2018高考全国卷1理科数学试题及答案(word版)
2018高考全国1卷理科数学试卷及答案,推荐文档
绝密★启用前2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题,本题共 12小题,每小题5份,在每小题给出的四个选项中,只有一项是符合 题目要求的。
1 i1.设 z -------- 2i ,贝U z1 i 1 A.0 B. —C.1D. 222. 已知集合Ax |x 2 x 20,则 C R AA. x | 1 x 2B. x | 1 x 2C. x | x 1 x |x 2D. x| x 1 x| x 23•某地区经过一年的新农村建设,农村的经济收入增加了一杯,实现翻番。
为更好地了解 该地区农村的经济收入变化情况,统计和该地图新农村建设前后农村的经济收入构成比例, 得到如下饼图:A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4•记S n 为等差数列 a n 的前n 项和,若3S 3 S 2 S 4, a 12,则a 5A.-12B.-10C.10D.125•设函数f xx 3 a 1 x 2 ax ,若f x 为奇函数,则曲线 y f x 在点0,0处的切建设后经济攻入构戌比例其他辰入.线方程为6•在 ABC 中,AD 为BC 边上的中线,E 为AD 的中点,贝U EB7•某圆柱的高为2,地面周长为16,其三视图如右图,圆柱表面 上的点M 在正视图上的对应点为A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到N 的路径中,最短路径的长度为 A.2 .17 B. 2 . 5C.3D.228•设抛物线C: y4x 的焦点为F ,过点22,0且斜率为一的直线与C 交于3M ,N 两点,则 FM FNA.5B.6C.7D.89.已知函数f XXe ,x 0,g x f XIn x, x 0x a ,若g x 存在2个零点,则a 的取值范围是A. 1,0B. 0,C. 1,D. 1,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成。
2018年高考理科数学(全国I卷)参考答案
设函数 g ( x)
1 x 2ln x ,由(1)知, g ( x) 在 (0, ) 单调递减,又 g (1) 0 ,从 x
而当 x (1, ) 时, g ( x) 0 . 所以
f ( x1 ) f ( x2 ) 1 x2 2ln x2 0 ,即 a 2. x2 x1 x2
2 18 (1)20 件产品中恰有 2 件不合格品的概率为 f ( p) C2 20 p (1 p) . 因此 2 f ( p) C p ( 1 p1 8 ) 20 [ 2 2 1 p 8 (p 1 1 7 ) 2]0 2 p 2C p(117 ). p (1 1 0 )
所以 DP 与平面 ABFD 所成角的正弦值为
3 . 4
19.解: (1)由已知得 F (1,0) , l 的方程为 x 1 . 由已知可得,点 A 的坐标为 (1, 所以 AM 的方程为 y
2 2 ). ) 或 (1, 2 2
2 2 x 2或 y x 2 . 2 2
(2)当 l 与 x 轴重合时, OMA OMB 0 . 当 l 与 x 轴垂直时,OM 为 AB 的垂直平分线,所以 OMA OMB . 当 l 与 x 轴不重合也不垂直时, 设 l 的方程为 y k ( x 1) (k 0) , B( x2 , y2 ) , A( x1 , y1 ) , 则 x1 2 , x2 2 ,直线 MA ,MB 的斜率之和为 kMA kMB 由 y1 kx1 k , y2 kx2 k 得
令 f ( p) 0 ,得 p 0.1 . 当 p (0,0.1) 时, f ( p) 0 ;当 p (0.1,1) 时, f ( p) 0 . 所以 f ( p) 的最大值点为 p0 0.1 . (2)由(1)知, p 0.1 . (ⅰ)令 Y 表示余下的 180 件产品中的不合格品件数,依题意知 Y
2018年高考全国一卷理科数学答案及解析
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分. 1、设z=,则|z |=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z |=1【考点定位】复数2、已知集合A={x|x 2-x —2〉0},则A =A 、{x|—1<x 〈2}B 、{x|—1x 2}C 、{x|x 〈-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x —2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上.C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半. 【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、—12B、—10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0;d=—3 ∴a5=2+(5—1)*(—3)=—10【考点定位】等差数列求和5、设函数f(x)=x3+(a—1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(—x)=2*(a—1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、-—B、-—C、—+D、—【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处.∴最短路径的长度为AB=【考点定位】立体几何:圆柱体的展开图形,最短路径8。
2018年高考全国卷1理科数学(含答案)
2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)(2018•新课标Ⅰ)设z=+2i,则|z|=()A.0 B.C.1 D.2.(5分)(2018•新课标Ⅰ)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2} B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2} D.{x|x≤﹣1}∪{x|x≥2}3.(5分)(2018•新课标Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)(2018•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.125.(5分)(2018•新课标Ⅰ)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)(2018•新课标Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)(2018•新课标Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2 C.3 D.28.(5分)(2018•新课标Ⅰ)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5 B.6 C.7 D.89.(5分)(2018•新课标Ⅰ)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)(2018•新课标Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311.(5分)(2018•新课标Ⅰ)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2 D.412.(5分)(2018•新课标Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为() A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)
2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年高考全国一卷理科数学答案及解析
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
2018年高考数学全国卷Ⅰ+答案(理科)(精美版)
绝密★启封并使用完毕前试题类型:A2018年普通高等学校招生全国统一考试理科数学(Ⅰ)注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设,211i iiz ++-=则=|z | ( ) A. 0 B. 21C. 1D.22.已知集合}02|{2>--=x x x A ,则=A C R ( ) A.}21|{<<-x x B. }21|{≤≤-x xC. }2|{}1|{>-<x x x xD. 2}x |{x -1}x |{x ≥≤3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是: A. 新农村建设后,种植收入减少。
B. 新农村建设后,其他收入增加了一倍以上。
C. 新农村建设后,养殖收入增加了一倍。
D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
4.记n S 为等差数列}{n a 的前n 项和,若231423=+=a S S S ,,则=5a ( )A. -12B. -10C. 10D. 125.设函数ax x a x x f +-+=23)1()(若f(x)为奇函数,则曲线在点(0,0)处的切线方程为:( )A. y=-2xB. y=-xC. y=2xD. y=x6.在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,,则=EBA.AC AB 4143- B.AC AB 4341- C. AC AB 4143+ D. AC AB 4341+7.某圆柱的高为2,底面周长为16,其三视图如右图。
(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)
理科数学试题 第4页(共17页)
2018 年普通高等学校招生全国统一考试(全国卷Ⅰ) 理科数学试题答案(详细解析版)
一、选择题 1.【答案】C 【解析】分析:首先根据复数的运算法则,将其化简得到 正确结果.
,根据复数模的公式,得到
详解:因为
,
,从而选出
所以பைடு நூலகம்
,故选 C.
点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得
每件不合格品支付 25 元的赔偿费用. (ⅰ)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为
X,求 EX; (ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产
品作检验?
21.(12 分)
已知函数 f (x) 1 x a ln x . x
(1)讨论 f (x) 的单调性;
所以所求的最短路径的长度为
,故选 B.
点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两
个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平
面图形的相关特征求得结果.
8.【答案】D
【解析】分析:首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程
.
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必 考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
(一)必考题:共 60 分。 17.(12 分)
在平面四边形 ABCD 中, ADC 90 , A 45 , AB 2 , BD 5 . (1)求 cosADB ; (2)若 DC 2 2 ,求 BC .
2018年高考理科数学(全国I卷)试题及答案
2018年普通高等学校招生全国统一考试(全国一卷)理科数学及参考答案2 C.1D. 2-B.-C.+D.+2018 年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有 12 小题,每小题 5 分,共 60 分。
)1、设 z=,则∣z ∣=()A.0B.12、已知集合 A={x|x 2-x-2>0},则C R A =( )A 、{x|-1<x<2}B 、{x|-1≤x≤2}C 、{x|x<-1}∪{x|x>2}D 、{x|x≤-1}∪{x|x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是()A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记 S 为等差数列{a }的前 n 项和,若 3S =S +S ,a =2,则 a =()nn 3 2 4 1 5A 、-12B 、-10C 、10D 、125、设函数 f (x )=x³+(a-1)x²+ax .若 f (x )为奇函数,则曲线 y= f (x )在点(0,0)处的切线方程为()A.y= -2xB.y= -xC.y=2xD.y=x6、在 ABC 中,AD 为 BC 边上的中线,E 为 AD 的中点,则 =(EB)A.311331134 AB4 AC4 AB4 AC4 AB4 AC4 AB4 ACy0N2B.37、某圆柱的高为2,底面周长为16,其三视图如右图。
圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217B.25C.3D.28.设抛物线C:²=4x的焦点为F,过点(-2,)且斜率为2的直线与C交于M,两点,则·=()3FM FNA.5B.6C.7D.89.已知函数f(x)=g(x)=f(x)+x+a,若g(x)存在2个零点,则a的取值范围是()A.[-1,0)B.[0,+∞)C.[-1,+∞)D.[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。
2018年高考全国一卷理科数学答案及解析
1、设z= ,则|z|=
A、0
B、
C、1
D、
【答案】C
【解析】由题可得 ,所以|z|=1
【考点定位】复数
2、已知集合A={x|x2-x-2>0},则 A=
A、{x|-1<x<2}
B、{x|-1 x 2}
D.[1,+∞)
【答案】C
【解析】
根据题意:f(x)+x+a=0有两个解。令M(x)=-a,
N(x)=f(x)+x =
分段求导:N‘(x)=f(x)+x = 说明分段是增函数。考虑极限位置,图形如下:
M(x)=-a在区间(-∞,+1]上有2个交点。
∴a的取值范围是C.[-1,+∞)
【考点定位】分段函数、函数的导数、分离参数法
【解析】
S1=2a1+1=a1∴a1=-1
n>1时,Sn=2an+1,Sn-1=2an-1+1 两式相减:Sn-Sn-1= an=2an-2an-1∴an=2an-1
an=a1×2n-1= (-1)×2n-1
则下面结论中不正确的是:
A、新农村建设后,种植收入减少。
B、新农村建设后,其他收入增加了一倍以上。
C、新农村建设后,养殖收入增加了一倍。
D、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A
【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,
【考点定位】简单统计
M、N的坐标(1,2),(4,4)
则 · =(0,2)·(3,4)=0*3+2*4=8
2018年高考全国1卷理科数学试题与答案详细解析(word版_精校版)
15 / 17系,求得赔偿费用的期望;在解〔 ii 〕的时候,就通过比拟两个期望的大小,得到结果.解:〔 1〕 20 件产品中恰有2 件不合格品的概率为f ( p) C 202 p 2 (1 p)18.因此21 821 721 7). p( 1 1 0 )f ( p) C 2 0 [ 2p ( 1 p )1p 8 ( p1 ) 2]0 p2 C p( 1令 f ( p) 0 ,得 p 0.1 .当 p(0,0.1) 时, f ( p )0 ;当 p (0.1,1) 时, f ( p) 0 .所以 f ( p) 的最大值点为 p 00.1.〔 2〕由〔 1〕知,p0.1 .〔ⅰ〕令 Y 表示余下的 180 件产品中的不合格品件数,依题意知Y B(180,0.1) , X 20 2 25Y ,即 X 40 25Y .所以 EXE (40 25Y ) 40 25EY 490 .〔ⅱ〕如果对余下的产品作检验,那么这一箱产品所需要的检验费为 400 元.由于 EX400 ,故应该对余下的产品作检验.点睛:该题考察的是有关随机变量的问题,在解题的过程中,一是需要明确独立重复试验成功次数对应的概率公式,再者就是对其用函数的思想来研究,应用导数求得其最小值点,在做第二问的时候,需要明确离散型随机变量的可取值以及对应的概率,应用期望公式求得结果,再有就是通过期望的大小关系得到结论 .21.【解析】分析: (1)首先确定函数的定义域,之后对函数求导,之后对进展分类讨论,从而确定出导数在相应区间上的符号,从而求得函数对应的单调区间;(2) 根据存在两个极值点,结合第一问的结论,可以确定,令,得到两个极值点是方程的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果.解: 〔 1〕f ( x)的定义域为(0,) ,f ( x)12x〔ⅰ〕假设 a ≤ 2 ,那么 f ( x) ≤ 0 ,当且仅当 a 〔ⅱ〕假设 a 2 ,令 f ( x) a a20 得, x2aa 2 4 a a 2 4) 时,当 x (0,2) U (2,1 ax 2 axxx 22 , x 1 时 f( x)4a a 2或 x2f ( x)0 ;1.0 ,所以 f ( x) 在 (0,) 单调递减.4 .当 x(aa 24 , aa 24 ) 时, f ( x)0 . 所以 f ( x) 在 (0,aa 24 ) , (aa 2 4 , ) 单调递2222减,在 (a2, a2a 4 a 4 ) 单调递增.2 2〔 2〕由〔 1〕知,f ( x)存在两个极值点当且仅当a 2 .由于 f ( x) 的两个极值点2ax1 0 ,所以 x 1 x2 1 ,不妨设 x 1 x 2 ,那么 x 21 . 由于x 1, x 2满足 x理科数学试题第 15 页〔共 17 页〕系,求得赔偿费用的期望;在解〔 ii 〕的时候,就通过比拟两个期望的大小,得到结果.解:〔 1〕 20 件产品中恰有2 件不合格品的概率为f ( p) C 202 p 2 (1 p)18.因此21 821 721 7). p( 1 1 0 )f ( p) C 2 0 [ 2p ( 1 p )1p 8 ( p1 ) 2]0 p2 C p( 1令 f ( p) 0 ,得 p 0.1 .当 p(0,0.1) 时, f ( p )0 ;当 p (0.1,1) 时, f ( p) 0 .所以 f ( p) 的最大值点为 p 00.1.〔 2〕由〔 1〕知,p0.1 .〔ⅰ〕令 Y 表示余下的 180 件产品中的不合格品件数,依题意知Y B(180,0.1) , X 20 2 25Y ,即 X 40 25Y .所以 EXE (40 25Y ) 40 25EY 490 .〔ⅱ〕如果对余下的产品作检验,那么这一箱产品所需要的检验费为 400 元.由于 EX400 ,故应该对余下的产品作检验.点睛:该题考察的是有关随机变量的问题,在解题的过程中,一是需要明确独立重复试验成功次数对应的概率公式,再者就是对其用函数的思想来研究,应用导数求得其最小值点,在做第二问的时候,需要明确离散型随机变量的可取值以及对应的概率,应用期望公式求得结果,再有就是通过期望的大小关系得到结论 .21.【解析】分析: (1)首先确定函数的定义域,之后对函数求导,之后对进展分类讨论,从而确定出导数在相应区间上的符号,从而求得函数对应的单调区间;(2) 根据存在两个极值点,结合第一问的结论,可以确定,令,得到两个极值点是方程的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果.解: 〔 1〕f ( x)的定义域为(0,) ,f ( x)12x〔ⅰ〕假设 a ≤ 2 ,那么 f ( x) ≤ 0 ,当且仅当a〔ⅱ〕假设a 2 ,令 f ( x) a a20 得, x2aa 2 4 a a 2 4) 时, 当 x (0,2) U (2,1 a x2axxx 22 , x 1 时 f( x)4a a 2或 x2f ( x)0 ;1.0 ,所以 f ( x) 在 (0,) 单调递减.4 .当 x(aa 24 , aa 24 ) 时, f ( x)0 . 所以 f ( x) 在 (0,aa 24 ) , (aa 2 4 , ) 单调递2222减,在 (a2, a2a 4 a 4 ) 单调递增.2 2〔 2〕由〔 1〕知,f ( x)存在两个极值点当且仅当a 2 .由于 f ( x) 的两个极值点2ax1 0 ,所以 x 1 x2 1 ,不妨设 x 1 x 2 ,那么 x 21 . 由于x 1, x 2满足 x理科数学试题第 15 页〔共 17 页〕系,求得赔偿费用的期望;在解〔 ii 〕的时候,就通过比拟两个期望的大小,得到结果.解:〔 1〕 20 件产品中恰有2 件不合格品的概率为f ( p) C 202 p 2 (1 p)18.因此21 821 721 7). p( 1 1 0 )f ( p) C 2 0 [ 2p ( 1 p )1p 8 ( p1 ) 2]0 p2 C p( 1令 f ( p) 0 ,得 p 0.1 .当 p(0,0.1) 时, f ( p )0 ;当 p (0.1,1) 时, f ( p) 0 .所以 f ( p) 的最大值点为 p 00.1.〔 2〕由〔 1〕知,p0.1 .〔ⅰ〕令 Y 表示余下的 180 件产品中的不合格品件数,依题意知Y B(180,0.1) , X 20 2 25Y ,即 X 40 25Y .所以 EXE (40 25Y ) 40 25EY 490 .〔ⅱ〕如果对余下的产品作检验,那么这一箱产品所需要的检验费为 400 元.由于 EX400 ,故应该对余下的产品作检验.点睛:该题考察的是有关随机变量的问题,在解题的过程中,一是需要明确独立重复试验成功次数对应的概率公式,再者就是对其用函数的思想来研究,应用导数求得其最小值点,在做第二问的时候,需要明确离散型随机变量的可取值以及对应的概率,应用期望公式求得结果,再有就是通过期望的大小关系得到结论 .21.【解析】分析: (1)首先确定函数的定义域,之后对函数求导,之后对进展分类讨论,从而确定出导数在相应区间上的符号,从而求得函数对应的单调区间;(2) 根据存在两个极值点,结合第一问的结论,可以确定,令,得到两个极值点是方程的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果.解: 〔 1〕f ( x)的定义域为(0,) ,f ( x)12x〔ⅰ〕假设 a ≤ 2 ,那么 f ( x) ≤ 0 ,当且仅当a〔ⅱ〕假设a 2 ,令 f ( x) a a20 得, x2aa 2 4 a a 2 4) 时, 当 x (0,2) U (2,1 a x2axxx 22 , x 1 时 f( x)4a a 2或 x2f ( x)0 ;1.0 ,所以 f ( x) 在 (0,) 单调递减.4 .当 x(aa 24 , aa 24 ) 时, f ( x)0 . 所以 f ( x) 在 (0,aa 24 ) , (aa 2 4 , ) 单调递2222减,在 (a2, a2a 4 a 4 ) 单调递增.2 2〔 2〕由〔 1〕知,f ( x)存在两个极值点当且仅当a 2 .由于 f ( x) 的两个极值点2ax1 0 ,所以 x 1 x2 1 ,不妨设 x 1 x 2 ,那么 x 21 . 由于x 1, x 2满足 x理科数学试题第 15 页〔共 17 页〕。
2018年高考全国卷一理科数学(含答案)
2018年普通高等学校招生全国统一考试(新课标Ⅰ卷)一、选择题1.设,则()A.0 B.C.D.2.已知集合,则()A.B.C.D.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记为等差数列的前项和.若,,则()A.B.C.D.125.设函数.若为奇函数,则曲线在点处的切线方程为()A.B.C.D.6.在中,为边上的中线,为的中点,则()A.B.C.D.7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A.B.C.D.28.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则()A.5 B.6 C.7 D.89.已知函数,,若存在2个零点,则的取值范围是()A.B.C.D.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则()A.B.C.D.11.已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为,.若为直角三角形,则()A.B.3 C.D.412.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分)13.若满足约束条件,则的最大值为________.14.记为数列的前项和.若,则________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数,则的最小值是________.三、解答题(共70分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试理科数学注意事项:1 •答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2•回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑•如需改动,用橡 皮擦干净后,再选涂其它答案标号•回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3 •考试结束后,将本试卷和答题卡一并交回.题目要求的.)3•某地区经过一年的新农村建设,农村的经济收入增加了一倍•实现翻番•为更好地了解该地区农村则下面结论中不正确的是( )A •新农村建设后,种植收入减少B •新农村建设后,其他收入增加了一倍以上C ・新农村建设后,养殖收入增加了一倍D •新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半、选择题(本题共 12小题, 每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合1•设 z12i ,2•已知集合x|x 2 xC . x | xU x|xx|x w 1 U x|x >2的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例•得到如下饼图:10. 下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形 ABC 的斜边BC ,直角边AB , AC , △ ABC 的三边所 围成的区域记为I, 黑色部分记为H,其余部分记为川,在整个图形中 随机取一点,此点取自I, n,川的概率分别记为 小,p 2, p 3,则()A . P 1 P 2B . 口 P 3C . P 2 P 3D .211. 已知双曲线C : — y 2 1 , O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交3 点分别为M , N .若△ OMN 为直角三角形,则 MN | ( )A . 3B . 3C . 2 3D . 424 •记S n 为等差数列的前n 项和. 若3S 3S2S4, a 2,A .1210C . 10D . 125.设函数x 31 x 2ax .为奇函数,则曲线在点0, 0处的切线方程为2xC . y 2x6 .在△ ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则 uurEB3 uuu A . - AB4 3 uu u C .二 AB 41 uiir -AC 4 1 uuuAC 4 1 uuu B . - AB 4 1 uuu D . - AB 43 UULT3AC 43UHT-AC 4 7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 则在此圆柱侧面上, 从 M 到N 的路径中, 最短路径的长度为(A . 2 17 C .8.设抛物线 C :4x 的焦点为F ,过点luuu iuur FM FNC .9.已知函数fe x , x w 0 ln x , x 00,2且斜率为 的直线与C 交于M , N 两点,3x a ,若g x 存在2个零点,则a 的取值范围是(C . 1 ,D . 1,)12 •已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()32A. 12B.二C.434二、填空题(本题共4小题,每小题5分,共20分)x 2y 2w 013 .若x , y满足约束条件x y 1> 0 ,则z 3x2y的最大值为y w 014 •记S n为数列a n的前n项和•若S n 2a. 1,则15•从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有 _____________ 种.(用数字填写答案)16 .已知函数f x 2sin x sin 2x ,贝U f x的最小值是_____________三、解答题(共70分。
解答应写出文字说明、证明过程或演算步骤。
第考生17~21题为必考题,每个试题都必须作答。
第22、23题为选考题,考生根据要求作答。
)(一)必考题:共60分。
17. (12 分)在平面四边形ABCD 中,/ ADC 90,/ A 45 , AB 2 , BD 5 .⑴求cos/ ADB ;⑵若DC 2 2,求BC .18. (12 分)如图,四边形ABCD为正方形,E , F分别为AD , BC的中点,以DF为折痕把△ DFC折起,使点C到达点P的位置,且PF丄BF .⑴证明:平面PEF丄平面ABFD ;⑵求DP与平面ABFD所成角的正弦值.19. (12 分)2设椭圆C: - y2 1的右焦点为F,过F的直线l与C交于A , B两点,点M的坐标为2 , 02⑴当l与x轴垂直时,求直线AM的方程;⑵设O为坐标原点,证明: / OMA / OMB .20. (12 分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为p 0 p 1,且各件产品是否为不合格品相互独立.⑴记20件产品中恰有2件不合格品的概率为 f p,求f p的最大值点p0;⑵现对一箱产品检验了20件,结果恰有2件不合格品,以⑴中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX ;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?21. (12 分)已知函数f x - x alnx.x⑵讨论 f x的单调性;⑵若f x存在两个极值点x , x2,证明:------------- f X2 a 2 .石%(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22. [选修4—4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线G的方程为y k x 2 .以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为2 2 cos 3 0 .⑴求C2的直角坐标方程;⑵若G与C2有且仅有三个公共点,求G的方程.23. [选修4—5:不等式选讲](10分)已知 f x x 1 ax 1 .⑴当a 1时,求不等式f x 1的解集;⑵若x € 0,1时不等式f x x成立,求a的取值范围.响密*启用前2018年普通髙等学校招生全国统一寿试理科数学试题参考答案一、选揮融1. C 7・B 2, B 3. A 4 “5, h10. A 11. Ej& A12. A 乳D 9*C填空也1?.6 1 轧-63 5J62三、解答跑17.解主⑴在AMD中,由心弦定艸得-BD ABsin sin ZADH由聰陵蝴*」—二一.所且血厶二鱼.$in 45Q sin AADB5山題设Xlh 乙4DH<WP・所以cosdDB二(2)HiJS设及C1)蚓.cosZBDC^sinZJM^^-.在3CD中.由余弦宦理得SC1 - HD:+ DC1 ^2 BD DC cosZB£X?£—25 + K_2x5x 2x —-5=25*所以BC = 5.1&解:(!)由已知町帑*站丄FF , BF m所以£F丄平面FEF . 又RF u平而ABFD,所以平向PEF丄平面AHFD .一7 —p屛眾rug 整为坐标原点,丽的方问为F轴正方叫|"|为鮒怅建立如囲所示的空间M 坐标系幷―护由⑴可得・%"£.又DF"、DE = \、所以PE =后,乂户F = 1 n 2 .故FE丄尸F .可得阳EH」T2 2则"((X0.0},尸佩0「]}* 7?(- l t_ ^\0) i DP —^-) * HP 兰(。
血二"}'为平面ABFD法向量一. 3设D户与平面ABED所成角为疔,则讪斗竺■巴|洱出, 1 HP\\DP\ V3 出听以D严与平面ABFD斯城他的正弦値为¥419, 解:(1)由己知再円14" F的方程为x-1.由己知可彻.点昌的坐标为(h牛)或(L~—2 2所U1JAY的方理为y八学"或尸密-迈.仪〉当 f 与* 轴ZC»A«=zaws =(T・' ;fl当丿与工轴垂克时,UW为』R的番宜平分线*所Z.QMA = ZOMB .当J与工轴不重會也不垂宜时,设』的方程为『川0—1)仇#0"盘(殆川』(旳』)刚X1<72,耳<爲'直続皿・泗的劇率之和为丘般亠上匹=总+命.由比=比片*氐,.叫=耳—上得2心[斗3k(x} + x2) + 4kg 岡二「lx"—机代入斗得£⑴"* 1)*' -4k}x + 2A2 -2 -0.川2赋无-M口斗屯H嗣=飪上4也'4耻1+4* _0a…"”打"口乂“". MA t MB的愉斛轴互觐所以"血―少他.- * 三OA L4 = ZOVfl?20. 幕;<1>2°件血中血2件”脱的概率为/"*討(1-忙因此U)“.鞫/>"」・兰p藍似仇1)时./*(p)>oi ^pe(oj t h时・fw<o, 怖以八刃的it大值恵为-O.L峯才、"2、由(1)如p = O r L(:)令卩表示余下的1H0件产品中的彳、含格M件教.依魁童旬『宀用山0”0一1).A* =20X2+25K・ 33X^404 251, ”;川讥■略耳嘿以£Y =r<40 + 25r)=4(^25£r = 490门门如果对余F的产品作檢峻.则这-箱严品所需鉴的检強缎为4闪%由于nx>m,故应该对氽下的产品作杭脸" "’勺-'已21. 解:Q)/(幻的运义城为4虫)・/ lx)= -4 - I + - - - r ar Ll,x3K x lf i '若* W 2 •剤fgW 0 ・气 ftfl? ^\u-1, x =]时n.T)叭所以J{x]任(0・ y)单関逶减■1出&称fig(ii)若“2*令f3"得・匸-仟—2西 2 2%山0.匚驴心吐戸・T时・口小叭ji工仆“匚孑込叱辱m叭八小。
・所以几o在⑴山三,2 2 2 巴庇Mt单调谨减理-吁\些疼三為调堪肃2 2 z—9 —⑵宙(I)知.存在两牛扱值点出a仅当由于朋的两个概值点.川足宀祗"不如則n由于‘』侶卜5斗、1 . . hlJi-lMJ£__2x^—X|*-2 + gqp^ 1- ■! ——I + G --- ■ —£ T «I码一也斗七旳一可曲―七---帀濟口迪也辺于丄勺4小<叭123. 解;~2b X -I("当时,+ 即= 2x -|<x<1'd故T^A/(r)>l 的解棄为(2)当*(<N)时”1|-|皿-1|"戚立等价于当时g71门成北若aWQ’ 则当x€(OJ)EFt|ar-H^H ”若<7 > 0 »| fix —11< I的解卑为0"€亠所以二刁1*故Os茎2,口42综上,也的取值范困为(Q2]- …' 31。