自控第二章答案

合集下载

自动控制原理习题及其解答 第二章

自动控制原理习题及其解答 第二章

自动控制原理习题及其解答第一章(略) 第二章例2-1 弹簧,阻尼器串并联系统如图2-1示,系统为无质量模型,试建立系统的运动方程。

解:(1) 设输入为y r ,输出为y 0。

弹簧与阻尼器并联平行移动。

(2) 列写原始方程式,由于无质量按受力平衡方程,各处任何时刻,均满足∑=0F ,则对于A 点有021=-+K K f F F F其中,F f 为阻尼摩擦力,F K 1,F K 2为弹性恢复力。

(3) 写中间变量关系式220110)()(y K F Y Y K F dty y d f F K r K r f =-=-⋅=(4) 消中间变量得 020110y K y K y K dtdy f dt dy f r r=-+- (5) 化标准形 r r Ky dtdyT y dt dy T +=+00 其中:215K K T +=为时间常数,单位[秒]。

211K K K K +=为传递函数,无量纲。

例2-2 已知单摆系统的运动如图2-2示。

(1) 写出运动方程式 (2) 求取线性化方程 解:(1)设输入外作用力为零,输出为摆角θ ,摆球质量为m 。

(2)由牛顿定律写原始方程。

h mg dtd l m --=θθsin )(22其中,l 为摆长,l θ 为运动弧长,h 为空气阻力。

(3)写中间变量关系式)(dtd lh θα= 式中,α为空气阻力系数dtd l θ为运动线速度。

(4)消中间变量得运动方程式0s i n 22=++θθθmg dt d al dtd ml (2-1) 此方程为二阶非线性齐次方程。

(5)线性化由前可知,在θ =0的附近,非线性函数sin θ ≈θ ,故代入式(2-1)可得线性化方程为022=++θθθmg dt d al dtd ml 例2-3 已知机械旋转系统如图2-3所示,试列出系统运动方程。

解:(1)设输入量作用力矩M f ,输出为旋转角速度ω 。

(2)列写运动方程式f M f dtd J+-=ωω式中, f ω为阻尼力矩,其大小与转速成正比。

自动控制原理课后习题答案第二章

自动控制原理课后习题答案第二章

第 二 章2-3试证明图2-5(a)的电网络与(b)的机械系统有相同的数学模型。

分析 首先需要对两个不同的系统分别求解各自的微分表达式,然后两者进行对比,找出两者之间系数的对应关系。

对于电网络,在求微分方程时,关键就是将元件利用复阻抗表示,然后利用电压、电阻和电流之间的关系推导系统的传递函数,然后变换成微分方程的形式,对于机械系统,关键就是系统的力学分析,然后利用牛顿定律列出系统的方程,最后联立求微分方程。

证明:(a)根据复阻抗概念可得:2221212112212211212112212122111()1()111oiR u C s R R C C s R C R C R C s R u R R C C s R C R C R C C sR C s R C s+++++==+++++++即220012121122121212112222()()i i o id u du d u duR R C C R C R C R C u R R C C R C R C u dt dt dt dt++++=+++取A 、B 两点进行受力分析,可得:o 112()()()i o i o dx dx dx dx f K x x f dt dt dt dt -+-=- o 22()dx dxf K x dt dt -= 整理可得:2212111221121212211222()()o o i i o id x dx d x dx f f f K f K f K K K x f f f K f K K K x dt dt dt dt ++++=+++经比较可以看出,电网络(a )和机械系统(b )两者参数的相似关系为1112221211,,,K f R K f R C C2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指出各方程式的模态。

(1) ;)()(2t t x t x =+(2))。

自动控制原理C作业(第二章)答案

自动控制原理C作业(第二章)答案

4 3
0.1
图 3-1 二阶控制系统的单位阶跃响应
解 在单位阶跃作用下响应的稳态值为 3,故此系统的增益不是 1,而是 3。系统模型为
(s)
s2
3
2 n
2n s
2 n
然后由响应的 p % 、 t p 及相应公式,即可换算出 、 n 。
p%
c(t p ) c() c()
4
3
3
33%
t p 0.1(s)
P1 G1G2
1 1
P2 G2G4
2 1
因此,传递函数为
C(s) P11 P2 2
R(s)
G2G1 G4G2 1 G1G2G3
3
自动控制原理 C 习题答案(第二章)
2.4 用梅森公式求系统传递函数。
R(S)

_
+ G1(s)
- _
G2(s)
+ C(S)
+
图 2-4 解: 单独回路 5 个,即
L1
1 R
1 C1S
1 R1C1S
11
1
L2
R2
C2S
R2C2 S
L3
1 C1S
1 R2
1 R2C1S
回路相互不接触的情况只有 L1 和 L2 两个回路。则
L12
L1L2
1 R1C1R2C2S 2
由上式可写出特征式为:
1
( L1
L2
L3 )
L1 L2
1
1 R1C1S
1 R2C2 S
1 R2C1S
1 R1C1R2C2S 2
益 K1 和速度反馈系数 Kt 。同时,确定在此 K1 和 Kt 数值下系统的延迟时间、上升时间和调节时间。

自动控制原理第二章习题答案详解

自动控制原理第二章习题答案详解

习题习题2-1 列写如图所示系统的微分方程习题2-1附图习题2-2 试建立如图所示有源RC网络的动态方程习题2-2附图习题2-3 求如图所示电路的传递函数, 并指明有哪些典型环节组成(a)(b)(c)习题2-3附图习题2-4 简化如图所示方块图, 并求出系统传递函数习题2-4附图习题2-5 绘制如下方块图的等效信号流图, 并求传递函数图(a)图(b)习题2-5附图习题2-6 系统微分方程组如下, 试建立对应信号流图, 并求传递函数。

),(d )(d )(),(d )(d ),()()()(),()(),(d )(d )(),()()(54435553422311121t y tt y T t x k t x k tt x t y k t x t x t x t x k t x t x k tt x t x t y t r t x +==--==+=-=τ习题2-7 利用梅逊公式直接求传递函数。

习题2-7附图习题2-8 求如图所示闭环传递函数, 并求(b)中)(s H x 的表达式, 使其与(a)等效。

图(a )图(b)习题2-8附图习题2-9 求如下各图的传递函数(a)(b)(c)习题2-9附图习题2-10 已知某些系统信号流图如图所示, 求对应方块图(a )(b)(c)(d)习题2-10附图习题答案习题2-1答案:解:设外加转矩M 为输入量,转角θ为输出量,转动惯量J 代表惯性负载,根据牛顿定律可得:θθθ1122d d d d k t f M tJ --=式中,1,1,k f 分别为粘性阻尼系数和扭转弹性系数,整理得:M k t f tJ =++θθθ1122d d d d习题2-2答案:解: 设r u 为输入量,c u 为输出量,,,,21i i i 为中间变量,根据运算放大器原理可得:1221d d R u i R u i t u c i r c c ===消去中间变量可得: r c c u R Ru t u C R 122d d -=+ 习题2-3答案: 解: (a)11111111221212211121121120++=+++=+++=+++=Ts Ts s R R R C R s C R R sC R sC R sC sC R R sC R u u i β其中:221121,R R R C R T +==β, 一阶微分环节,惯性环节.(b)21121212111221122011//1R R s C R R R s C R R R sC R R R sC R R u u i+++=++=+= 11111111212121221121111++=+∙++∙+=+++=Ts Ts s C R R R R s C R R R R R R s C R R s C R αα其中 α=+=21211,R R R T C R , 一阶微分环节,惯性环节.(c)s C R s C R s C R s C R s C R sC R R sC sC R u u i 21221122112211220)1)(1()1)(1(1//11+++++=+++= 由微分环节,二阶振荡环节组成。

《自动控制原理》---丁红主编---第二章习题答案

《自动控制原理》---丁红主编---第二章习题答案

2-1(1)a.微分方程(2)a.线性定常2-2.方框、信号线、综合点、引出点2-3.变换变量关系保持不变。

2-4. 222222121)(nn n s s s T s T s G ωζωωζ++=++= 2-5. 输入信号)t (r 和输出信号)t (c 及其各阶导数在0t =时的值均为零。

2-6解:取分离体分析受力如图3-1-3所示。

依据牛顿定律可得()()()22)(dt t y d m a m t f t f t f K B =⋅=-- (1) 式中 K f ── 弹簧力;()t f B ── 阻尼力。

弹簧力与物体位移成正比,即)(t y K f K ⋅= (2)式中 K ── 弹簧刚度阻尼力与运动速度成正比,与运动方向相反,即()dtt dy B f B = (3) 式中 B ── 阻尼系数将式(2)和(3)代入(1)中,可得该系统的微分方程式:()()()()t f t Ky dt t dy B dt t y d m =++22 (4) 若令 K B T B =──时间常数;Km T m =──时间常数。

则(4)式可写成: ()()()()()t f K t f K t y dt t dy T dt t y d T a B m==++1222 式中 KK a 1=2-7. 解:(a );;;(b )2-8.543432143221432)1()()()(K K K K K K K s K K K s K s K K K s R s C +++++=τττ 2-9. (a ) 2423241321121413211)()(H G H G G G G G G G H G G G G G G G s R s C ++++++= (b ) HG G G G G G s R s C 2132211)()(++= 2-10. 22121211)()(H G H G G G G s R s C -+= 221212121)()(H G H G G G G G G s N s C c -+-=2-11.4232121213211)()(G H G G H G H G G G G G s R s C ++++= 2-12.(a ) bhdifjdifj bhfj bhdi bcdefk fj di bh abcdefg s R s C -++++++-=)()(1)()( (b ) 3431324321343136543211)1()()(H G G H G H G G G G H G G H G G G G G G G s R s C ++++++= 2-13解:前向通道:3211G G G P =, 412G G P =; 回路增益:1211H G G L -=, 2322H G G L -=,243H G L -=, 3214G G G L -=,415G G L -=;特征式:41321242321211G G G G G H G H G G H G G +++++=∆,11=∆,12=∆; 4132124232121413211)(G G G G G H G H G G H G G G G G G G s ++++++=Φ 2-14 解:前向通道:3211G G G P =,342G G P =;回路增益:213211H H G G G L -=,112H G L -=,233H G L -=,互不接触回路L2和L3特征式:2131112321321H H G G H G H G H H G G G 1++++=∆,11=∆,112H G 1+=∆;21311123213211143321H H G G H G H G H H G G G 1)H G 1(G G G G G )s (++++++=Φ2-15解:先将系统结构图化简为如下形式回路增益:33211H G G G L -=,222H G L -=,113H G L -=,特征式:112233211H G H G H G G G +++=∆ C(s)/R(s):前向通道:3211G G G P =,11=∆, M(s)/N(s): 前向通道:22G P =,12=∆ E(s)/R(s): 前向通道:13=P ,112231H G H G ++=∆ 112233213211H G H G H G G G G G G )s (C R +++=Φ 1122332121H G H G H G G G G )s (N M +++=Φ 11223321112211H G H G H G G G H G H G )s (ER +++++=Φ。

自动控制理论第二章习题答案

自动控制理论第二章习题答案

− u0 R
+ 2C1
d (ui − u0 ) dt
= C2
du0 dt

C1C2
R
d 2uC1 dt 2
即: ui R
− u0 R
+ 2C1
dui dt
− 2C1
du0 dt
= C2
du0 dt

C1C2
R
d 2ui dt 2
+
C1C2
R
d 2u0 dt 2
整理得:
C1C2
R
d 2u0 dt 2
+
胡寿松自动控制原理习题解答第二章
2—1 设水位自动控制系统的原理方案如图 1—18 所示,其中 Q1 为水箱的进水流量, Q2 为水箱的用水流量, H 为水箱中实际水面高度。假定水箱横截面积为 F,希望水面高度 为 H 0 ,与 H 0 对应的水流量为 Q0 ,试列出
水箱的微分方程。
解 当 Q1 = Q2 = Q0 时,H = H 0 ;当 Q1 ≠ Q2 时,水面高度 H 将发生变化,其变化率与流量差 Q1 − Q2 成
y
=
f
(
x0
)
+

df (x) dx

x0
(
x

x0
)
即 F − F0 = K1 ( y − y0 )
其中 K1
=

dF dy

y=
y0
=
12.65
×
1.1y
0.1 0
= 13.915 ×1.1y00.1
2-8 设晶闸管三相桥式全控整流电路的输入量为控制角,输出量为空载整流电压,它们之间的关系为:

第2章-自动控制原理习题答案

第2章-自动控制原理习题答案

习题2-1 试证明图2-1(a)的电网络与(b)的机械系统有相同的数学模型。

1C 1f 1(a)电网络(b)机械系统图2-1解:对于电网络系统有:电路中的总电流:dtu u d C R u u i o i o i )(11-+-=对o u :)()()(1211121222o i o i o i o i to u u C C R t u u C dt u u d C R R u u R idt C i R u -+-+-+-=+=⎰综上得:dtdu C R u R tC C C R R dt du C R u R t C C C R R i i o o 1211211212112112)()1(+++=++++对机械系统:并联部分受力:dtx x d f x x k F )()(211211-+-= 对串联部分的位移:)()()()(21212121212121212x x f f t x x f k dt x x d k f x x k k x -+-+-+-=整理得:dtdx k f x f f t f k k k dt dx k f x f f t f k k k 12122121212211212121)()1(+++=++++所以,两系统具有相同的数学模型2-5求图2-2中RC 电路和运算放大器的传递函数c ()/()i U s U s 。

1R1R(a) RC 电路 (b) RC 电路1R(c) RC 电路 (d) 运算放大器图2-2解:21212)()()R sCR R R R s u s u a r c ++=οο1)()()()()()()3122112322121121211231212112++++++++=S R C R C R C S R R C C R R C C SR C R C S R R C C R R C C s u s u b rc οο2121212)()()()R R S CR CR R R CS R s u s u c r c +++=οο21212112)()()()S LCR R R S CR R LR R LS s u s u d r c ++++=οο2-6求图2-3所示系统的传递函数C(s)/D(s)和E(s)/D(s)。

自控原理习题解答(第二章)

自控原理习题解答(第二章)

s0
1;B
s(s
T
1 T
)

(s

1 T
)
s-
1
1
T


x(t)

L-1 x (s)

L1
1

s


s
1 1
T


1
t
eT
[答2 (3 1)3)] : Tx (t) x(t) t 1(t);Tsx(s) x(s) 1 s2
1
x(s) 1 T A A1 A 2
s2 (Ts 1) s2 (s 1 ) s 1 s2 s
T
T
1

1

A




s
2
T (s
1 T
)

(s

1 T

s- 1
T;A1




s
2
T (s
1 T
)

s2
s0

R 2C1C2s

C1
(R1 R 2 )C1C2s C2 C1 (R1 R 2 )C1C2s C2 C1
R 2C1C2 s
C1

C2 C1

C2 C1
K dTds K
(R1 R 2 )C1C2s 1 (R1 R 2 )C1C2s 1 Tds 1 Ts 1
C2 C1
C2 C1
为实际微分环节 惯性环节
• 2-5设控制系统的方框图如图2-63所示,试用框 图简化的方法求系统的传递函数Y(s)/X(s)。

自动控制原理第2章课后习题及解答

自动控制原理第2章课后习题及解答

+
1 C2R2
uc
=
du
2 r
dt 2
+
2 CR
dur dt
+
1 C2R2
ur
(c) 由图解 2-2(c)可写出
Ur (= s) R1 [I1(s) + I2 (s)] + (Ls + R2 )I2 (s) (6)
1 Cs
I1
(s)
=
(Ls
+
R2
)I2
(s)
(7)
U c (s) = R2 I 2 (s)
第 2 章习题及解答
2-1 建立图 2-32 所示各机械系统的微分方程(其中 F (t) 为外力,x(t) 、y(t) 为位移; k 为弹性系数, f 为阻尼系数, m 为质量;忽略重力影响及滑块与地面的摩擦)。
图 2-32 系统原理图
解. (a)以平衡状态为基点,对质块 m 进行受力分析(不再
考虑重力影响),如图解 2-1(a)所示。根据牛顿定理可写出
2
2
X (s=)
e−s s2
(s
+
1) 2

e−3s s2
(2s
+
1) 2
(c) x(t) = a + (b − a)(t − t1 ) − (b − c)(t − t2 ) − c(t − t3 ) X (s) = 1 [a + (b − a)e−t1s − (b − c)e−t2s − ce−t3s ] s
k1k 2
k1 k2 k1
图解 2-3(a)
(b) 由图可写出
Uc (s) =
Ur (s)
R2

自动控制原理第二版课后答案第二章精选全文完整版

自动控制原理第二版课后答案第二章精选全文完整版

x kx ,简记为
y kx 。
若非线性函数有两个自变量,如 z f (x, y) ,则在
平衡点处可展成(忽略高次项)
f
f
z xv
|( x0 , y0 )
x y |(x0 , y0 )
y
经过上述线性化后,就把非线性关系变成了线性 关系,从而使问题大大简化。但对于如图(d)所示的 强非线性,只能采用第七章的非线性理论来分析。对于 线性系统,可采用叠加原理来分析系统。
Eb (s) Kbsm (s)
Js2 m(s) Mm fsm(s)
c
(s)
1
i
m
(s)
45
系统各元部件的动态结构图
传递函数是在零初始条件下建立的,因此,它只 是系统的零状态模型,有一定的局限性,但它有现 实意义,而且容易实现。
26
三、典型元器件的传递函数
1. 电位器
1 2
max
E
Θs
U s
K
U
K E
max
27
2. 电位器电桥
1
2
E
K1p1
K1 p 2
U
Θ 1
s
Θ
K1 p
Θ 2
s
U s
28
3.齿轮
传动比 i N2 N1
G2(s)
两个或两个以上的方框,具有同一个输入信号,并 以各方框输出信号的代数和作为输出信号,这种形
式的连接称为并联连接。
41
3. 反馈连接
R(s)

C(s) G(s)
H(s)
一个方框的输出信号输入到另一个方框后,得 到的输出再返回到这个方框的输入端,构成输 入信号的一部分。这种连接形式称为反馈连接。

自动控制原理第2章 习题及解析

自动控制原理第2章 习题及解析

第二章 习题解析2-4 当系统处于零初始条件下时,给系统输入单位阶跃响应信号,其输出响应为2()1t t y t e e --=-+试求该系统的传递函数。

参考解答:2111421()()21(2)(1)s s Y s R s s s s s s s s++=-+==++++ 22()42()()32Y s s s G s R s s s ++==++2-5 某可控硅整流器的输出电压d 2cos U KU αΦ=式中,K 为常数;2U Φ为整流变压器副边相电压有效值;α为可控硅的控制角。

设α在0α附近作微小变化,试将d U 与α的关系式线性化。

参考解答:将非线性微分方程d 2cos U KU αΦ=进行线性化,即在平衡点α0 附近将其展为泰勒级数取一次近似,线性化后用变量增量的线性方程ΔU d = C Δα 代替原来的非线性方程,式中常数2020sin sin dd dU C KU U KU d ααααααΦΦ===-→∆=-∆略去增加量符号“Δ”,上式可简写为20sin d U KU ααΦ=- 2-6 试求图2-70所示电路的传递函数()/()y r U s U s 。

参考解答:图 a)可作出该无源电路的动态结构图(图a-1)亦可作成图(图a-2)所示由结构图等效变换可求得传递函数212()11()()11c r U s R Cs bTs U s R R Cs Ts ++==+++式中21212(),1R T R R C b R R =+=<+ ,该网络称为滞后网络。

图 b)由图(b )网络可作出其动态结构图(b-1),简化为(b-2)即可得传递函数:112221122112212()(1)(1)()()1y r U s R C s R C s U s R C R C s R C R C R C s ++=++++该网络称为滞后-超前网络(滞后-超前电路)。

2-7 试求图2-71所示有源电路的传递函数y r ()/()U s U s 。

自动控制原理课后习题答案第二章

自动控制原理课后习题答案第二章

第二章2-3试证明图2-5( a )的电网络与(b)的机械系统有相同的数学模型。

分析首先需要对两个不同的系统分别求解各自的微分表达式,然后两者进行对比,找岀两者之间系数的对应关系。

对于电网络,在求微分方程时,关键就是将元件利用复阻抗表示,然后利用电压、电阻和电流之间的关系推导系统的传递函数,然后变换成微分方程的形式,对于机械系统,关键就是系统的力学分析,然后利用牛顿定律列岀系统的方程,最后联立求微分方程。

证明:(a)根据复阻抗概念可得:即取A、B两点进行受力分析,可得:整理可得:经比较可以看岀,电网络( a)和机械系统(b)两者参数的相似关系为2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指岀各方程式的模态。

(1)(2 )2-7由运算放大器组成的控制系统模拟电路如图2-6所示,试求闭环传递函数U c ( s )/Ur ( s)。

图2-6 控制系统模拟电路解:由图可得联立上式消去中间变量U1和U2,可得:2-8某位置随动系统原理方块图如图2-7所示。

已知电位器最大工作角度,功率放大级放大系数为K3,要求:(1) 分别求岀电位器传递系数K 0、第一级和第二级放大器的比例系数 K 1和K 2;(2) 画岀系统结构图; (3) 简化结构图,求系统传递函数。

图2-7 位置随动系统原理图(2)假设电动机时间常数为 Tm 忽略电枢电感的影响,可得直流电动机的传递函数为 式中Km 为电动机的传递系数,单位为。

又设测速发电机的斜率为,则其传递函数为由此可画岀系统的结构图如下:(3)简化后可得系统的传递函数为2-9若某系统在阶跃输入 r(t)=1(t) 时,零初始条件下的输岀 响应,试求系统的传递函数 和脉冲响应。

分析:利用拉普拉斯变换将输入和输出的时间域表示变成频域表示,进而求解出系统的传递函数,然后对传递函数进行反变换求岀系统的脉冲响应函数。

解:(1),则系统的传递函数 (2)系统的脉冲响应2-10试简化图2-9中的系统结构图,并求传递函数 C(s)/R(s ) 和C(s)/N(s) 分析:分别假定R(s)=o 和N(s)=O ,画出各自的结构图,然后对系统结构图进行等效变换, 将其化成最简单的形式,从而求解系统的传递函数。

自控原理习题答案(第2版)

自控原理习题答案(第2版)

自控原理习题答案(第2版)第1章习题答案1-1 解:自动控制系统:被控对象和控制装置的总体;被控对象:要求实现自动控制的机器、设备和生产过程;扰动:除给定值之外,引起被控制量变化的各种外界因素;给定值:作用于控制系统输入端,并作为控制依据的物理量;反馈:将输出量直接或间接的送到输入端,并与之相比较,使系统按其差值进行调节,使偏差减小或消除。

1-2 解:开环控制有洗衣机的洗衣过程,闭环控制有抽水马桶的蓄水控制、电冰箱制冷系统等。

1-3 解:1-4 解:a与d相连,b与c相连即可;系统原理框图如下所示:1-5 解:系统原理框图如下所示:1-6 解:对控制系统的基本要求是稳定性、准确性和快速性:稳定性是系统正常工作的前提条件;准确性反映控制系统的控制精度,要求过渡过程结束后,系统的稳态误差越小越好;快速性是要求系统的响应速度快,过渡过程时间短,超调量小。

1-7 解:该系统的任务是使工作机械(被控对象)的转角θc(被控量)自动跟踪手柄给定角度θr(给定量)的变化。

该系统的工作原理是:检测电位计与给定电位计的电气特性相同,工作机械的转角θc经检测电位计转换成电压uc,手柄给定角度θr经给定电位计转换成给定电压ur,uc与ur接入放大器前端的电桥。

当工作机械转角θc没有跟踪手柄给定角度θr时,uc与ur两者不相等而产生偏差Δu=ur-uc,Δu经过放大器放大,使电动机转动,通过减速器使得负载产生减小偏差的转动。

当检测电位计检测并转换的uc 与ur相等,此时Δu=ur-uc=0,电动机不转,工作机械停在当前位置。

其原理框图如下图所示。

11-8 解:谷物湿度控制系统原理框图如下。

该系统的被控量是谷物湿度,给定量是希望的谷物湿度。

谷物加湿后的实时湿度经湿度检测后送到调节器,若与希望的湿度产生偏差,则通过调节器控制给水阀门的开大或关小,以减小两者的偏差。

谷物在入口端的湿度由前馈通道输入到调节器。

这样若入口处谷物湿度较大,则会使得偏差减小,从而减小阀门的开度;若谷物干燥,会增大偏差,从而加大阀门的开度。

自动控制原理答案(第二章)

自动控制原理答案(第二章)

第二章 控制系统的数学模型2-2 试求图示两极RC 网络的传递函数U c (S )/U r (S )。

该网络是否等效于两个RC 网络的串联?()r U s ()c U s R +-+-()a 11c s21c sR ()r U s ()c U s R +-+-()a 11c s21c sR 1()U s --1()U s解答:221221221212111222222121221.1111112211111()111()1()111()()1()111()()()()()11(),,1()1()1()()()c r c c c r r r R C S C S R u s C S C S C S a u s R R C C S R C R C R C S R R C S C S C SR R C S C S u s u s u s u s C S u s b u s R C S u s R C S u s u s u s R C S+++=∙=+++++++++====⨯=+++11221111R C S R C S ⨯++2121211221()1R R C C S R C R C S =+++ 故所给网络与两个RC 网络的串联不等效。

2-4 某可控硅整流器的输出电压U d =KU 2Φcos α式中K 为常数,U 2Φ为整流变压器副边相电压有效值,α为可控硅的控制角,设在α在α0附近作微小变化,试将U d 与α的线性化。

解答:.202002020cos (sin )()...sin sin )d u ku ku ku ku φφφφαααααααα=--+∆=-⋅∆=-d d 线性化方程:u 即u (2-9系统的微分方程组为12112323223()()()()()()()()()()()()x t r t c t dx t T K t x t dtx t x t K c t dc t T c t K x t dt =-=-=-+=式中1T 、2T 、1K 、2K 、3K 均为正的常数,系统地输入量为()r t ,输出量为()c t ,试画出动态结构图,并求出传递函数()()C s R s 。

胡寿松自控习题答案 第二章习题解答

胡寿松自控习题答案 第二章习题解答
Z 2 = R2 + 1 1 (R2 C 2 s + 1) = 1 (T2 s + 1) = C2 s C2 s C2 s
1 (T2 s + 1) U 0 ( s) Z2 C2 s (T1 s + 1)(T2 s + 1) = = = 所以: R1 1 U i ( s) Z1 + Z 2 R1C 2 s + (T1 s + 1)(T2 s + 1) + (T2 s + 1) T1 s + 1 C 2 s
即 F − F0 = K 1 ( y − y 0 )
其中 K 1 = = 12.65 × 1.1y 0 dy y= y
0
dF
0.1
0.1 = 13.915 × 1.1y 0
2-8 设晶闸管三相桥式全控整流电路的输入量为控制角,输出量为空载整流电压,它们之间的关系为:
ed = E d 0 cos α
xi (0) = x0 (0) = 0
则系统传递函数为
X 0 (s) fs + K 1 = X i ( s ) fs + ( K 1 + K 2 )
2-3 试证明图2-58(a)的电网络与(b)的机械系统有相同的数学模型。
2
胡寿松自动控制原理习题解答第二章
图 2-58
电网络与机械系统
1 C1 s R1 R1 1 解:(a):利用运算阻抗法得: Z 1 = R1 // = = = 1 C1 s R1C1 s + 1 T1 s + 1 R1 + C1 s R1
& (t ) + x(t ) = t ; (1) 2 x
解:对上式两边去拉氏变换得: (2s+1)X(s)=1/s2→ X ( s ) =

推荐-自动控制原理课后答案第二章 控制系统的数学模型 精品 精品

推荐-自动控制原理课后答案第二章 控制系统的数学模型 精品 精品
传递函数为
2-2-5用运算放大器组成的有源电网络如题2-2-5图所示,试采用复阻抗法写出它们的传递函数。
【解】:利用理想运算放大器及其复阻抗的特性求解。
2-2-6系统方框图如题2-2-6图所示,试简化方框图,并求出它们的传递函数 。
【解】:
(1)
(2)
(3)
(4)
(b)
(1)
(2)
(3)
(4)
(c)
(1)
(2)
(3)
(4)
(d)
(1)
(2)
(3)
(4)
2-2-7系统方框图如题2-2-7图所示,试用梅逊公式求出它们的传递函数 。
【解】:(a)
(1)该图有一个回路
(2)该图有三条前向通路
所有前向通路均与 回路相接触,故 。
(3)系统的传递函数为
(b)
(1)为简化计算,先求局部传递函数 。该局部没有回路,即 ,
【解】:取静态工作点 ,将函数在静态工作点附近展开成泰勒级数,并近似取前两项
设 (R为流动阻力),并简化增量方程为
2-2-4系统的微分方程组为:
式中 均为正的常数,系统的输入为 ,输出为 ,试画出动态结构图,并求出传递函数 。
【解】:对微分方程组进行零初始条件下的Laplace变换得:
绘制方框图
题2-2-4图
(1)求传递函数 和 ;(2)若要求消除干扰对输出的影响,求
【解】:(1)根据梅森增益公式得
(2)根据题意
2-2-10某复合控制系统的结构图如图所示,试求系统的传递函数 。
题2-2-10图
【解】:根据梅森增益公式得:
2-2-11系统微分方程如下:
试求系统的传递函数 及 。其中r,n为输入,c为输出。 均为常数。

自动控制原理第2章习题解

自动控制原理第2章习题解

习 题 22-1 试证明图2-77(a )所示电气网络与图2 77(b )所示的机械系统具有相同的微分方程。

图2-77习题2—1图证明:首先看题2-1图中(a )()()()s U s U s U C R R -=()()()()s U Cs R s CsU s U R s I R R R R ⎪⎭⎫⎝⎛+=+=11 ()()s I s C R s U C ⎪⎪⎭⎫⎝⎛+=221()()()[]s U s U s C R s C R s U C R C -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+=112211 ()()s U s C R s C R s U s C R s C R R C ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+1122112211111 ()()()()()()s U R s C R s C s C R s U R s C R s C s C R R C11122211122211111+⨯+=⎥⎦⎤⎢⎣⎡++⨯+2—2试分别写出图2-78中各有源网络的微分方程。

图2-78 习题2-2图解: (a )()()()t u R t u R dt t du Co r r 211-=+ (b )()()()⎥⎦⎤⎢⎣⎡+-=t u R dt t du C t u R r o 2o 111(c)()()()⎥⎦⎤⎢⎣⎡+-=t u dt t du C R t u R r c c 211 2—3某弹簧的力一位移特性曲线如图2—79所示。

在仅存在小扰动的情况下,当工作点分别为x 0=-1.2,0,2.5时,试求弹簧在工作点附近的弹性系数。

解:由题中强调“仅存在小扰动"可知,这是一道非线性曲线线性化处理的问题。

于是有,在x 0=—1.2,0,2。

5这三个点处对弹簧特性曲线做切线,切线的导数或斜率分别为:1)()()35.5625.2805.175.040402.1==----=-=x dx df2)20020400=--==x dx df 3)65.2155.0320355.2==--==x dx df2- 4图2—80是一个转速控制系统,其中电压u 为输入量,负载转速ω为输出量。

自动控制原理课后答案,第二章(西南科技大学)

自动控制原理课后答案,第二章(西南科技大学)
I ( s)
i
ur
i2
C
R2
uc
R2
(a)
Uc(s)
I1 ( s)
I(s)
(b)
I1 ( s)
R1Cs
(c)
I2(s) Ur(s)
I2(s)
(- ) Uc(s) (e)
1 R1
I1 ( s)
Ur(s) (- )
1 R1
I1 ( s)
R1Cs
I2 ( s) I( s)
R2
Uc(s)
方法二
U c ( s) R2 I ( s) U1 ( s ) 1 R1Cs I ( s) U1 ( s ) R1 / Cs R1 R1 1/ Cs U1 ( s ) U r ( s ) U c ( s )
微分方程为:
2 2 2
i1 C
d uC (t ) duC (t ) dur (t ) 2 2 d ur (t ) RC 3RC uC (t ) R C 2RC ur (t ) 2 2 dt dt dt dt
2
(d) 解:列微分方程组得
i1 C i2 R R ic C
(d)
1 ur (t ) uc (t ) i1dt C ur (t ) uc (t ) (i2 i1 ) R
-H2
G1G2G3 G1G4 1 G1G2 H1 G1G2G3 G2G3 H 2 G1G4 G4 H 2
2-12 考虑如图所示的结构图,试求出传递函数。
H2 R ㈠
① ㈡ (-) ㈢ C
G1
(-)
G2 H1 G4
dy(t ) d y (t ) F (t ) ky(t ) f m dt dt2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y(t)=1+e-t-2e-2t 试求该系统的传递函数,和零极点的分布并画出在S平面 上的分布图。
B2.12解: 因为在r(t)=1(t)下系统的输出y(t)=1+e-t-2e-2t
对上式求拉氏变换
R(s) 1 s
11 2
3s+2
Y(s)
s
s1 s2
s3
+ 3 s2
+2s
3s+2
j
G(s)
s3
H1
RE
G1
-
G5
D
Y
- G1
- G2
G3
G4
H2
H3
H1 G2
G1
RE
-
G5
D(s)
Y
- G1
-
G2
G3
G4
H2
H3

G5
RE
1
Y
- G1
- 1 G1G 2H1
G2 G3
G4
H2
H3
G5
G 2G 3
RE - G1
1
- 1 G1G 2H1
G2 G3
H2
Y G4
H3
RE - G1
1
- 1 G1G 2H1
+ 3 s2 1
+2s
s2
3s+2 +3s +
2
s 3 (s + 0.6667)
(s + 2) (s + 1)
-2 -1 0
B2.15 已知控制系统的结构图如图B2.15所示,试应用结 构图等效变换法求各系统的传递函数。
B2.15解:
R(s)
Y(s)
G1(s)
G2(s)
G2(s) H(s)
R(s) G1(s) G2(s)
P1 G1G 2G 3G4G5G6 , 1 1,
P2 G7G 3G4G5G6 ,
2 1
P3 G1G8G6 ,
3 1 G4H2,
P4 G7H1G8G6 ,
4 1 G4H2
C(s) / R(s) G1G2G3G4G5G6 G7G3G4G5G6
(G1G8G6 G7H1G8G6 )(1 G4H2 )
s1
s
s (s 1.755)(s2 0.2451s 0.5698)
由比例、理想微分 惯性、振荡构成。
B2.9(3)解 :
es
es
G(s) s2 10s 5 (s + 9.472)(s + 0.5279)
比 例 、 两 个 惯 性 、 延 迟环 节 构 成 。
B2.12 已知控制系统在零初始条件下,由单位阶跃输入 信号所产生的输出响应为
L4 G3G4G5H4 ,
L5 G1G 2G 3G4G5G6H5 ,
L6 G7G3G4G5G6H5 ,
L7 G1G 8G 6H5
L8 G8H1H4,
L9 G7H1G8G6H5 ,
1 G 2H1 G4H2 G6H3 G 3G4G5H4 G1G 2G 3G4G5G6H5 G7G 3G4G5G6H5 G1G8G6H5 G8H1H4 G7H1G8G6H5 G 2H1G4H2 G 2H1G6H3 G4H2G6H3 G4H2G8H1H4 G7H1G8G6H5G4H2 G1G8G6H5G4H2 G 2H1G4H2G6H3
1 C2s
)
Uc2
U c1 (s) U1 (s)
R1R 2C1C2s2
C1R1s 1 (R1C2 R2C2
C1R1 )s 1
Uc1(s)
C1R1s 1
U1(s) R1R2C1C2s2 (R1C2 R2C2 C1R1 )s 1
R1R2C1C2uc1 (R1C2 R2C2 C1R1 )uc1 uc1 C1R1u1 u1
T1T2u2 (T1 T2 R1C2 )u2 u2 T1T2u1 (T1 T2 )u1 u1
uc

2








的复




U1
(s)
U1
(s)(
(R2
1 C1s
1)
C1s
1 R1
1
R
2
1 C2s
R1
)
Uc2
U1(s)(1
(R
2
C1s
1
1 R1
)
1 C1s
1 R1
R2
B2.8 设系统的微分方程为
试用拉氏变换法进行求解。
B2.8解 : 进行拉氏变换
s2Y(s)- (sy(0) y(0)) 5sY(s)- 5y(0) 6Y(s) 6 s
代入初值整理
Y(s)
2s2 12s 6 s3 5s2 6s
部分分式展开 Y(s) 4 5 1
s3 s2 s
y(t) 4e3t 5e2t 1 , t 0
G2 G3
H2
G5 G 2G 3
G4
Y
H3
RE - G1
1
- 1 G1G 2H1
G2 G3
H2
G5 G 2G 3
G4
Y
H3
RE - G1
G 2G 3
1 G1G 2H1
1
G 2G 3 1 G1G 2H1
B2.18 已知控制系统的结构图,如图B2.18所示。要求:(1) 分别应用结构图等效变换法和梅森公式求各闭环系统的传递 函数Y(s)/R(s)和E(s)/R(s);(2)欲使图B2.18(a)系统的输 出Y(s)不受扰动D(s)的影响,试问其条件是什么?
B2.18解: 求各闭环系统的传递函数Y(s)/R(s)和E(s)/R(s)
Y(s)
HG2(s)
G(s) G1 G2 1 HG 2
B2.17 求图B2.17所示闭环控制系统的传递函数Φ(s)=Y(s)/R(s) 和Φe(s)=E(s)/R(s)。
B2.17 解 : 由 梅 森 公 式:
T
1
n
pkk
k 1
,这 里n
4
L1 G2H1,
L2 G4H2 ,
L3 G6H3 ,
B2.9 已知控制系统的微分方程(或微分方程组)为
式中r(t)为输入量,y(t)为输出量,z1(t)、z2(t)和z3(t) 为中间变量,τ、β、K1和K2均为常数。
(a)各系统的传递函数Y(s)/R(s);(b)各系统含 有哪些典型环节?
B2.9(2)解 :
G(s)
s2
1 2s 1
1
s3
s 2s2
第二章 部分习题及解答
B2.2 求下列函数的拉氏反变换:
(
4
)
F
(
s
)
(
s
1
s )2(
s
2
)
(4)解 :
F(s)
(s
s 1)2 (s
2)
1 (s 1)2
s
2 1
s
2 2
f (t) tet 2et 2e2t
t0
B2.4 在图B2.4所示的电路中电压u1(t)为输入量,试以电 压u2(t)或uC2(t)作为输出量,分别列写该系统的微分方程。
B2.4解 :
u

2








的复




U2(s)
U1 (s)
R1
1 C1s
R1
1 C1s
R2
1 C2s
(R2
1) C2s
图B2.4 电路原理图
[T1T2s2 (T1 T2 )s 1]U1(s) T1T2s2 (T1 T2 R1C2 )s 1
其中:T1 R1C1, T2 R2C2
相关文档
最新文档