材料力学 第六章 弯曲变形
材料力学(理工科课件)第六章 弯曲变形)
§6-1 基本概念及工程实例 (Basic concepts and example problems)
一、工程实例(Example problem)
(Deflection of Beams)
但在另外一些情况下,有时却要求构件具有较大的弹性变 形,以满足特定的工作需要.
例如,车辆上的板弹簧,要求有足够大的变形,以缓解车辆受
M 0 w 0
x
O
M 0 w 0
M
(Deflection of Beams)
w (1 w )
2 3 2
M ( x) EI
2 w 与 1 相比十分微小而可以忽略不计,故上式可近似为
w"
M ( x) EI
(6.5)
此式称为 梁的挠曲线近似微分方程(differential equation of the deflection curve) 近似原因 : (1) 略去了剪力的影响; (2) 略去了 w2项; (3) tan w w( x )
x Cx D
4
(Deflection of Beams)
边界条件x=0 和 x=l时, w 0
梁的转角方程和挠曲线方程 A 分别为 q 2 3 3 (6lx 4 x l ) 24 EI qx 2 3 3 w (2lx x l ) 24 EI 最大转角和最大挠度分别为 在 x=0 和 x=l 处转角的绝对值相等且都是最大值,
A a l D B
b
(Deflection of Beams)
解: 梁的两个支反力为
FRA F FRB F b l a l
x
l x
F FRA
A 1 a D b 2
第6节(弯曲变形)
Mechanics of Materials
中南大学土木建筑学院力学系
Department of Mechanics of School of Civil Engineering and Architecture of Central South University
第六章 弯曲变形 第一节 概述
Fx Fl
转角方程
EI(x)1Fx2FlxC
2 挠度方程
E Iv(x)1F x31F lx2C xD 62
EI
d2v dx2
Fx Fl
EI(x)1Fx2FlxC
2
E Iv(x)1F x31F lx2C xD 62
⑶ 确定积分常数
EI(0)1F02Fl0C0
2 E Iv(0 )1F 0 31F l0 2 C 0D 0
EI(x)b2F l x2C1
E I(x)b 2 F l x2F 2(xa)2C 2
挠度方程
EIv(x)b6F l x3C1xD1 E Iw (x ) b 6 F lx 3F 6(x a )3 C 2xD 2
⑶ 确定积分常数
v(0)E 1 I(b 6 F l03C 10D 1)0
v (l) E 1 I[ b 6 F ll3 F 6(l a )3 C 2 l D 2 ] 0
max
(0)
Fl2 3EI
(x) 0
x (3 3)l 3
(33)l F l3
F l3
vm a xv(
) 0 .0 6 4 2
3 93E I
E I
例:简支梁AB如图所示(图中a > b),承受集中载荷F作 用,梁的弯曲刚度为EI。求此梁的挠曲轴方程和转角方程, 并确定挠度的最大值。
材料力学第六章 弯曲变形
4
2
C
B
)
=
A
( A)q C
l q
( B )q
(b)
B
( wC )q
l
θ B ( θ B )q ( θ B ) M e
+
Me
(c)
Mel ql 24 EI 6 EI
3
A
B
( B ) M e
( A ) MC ( wC ) M
e
e
l
例题3
AB梁的EI为已知,求梁中间C截面挠度.
F1l 2 F2 la 0.4 400 200 B ( ) 16 EI 3 EI 210 1880 16 3 +0.423 10-4 (rad)
F1l a F2a F2a l wC 5.19 106 m 16 EI 3 EI 3 EI wmax w (3)校核刚度: l l
x A
dx
F
x
C' dω
B
d tg dx
二、挠曲线的微分方程
1.纯弯曲时曲率与弯矩的关系
M EI
1
横力弯曲时, M 和 都是x的函数.略去剪力对梁的位移的影 响, 则
1 M ( x) ( x) EI
2.由数学得到平面曲线的曲率
F
1 | w | 3 2 2 ( x) (1 w )
q
A x B
w w F wq
+
w wF wq
例1 已知:EI, F,q .求C点挠度 F q
A
C a a
B
Fa 3 ( wC )F 6 EI
材料力学习题册答案-第6章 弯曲变形
第六章弯曲变形一、是非判断题1.梁的挠曲线近似微分方程为EIy’’=M(x)。
(√)2.梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角为零。
(×)3.两根几何尺寸、支撑条件完全相同的静定梁,只要所受载荷相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是否相同无关。
(×)4.等截面直梁在弯曲变形时,挠曲线的曲率最大值发生在转角等于零的截面处。
(×)5.若梁上中间铰链处无集中力偶作用,则中间铰链左右两侧截面的挠度相等,转角不等。
(√)6.简支梁的抗弯刚度EI相同,在梁中间受载荷F相同,当梁的跨度增大一倍后,其最大挠度增加四倍。
(×)7.当一个梁同时受几个力作用时,某截面的挠度和转角就等于每一个单独作用下该截面的挠度和转角的代数和。
(√)8.弯矩突变的截面转角也有突变。
(×)二、选择题1. 梁的挠度是(D)A 横截面上任一点沿梁轴线方向的位移B 横截面形心沿梁轴方向的位移C横截面形心沿梁轴方向的线位移D 横截面形心的位移2. 在下列关于挠度、转角正负号的概念中,(B)是正确的。
A 转角的正负号与坐标系有关,挠度的正负号与坐标系无关B 转角的正负号与坐标系无关,挠度的正负号与坐标系有关C 转角和挠度的正负号均与坐标系有关D 转角和挠度的正负号均与坐标系无关3. 挠曲线近似微分方程在(D)条件下成立。
A 梁的变形属于小变形B 材料服从胡克定律C 挠曲线在xoy平面内D 同时满足A、B、C4. 等截面直梁在弯曲变形时,挠曲线的最大曲率发生在(D)处。
A 挠度最大B 转角最大C 剪力最大D 弯矩最大5. 两简支梁,一根为刚,一根为铜,已知它们的抗弯刚度相同。
跨中作用有相同的力F,二者的(B)不同。
A支反力 B 最大正应力 C 最大挠度D最大转角6. 某悬臂梁其刚度为EI,跨度为l,自由端作用有力F。
为减小最大挠度,则下列方案中最佳方案是(B)A 梁长改为l /2,惯性矩改为I/8B 梁长改为3 l /4,惯性矩改为I/2C 梁长改为5 l /4,惯性矩改为3I/2D 梁长改为3 l /2,惯性矩改为I/47. 已知等截面直梁在某一段上的挠曲线方程为:y(x)=Ax²(4lx - 6l²-x²),则该段梁上(B)A 无分布载荷作用B 有均布载荷作用C 分布载荷是x 的一次函数D 分布载荷是x 的二次函数 8. 图1所示结构的变形谐条件为:(D ) A f A=f BB f A+△l=fBCfA +fB =△l DfA-fB=△l三、填空题1. 用积分法求简支梁的挠曲线方程时, 若积分需分成两段,则会出现 4 个积分常数,这些积分常数需要用梁的 边界 条件和 光滑连续 条件来确定。
材料力学第6章弯曲变形
M1 EIw1
Fb x1 l
2 x1
" EIw2
Fb M2 x2 F ( x2 a ) l
2 x2 2
EIw1
Fb C1 l 2
x2 a Fb F C2 (i) EIw2 l 2 2
工学院
§6.2 挠曲线的微分方程
纯弯曲情况下,弯矩与曲率 间的关系(5.1):
M EI
1
--(a)
横力弯曲时,梁截面上有弯矩也有剪力,对于跨 度远大于截面高度的梁,剪力对弯曲变形的影响可以 省略,(a)式便可以作为横力弯曲变形的基本方程。其 中,M和1/ρ都是x的函数。
工学院
§6.2 挠曲线的微分方程
(o) (p)
CB段 (a x2 l )
Fb 2 3l 2 2 2 l b 3 x ( x a ) 2 2 6l b Fb 2 l 2 2 3 EIw2 l b x x ( x a ) 2 2 6l b 2 EIw2
车床主轴的变形过大会影响 齿轮的啮合和轴承的配合, 造成磨损不匀,产生噪音, 降低寿命以及影响加工精度。
工学院
§6.1 工程中的弯曲变形问题
吊车梁的变形过大,会 使梁上小车行走困难, 出现爬坡现象,还会引 起较严重的振动。
变形超过允许数值,即 使在弹性范围内,也被 认为是一种失效现象。
工学院
§6.1 工程中的弯曲变形问题
l
2
b
2
3
工学院
§6.3 用积分法求弯曲变形—实例3
7). 讨论
上面得到最大挠度表达式为: 3 1 Fb 2 2 wmax l b 9 3 EIl
弯曲变形——精选推荐
第六章弯曲变形判断弯曲变形1、“平面弯曲梁的挠曲线必定是一条与外力作用面重合或平行的平面曲线”2、“由于挠曲线的曲率与弯矩成正比,因此横截面的挠度与转角也与横截面的弯矩成正比”3、“只要满足线弹性条件,就可以应用挠曲线的近似微分方程”4、“两梁的抗弯刚度相同、弯矩方程相同,则两梁的挠曲线形状相同”5、“梁的挠曲线方程随弯矩方程的分段而分段,只要梁不具有中间铰,梁的挠曲线仍然是一条光滑、连续的曲线。
”6、“最大挠度处的截面转角一定为0”7、“最大弯矩处的挠度也一定是最大”8、“梁的最大挠度不一定是发生在梁的最大弯矩处。
”9、“只要材料服从虎克定律,则构件弯曲时其弯矩、转角、挠度都可以用叠加方法来求”10、“两根几何尺寸、支撑条件完全相同的静定梁,只要所受的载荷相同,则两梁所对应的截面的挠度和转角相同,而与梁的材料是否相同无关”11、“一铸铁简支梁在均布载荷的作用下,当其横截面相同且分别按图示两种情况放置时,梁同一截面的应力和变形均相同”选择弯曲变形1、圆截面的悬臂梁在自由端受集中力的作用,当梁的直径减少一半而其他条件不变时,最大正应力是原来的倍;最大挠度是原来的倍。
若梁的长度增大一倍,其他条件不变,最大弯曲正应力是原来的倍,最大挠度是原来的倍。
A:2; B:16 C:8 D:4;2、y’’=M(x)/EI在条件下成立。
A:小变形; B:材料服从虎克定律;C:挠曲线在xoy面内; D:同时满足A、B、C;3、等直梁在弯曲变形时,挠曲线最大曲率发生在处。
A:挠度最大; B:转角最大 C:剪力最大; D:弯矩最大;4、在简支梁中,对于减少弯曲变形效果最明显。
A:减小集中力P; B:减小梁的跨度;C:采用优质钢; D:提高截面的惯性矩5、板条弯成1/4圆,设梁始终处于线弹性范围内:①σ=My/I Z,②y’’=M(x)/EI Z哪一个会得到正确的计算结果?A:①正确、②正确;B:①正确、②错误; C:①错误、②正确; D:①错误、②错误;6、应用叠加原理求横截面的挠度、转角时,需要满足的条件是。
材料力学6弯曲变形
=
M 0 L2 9 3EI Z
<[f ]
刚度满足要求。 刚度满足要求。
例二、长度为 的梁 的梁AC, 为常数, 例二、长度为L的梁 ,其EI为常数,在自由端承受集 为常数 中力P(如图),试求自由端C的挠度和转角 ),试求自由端 的挠度和转角。 中力 (如图),试求自由端 的挠度和转角。 外力分析: 解: 1)外力分析:
解: 1)外力分析: )外力分析: M0 M0 RA = (↓), R B = (↑ ) L L 2)内力分析:(M方程 方程) )内力分析: 方程
3)挠曲线方程和转角方程: )挠曲线方程和转角方程:
M0 M(x) = − x (0 ≤ x ≤ L ) L
M0 2 d2V M0 EIzθ= − x +C x EIz 2 = − 2L dx L M0 3 EI z V = − x + Cx + D 6L
思考题: 思考题:求VB
试用叠加法求C截面的挠度和转角 例5、试用叠加法求C截面的挠度和转角 (I2=2I1)。
EI 2 A a C a EI1
A
C a
m0= Pa A a P
解:(1)BC段变形,AC段刚化 :(1)BC段变形,AC段刚化 段变形 ( VC(1) = 0 θ C1) = 0 B (2)AC段变形 BC段刚化 段变形, (2)AC段变形,BC段刚化 P 3 2 Pa Pa VCP = ( ↑) θ CP = ( ) 3EI 2 2EI 2 B Pa 2 ( ) Pa 3 θ Cm0 = VCm0 = ( ↑) EI 2 2 EI 2 P 5Pa 3 VC( 2 ) = VCP + VCm0 = ( ↑) 6 EI 2 3Pa 2 B ( θ C2 ) = θ CP + θ Cm0 = ( ) 2 EI 2 (3)总变形 (3)总变形
工程力学c材料力学部分第六章 弯曲变形
A l/2
C l
B
解:此梁上的荷载可视为 正对称和反对称荷载的叠加, 正对称和反对称荷载的叠加, 如图所示。 如图所示。 正对称荷载作用下:
q/2
5(q / 2)l 4 5ql 4 wC1 = − =− 384 EI 768 EI
B
(q / 2)l 3 ql 3 θ A1 = −θ B1 = =− 24 EI 48EI
w P A a D
a
A C a H a B
EI
Pl 3 wB = − 3 EI
P
B
l
Pl 2 θB = − 2 EI
P A a 2a 2a C B
P/2
P/2 B
P/2
=
A
+
P/2
力分解为关于中截面的对称和反对称力( )之和的形式。 解:将P力分解为关于中截面的对称和反对称力(P/2)之和的形式。 力分解为关于中截面的对称和反对称力 显然,在反对称力( / )作用下, 显然,在反对称力(P/2)作用下,wc=0 对称力作用的简支梁, 对称力作用的简支梁,可以等效为悬臂梁受到两个力的作用 的问题。 的问题。
wA=0 θA=0
B
②、变形连续条件 变形连续条件: 连续条件
P A C θC左 wC左= wC右, =θ C右 B
的悬臂梁, 例1:图示一弯曲刚度为 的悬臂梁,在自由端受一集中力 作 :图示一弯曲刚度为EI的悬臂梁 在自由端受一集中力F 试求梁的挠曲线方程,并求最大挠度及最大转角。 用,试求梁的挠曲线方程,并求最大挠度及最大转角。 解:① 建立坐标系并写出弯矩方程 ①
在小变形情况下, 曲线弯曲平缓, 在小变形情况下,挠曲线弯曲平缓,
∴ w′ ≪ 1
2
材料力学知识点
第六章弯曲变形知识要点1、弯曲变形的概念1)、挠曲线弯曲变形后梁的轴线变为挠曲线。
平面弯曲时,挠曲线为外力作用平面内的平面曲线。
2)、平面弯曲时的变形在小变形情况下,梁的任意二横截面绕各自的中性轴作相对转动,杆件的轴线变为平面曲线,其变形程度以挠曲线的曲率来度量。
1》纯弯曲时,弯矩—曲率的关系(由上式看出,若弯曲刚度EI为常数则曲率为常数,即挠曲线为圆弧线)2》横力弯曲时,弯矩—曲率的关系3)、平面弯曲时的位移1》挠度2》转角挠度和转角的正负号由所选坐标系的正方向来确定。
沿y轴正方向的挠度为正。
转角的正负号判定规则为,将x轴绕原点旋转90°而与y轴重合,若转角与它的转向相同,则为正,反之为负。
4)、挠曲线近似微分方程5)、受弯曲构件的刚度条件,2、积分法求梁的挠度和转角由积分常数C、D由边界条件和连续性条件确定。
对于梁上有突变载荷(集中力、集中力偶、间断性分布力)的情况,梁的弯矩M(x)不是光滑连续函数,应用上式时,应分段积分,每分一段就多出现两个积分常数。
因此除了用边界条件外,还要用连续性条件确定所有的积分常数。
边界条件:支座对梁的位移(挠度和转角)的约束条件。
连续条件:挠曲线的光滑连续条件。
悬臂梁边界条件:固定端挠度为0,转角为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等简支梁边界条件:固定绞支座或滑动绞支座处挠度为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等连接铰链处,左右两端挠度相等,转角不等3、叠加原理求梁的挠度和转角1)、叠加原理各载荷同时作用下梁任一截面的挠度和转角等于各个载荷单独作用时同一截面挠度和转角的代数和。
2)、叠加原理的限制叠加原理要求梁某个截面的挠度和转角与该截面的弯矩成线性关系,因此要求:1》弯矩M2》4、弯曲时的超静定问题——超静定梁1)、超静定梁约束反力数目多于可应用的独立的静力平衡方程数的梁称为超静定梁,它的未知力不能用静力平衡方程完全确定,必须由变形相容条件和力与变形间的物理关系建立补充方程,然后联立静力平衡方程与补充方程,求解所有的未知数。
材料力学 第6章 梁的弯曲变形
(c)
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
在本章所取的坐标系中,
上凸的曲线w″为正值,下凸的为负值。
如图6-5所示。 按弯矩正负号的规定,正弯矩对应着负的w″, 负弯矩对应着正的w″,故(c)式
w
M (x)
(1
w2 )3 2
EI z
在小变形情况下, w dw 是一个很小的量, dx
则 w'2为高阶微量,可略去不计,故
挠曲线的近似微分方程
M x
w EI z
EIw''= −M (x)
(6-1b)
图6-5
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
6.4 积分法计算梁的变形
对于等直梁,可以直接积分,计算梁的挠度和转角。 将式(6-1b)积分一次,得到
EIw′ = EIθ = −∫ M (x) dx + C
maxFl 2 2EI来自A xyF
θmax B
x
wmax
l
图6-7 例题 6-1 图
wm a x
Fl 3 3EI
θ max为正值,表明梁变形后,截面B顺时针转动;
wmax为正值,表明点B位移向下。
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
例题6-2 一简支梁受均布荷载q作用,如图6-8所示。试求梁的转角方程和 挠度方程, 并确定最大挠度和A、B截面的转角。设梁的弯曲刚度为EI。
A x
y
F
θmax B
x
wmax
l
进行两次积分,得到
EIw EI Flx Flx2 C
(a)
2
EIw Flx2 Fx3 Cx D
材料力学课件第六章1 弯曲变形
2 F 1 3 (0) Fl (0) 2 C (0) D 0 6 2 D0
解得: C 0, 6、确定挠曲线方程和转角方程: F EIw ' x 2 Flx 2 F Fl 2 EIw x 3 x 6 2 7、求截面位移
由方程所确定的曲率:
1 3 2 2 ( x) dw 1 dx
d w dx2 dw 1 dx
2 2
d 2w dx2
y
w x
x
3
F
因此有:
2
2
M ( x) EI
dw d 2 w M ( x) 又 1 得: 2 dx EI dx
二、画AB、DE受力图
三、变形协调条件 三、建立补充方程
v AB中 vDE中
( P RC ) L RC L2 48EI1 48EI 2
3 1 3
D
E
3 I 2 L1 P 解得:RC 3 3 I 2 L1 I1 L2 I1 L3 P 2 AB梁负担:P RC 3 3 I 2 L1 I1 L2
ห้องสมุดไป่ตู้
水平位移 2、弯曲变形的度量: (1)截面位移及特点: •横截面形心的竖向线位移 •横截面绕中性轴的角位移。 •横截面形心的水平线位移, 较竖向线位移小许多。
(2)度量变形的基本量: •挠度w: 横截面形心的竖向线位移,向上为正。 •截面转角θ :横截面绕中性轴的角位移,逆时针为正。
3、弯曲变形简化计算 (1)简化: 认为截面只有竖向位移。 y (2)简化后问题的特点: •挠曲线方程为挠度方程:
《材料力学》第六章-弯曲变形
当载荷P处于梁中点,即b=l/2时,xl=0.5l;
当载荷P移至支座B,即b→0时
x1
l2 0.577l 3
即使在这种极端的情况下,最大挠度的位置距中 点只有0.077l,也就是说点的位置影响甚小,最大挠 度总是发生在梁跨中点的附近。可以认为在工程中 当有一集中力作用在简支梁上时,梁的最大挠度发 生在梁的中点,其结果误差不超过3%。
§6.1 工程中的弯曲变形问题
工程中有些受弯构件在载荷作用下虽能满足强度 要求,但由于弯曲变形过大,刚度不足,仍不能保证 构件的正常工作,成为弯曲变形问题。
出现“爬坡”现象
使齿轮啮合力沿齿宽分布极 不均匀,加速齿轮的磨损。
一、挠度和转角
构件的弯曲变形通常用截面的挠度和转角度量。
梁在横向力作用下发生弯曲变形, y
§6.3 用积分法求弯曲变形
一、积分法求弯曲变形 w Mx
EI
积分
挠曲线近似微分方程
w E 1IM xd x C
积分
转角方程
w E 1IM xd x CD x 挠曲线方程
式中C和D是待定的积分常数,可根据梁的具体条件来确定。
积分法计算梁的变形的步骤: 1.建立梁截面的弯矩方程式M(x); 2.代人挠曲线近似微分方程式,并积分; 3.确定积分常数,得到具体的挠度和转角方程式; 4.求梁任一截面的转角和挠度。
令
w1 10 F 2lx b12-F 6lb l2-b2 0
当a>b时,x1<a,wmax发生在AC段内。
得: x1
l2 -b2 3
wm若求最大转角,求θA、θB,比较大小,取其大者。
当
x1
l2 -b2 3
wmax-
Fb 9
材料力学_-刘鸿文-第四版_第六章_课件__弯曲变形
A
B
x l
y A
θ maxB
max
x
' Plx Px2
EI 2EI Plx 2 Px3
2EI 6EI
l
P
max 及 ωmax 都发生在自由端截面处
max
|xl
Pl 2 EI
Pl 2 2EI
Pl 2 2EI
(
)
max
|xl
Pl 3 3EI
()
例题: 图示一抗弯刚度为 EI 的简支梁, 在全梁上受集度为 q 的均布荷载作用。试求此梁的挠曲线方程和转角方程, 并确定其最大挠度 ωmax 和最大转角 max .
B
A
B
例题:确定梁的边界条件和连续条件
A
B
C
D
边界条件
A 0 D 0, D 0
EI M(x)
A
B
C
D
连续条件
C左 C右 , C左 C右 B左 B右
例题 : 图示一抗弯刚度为 EI 的悬臂梁, 在自由端受一集中力 P 作用。试求梁的挠曲线方程和转角方程, 并确定其最大挠度 ωmax 和最大转角 max .
由几何关系知, 平面曲线的曲率可写作
1 (x)
| (1
''| '2 ) 32
1 M(x)
( x) EI
| ''|
(1
'2
)
3 2
M ( x) EI
| ''|
(1
2
)
3 2
M ( x) EI
在规定的坐标系中,x 轴水平向右
为正,y 轴竖直向上为正。
y
M>0
材料力学 第6章 弯曲变形
6-1 弯曲变形的实例
弯曲变形
摇臂钻床的摇臂或车床的主轴变形过大,就会 影响零件的加工精度,甚至会出现废品。
第6章
6-1 弯曲变形的实例
弯曲变形
桥式起重机的横梁变形过大,则会使小车行走困难, 出现爬坡现象。
第6章
6-1 弯曲变形的实例
弯曲变形
但在另外一些情况下,有时却要求构件具有较大的 弹性变形,以满足特定的工作需要。 例如,车辆上的板弹簧,要求有足够大的变形,以 缓解车辆受到的冲击和振动作用。
F l [ ( x a)3 x 3 (l 2 b 2 ) x] 6 EIl b
F l 1 [ ( x a) 2 x 2 (l 2 b 2 )] 2 EIl b 3
第6章
6-5 叠加法求梁的位移 叠加法求梁的挠曲线
弯曲变形
梁在若干个载荷共同作用时的挠度或转角, 等于在各个载荷单独作用时的挠度或转角的代 数和。这就是计算弯曲变形的叠加原理。
3. 增大梁的弯曲刚度:主要增大I值,在截面面积不变的情况下,采用
适当形状,尽量使面积分布在距中性轴较远的地方。例如:工字形、箱 形等。
q
A B l B l A
q
A
q
B
第6章
6-7 提高弯曲刚度的一些措施
弯曲变形
第6章
6-7 提高弯曲刚度的一些措施
弯曲变形
1) 支承条件:
y
w 0; w 0
弯曲变形
y
y
w0
F A
w0
2) 连续条件:挠曲线是光滑连续唯一的
C
B
w|
x C
w|
x C
, |
x C
|
第六章:梁弯曲时的内力和应力
剪力图和弯矩图:以梁轴线为横坐标,分别以剪力值和弯矩值为纵坐标, 按适当比例作出剪力和弯矩沿轴线的变化曲线,称作剪力图和弯矩图。
剪力、弯矩方程便于分析和计算,剪力、弯矩图形象直观,两者对于解 决梁的弯曲强度和刚度问题都非常重要,四者均是分析弯曲问题的基础。
第三节:剪力图和弯矩图
5-5 截面
FS5 q 2 FB 5.5 kN
1 23 4
5
1 23 4
5
M5 (q 2)1 8 kN m
第三节:剪力图和弯矩图
第三节:剪力图和弯矩图
一、剪力、弯矩方程与剪力、弯矩图
剪力方程和弯矩方程:为了描述剪力与弯矩沿梁轴线变化的情况,沿梁 轴线选取坐标 x 表示梁截面位置,则剪力和弯矩是 x 的函数,函数的解 析表达式分别称为剪力方程和弯矩方程。
M 为常数,即对应弯矩图应为水平直线; 其他两段的弯矩图则均为斜直线。
第三节:剪力图和弯矩图
3)判断剪力图和弯矩图形状 AC、CD、DB 各段梁的剪力图均为水 平直线。在 CD 段,弯矩 M 为常数,对 应弯矩图应为水平直线;其他两段的弯 矩图则均为斜直线。
4)作剪力图和弯矩图
剪力图 弯矩图
第四节:弯曲时的正应力
第一节:梁的计算简图 第二节:弯曲时的内力计算 第三节:剪力图和弯矩图 第四节:弯曲时的正应力 第五节:正应力强度计算 第六节:弯曲切应力 第七节:提高梁弯曲强度的一些措施
第一节:梁的计算简图
第一节:梁的计算简图
一、梁的支座 梁的支座形式:工程中常见的梁的支座有以下三种形式。 1、固定铰支座:如图 a)所示,固定铰支座限制梁在支承处任何方向的 线位移,其支座反力可用两个正交分量表示,即沿梁轴线方向的 FAx 和 垂直于梁轴线方向的 FAy 。
材料力学第六章
解 1)将梁上的载荷分解
wC wC1 wC2 wC3
B B1 B2 B3
2)查表得3种情形下C截面的 挠度和B截面的转角。
wC1
5ql 4 384EI
wC 2
ql 4 48EI
ql 4 wC3 16EI
B1
ql 3 24EI
B1
ql 3 16EI
B3
ql 3 3EI
wC1
wC2 wC3
3)进行变形比较,列出变形协调
条件
wB 0
4)叠加法
wB (wB )F (wB )FBy 0
MA A
MFAAy A
FAy A
A
MA A FA y
MA A AA
MA A A
F
B
C
2a (a) B
aF C
2a
Ba C
((ba))
B B (b)
F C
C
(c)
FBy F
B
FF C
BB
(c)
FBy
CC
B12 a
Fa 2l 3EI
w1 wB11 wB12
w2
B2a
Fl 2a 16 EI
w w1 w2
用叠加法求跨度中点挠度
解: wc wc1 wc2
由于 wc wc2
=
故
wc
1 2
wc1
1 5q0l 4 5q0l 4 2 384EI 768EI
-
解: wc wc1 wc2
当 d w 0 时,w为极值
dx
EI1
Fb 2l
x2 1
Fb 6l
(l 2
b2 )
E I 2
Fb 2l
x22
材料力学 第六章 弯曲变形
M E F A 0 .5l M 0 解得: Q E 2 P , M E 0
FA Q 0
M A F A M 0
FA
(3)计算截面A+ 和D-的剪力和弯矩
Y 0 M 0
A
同理:
FA 0 P D D
M D Q D
Q D P
Q ( x ) FA qx ql qx 0 x l 2 2 1 M ( x ) FA x qx x qlx q x 2 2 2 2 0 xl
l /2 M
ql 2
x
M ( x) |x0 0
M ( x ) |x l 0
l /2
ql 2 8
求弯矩的极值点:
O
B 1
1 — 1截面:
Q1 FB
1
M1
m2 M 1 0
Q1
FB
M 1 FB ( l x1 ) m1 m 2
4. 剪力、弯矩的正负与横向外力偶的关系
Q2 FA P
a
M 2 F A x 2 P ( x 2 a ) m1 m 2
Q1 FB
一端为固定铰支座一端为活动铰支座。 2、外伸梁 一端或两端向外伸出的简支梁。
3、悬臂梁 一端固定支座一端自由。
§6-3 剪力与弯矩
一、剪力和弯矩
步骤: (1)先求约束反力FA 、FB ; y a P1
x
m
P2
P3
x
A y
m
B
(2)由截面法求横截面上的内力; FA (如:求 m — m 截面的内力)
说明:
Q向下假设为正; M逆时针假设为正。 Q向上假设为正; M顺时针假设为正。
材料力学第四版课件 第六章 弯曲变形
ql
3
()
2
24 EI
Fl ()
(q
A
16 EI
3
q
A
ql
Fl
2
( )
24 EI
16 EI
例6.5:图示外伸梁,其抗弯刚度为EI,求B截 面的转角和C截面的挠度.
2
2
l
EIw 2 M 2 F
x F ( x a)
2
转角方程
b x F ( x a) C2 l 2 2
3 3
b x F ( x a) C 2x D 2 挠度方程 EIw 2 F l 6 6
F A a l C b B
(3)确定积分常数 边界条件: 在 x = 0 处, w1 0 在 x = l 处, w2 0 C点的连续条件: 在 x = a 处, w1 w2 , w1 w2 再将边界条件和连续条件分别代入 AC与CB的转角方程与闹曲轴方程中。
F B
当 x 0 时 : q 0, w 0
q
w 1 EI
1 EI
( FLx
1 2
2
1 2
Fx
2
C)
3
(
FLx
1 6
Fx
Cx D )
4.根据边界条件确定积分常数
当 x 0 时 : q 0, w 0
解得
C 0; D 0
5.得到转角方程和挠度方程,计算B截面的 挠度和转角
B
(4) 根据边界条件求积分常数 当x=0 和 x=l 时, w = 0
EIq EIw
EIw ql 12 x
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M ( x) w EI
若为等截面直梁, 其抗弯刚度EI为一常量上式可改写成
EIw M ( x )
(Deflection of Beams)
1.积分一次得转角方程 (The first integration gives the equation for the slope)
EIw M ( x )d x C1
Chapter6 Deflection of Beams
(Deflection of Beams)
第六章
弯曲变形 (Deflection of Beams)
§6-1 基本概念及工程实例
(Basic concepts and example problems)
§6-2 挠曲线的微分方程(Differential equation of the
仅保证构件不会发生破坏, 但如果构件的变形太大也不能正常工作。 1、构件的变形限制在允许的范围内。
(Deflection of Beams)
案例1: 车削加工一等截面构件, 如果构件的的变形过大, 会加工成变截面;
(Deflection of Beams)
案例2: 摇臂钻床简化为刚架, 如果钻床的变形过大, 受工件的反力作用; 不能准确定位。
3、研究弯曲变形 除了解决构件的刚度外, 还广泛应用于超静定问题分析、 稳定性分析 以及振动分析等方面。
(Deflection of Beams) 二、基本概念(Basic concepts)
1.挠度( Deflection )
横截面形心 C (即轴线上的点)在垂直于 x 轴方向的线位移, 称为该截面的挠度.用w表示.
deflection curve)
§6-3 用积分法求弯曲变形
(Beam deflection by integration )
§6-4 用叠加法求弯曲变形
( Beam deflections by superposition )
§6-5 静不定梁的解法(Solution methods
for statically indeterminate beams)
b x 转角方程 EIw1 F C1 l 2
2
b x3 b x 3 F ( x a )3 C 2x D 2 挠度方程 EIw1 F C1 x D1 EIw 2 F l 6 6 l 6
(Deflection of Beams)
案例3:
当今时代汽车工业飞速发展, 道路越来越拥挤,
一旦发生碰撞,你认为车身的变形是大好还是小好?
(Deflection of Beams)
案例4: 蹦床、跳板跳水 要有大变形, 才能积蓄能量, 将人体弹射到一定高度。
(Deflection of Beams)
A D B b
a l
(Deflection of Beams)
解: 梁的两个支反力为
x
b FRA F l a FRB F l
两段梁的弯矩方程分别为
F FRA
A
x l
1
a
D b
2
FRB
B
b M 1 FRA x F x l
(0 x a )
b M2 F x F ( x a) l
C2 0
Fx 2 EIw Flx 2
EIw Flx Fx 2 6
2
3
(Deflection of Beams)
y
F
A B x
wmax
l
max
max 和 wmax都发生在自由端截面处
Fl 2 Fl 2 Fl 2 ( ) max | x l EI 2 EI 2 EI Pl 3 wmax w | x l ( ) 3 EI
(Deflection of Beams)
案例3: 车间桁吊大梁的过大变形
(Deflection of Beams)
会使梁上小车行走困难,造成爬坡现象;
还会引起较严重的振动;
(Deflection of Beams)
桥梁如果产生过大变形
楼板、 床、 双杠横梁
屋顶
等都必须把它们的变形限制在允许的范围内。
M EI
横力弯曲时, M 和 都是x的函数.略去剪力对梁的位移的影 响, 则
1
1 M ( x) ( x) EI
(Deflection of Beams)
2.由数学得到平面曲线的曲率 (The curvature from the mathematics)
1 w 3 2 2 ( x) (1 w )
M 0 w
M
M 0 w 0
M
w 与 M 的正负号相同
(6.5)
O
M 0 w 0
x
M ( x) w" EI
x
O
曲线向下凸时: w 0
M 0
(Deflection of Beams)
M ( x) w" EI
(6.5)
此式称为 梁的挠曲线近似微分方程(differential equation of the deflection curve) 近似原因 : (1) 略去了剪力的影响;
ql 2
FRA
l
FRB
此梁的弯矩方程及挠曲线微分方程分别为
ql q 2 M ( x) x x 2 2 ql q 2 EIw x x 2 2
ql 2 q 3 EIw x x C 4 6
ql 3 q 4 EIw x x Cx D 12 24
(Deflection of Beams)
边界条件x=0 和 x=l时, w
0
x
q
wmax
梁的转角方程和挠曲线方程 A 分别为
B
A
l
B
q 2 3 3 (6lx 4 x l ) 24 EI qx w (2lx 2 x 3 l 3 ) 24 EI
最大转角和最大挠度分别为
FRA
FRB
在 x=0 和 x=l 处转角的绝对值相等且都是最大值,
w (1 w )
2 3 2
M ( x) EI
w 2 与 1 相比十分微小而可以忽略不计,故上式可近似为
M ( x) w" EI
(Deflection of Beams)
在规定的坐标系中,x 轴水平向右 为正, w轴竖直向上为正. w
M
M
曲线向上凸时: 因此,
w 0
w A
F
B x x
M ( x ) F (l x )
(1)
(2) 挠曲线的近似微分方程为
l
EIw M ( x ) Fl Fx (2)
对挠曲线近似微分方程进行积分
Fx EIw Flx C1 (3) 2 2 3 Flx Fx EIw C 1x C 2 2 6
§6-6 提高弯曲刚度的措施
(The measures to strengthen rigidity)
(Deflection of Beams)
§6-1 基本概念及工程实例 (Basic concepts and example problems)
一、为何要研究弯曲变形
M [ ] Wz
挠曲线方程(equation of deflection curve)为
w f ( x)
式中,x 为梁变形前轴线上任一点的横坐标,w 为该点的挠度. y
A C'
挠曲线
C
B
x w挠度(
B
转角
(Deflection of Beams)
4.挠度与转角的关系 (Relationship between deflection and slope):
y
A C B x
挠曲线
C'
w挠度
转角
B
(Deflection of Beams)
§6-2 挠曲线的微分方程
( Differential equation of the deflection curve)
一、推导公式(Derivation of the formula)
1.纯弯曲时曲率与弯矩的关系(Relationship between the curvature of beam and the bending moment)
y A C B
x
w挠度
C'
B'
(Deflection of Beams)
2.转角 (Slope) 横截面对其原来位置的角位移,称为该截面的转角. 用 表示 y
A
C' C B
x
w挠度(
转角
B
(Deflection of Beams)
3.挠曲线 (Deflection curve) 梁变形后的轴线称为挠曲线 .
(a x l )
(Deflection of Beams)
两段梁的挠曲线方程分别为
(a)(0 x a)
b 近似微分方程 EIw 1 M 1 F l x
(b)( a x l )
b EIw 2 M 2 F x F ( x a ) l
2 2 b F ( x a ) x C2 EIw 2 F l 2 2
(Deflection of Beams)
例题2 图示一抗弯刚度为 EI 的简支梁,在全梁上受集度为q 的 均布荷载作用.试求此梁的挠曲线方程和转角方程,并确定其 max 和 wmax
q A l B
(Deflection of Beams)