数的整除知识点
数的整除知识点范文
数的整除知识点范文数的整除是数学中一个重要的概念和知识点,它在数论、代数、几何等领域都有广泛的应用。
本文将详细讨论数的整除的定义、性质、判定方法以及一些常见的相关概念和定理。
一、整除的定义和性质在数学中,如果一个整数a能够被另一个整数b整除(即a能够被b整除),则称a是b的倍数,b是a的约数。
用数学符号表示为:如果a是b的倍数,则记作b,a,读作“b整除a”或“a能被b整除”。
如果a不能被b整除,则记作b∤a,读作“b不整除a”或“a不能被b整除”。
整除具有以下几个基本的性质:1.对于任意整数a,a,a(即一个数能够整除它自身)。
2.如果a,b且b,c,则a,c(即如果a能够整除b,b能够整除c,那么a可以整除c)。
3.对于任意整数a,1,a且a,a(即1能够整除任何数,任何数整除它本身)。
4.如果a,b且b≠0,则,a,≤,b,(即如果一个数能够整除另一个非零数,那么它的绝对值要小于等于另一个数的绝对值)。
二、整除的判定方法和性质1.朴素整除判定法:要判断一个数a是否能够被另一个数b整除,可以用以下方法:(1)求出a的所有约数;(2)判断b是否为a的约数之一这种方法的时间复杂度是O(a)。
2.整除的性质:(1)如果a,b且a,c,则a,(bx+cy),其中x和y是任意整数。
(2)如果a,b且a,c,则a,(b±c)。
(3)如果a,b且a,(b±c),则a,c。
三、相关概念和定理1. 最大公约数和最小公倍数:最大公约数是指整数a和b的最大正约数,记作gcd(a, b);最小公倍数是指整数a和b的最小正倍数,记作lcm(a, b)。
两者满足以下性质:(1)gcd(a, b) = gcd(b, a);(2)如果a能够整除b,则gcd(a, b) = ,a;(3)gcd(a, b) * lcm(a, b) = ,a * b。
2.质因数分解定理:每个大于1的整数都可以唯一地分解为若干个质数的乘积。
第二讲 数的整除
数的整除【知识点回顾】数的整除特征:1、能被9整出的书的特征:各个数位数字之和是9的倍数。
2、能被8(或125)整除的数的特征:末三位能被8(或125)整除。
3、能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
4、能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)能被11整除。
5、能被7(或11或13)整除的数的特征:这个整数的末三位与末三位之前的数字所组成的数的差(大减小)能被7、(或11或13)整除。
【例题讲解】例1 在□处填入适当的数字使四位数24□1是3的倍数。
□处有几种不同的填法?思路分析:要想使24□1是3的倍数,就要满足各数字之和是3的倍数。
2+4+1=7,7加上几是3的倍数呢?7+2=9,7+5=12,7+8=15. 解:□里可以填2,5,8. 这个四位数是2421,2451,2481. 所以有3种填法。
例2 最高位上的数字是1,并且能同时被2,3,5整除的最小四位数是多少?思路分析:能同时被2,5整除,个位数字只能是0,为使这四位数最小,百位数字取0,进而由3的倍数特征知十位数字为2,5,8,从而最小数字1020.解:最小四位数是1020.例3 在□内填上适当的数字,使六位数43217□能被4或25整除。
思路分析:43217□的个位数字不知是几,不妨记作x,那么43217□=432100+70+x。
而432100能被4和25整除,所以,只要70+x能被4或25整除,这个六位数就能被4或25整除。
70+ x要能被4整除,x只能是2或6。
70+x要能被25整除,x只能是5.解:所以432172和432176能被4整除,432175能被25整除。
例4 四位数3AA1能被9整除,求A。
思路分析:四位数3AA1要是9的倍数,它的各个数位之和就必须是9的倍数,3+A+A+1的和可能是9或18.当3+A+A+1=9时,A=2.5. 2.5不是自然数,不符合题目要求。
整除知识点总结与练习
整除知识点总结与练习一、整除的定义整除是指对于两个整数a和b,如果a能够被b整除,即a除以b的结果是一个整数,则称a能够被b整除,记作b|a。
其中a称为被除数,b称为除数,整数的除法结果称为商。
例如,6÷3=2,6除以3的结果是2,因此6能够被3整除,即3|6。
整除的定义表明了整除的两个基本特点:1. 整数a能够被整数b整除的定义是a÷b的结果是一个整数。
2. 整除的概念是具有传递性的,即如果a能够被b整除,b能够被c整除,则a能够被c整除。
二、整除的判定在计算整除时,通常需要用到整除的判定方法。
整除的判定方法主要有以下几种:1. 除法判定法:即直接计算被除数除以除数的结果是否为整数。
2. 因数判定法:利用被除数和除数的因数来判断整除关系。
3. 余数判定法:如果a能够被b整除,那么a÷b的余数为0。
4. 分解质因数判定法:将被除数和除数分解质因数,如果被除数分解后能够完全包含除数分解质因数的情况,那么a能够被b整除。
下面通过一些实例来说明整除的判定方法:例1:判断24能否被6整除?方法一:除法判定法,直接计算24÷6=4,结果为整数,因此24能够被6整除。
方法二:因数判定法,24的因数包括1、2、3、4、6、8、12,其中6是24的因数,因此24能够被6整除。
方法三:余数判定法,24÷6=4余0,余数为0,因此24能够被6整除。
方法四:分解质因数判定法,24=2³×3,6=2×3,24的分解质因数包含6的分解质因数,因此24能够被6整除。
综上所述,24能够被6整除。
例2:判断35能否被5整除?方法一:除法判定法,35÷5=7,结果为整数,因此35能够被5整除。
方法二:因数判定法,35的因数包括1、5、7、35,其中5是35的因数,因此35能够被5整除。
方法三:余数判定法,35÷5=7余0,余数为0,因此35能够被5整除。
数的整除知识点总结
数的整除知识点总结数的整除是数论中的一个基本概念,也是初等数学中的重要内容。
它与因数、倍数和约数等概念密切相关,对于解题和推理都有着重要的作用。
下面将对数的整除进行详细总结。
一、定义:如果整数a能够被整数b整除,即a/b是整数,那么称a是b的倍数,b是a的因数。
可以用数学表达式a=b*k来表示,其中k是整数。
二、性质:1.任何一个整数都是它自身的倍数,也是它自身的因数,即a是a的倍数,a是a的因数。
2.任何一个正整数都是1的倍数,即对于任何整数a,都有a是1的倍数。
3.任何一个整数都是它自身的因数,即对于任何整数a,都有a是a的因数。
4.如果a是b的倍数,b是c的倍数,那么a也是c的倍数,即若a是b的倍数且b是c的倍数,则a是c的倍数。
5.如果a是b的倍数,b是a的倍数,那么a和b是互为倍数,即a是b的倍数且b是a的倍数,则a和b互为倍数。
6.如果a是b的因数,b是c的因数,那么a也是c的因数,即若a是b的因数且b是c的因数,则a是c的因数。
三、判断一个数能否整除另一个数的方法:1.因式分解法:将被除数和除数都分解成质因数的乘积形式,然后进行比较。
如果被除数的质因数包含除数的质因数,并且对应质因数的指数均大于等于相应的质因数的指数,则被除数能够整除除数。
2.试商法:用除数去除被除数,如果商是整数且余数为0,则被除数能够整除除数,否则不能整除。
四、整除的性质:1.整除关系具有传递性,即如果a能够整除b,b能够整除c,则a 能够整除c。
2.整除关系具有反对称性,即如果a能够整除b,b能够整除a,则a 和b相等或互为相反数。
3.整除关系具有自反性,即任何一个数都能整除它本身。
4.整除关系具有非传递性,即如果a能够整除b,b能够整除c,但a 不能整除c。
例如:2能整除4,4能整除8,但2不能整除8五、整数的混合运算与整除的关系:1.若a整除b,b整除c,则a整除c。
2. 若a整除b,b整除c,则a整除bc。
小学数学知识点汇总:数的整除(最新)
小学数学知识点汇总:数的整除数的整除整除的意义整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)除尽的意义甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。
因数和倍数1、如果整数a乘整数b整除等于整数C,a和 b就是C的因数,C就是a和b的倍数。
(a.b.c都为非0整数)2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
3、一个数的倍数的.个数是无限的,其中最小的是它本身,它没有最大的倍数。
奇数和偶数1、能被2整除的数叫偶数。
例如:0、2、4、6、8、10……注:0也是偶数2、不能被2整除的数叫奇数。
例如:1、3、5、7、9……整除的特征1、能被2整除的数的特征:个位上是0、2、4、6、8。
2、能被5整除的数的特征:个位上是0或5。
3、能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3 整除。
质数和合数1、一个数只有1和它本身两个约数,这个数叫做质数(素数)。
2、一个数除了1和它本身外,还有别的约数,这个数叫做合数。
3、1和0既不是质数,也不是合数。
4、自然数按约数的个数可分为:质数、合数 .0和15、自然数按能否被2整除分为:奇数、偶数分解质因数1、每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。
例如:18=3×3×2,3和2叫做18的质因数。
2、把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数。
通常用短除法来分解质因数。
3、几个数公有的因数叫做这几个数的公因数。
其中最大的一个叫这几个数的最大公因数。
公因数只有1的两个数,叫做互质数。
几个数公有的倍数叫做这几个数的公倍数。
其中最大的一个叫这几个数的最大公倍数。
4、特殊情况下几个数的最大公因数和最小公倍数。
数的整除知识要点
第一章:数的整除基本知识:(1)零和正整数统称为自然数。
最小的自然数为0,最小的正整数为1。
(2)正整数、零和负整数,统称为整数。
(3)整除的条件:1、被除数、除数都是整数。
2、商是整数而且没有余数。
a÷b若整除,则有两种表述方法:a能被b整除, b能整除a(4)一个数的因数的个数是有限的。
最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的。
最小的倍数是它本身,没有最大的倍数。
a÷b若整除,则a是b的倍数,b是a的因数。
相互依存,不能说成a是倍数、b是因数。
(5)能被2整除的整数,个位上数字为0、2、4、6、8。
能被5整除的整数,个位上数字为0、5。
能被3整除的整数,各个数位上数字之和能被3整除。
(6)一个整数能被2整除为偶数,不能被2整除为奇数。
(7)奇+奇=偶偶+偶=偶奇+偶=奇奇⨯奇=奇偶⨯偶=偶奇⨯偶=偶(8)相邻的两个整数相差1。
相邻的两个奇数相差2。
相邻的两个偶数相差2。
(9)只含有因数1和本身的整数叫做素数或质数。
除了1和它本身之外还有别的因数,这样的数叫做合数。
1既不是素数也不是合数。
(10)整数按奇偶可以分为奇数和偶数这两类。
整数按因数个数可以分为素数、1、合数这三类。
(11)100以内的素数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
(12)51=3×17,91=7×13 57=19×3 68=17×4(13)2是唯一的偶素数。
最小的素数是2,最小的合数是4。
(14)几个整数公有的因数,叫做它们的公因数,其中最大的一个叫做它们的最大公因数。
几个整数的公有的倍数叫做他们的公倍数,其中最小的一个叫做它们的最小公倍数。
(15)如果两个整数只有公因数1,那么称这两个数互素。
(16)求两个整数的最大公因数:把所有公有的素因数连乘。
数的整除性-初中数学知识点
1 / 1 数的整除性
1 .数的整除性
所谓整除,就是一个整数被另一个整数除尽,其数学定义如下.
定义:设,a b 是整数,0b ≠ .如果有一个整数q ,是的a bq = ,那么称a 能被b 整除,或称b 整除a ,并记作/b a ,如果不存在这样的整数q ,使得a bq = ,则称a 不能被b 整除,或称b 不整除a . 关于整数的整除,有如下一些基本性质:
性质1 若/,/b a c d ,则/c a ,
性质2 若/c a ,/c b ,则()/c a b ± ,
性质3 若/,c a c 不整除b ,则c 不整除()a b ± ,
性质4 若/,/b a d c ,则/bd ac ,
性质5 若a b c -+ ,且/,/m a m b ,则/m c ,
性质6 若/,/b a c a ,则[],/b c a (此处[],b c 为b ,c 的最小公倍数).特别地,当[],1b c = 时,/bc a , 性质7 若/c ab ,且[],1c a = ,则/c b ,特别地,若p 是质数,且/p ab ,则/p a 或/p b , 性质8 若a b ≠ ,n 是自然数,则()()/n n a b a b --,
性质9 若a b ≠-,n 是正偶数,则()()/n n a b a b +-,
性质10 若a b ≠-,n 是正奇数,则()()/+n n a b a b +.
证明整除的基本方法
(1 )利用基本性质法;
(2 )分解因式法;
(3 )按模分类法;
(4 )反证法.。
数的整除知识点总结数的整除知识整理
数的整除知识点总结数的整除知识整理数的整除知识点总结如下:1. 除数和被除数:一个数被另一个数整除时,被除数称为整数,除数称为除数。
2. 整除关系:如果一个数a能被另一个数b整除,即a ÷ b = c,则称a能被b整除,或者说b能整除a,记作b|a。
3. 余数:当一个数a被另一个数b整除时,如果除完后还有剩余部分,即a ÷ b = c 余 r(0 ≤ r < |b|),则r称为数a除以b的余数。
4. 因数:对于一个数a,如果存在一个数b,使得b能整除a,即a = b × c,则称b 是a的因数,c是a的倍数。
a的因数包括1和a本身。
5.倍数:对于一个数a,如果存在一个数b,使得a能整除b,即b = a × c,则称b 是a的倍数,c是a的因数。
a的倍数包括0和任意正负整数。
6.公约数:对于两个数a和b,如果存在一个数c,既能整除a又能整除b,即c|a 且c|b,则称c是a和b的公约数。
7.最大公约数:对于两个数a和b的公约数中,最大的一个公约数称为a和b的最大公约数,记作gcd(a, b)。
8.最小公倍数:对于两个数a和b的公倍数中,最小的一个公倍数称为a和b的最小公倍数,记作lcm(a, b)。
9.质数:一个大于1的自然数,除了1和它本身外,无法被其他自然数整除的数称为质数。
质数只有两个因数,即1和该数本身。
10.合数:一个自然数,除了1和它本身外,还有其他因数的数称为合数。
合数有多个因数。
11.互质:两个数的最大公约数为1时,称这两个数互质。
12.互质数性质:互质数的乘积等于它们的最小公倍数。
13.素数分解:将一个合数分解成质数的乘积的过程,这个过程叫做素数分解。
这些是数的整除的基本知识点。
数的整除知识点总结
一. 数的分类第一种分法 : 树状图 韦恩图整数第二种分法 整数第三种分法: 正整数一些关于数的结论:是最小的自然数,-1是最大的负整数,1是最小的正整数2.没有最大的整数,没有最小的负整数,没有最大的正整数3.正整数、负整数、整数的个数都是无限的二.整除1.整除定义概念:整数a 除以整数b,如果除得的商是整数而余数为零,我们就说a 能被b 整除;或者说b 能整除a注意点:一定要看清楚谁被谁整除或谁整除谁,这里的a相当于被除数,b 相当于除数2.整除的条件:1.除数、被除数都是整数2.被除数除以除数,商是整数而且余数为零注意点:区分整除与除尽:整除是特殊的除尽如正方形是特殊的长方形一样,即a 能被b 整除,则a 一定能被b 除尽,反之则不一定即a 能被b 除尽,则a 不一定能被b 整除;如4÷2=2, 4既能被2除尽,也能被2整除;4÷5=, 4能被5除尽,却不能说4能被5整除三.因数与倍数1.因数与倍数的定义:整数a能被整数b整除,a 就叫做b的倍数,b就叫做a的因数约数;注意点:1.因数和倍数是相互依存的,不能简单的说某个数是因数,某个数是倍数;如:6÷3=2,不能说6是倍数,3是因数;要说6是3的倍数,3是6的因数;2.因数与倍数是建立在整除的基础上的,所以如4÷=20,一般是不说4是的倍数,是4的因数;2.因数与倍数的特点:一个整数的因数中最小的因数是1,最大的因数是它本身;一个数的倍数中最小的倍数是这个数本身,没有最大的倍数;因数的个数是有限的,都能一一列举出来,倍数的个数是无限的;3.求一个数因数的方法:利用积与因数的关系一对一对找,找出哪两个数的乘积等于这个数,那么这两个数就是这个数的因数;如16=1×16=2×8=4×4,那么16的因数就有1、2、4、8、16,计算时一定不要忘了1和这个数本身都是它的因数,注意按照一定的顺序以防遗漏;4.求一个数倍数的方法:这个数本身分别乘以1、2、3、4、5……即正整数得到的积就是这个数的倍数;若用n表示所有的正整数,则2的倍数可表示为2n, 5的倍数可表示为5n四.能被2、5、3整除的数的特点1.能被2整除的数即2的倍数个位上的数字是0、2、4、6、8,反之,个位上的数字是0、2、4、6、8的数也能被2整除2.能被5整除的数即5的倍数个位上的数字是0、5,反之,个位上的数字是0、5的数都能被5整除3.能被3整除的数即3的倍数各个位数上的数字之和是3的倍数,反之,各个位数上的数字之和是3的倍数的数都能被3整除4.能被2、5同时整除的数的个位数字都是0,个位数字为0的数也能被10整除,能被10整除的数一定能被2或5其中的一个或两个同时整除;五.奇数、偶数1.奇数与偶数的定义:能被2整除的整数叫做偶数,不能被2整除的整数叫做奇数;按照能否被2整除来划分奇数与偶数2.奇数个位数上的数的特点:1、3、5、7、9偶数个位数上的数的特点:0、2、4、6、83.在连续的正整数中除1外,与奇数相邻的两个数是偶数,与偶数相邻的两个数是奇数4.相邻的奇数或偶数数字相差2,奇数可用2n-1或2n+1表示,偶数可用2n表示;5.奇数与偶数加法和乘法的运算特点奇数+奇数=偶数偶数+偶数=偶数奇数+偶数=奇数奇数×奇数=奇数偶数×偶数=偶数奇数×偶数=偶数利用此结论可检验一些运算是否正确,同时也要注意结论的逆向运用,如偶数奇数可拆成哪些奇数或偶数的和、积六.素数、合数1.素数与合数定义:一个正整数如果只有1和它本身两个因数,这样的数叫做素数质数,如果除了1和它本身以外还有别的因数,这样的数叫做合数;注意点:1.素数与合数的分类方法是根据它们因数的个数来分的,素数只有2个因数1和本身,合数至少有三个因数;任何一个数除1外都有1和它本身两个因数;2. 1既不是素数也不是合数;3.最小的素数是2,最小的合数是42.素数与奇数的联系和区别奇数不一定都是素数;√1既不是素数也不是合数,9、15等是奇数但是合数所有素数都是奇数; ×2是素数,但2是偶数3.合数与偶数的联系与区别合数不一定都是偶数;√9、15等都是合数,但它们是奇数偶数都是合数; ×2是偶数但2是素数注意:判断题对的要说明原因,错的要举出反例;七.素因数与分解素因数1.素因数与分解素因数的定义:每个合数都可以写成几个素数相乘的形式,其中每个素数都是这个合数的因数,叫做这个合数的素因数;把一个合数用素因数相乘的形式表示出来,叫做分解素因数;注意:1.求一个数的素因数时,先把这个数分解素因数,有几个素因数就写几个;如24=2×2×2×3,则素因数是2、2、2、3,而不是2、32.因数与素因数的区别:因数可以是素数或合数,素因数一定是素数;一个数的素因数一定是这个数的因数,因数的个数一定比素因数的个数多;2.分解素因数的方法树枝分解法:过程中注意不要漏写乘号,分解要彻底,直到没有合数出现,也不能出现1.要分解的合数写在等号左边,把它的素因数用相乘的形式写在等号右边,再把这几个素因数按从小到大的顺序排列;短除法:1.先用一个能整除这个合数的素数去除通常从最小的开始,偶数肯定先用2除,奇数一般从3开始一个个带入验算2.得出的商如果是合数,再按照上面的方法继续除下去,直到得出的商是素数为止;3.然后把各个除数和最后的商按从小到大的顺序写成连乘的形式;3.由一个数分解素因数求这个数的因数12=2×2×3,素因数是2、2、3,除1外由单个的素因数组成因数有2、3,由两个素因数组成的因数有2×2=4,2×3=6,由三个素因数组成的因数有2×2×3=12,所以12的因数有1、2、3、4、6、12.4. 由一个数分解素因数求这个数因数的个数1所有素因数都相同时,因数的个数是它素因数的个数+1,如8=2×2×2,素因数是2、2、2,则8的因数的个数是它素因数的个数+1,即4个2素因数不完全相同时,因数的个数是每个素因数个数+1后相乘的积,如12=2×2×3,素因数2的个数是2,素因数3的个数是1,则12的因数的个数是2+1×1+1=6八.公因数与最大公因数1.公因数与最大公因数定义:几个数公有的因数,叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数.2.互素定义:如果两个整数只有公因数1,那么称这两个数互素;如8和9注意:互素是两个数之间,素数是指一个数,互素的两个数的最大公因数就是1.两个互素的数未必都是素数; √8和9互素,但8和9都是合数两个不同的素数一定互素. √若缺少“不同的”,则错,因为3和3都是素数但不互素3. 求两个数最大公因数的方法:1 一般方法:写出两个数所有的因数,再找出它们共同的最大的因数2 分解素因数的方法:把这两个数分解素因数,再找出相同的素因数,把它们所有的公有的素因数相乘,所得的积就是它们的最大公因数;3 短除法:先用这两个数公有的素因数去除一般从最小的素因数开始,得出的商如果是合数,再按照上面的方法继续除下去,直到两个数互素为止,这两个数的最大公因数就是左侧的除数的乘积. 类比用短除法分解素因数的方法4. 两个整数中,如果某个数是另一个数的因数,那么这个数就是这两个数的最大公因数;如果这两个数互素,那么它们的最大公因数就是1.九.公倍数和最小公倍数1.公倍数与最小公倍数定义:几个整数公有的倍数叫做它们的公倍数,其中最小的一个叫做它们的最小公倍数.2.求两个数最小公倍数的方法:1一般方法:从小到大分别依次写出几个这两个数的倍数,再找出它们共同的最小的倍数2分解素因数的方法: 把这两个数分解素因数,再找出相同的素因数,再取各自剩余的素因数,将这些数连乘所得的积,就是这两个数的最小公倍数.3短除法: 先用这两个数公有的素因数去除一般从最小的素因数开始,得出的商如果是合数,再按照上面的方法继续除下去,直到两个数互素为止,这两个数的最小公倍数就是左侧的除数与底部商的乘积.注意点:1.用短除法求两个数的最大公因数和最小公倍数时,过程都相同,只是最后写结论时注意需要乘哪些数.2.求两个数的最大公因数和最小公倍数,先判断这两个数是否存在因数倍数关系或互素关系,存在因数倍数关系时,最大公因数就是较小的那个数,最小公倍数就是较大的那个数;两数互素时,最大公因数就是1,最小公倍数就是它们的乘积.3.两个整数的公倍数一定能被这两个数整除.十.求三个整数的最大公因数和最小公倍数拓展1求三个整数的最大公因数:同样也是三种方法,只需找出三个数共同的因数,最大的因数就是最大公因数.注意与三个数的最小公倍数区分2求三个整数的最小公倍数:一般方法:写出三个数的倍数,再找出最小公倍数.分解素因数法:分别分解素因数,先找出三个数共同的素因数,再找出每两个数公有的素因数,再取各自剩余的素因数,把这些素因数连乘所得的积就是这三个数的最小公倍数.短除法:先用三个数公有的素因数去除直到三个数没有公有的素因数,再用其中两个数公有的素因数去除,直到除得的三个商两两互素为止即三对互素数。
数的整除知识点
数的整除知识点数的整除问题,容丰富,思维技巧性强。
它是小学数学中的重要课题,也是小学数学竞赛命题的容之一。
数的整除1.整除——因数和倍数例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。
记作b|a.如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a 的因数。
例如:在上面算式中,15是3的倍数,3是15的因数;63是7的倍数,7是63的因数。
2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c 整除。
即:如果c|a,c|b,那么c|(a±b)。
例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。
性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。
性质3:如果b、c都能整除a,且b和c互质,那么b与c 的积能整除a。
即:如果b|a,c|a,且(b,c)=1,那么bc|a。
例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。
性质4:如果c能整除b,b能整除a,那么c能整除a。
即:如果c|b,b|a,那么c|a。
例如:如果3|9,9|27,那么3|27。
3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。
②能被5整除的数的特征:个位是0或5。
③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。
④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
例如:1864=1800+64,因为100是4与25的倍数,所以1800是4与25的倍数.又因为4|64,所以1864能被4整除.但因为2564,所以1864不能被25整除.⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。
数的整除知识点整理
数的整除知识点整理
一、基本概念和符号:
1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
2、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∴”;
二、整除判断方法:
1.能被2、5整除:末位上的数字能被2、5整除。
2.能被4、25整除:末两位的数字所组成的数能被4、25整除。
3.能被8、125整除:末三位的数字所组成的数能被8、125整除。
4.能被3、9整除:各个数位上数字的和能被3、9整除。
5.能被7整除:
①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。
②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。
6.能被11整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。
②奇数位上的数字和与偶数位数的数字和的差能被11整除。
③逐次去掉最后一位数字并减去末位数字后能被11整除。
7.能被13整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。
②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。
三、整除的性质:
1.如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。
2.如果a能被b整除,c是整数,那么a乘以c也能被b整除。
3.如果a能被b整除,b又能被c整除,那么a也能被c整除。
4.如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。
数的整除知识点总结
数的整除知识点总结一、整除的概念。
1. 定义。
- 在整数除法中,如果商是整数而没有余数,我们就说被除数能被除数整除,或者说除数能整除被除数。
例如,15÷3 = 5,我们就说15能被3整除,或者说3能整除15。
2. 整除的表示方法。
- 若整数a除以非零整数b,商为整数,且余数为零,我们就说a能被b整除(或说b能整除a),记作ba。
二、数的整除特征。
1. 能被2整除的数的特征。
- 个位数字是0、2、4、6、8的整数能被2整除。
例如12、34、560等都能被2整除。
2. 能被3整除的数的特征。
- 一个数各位数字之和能被3整除,这个数就能被3整除。
例如123,各位数字之和为1 + 2+3 = 6,6能被3整除,所以123能被3整除。
3. 能被5整除的数的特征。
- 个位数字是0或5的整数能被5整除。
如10、15、205等都能被5整除。
4. 能被9整除的数的特征。
- 一个数各位数字之和能被9整除,这个数就能被9整除。
例如279,各位数字之和为2+7 + 9=18,18能被9整除,所以279能被9整除。
5. 能被11整除的数的特征。
- 把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么原来这个数就一定能被11整除。
例如132,奇位数字之和为1+2 = 3,偶位数字是3,它们的差为0,0是11的倍数,所以132能被11整除。
三、整除的性质。
1. 传递性。
- 如果ab且bc,那么ac。
例如,如果3能整除6,6能整除18,那么3能整除18。
2. 可加性。
- 如果ab且ac,那么a(b + c)。
例如,5能整除10,5能整除15,那么5能整除10 + 15=25。
3. 可减性。
- 如果ab且ac,那么a(b - c)。
例如,7能整除21,7能整除14,那么7能整除21-14 = 7。
数学整除知识点总结
数学整除知识点总结一、整除的基本概念1.1 整数的定义首先,我们需要了解一下整数的概念。
在数学中,整数是指包括正整数、负整数和零在内的所有整数,用…,-3,-2,-1,0,1,2,3,…来表示。
整数是一个非常宽泛的概念,其中包含了无穷尽的实数,因此整数之间的关系也有着非常复杂的性质。
1.2 整除的定义在整数之间,如果存在一个整数a,使得另一个整数b能够被a整除,那么我们就说a能够整除b,记作a|b。
即如果存在一个整数c,使得b=ac,那么我们就说a能够整除b。
此时,a称为除数,b称为被除数,c称为商。
另外,如果a不等于0,且存在一个整数c,使得b=ac,那么我们就说a能够整除b;如果a等于0,那么b等于0时,我们也说a能够整除b。
1.3 整数除法整数除法是整除概念的具体实现。
在整数除法中,我们需要用到除数、被除数、商以及余数等概念。
具体来说,对于整数a、b(a≠0)、r,如果整数b能够被整数a整除,即a|b,那么一定存在整数q使得b=aq;此时q称为商,r称为余数,并且0≤r<|a|。
1.4 整数的倍数我们知道,整数之间是存在整数除法的,一个整数能够整除另一个整数,那么它们之间是具有一定倍数关系的。
在数学中,如果一个整数a能够整除另一个整数b,也就是a|b,那么我们就说b是a的倍数,a是b的因数。
1.5 整除的运算规律在整数之间的整除运算中,有一些规律是需要引起我们的注意的。
首先,对于任意整数a,0能够整除a;其次,任意整数a,a都能够整除自己,即a能够整除a,且a|a。
以上就是整除的基本概念及其相关内容。
从这些内容中我们可以看到,整除是一个非常基础的概念,但是它对于数学的发展和应用有着非常重要的作用。
下面我们就来具体讨论一下整除的性质。
二、整除的性质整除的性质是整数之间的一种特殊关系,它具有一些特殊的性质。
下面我们将介绍一下整除的性质。
2.1 整数的连通性一个整数a能够整除另一个整数b,那么我们可以得到一个推论:对于任意整数a、b、c (a、b、c≠0),如果a能够整除b,b能够整除c,那么a一定能够整除c。
数的整除
数的整除一、知识点总结1、整除:一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。
记作b|a.否则,称为a不能被b整除,记作b a.2、数的整除特征看末一位能被2整除的数:个位是0、2、4、6、8能被5整除的数:个位是0、5看末两位能被4整除的数:末两位能被4整除能被25整除的数:末两位能被25整除(00、25、50、75)看末三位能被8整除的数:末三位能被8整除能被125整除的数:末三位能被125整除(000、125、250、375、500、625、750、875)看各位之和能被3整除的数:各个数位上的数字之和是3的倍数能被9整除的数:各个数位上的数字之和是9的倍数3、数的整除性质如果b、c都能整除a,且b和c互质(即b与c谁也不能被谁整除),那么b与c的积能整除a。
例如:如果2|28,7|28,且2和7谁也不能被谁整除,那么(2×7)|28。
(在高年级还学习能够被7、11、13等数整除的数的特征,以及其他几个数的整除性质。
在逐年比重增加的考点“数论”中,数的整除问题涉及广泛,常常成为解题关键,因此现在打好基础是非常重要的。
)二、复习题练习题1、在下面的数中,哪些能被4整除?哪些能被8整除?哪些能被9整除?234,789,7756,8865,3728,8064。
分析与解答能被4整除的数有7756,3728,8064;能被8整除的数有3728,8064;能被9整除的数有234,8865,8064。
2、判断3084能不能被12整除。
分析与解答3084的各位数字的和是3+0+8+4=15,15是3的倍数,3084的末两位数是84,84又是4的倍数,所以3084能被12整除。
检验:3084÷12=257,又如:判断4734能不能被12整除。
3、判断8715能不能被15整除。
小学数学整除的知识点梳理
小学数学整除的知识点梳理
小学数学整除的知识点梳理
数的整除
一、基本概念和符号:
1、整除:如果一个整数a,除以一个自然数b,得到一个整数
商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作
b|a。
2、常用符号:整除符号“|”,不能整除符号“”;因为符号“∵”,所以的符号“∴”;
二、整除判断方法:
1.能被2、5整除:末位上的数字能被2、5整除。
2.能被4、25整除:末两位的数字所组成的数能被4、25整除。
3.能被8、125整除:末三位的数字所组成的数能被8、125整除。
4.能被3、9整除:各个数位上数字的和能被3、9整除。
5.能被7整除:
①末三位上数字所组成的'数与末三位以前的数字所组成数之差
能被7整除。
②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。
6.能被11整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。
②奇数位上的数字和与偶数位数的数字和的差能被11整除。
③逐次去掉最后一位数字并减去末位数字后能被11整除。
7.能被13整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。
②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。
三、整除的性质:
1.如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。
2.如果a能被b整除,c是整数,那么a乘以c也能被b整除。
3.如果a能被b整除,b又能被c整除,那么a也能被c整除。
4.如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。
小学数学知识点数的整除
小学数学知识点数的整除小学数学知识点汇总数的整除在我们上学期间,大家最不陌生的就是知识点吧!知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。
哪些知识点能够真正帮助到我们呢?下面是店铺帮大家整理的小学数学知识点数的整除,希望能够帮助到大家。
小学数学知识点数的整除篇1整除的意义整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)除尽的意义甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。
因数和倍数1、如果整数a乘整数b整除等于整数C,a和 b就是C的因数,C就是a和b的倍数。
(a.b.c都为非0整数)2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
3、一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数。
奇数和偶数1、能被2整除的数叫偶数。
例如:0、2、4、6、8、10……注:0也是偶数2、不能被2整除的数叫奇数。
例如:1、3、5、7、9……整除的特征1、能被2整除的数的特征:个位上是0、2、4、6、8。
2、能被5整除的数的特征:个位上是0或5。
3、能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3 整除。
质数和合数1、一个数只有1和它本身两个约数,这个数叫做质数(素数)。
2、一个数除了1和它本身外,还有别的约数,这个数叫做合数。
3、1和0既不是质数,也不是合数。
4、自然数按约数的个数可分为:质数、合数0和15、自然数按能否被2整除分为:奇数、偶数分解质因数1、每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。
例如:18=3×3×2,3和2叫做18的质因数。
2、把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数。
通常用短除法来分解质因数。
数的整除知识点总结
数的整除知识点总结一。
数的分类数可以根据不同的属性进行分类。
第一种分类方法是使用树状图或韦恩图,将整数分为自然数、正整数、负整数、零、正奇数和正偶数等。
第二种分类方法是将整数分为奇数和偶数。
第三种分类方法是将整数分为正整数、素数和合数。
需要注意的是,0是最小的自然数,-1是最大的负整数,1是最小的正整数。
同时,没有最大的整数、没有最小的负整数、没有最大的正整数,正整数、负整数和整数的个数都是无限的。
二。
整除整除是指一个整数a被另一个整数b整除,商是整数而余数为零的情况。
因此,b可以整除a,也可以说a能被b整除。
需要注意的是,要区分整除和除尽。
整除是特殊的除尽,即a能被b整除,则a一定能被b除尽,反之则不一定。
例如,4÷2=2,4既能被2除尽,也能被2整除;4÷5=0.8,4能被5除尽,但不能说4能被5整除。
三。
因数与倍数因数是指一个整数a能被另一个整数b整除,b就是a的因数。
而倍数是指一个整数a能够整除另一个整数b,a就是b的倍数。
因数和倍数是相互依存的,不能简单地说某个数是因数或倍数。
一个整数的因数中最小的因数是1,最大的因数是它本身。
一个数的倍数中最小的倍数是这个数本身,没有最大的倍数。
因数的个数是有限的,可以一一列举出来,而倍数的个数是无限的。
求一个数的因数可以利用积与因数的关系,一对一对找出哪两个数的乘积等于这个数,然后按照一定的顺序列举出所有的因数。
求一个数的倍数可以将这个数本身分别乘以1、2、3、4、5等正整数,得到的积就是这个数的倍数。
四。
能被2、5、3整除的数的特点一个数能被2整除,当且仅当这个数的个位数是0、2、4、6、8.一个数能被5整除,当且仅当这个数的个位数是0或5.一个数能被3整除,当且仅当这个数的各位数字之和能够被3整除。
因此,一个数能被2、5、3整除的特点可以通过它的各位数字来判断。
1.能被2整除的数的个位数字是2、4、6、8,反之,个位数字是2、4、6、8的数也能被2整除。
小学数学知识点数的整除
小学数学知识点数的整除小学数学知识点汇总数的整除在我们上学期间,大家最不陌生的就是知识点吧!知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。
哪些知识点能够真正帮助到我们呢?下面是店铺帮大家整理的小学数学知识点数的整除,希望能够帮助到大家。
小学数学知识点数的整除篇1整除的意义整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)除尽的意义甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。
因数和倍数1、如果整数a乘整数b整除等于整数C,a和 b就是C的因数,C就是a和b的倍数。
(a.b.c都为非0整数)2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
3、一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数。
奇数和偶数1、能被2整除的数叫偶数。
例如:0、2、4、6、8、10……注:0也是偶数2、不能被2整除的数叫奇数。
例如:1、3、5、7、9……整除的特征1、能被2整除的数的特征:个位上是0、2、4、6、8。
2、能被5整除的数的特征:个位上是0或5。
3、能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3 整除。
质数和合数1、一个数只有1和它本身两个约数,这个数叫做质数(素数)。
2、一个数除了1和它本身外,还有别的约数,这个数叫做合数。
3、1和0既不是质数,也不是合数。
4、自然数按约数的个数可分为:质数、合数0和15、自然数按能否被2整除分为:奇数、偶数分解质因数1、每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。
例如:18=3×3×2,3和2叫做18的质因数。
2、把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数。
通常用短除法来分解质因数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档数的整除知识点数的整除问题,内容丰富,思维技巧性强。
它是小学数学中的重要课题,也是小学数学竞赛命题的内容之一。
数的整除1.整除——因数和倍数例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。
记作b|a.如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的因数。
例如:在上面算式中,15是3的倍数,3是15的因数;63是7的倍数,7是63的因数。
2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c 整除。
即:如果c|a,c|b,那么c|(a±b)。
例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。
性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。
精品文档.精品文档性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。
即:如果b|a,c|a,且(b,c)=1,那么bc|a。
例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。
性质4:如果c能整除b,b能整除a,那么c能整除a。
即:如果c|b,b|a,那么c|a。
例如:如果3|9,9|27,那么3|27。
3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。
②能被5整除的数的特征:个位是0或5。
③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。
④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
例如:1864=1800+64,因为100是4与25的倍数,所以1800是4与25的倍数.又因为4|64,所以1864能被4整除.但因为2564,所以1864不能被25整除.⑤能被8(或125)整除的数的特征:末三位数能被8(或125)精品文档.精品文档整除。
例如:29375=29000+375,因为1000是8与125的倍数,所以29000是8与125的倍数.又因为125|375,所以29375能被125整除.但因为8375,所以829375。
⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。
例如:判断123456789这九位数能否被11整除?解:这个数奇数位上的数字之和是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20.因为25—20=5,又因为115,所以11123456789。
再例如:判断13574是否是11的倍数?解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0.因为0是任何整数的倍数,所以11|0.因此13574是11的倍数。
⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。
例如:判断1059282是否是7的倍数?解:把1059282分为1059和282两个数.因为1059-282=777,又7|777,所以7|1059282.因此1059282是7的倍数。
再例如:判断3546725能否被13整除?解:把3546725分为3546和725两个数.因为3546-725=2821.精品文档.精品文档再把2821分为2和821两个数,因为821—2=819,又13|819,所以13|2821,进而13|3546725.质数和合数1.质数与合数一个数除了1和它本身,不再有别的因数,这个数叫做质数(也叫做素数)。
一个数除了1和它本身,还有别的因数,这个数叫做合数。
要特别记住:1不是质数,也不是合数。
2.质因数与分解质因数如果一个质数是某个数的因数,那么就说这个质数是这个数的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例:把30分解质因数。
解:30=2×3×5。
其中2、3、5叫做30的质因数。
又如12=2×2×3=22×3,2、3都叫做12的质因数。
例1 三个连续自然数的乘积是210,求这三个数.解:∵210=2×3×5×7∴可知这三个数是5、6和7。
例2 两个质数的和是40,求这两个质数的乘积的最大值是多少?解:把40表示为两个质数的和,共有三种形式:精品文档.精品文档40=17+23=11+29=3+37。
∵17×23=391>11×29=319>3×37=111。
∴所求的最大值是391。
答:这两个质数的最大乘积是391。
例3 自然数123456789是质数,还是合数?为什么?解:123456789是合数。
因为它除了有约数1和它本身外,至少还有约数3,所以它是一个合数。
例4 连续九个自然数中至多有几个质数?为什么?解:如果这连续的九个自然数在1与20之间,那么显然其中最多有4个质数(如:1~9中有4个质数2、3、5、7)。
如果这连续的九个自然中最小的不小于3,那么其中的偶数显然为合数,而其中奇数的个数最多有5个.这5个奇数中必只有一个个位数是5,因而5是这个奇数的一个因数,即这个奇数是合数.这样,至多另4个奇数都是质数。
综上所述,连续九个自然数中至多有4个质数。
例5 把5、6、7、14、15这五个数分成两组,使每组数的乘积相等。
解:∵5=5,7=7,6=2×3,14=2×7,15=3×5,这些数中质因数2、3、5、7各共有2个,所以如把14(=2×7)放在第一组,那么7和6(=2×3)只能放在第二组,继而15(=3×5)只能放在第一组,则5必须精品文档.精品文档放在第二组。
这样14×15=210=5×6×7。
这五个数可以分为14和15,5、6和7两组。
例6 有三个自然数,最大的比最小的大6,另一个是它们的平均数,且三数的乘积是42560.求这三个自然数。
分析先大概估计一下,30×30×30=27000,远小于42560.40×40×40=64000,远大于42560.因此,要求的三个自然数在30~40之间。
解:42560=26×5×7×19=25×(5×7)×(19×2)=32×35×38(合题意)要求的三个自然数分别是32、35和38。
例7 有3个自然数a、b、c.已知a×b=6,b×c=15,a×c=10.求a×b×c是多少?解:∵6=2×3,15=3×5,10=2×5。
(a×b)×(b×c)×(a×c)=(2×3)×(3×5)×(2×5)22252 ×=22b×c×32 ∴a×22 5)××b×c)=(23×a ∴(30 5b×c=2×3×=a ×222222222,像,2=5,b2a7在例中有=,=3c,其中=43=,=9525这样的数,推及一般情况,我们把一个自然数平方所、4、925精品文档.精品文档得到的数叫做完全平方数或叫做平方数。
222222,…=144=121,12,…,,2=4,3=9,4=1611如.1=1. ,144,…都叫做完全平方数121其中1,4,9,16,…,各质因下面让我们观察一下,把一个完全平方数分解质因数后,数的指数有什么特征。
例如:把下列各完全平方数分解质因数:275625。
36 9,,144,1600,42222144=3×3×2 解:9=3 36=224226 7 275625=3×5×5 1600=2×各质因数的指数均是一个完全平方数分解质因数后,可见,偶数。
各个质因数的指数都反之,如果把一个自然数分解质因数之后,是偶数,那么这个自然数一定是完全平方数。
2222,275625=525。
1600=406如上例中,36=,144=12,的最小.a例8 一个整数与1080的乘积是一个完全平方数求a 值与这个平方数。
1080的乘积是一个完全平方数,∵分析a与∴乘积分解质因数后,各质因数的指数一定全是偶数。
×××解:∵1080a=2333×5a,的质因数分解中各质因数的指数33×5×又∵1080=23 都是奇数,2a,因此53、2a∴必含质因数、最小为53××。
精品文档.精品文档∴1080×a=1080×2×3×5=1080×30=32400。
答:a的最小值为30,这个完全平方数是32400。
例9 问360共有多少个约数?32。
×3×5分析360=22有多少个有多少个约数,我们先来看3×5 为了求3603232、2、2、2,即得到约数,然后再把所有这些约数分别乘以122×3×5(=360)的所有约数.为了求3×5有多少个约数,可以2,3、3、先求出5有多少个约数,然后再把这些约数分别乘以12×5的所有约数。
即得到3 的约数个数为Y1,解:记52 Y2,3×5的约数个数为23由上面的分析可知:)的约数个数为Y3. 360(=2×3×5 ,×Y1 Y3=4×Y2,Y2=3 两个约数)。
Y1=2 显然(5只有1和5 。
3×Y1=4×3×2=24×因此Y3=4Y2=4×共有所以36024个约数。
32”中数、2、×说明:Y3=4Y2中的“4”即为“1、22235的最大指数加××31,也就是360=2的个数,也就是其中22”、31Y11中质因数2的个数加;Y2=3×中的“3”即为“、323Y1=2;而的个数加中质因数×23×531中数的个数,也就是23的、”即为“中的“2155中质因数5××2”中数的个数,即3 1.个数加因此精品文档.精品文档Y3=(3+1)×(2+1)×(1+1)=24。