第一轮复习数学主要知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一轮复习数学主要知识点总结

第一轮数学复习主要知识点总结1

第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九

大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,

重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函

数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,

但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。第二:平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基

本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的

性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

第三:数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四:空间向量和立体几何。

在里面重点考察两个方面:一个是证明;一个是计算。

第五:概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发

生的概率。

第六:解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这

一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第

三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第

五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选

方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题

的准确度,这是我们所讲的第六大板块。

第七:押轴题。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的`考点。

第一轮数学复习主要知识点总结2:参数方程定义

一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t

的函数x=f(t)、y=g(t)

并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,

那么上述方程则为这条曲线的参数方程,联系x,y的变数t叫做变参数,简称

参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。

(注意:参数是联系变数x,y的桥梁,可以是一个有物理意义和几何意义的变数,也可以是没有实际意义的变数。

第一轮数学复习主要知识点总结3:参数方程

圆的参数方程x=a+rcosθy=b+rsinθ(a,b)为圆心坐标r为圆半径θ为参数

椭圆的参数方程x=acosθy=bsinθa为长半轴长b为短半轴长θ为参数

双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参

抛物线的参数方程x=2pt?y=2ptp表示焦点到准线的距离t为参数

直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且

倾斜角为a,t为参数

第一轮数学复习主要知识点总结4:几何

(1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个

填空题,一个解答题上,分值约为30分左右,占总分值的20%左右。

(2)整体平衡,重点突出:对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通

过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知

识体系的主干知识,考查时保证较高的比例并保持必要深度。近四年新教材高

考对解析几何内容的考查主要集中在如下几个类型:

① 求曲线方程( 类型确定、类型未定);

②直线与圆锥曲线的交点问题(含切线问题);

③与曲线有关的最(极)值问题;

④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);

⑤探求曲线方程中几何量及参数间的数量特征;

(3)能力立意,渗透数学思想:一些虽是常见的'基本题型,但如果借助于数形结合的思想,就能快速准确的得到答案。

(4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。加大探索性题型的分量。

相关文档
最新文档