢筋混凝土2.建筑材料的技术标准国家标准(gb)、行业标准、地方标准、企业标准第二章建筑材料的基本性质一、物理性质:(与质量有关、与水有关、与热有关)(一)与质量有关的性质密度、表观密度、堆积密度、密实度与孔隙率、填充率与空隙率(1)密度:材料在绝对密实状态下,单位体积所具有的质量。

材料的密度只与构成材料的固体物质的化学成分和分子结构有关,所以对于同种物质构成的材料,密度为恒定值。

(2)表观密度:材料在自然状态下单位体积的质量。

常将包括所有孔隙在内时的密度称为表观密度,也称体积密度。

只包括闭口孔在内时的密度称为视密度。

大多数材料的体积中包含有内部孔隙,其孔隙的多少,孔隙中是否含有水及含水的多少,均可能影响其总质量,因此,材料的表观密度除了与其微观结构和组成有关外,还与其内部构成状态及含水状态有关。

(3)堆积密度:散粒材料(粉状、颗粒状)在堆积状态下单位体积的质量。

(4)密实度:材料体积内被固体物质所填充的程度。

(5)孔隙率:材料中孔隙体积占总体积的比例。

孔隙率反映材料内部孔隙的多少,直接影响材料的多种性质。

孔隙率越大,则材料的表观密度、强度越小,耐磨性、抗冻性、抗渗性、耐腐蚀性、耐久性越差,而吸水性、吸声性、保温性越强。

(6)填充率:散粒材料在某种堆积体积内被其颗粒填充的程度。

(7)空隙率:散粒材料在某种堆积体积内,颗粒之间的空隙体积所占的体积。

(二)与水有关的性质亲水性与憎水性、吸水性、吸湿性、耐水性、抗渗性、抗冻性(1)亲水性——材料在空气中与水接触时,容易被水润湿的性质。

θ≤90°憎水性——材料不易被水润湿的性质。

θ> 90 °(2)吸水性定义:材料在水中吸收水分的性质称为吸水性。

建筑材料常见问题解答第2章基本性质

建筑材料常见问题解答第2章基本性质

建筑材料常见问题解答第2章建筑材料的基本性质1.一般的讲,建筑材料的基本性质可归纳为哪几类?答:一般的讲,建筑材料的基本性质可归纳为以下几类:物理性质:包括材料的密度、孔隙状态、与水有关的性质、热工性能等。

化学性质:包括材料的的抗腐蚀性、化学稳定性等,因材料的化学性质相异较大,故该部分内容在以后各章中分别叙述。

力学性质:材料的力学性质应包括在物理性质中,但因其对建筑物的安全使用有重要意义,故对其单独研究,包括材料的强度、变形、脆性和韧性、硬度和耐磨性等。

耐久性:材料的耐久性是一项综合性质,虽很难对其量化描述,但对建筑物的使用至关重要。

2.什么是材料的化学组成?答:材料化学组成的不同是造成其性能各异的主要原因。

化学组成通常从材料的元素组成和矿物组成两方面分析研究。

材料的元素组成,主要是指其化学元素的组成特点,材料的矿物组成主要是指元素组成相同,但分子团组成形式各异的现象。

3.建筑材料的微观结构主要有哪几种形式?各有何特点?建筑材料的微观结构主要有晶体、玻璃体和胶体等形式。

晶体的微观结构特点是组成物质的微观粒子在空间的排列有确定的几何位置关系。

一般来说,晶体结构的物质具有强度高、硬度较大、有确定的熔点、力学性质各向异性的共性。

建筑材料中的金属材料(钢和铝合金)和非金属材料中的石膏及水泥石中的某些矿物等都是典型的晶体结构。

玻璃体微观结构的特点是组成物质的微观粒子在空间的排列呈无序浑沌状态。

玻璃体结构的材料具有化学活性高、无确定的熔点、力学性质各向同性的特点。

粉煤灰、建筑用普通玻璃都是典型的玻璃体结构。

胶体是建筑材料中常见的一种微观结构形式,通常是由极细微的固体颗粒均匀分布在液体中所形成。

胶体与晶体和玻璃体最大的不同点是可呈分散相和网状结构两种结构形式,分别称为溶胶和凝胶。

溶胶失水后成为具有一定强度的凝胶结构,可以把材料中的晶体或其他固体颗粒粘结为整体。

如气硬性胶凝材料水玻璃和硅酸盐水泥石中的水化硅酸钙和水化铁酸钙都呈胶体结构。

建筑金属材料培训资料

建筑金属材料培训资料
15~20 d, 称为自然时效,适合用于低强度钢筋;加热至100~ 200 ℃后保持一定时间(2~3 h),称人工时效, 适合于高强钢筋。
3. 热处理
热处理是将钢材按规定的温度,进行加热、 保温和冷却处理,以改变其组织,得到所需要 的性能的一种工艺。
基本方法:退火、正火、淬火、回火 目的:通过改变钢材组织,得到满足工程建 设要求的钢材。
(2)抗拉强度与屈强比
对应于最高点C的应力称为抗拉强度,用 σb表示。 设计中抗拉强度虽然不能利用,但屈强比 σs/σb有一定意义。 屈强比愈小,反映钢材受力超过屈服点工 作时的可靠性愈大,因而结构的安全性愈 高。但屈强比太小,则反映钢材不能有效 地被利用。
(3) 伸长率
量出拉断后标距部分的长度Ll, 标距的伸长值与原始标距L0的百分率称为 伸长率。即
2.硅(Si):当小于等于1%时,Si含量的增加可显著提高强 度及硬度,而对塑性及韧性无显著影响。
3.锰(Mn):在一定限度内,随Mn含量的增加可显著提高强 度并可消减因氧与硫引起的热脆性。改善热加工性能。
4.硫(S):为有害元素,有强烈的偏析作用,使机械性能、 焊接性能下降(引起热裂纹)。
5.磷(P);为有害元素,含量的增加可提高强度,塑性及韧 性显著下降。 有强烈的偏析作用,引起冷脆性,焊接性
2.优质碳素结构钢
按国家标准GB/T 699-1999《优质碳素结构钢》 的规定,优质碳素结构钢根据锰含量的不同可 分为:普通锰含量(锰含量<0.8%)钢和较 高锰含量(锰含量0.7%~1.2%)钢两组。 优质碳素结构钢共有31个牌号,表示方法是: 含碳量、含锰量、脱氧程度 例:10F和45Mn、30 分别表示平均含碳量为0.10%沸腾钢和平均含 碳量为0.45%,较高含锰量的镇静钢。

建筑金属介绍范文

建筑金属介绍范文

建筑金属介绍范文建筑金属是指在建筑行业中广泛使用的金属材料,通常用于建筑的结构、外立面、悬挂层、屋顶和其他重要构件。

建筑金属的使用由来已久,可以追溯到古代文明。

随着技术的进步和材料科学的发展,建筑金属在现代建筑中的应用范围更加广泛,具有更高的可持续性和耐久性。

本文将介绍建筑金属的类型、应用和特点。

建筑金属的类型主要分为钢结构、铝合金、不锈钢和铜等。

钢结构是建筑中最常见的金属材料之一、钢结构具有优良的力学性能,能够承受较大的荷载并提供更大的空间。

在高层建筑、桥梁和公共设施中广泛使用。

钢结构的优点包括高强度、抗震、耐久性和可塑性。

然而,钢结构也存在着一些缺点,比如受到腐蚀的影响和更高的价格。

为了解决这些问题,一些新型的防腐技术被应用在钢结构中,以增加其耐久性。

铝合金是另一种常用的建筑金属材料。

铝合金具有轻质、高强度、耐腐蚀和易加工的特点,适用于各种建筑需求。

在现代建筑中,铝合金被广泛应用于窗框、幕墙、天花板和室内装饰等。

铝合金还具有可回收性和可塑性的特点,符合可持续发展的需求。

不锈钢是一种耐腐蚀的建筑金属,广泛应用于食品加工厂、医院、海洋工程等需要抵抗湿度和腐蚀的场所。

不锈钢具有优良的机械性能、美观的表面、易于清洁和维护。

不锈钢材料的选择也是根据不同环境下的耐腐蚀性能而定。

同时,不锈钢还可以与其他材料结合,以实现更多样化的建筑设计。

铜是一种古老而广泛应用的金属材料。

铜具有优良的导电性、导热性和耐腐蚀性,常用于建筑的屋顶、立面、屏风和装饰等。

铜材料还可以通过氧化形成独特的颜色和纹理,使建筑更加美观和富有艺术感。

建筑金属在现代建筑中的应用越来越广泛,有以下几个方面的原因:1.轻质化:与传统的砖、混凝土结构相比,建筑金属的重量较轻,可以减少建筑物的自重,降低建筑物对地基的要求,提高结构的抗震性能。

2.美观性:建筑金属具有现代感和创新感,可以通过不同的表面处理、纹理和色彩来提供丰富的视觉效果。

金属材料可以实现更大的自由度和灵活性,使建筑设计更加多样化。

第二章建筑装饰材料的基本性质

第二章建筑装饰材料的基本性质

100%
②体积吸水率 是指材料体积内被水充实的 体积。即材料吸水达饱和时,所吸收水分的体积 占干燥材料自然体积的百分率,可按下式计算:
W体

V水 V0
100%=
m湿 m干 V0

1

100%
质量吸水率与体积吸水率有如下的关系:
W体
W质 0
1

W质 0
(2) 吸湿性 材料在潮湿空气中吸收水分的性质称为吸湿
材料在绝对密实状态下的体积是指不包括孔 隙在内的体积。除了钢材、玻璃等少数材料外, 绝大多数材料内部都存在一些孔隙。因此,在测 定有孔隙的材料密度时,应把材料磨成细粉,来 测定其在绝对密实状态下的体积。材料磨得越细, 测得的密度值越精确。
2、 表观密度
表观密度是指材料在自然状态下,单位体积 所具有的质量,其计算式为(见辅):
三、材料的热工性质
1、 导热性 材料传导热量的能力,称为导热性。材料导
热能力的大小可以用导热系数(λ)表示。 导热系数在数值上等于厚度为2m的材料,当
其相对两侧表面的温度差为2K时,经单位面积 (2m2)单位时间(2s)所通过的热量。
可用下式表示:
Q
At(T2 T1)
材料的导热系数除与其本身的性质、结构、 密度有关外,还与材料的含水率及环境温度等有 关。
软、熔化,可将水泥混凝土脱水粉化及爆裂脱落,可将可燃材料 烧成灰烬,可使建筑物开裂破坏、坠落坍塌、装修报废等,同时 燃烧产生的高温作用对人也有巨大的危害。
②发烟作用 材料燃烧时,尤其是有机材料燃烧时,会产 生大量的浓烟。浓烟会使人迷失方向,且造成心理恐惧,妨碍及 时逃逸和救援。
③毒害作用 部分建筑装饰材料,尤其是有机材料,燃烧 时会产生剧毒气体,这种气体可在几秒至几十秒内,使人窒息而 死亡。

土木工程材料概念

土木工程材料概念

绪论1、土木工程材料的分类:(1)、按组成物的化学成分分为:无机材料、有机材料、复合材料。

常用无机材料包括砂石、砖瓦、玻璃、石灰石膏、水泥,塑料等。

常用有机材料有木材、涂料、沥青、橡胶、等。

常用复合材料有钢钎维混凝土、钢筋混凝土、沥青混凝土等。

(2)、按功能分为:承重结构材料、非承重材料、功能材料。

常用承重材料:钢材、混凝土、砖、砌体常用非承重材料:填充墙、内隔墙、围护材料常用功能材料:防水材料、防火材料、装饰材料、绝热材料、吸声隔声材料2、土木工程材料的标准:(1)、世界范围统一使用的是ISO国计标准。

(2)、我国常用标准有三类:1国家标准(包括强制性标准GB、推荐性标准GB/T)2行业标准3地方标准DB和企业标准QB。

强制性标准表示人和技术活产品不得低于其规定的要求:推荐性标准表示可以执行其它标准要求:地方标准或企业标准制定的技术要求高于国家标准。

第一章土木工厂材料基本性质1、材料的物理性质:(1)1.密度——材料绝密状态下单位体积的质量2.表观密度——单位体积(含实体及闭口孔隙体积)材料的干质量3.体积密度——自然状态下单位体积(包括实体、开口孔隙、闭口孔隙)的质量,俗称容量。

4.堆积密度——散粒状材料单位体积(含颗粒固体、开口、闭口孔隙及颗粒空隙体积)物质颗粒的质量规则形状的材料用量具测得体积,不规则的可用排液法或封蜡排液法测得体积。

(2)1.孔隙率与密实度孔隙率——孔隙体积占自然状态下总体积的百分率。

孔隙率反应材料密实度。

公式P82.空隙率与填充率空隙率——散状粒材料在堆积状态下颗粒空袭占堆积体积的百分率(3)1.亲水性、憎水性润湿角>90度材料材料分子内聚力小于吸引力,表现位亲水性。

常用亲水材料有:水泥制品、玻璃、陶瓷、金属、石材。

润湿角<90度材料分子内聚力大于吸引力,表现为憎水性。

常用憎水材料:沥青、油漆、塑料、防水油膏。

2.吸水性、吸湿性、耐水性、抗渗性、抗冻性第二章建筑金属材料1、刚才的分类:(1)钢材按化学成分分成碳素钢与合金钢碳素钢——含碳量为0.02%~2.06%的铁碳合钢,又称碳钢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碳素结构钢的牌号表示: Q+数字+质量等级符号+脱氧程度符号组成
A、B、C、D F、B、Z、TZ 例如Q235-A.F.,它表示屈服点为235N/mm2
的A级沸腾碳素结构钢。 当为镇静钢或特殊镇静钢时,则牌号表示“Z”
1. 抗拉性能--拉伸试验
试件的夹紧
万能材料试验机
拉断后的试件
抗拉性能是建筑钢材最重要的性能,表征抗拉性
能的技术指标有屈服点、抗拉强度及伸长率。
(1)屈服点:设计时,一般以屈服强度或屈服点 作为强度取值的依据。
通常用σs表示。
对于硬钢,取残余变形为0.2%原始标距长度时的应
力作为屈服点,称为条件屈服点,用σ0.2表示。
L1 L0 100%
L0
表征了钢材的塑性变形能力。越大越好。
5 10
100
200
2.冲击韧性
冲击韧性是指钢材抵抗冲击荷载的能 力。 对直接承受动荷载而且可能在负温下 工作的重要结构,必须进行冲击韧性 检验。
钢材冲击韧性与温度关系
冲击韧性随温度的降低而下 降。当达到某一温度范围时 ,冲击值突然大幅度下降, 材料无明显塑性变形而发生 脆性断裂,这种性质称为钢 材的冷脆性,这时的温度称 为脆性临界温度。
合金钢:碳素钢中加入一定量的合金元素。
低合金钢(合金<5%) 中合金钢(5~10%) 高合金钢(>10%)
2. 按冶炼时脱氧程度分类
(1)沸腾钢 F (2)镇静钢 Z (3)半镇静钢 b (4)特殊镇静钢 TZ
3. 按有害杂质含量分类
按钢中有害杂质磷(P)和硫(S) 含量的多少,钢材可分为以下四类: 普通钢(S≤0.050%;p≤0.045%) 优质钢(S≤0.035%;p≤0.035%) 高级优质钢(S≤0.025%;p≤0.025%) 特级优质钢(S≤0.015%;p≤0.025%)
在负温下使用的结构,应当选用临界温度比使 用温度低的钢材。
3.耐疲劳性
在反复荷载作用下,钢材在远低于抗拉强 度时突然发生断裂,称为疲劳破坏。疲劳 破坏的危险应力用疲劳强度极限表示,其 含义是:试件在2×106次应力循环作用下 工作而不至引起断裂的最大应力。 疲劳破坏是在低应力状态下突然发生的, 所以危害极大,往往造成灾难性的事故。
15~20 d, 称为自然时效,适合用于低强度钢筋;加热至100~ 200 ℃后保持一定时间(2~3 h),称人工时效, 适合于高强钢筋。
3. 热处理
热处理是将钢材按规定的温度,进行加热、 保温和冷却处理,以改变其组织,得到所需要 的性能的一种工艺。
基本方法:退火、正火、淬火、回火 目的:通过改变钢材组织,得到满足工程建 设要求的钢材。
4.冷弯性能
冷弯性能指钢材在常温下承受弯曲变形的 能力。试件按规定条件弯曲,若弯曲处的 外表面无裂断、裂缝或起层,即认为冷弯 性能合格。
它表征在恶劣变形条件下钢材的塑性,能 揭示内应力,杂质等缺陷,可用于焊接质 量的检验,能揭示焊件在受弯表面裂纹, 杂质等缺陷。 注意:伸长率和冷弯性能所体现钢材塑性 的不同
(2)抗拉强度与屈强比
对应于最高点C的应力称为抗拉强度,用 σb表示。 设计中抗拉强度虽然不能利用,但屈强比 σs/σb有一定意义。 屈强比愈小,反映钢材受力超过屈服点工 作时的可靠性愈大,因而结构的安全性愈 高。但屈强比太小,则反映钢材不能有效 地被利用。
(3) 伸长率
量出拉断后标距部分的长度Ll, 标距的伸长值与原始标距L0的百分率称为 伸长率。即
建筑钢材
建筑钢材分为钢结构用钢和钢筋混凝土 结构用钢。前者主要是型钢和钢板,后 者主要是钢筋、钢丝、钢绞线等。 建筑钢材的原料主要为碳素钢结构钢中 的低碳钢和合金钢中的低合金钢。
2.2
主 要 性 能
建筑钢材的主要技术性能
力学性能
抗拉性能-拉伸试验 冲击韧性-冲击试验 耐疲劳性-疲劳试验
工艺性能 冷弯性能-冷弯试验 焊接性能
5.可焊性
定义:指焊接后在焊缝处的性质与母材性 质的一致程度。 影响钢材可焊性的主要因素是化学成分及 含量。如硫产生热脆性,使焊缝处产生硬 脆及热裂纹。又如,含碳量超过0.25%, 可焊性显著下降等。
2.3 钢材的化学成分对性能的影响
1.碳(C);当含碳量小于0.8%时,C含量增加将使抗拉强度 及硬度提高,但塑性与韧性将降低,焊接性能、耐腐蚀性 能也下降。
2.硅(Si):当小于等于1%时,Si含量的增加可显著提高强 度及硬度,而对塑性及韧性无显著影响。
3.锰(Mn):在一定限度内,随Mn含量的增加可显著提高强 度并可消减因氧与硫引起的热脆性。改善热加工性能。
4.硫(S):为有害元素,有强烈的偏析作用,使机械性能、 焊接性能下降(引起热裂纹)。
5.磷(P);为有害元素,含量的增加可提高强度,塑性及韧 性显著下降。 有强烈的偏析作用,引起冷脆性,焊接性
下降。但可提高耐磨性及耐腐蚀性。
2.4 钢材的强化与加工
1.冷加工强化 将钢材于常温下进行冷拉、冷拔或冷轧
使其产生塑性变形,从前后的拉伸曲线
2. 时效处理
将冷加工处理后的钢筋,在常温下存放15~20 d, 或加热至100~200 ℃后保持一定时间(2~3 h), 其屈服强度进一步提高,且抗拉强度也提高,同时 塑性和韧性也进一步降低,弹性模量则基本恢复。 这个过程称为时效处理。
2章_建筑金属材料
钢铁的区别
钢和铁的主要区别是——含碳量的多少 生铁的含碳量在2.11%—4.30%,含杂质较多 钢的含碳量在0.03%—2.11%,含杂质较少
2.1 钢材的分类
1. 按化学成分分类
碳素钢(含碳量在0.02%——2.06%)
低碳钢(C<0.25%) 中碳钢(0.25~0.6%) 高碳钢(C>0.6%)
2.5 土木工程常用建筑钢材
2.5.1 建筑钢材的主要钢种 2.5.2 建筑工程中钢材主要用途
2.5.1 建筑钢材的主要钢种
碳素结构钢 优质碳素钢 低合金高强度结构钢
牌号表示方法 应用
1.碳素结构钢
按国家标准GB700-2006规定,我国碳素结构钢分 四个牌号,即Q195、Q215、Q235和Q275。各牌号 钢又按其硫、磷含量由多至少分为A、B、C、 D四个质量等级。
相关文档
最新文档