回溯算法之0-1背包问题
回溯法和分支限界法解决0-1背包题(精)[精品文档]
0-1背包问题计科1班朱润华 2012040732方法1:回溯法一、回溯法描述:用回溯法解问题时,应明确定义问题的解空间。
问题的解空间至少包含问题的一个(最优)解。
对于0-1背包问题,解空间由长度为n的0-1向量组成。
该解空间包含对变量的所有0-1赋值。
例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,),xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。
二、回溯法步骤思想描述:0-1背包问题是子集选取问题。
0-1 背包问题的解空间可以用子集树表示。
在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。
当右子树中有可能含有最优解时,才进入右子树搜索。
否则,将右子树剪去。
设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。
当cp+r<=bestp时,可剪去右子树。
计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。
例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。
这4个物品的单位重量价值分别为[3,2,3,5,4]。
以物品单位重量价值的递减序装入物品。
先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。
由此得一个解为[1,0.2,1,1],其相应价值为22。
01背包问题(回溯法)
01背包问题(回溯法) 回溯法是⼀个既带有系统性⼜带有跳跃性的搜索算法。
它在包含问题的所有解的解空间树中,按深度优先策略,从根结点出发搜索解空间树。
算法搜索⾄解空间树的任意⼀结点时,先判断该结点是否包含问题的解。
如果肯定不包含,则跳过对该结点为根的⼦树搜索,逐层向其祖先结点回溯;否则,进⼊该⼦树,继续按深度优先策略搜索。
问题的解空间⽤回溯法解问题时,应明确定义问题的解空间。
问题的解空间⾄少包含问题的⼀个(最优)解。
对于 n=3 时的 0/1 背包问题,可⽤⼀棵完全⼆叉树表⽰解空间,如图所⽰:求解步骤1)针对所给问题,定义问题的解空间;2)确定易于搜索的解空间结构;3)以深度优先⽅式搜索解空间,并在搜索过程中⽤剪枝函数避免⽆效搜索。
常⽤的剪枝函数:⽤约束函数在扩展结点处剪去不满⾜约束的⼦树;⽤限界函数剪去得不到最优解的⼦树。
回溯法对解空间做深度优先搜索时,有递归回溯和迭代回溯(⾮递归)两种⽅法,但⼀般情况下⽤递归⽅法实现回溯法。
算法描述 解 0/1 背包问题的回溯法在搜索解空间树时,只要其左⼉⼦结点是⼀个可⾏结点,搜索就进⼊其左⼦树。
当右⼦树中有可能包含最优解时才进⼊右⼦树搜索。
否则将右⼦树剪去。
代码:public class Knapsack_Problem01 {double m=100; //背包最⼤容量int n=5; //物品的个数int[] w = {10,20,30,40,50}; //第i个物品的重量int[] v = {20,30,65,40,60}; //第i个物品的价值int[] a = new int[n]; //记录在树中的移动路径,为1的时候表⽰选择该组数据,为0的表⽰不选择该组数据int maxvalue = 0; //背包的最⼤权重值public static void main(String[] args){Knapsack_Problem01 p = new Knapsack_Problem01();p.Search(0);}public void Search(int i) //i表⽰递归深度{if(i>=n){CheckMax();}else {a[i] = 0;Search(i+1);a[i] = 1;Search(i+1);}}public void CheckMax(){int weight = 0;int value = 0;for(int i=0;i<n;i++) //判断是否达到上限{if(a[i] == 1){weight = weight + w[i];value = value + v[i];}}if(weight <= m){if(value >= maxvalue){maxvalue = value;System.out.print("最⼤价值是:" + maxvalue +" ");System.out.print("所选取的物品为(1代表选中,0代表不选中): ");for(int j=0;j<n;j++){System.out.print(a[j]);System.out.print(' ');}System.out.print('\n');}}}}。
动态规划与回溯法解决0-1背包问题
0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。
原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。
但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。
过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。
数据结构与算法题解(10):0-1背包问题与部分背包问题
假设我们有n件物品,分别编号为1, 2...n。其中编号为i的物品价值为vi ,它的重量量为wi 。为了了简
化问题,假定价值和重量量都是整数值。现在,假设我们有一一个背包,它能够承载的重量量是W。现 在,我们希望往包里里里装这些物品,使得包里里里装的物品价值最大大化,那么我们该如何来选择装的东 ⻄西呢?问题结构如下图所示:
}
public void printResult() { for(int i = 0; i < v. length; i++) { for(int j = 0; j <= weight; j++) System.out.print(c[i][j] + " "); System.out.println(); }
一一、0-1背包
1.1 初步分析
对于这个问题,一一开始确实有点不不太好入入手手。一一堆的物品,每一一个都有一一定的质量量和价值,我们
能够装入入的总重量量有限制,该怎么来装使得价值最大大呢?对于这n个物品,每个物品我们可能会 选,也可能不不选,那么我们总共就可能有2n种组合选择方方式。如果我们采用用这种办法来硬算的话,则整体的
回溯法求背包问题
《算法设计与分析》实验报告学号:姓名:日期:得分:一、实验内容:用回溯法求解0/1背包问题注:给定n种物品和一个容量为C的背包,物品i的重量是w,其价值为iv,背包问题是如何使选择装入背包内的物品,使得装入背包中的物品的总i价值最大。
其中,每种物品只有全部装入背包或不装入背包两种选择。
二、所用算法的基本思想及复杂度分析:1.回溯法求解背包问题:1)基本思想:回溯法:为了避免生成那些不可能产生最佳解的问题状态,要不断地利用限界函数(bounding function)来处死那些实际上不可能产生所需解的活结点,以减少问题的计算量。
这种具有限界函数的深度优先生成法称为回溯法。
对于有n种可选物品的0/1背包问题,其解空间由长度为n的0-1向量组成,可用子集数表示。
在搜索解空间树时,只要其左儿子结点是一个可行结点,搜索就进入左子树。
当右子树中有可能包含最优解时就进入右子树搜索。
2)复杂度分析:回溯法求解0/1背包问题的时间复杂度为:)2()(n O n T =。
空间复杂度:有n 个物品,即最多递归n 层,存储物品信息就是一个一维数组,即回溯法求解0/1背包问题的空间复杂度为)(n O 。
2.以动态规划法验证:1)基本思想:令),(j i V 表示在前)1(n i i ≤≤个物品中能够装入容量为)1(C j j ≤≤的背包中的物品的最大值,则可以得到如下动态函数:0),0()0,(==j V i V{}⎩⎨⎧≥+---<-=)(),1(),,1(max ))(,1(),(i i i i w j v w j i V j i V w j j i V j i V 按照下述方法来划分阶段:第一阶段,只装入前1个物品,确定在各种情况下的背包能够得到的最大价值;第二阶段,只装入前2个物品,确定在各种情况下的背包能够得到的最大价值;以此类推,直到第n 个阶段。
最后,),(C n V 便是在容量为C 的背包中装入n 个物品时取得的最大价值。
回溯法解决0-1背包问题
回溯法解决0-1背包问题问题描述: 有n件物品和⼀个容量为c的背包。
第i件物品的价值是v[i],重量是w[i]。
求解将哪些物品装⼊背包可使价值总和最⼤。
所谓01背包,表⽰每⼀个物品只有⼀个,要么装⼊,要么不装⼊。
回溯法: 01背包属于找最优解问题,⽤回溯法需要构造解的⼦集树。
在搜索状态空间树时,只要左⼦节点是可⼀个可⾏结点,搜索就进⼊其左⼦树。
对于右⼦树时,先计算上界函数,以判断是否将其减去,剪枝啦啦!上界函数bound():当前价值cw+剩余容量可容纳的最⼤价值<=当前最优价值bestp。
为了更好地计算和运⽤上界函数剪枝,选择先将物品按照其单位重量价值从⼤到⼩排序,此后就按照顺序考虑各个物品。
#include <stdio.h>#include <conio.h>int n;//物品数量double c;//背包容量double v[100];//各个物品的价值double w[100];//各个物品的重量double cw = 0.0;//当前背包重量double cp = 0.0;//当前背包中物品价值double bestp = 0.0;//当前最优价值double perp[100];//单位物品价值排序后int order[100];//物品编号int put[100];//设置是否装⼊//按单位价值排序void knapsack(){int i,j;int temporder = 0;double temp = 0.0;for(i=1;i<=n;i++)perp[i]=v[i]/w[i];for(i=1;i<=n-1;i++){for(j=i+1;j<=n;j++)if(perp[i]<perp[j])//冒泡排序perp[],order[],sortv[],sortw[]{temp = perp[i];perp[i]=perp[i];perp[j]=temp;temporder=order[i];order[i]=order[j];order[j]=temporder;temp = v[i];v[i]=v[j];v[j]=temp;temp=w[i];w[i]=w[j];w[j]=temp;}}}//回溯函数void backtrack(int i){double bound(int i);if(i>n){bestp = cp;return;}if(cw+w[i]<=c){cw+=w[i];cp+=v[i];put[i]=1;backtrack(i+1);cw-=w[i];cp-=v[i];}if(bound(i+1)>bestp)//符合条件搜索右⼦数backtrack(i+1);}//计算上界函数double bound(int i){double leftw= c-cw;double b = cp;while(i<=n&&w[i]<=leftw){leftw-=w[i];b+=v[i];i++;}if(i<=n)b+=v[i]/w[i]*leftw;return b;}int main(){int i;printf("请输⼊物品的数量和容量:");scanf("%d %lf",&n,&c);printf("请输⼊物品的重量和价值:");for(i=1;i<=n;i++){printf("第%d个物品的重量:",i);scanf("%lf",&w[i]);printf("价值是:");scanf("%lf",&v[i]);order[i]=i;}knapsack();backtrack(1);printf("最有价值为:%lf\n",bestp);printf("需要装⼊的物品编号是:");for(i=1;i<=n;i++){if(put[i]==1)printf("%d ",order[i]);}return 0;}时间复杂度分析: 上界函数bound()需要O(n)时间,在最坏的情况下有O(2^n)个右⼦结点需要计算上界,回溯算法backtrack需要的计算时间为O(n2^n)。
0-1背包问题——回溯法求解【Python】
0-1背包问题——回溯法求解【Python】回溯法求解0-1背包问题:问题:背包⼤⼩ w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放⼊背包中物品的总价值最⼤。
回溯法核⼼:能进则进,进不了则换,换不了则退。
(按照条件深度优先搜索,搜到某⼀步时,发现不是最优或者达不到⽬标,则退⼀步重新选择)注:理论上,回溯法是在⼀棵树上进⾏全局搜索,但是并⾮每种情况都需要全局考虑,毕竟那样效率太低,且通过约束+限界可以减少好多不必要的搜索。
解决本问题思路:使⽤0/1序列表⽰物品的放⼊情况。
将搜索看做⼀棵⼆叉树,⼆叉树的第 i 层代表第 i 个物品,若剩余空间允许物品 i 放⼊背包,扩展左⼦树。
若不可放⼊背包,判断限界条件,若后续继续扩展有可能取得最优价值,则扩展右⼦树(即此 i 物品不放⼊,但是考虑后续的物品)。
在层数达到物品的个数时,停⽌继续扩展,开始回溯。
注:如何回溯呢?怎样得到的,怎样恢复。
放⼊背包中的重量取出,加在bagV上的价值减去。
约束条件:放⼊背包中物品的总质量⼩于等于背包容量限界条件:当前放⼊背包中物品的总价值(i及之前) + i 之后的物品总价值 < 已知的最优值这种情况下就没有必要再进⾏搜索数据结构:⽤⼀个变量记录当前放⼊背包的总价值 bagV(已扩展),⼀个变量记录后续物品的总价值 remainV(未扩展),当前已得到的⼀种最优值 bestV(全局情况),⼀个⽤0/1表⽰的数组bestArr[]记录哪些物品放⼊了背包。
核⼼结构:递归思路进⾏解决。
层层递归,递归到尽头,保留最优值,恢复递归中,层层回溯,即将原来加上去的重量与价值恢复。
# -*- coding:utf-8 -*-def Backtrack(t):global bestV, bagW, bagV,arr, bestArr, cntVif t > n: #某次深度优先搜索完成if bestV < bagV:for i in range(1, n+1):bestArr[i] = arr[i]bestV = bagVelse: #深度优先搜索未完成if bagW + listWV[t][0] <= w: #第t个物品可以放⼊到背包中,扩展左⼦树arr[t] = TruebagW += listWV[t][0]bagV += listWV[t][1]Backtrack(t+1)bagW -= listWV[t][0]bagV -= listWV[t][1]if cntV[t] + bagV > bestV: #有搜索下去的必要arr[t] = FalseBacktrack(t+1)if__name__ == '__main__':w = int(input()) #背包⼤⼩n = int(input()) #物品个数listWV = [[0,0]]listTemp = []sumW = 0sumV = 0for i in range(n):listTemp = list(map(int, input().split())) #借助临时list每次新增物品对应的list加⼊到listWV中sumW += listTemp[0]sumV += listTemp[1]listWV.append(listTemp) #依次输⼊每个物品的重量与价值bestV = 0bagW = 0bagV = 0remainV = sumVarr = [False for i in range(n+1)]bestArr = [False for i in range(n+1)]cntV = [0 for i in range(n+1)] #求得剩余物品的总价值,cnt[i]表⽰i+1~n的总价值 cntV[0] = sumVfor i in range(1, n+1):cntV[i] = cntV[i-1] - listWV[i][1]if sumW <= w:print(sumV)else:Backtrack(1)print(bestV)print(bestArr)print(cntV)检测:1052 65 34 52 43 617[False, True, False, True, False, True][24, 18, 15, 10, 6, 0]。
0-1背包问题的枚举算法
0-1背包问题的枚举算法一、问题概述0-1背包问题是一种经典的优化问题,给定一组物品,每种物品都有自己的重量和价值,而你有一个限制容量的背包。
目标是在不超过背包容量的情况下,选择物品使得总价值最大化。
然而,在某些情况下,所有的物品都不能被放入背包中,这时就需要用到0-1背包问题的枚举算法。
二、算法原理枚举算法的基本思想是从所有可能的物品组合中逐个尝试,找出满足条件的组合。
对于0-1背包问题,我们可以枚举所有可能的物品组合,对于每个组合,计算其总价值和当前背包的剩余容量,如果总价值大于当前背包容量所能获得的最大价值,那么就将这个物品放入背包中,并更新背包剩余容量和总价值。
如果当前物品的价值小于或等于当前背包容量所能获得的最大价值,那么就将这个物品标记为0(表示已经考虑过),并继续尝试下一个物品。
最终得到的组合就是最优解。
三、算法实现以下是一个简单的Python实现:```pythondefknapsack_enumeration(items,capacity):#初始化结果列表和当前价值result=[]current_value=0#枚举所有可能的物品组合foriinrange(len(items)):#标记当前物品为0(已考虑过)items[i][1]=0#计算当前物品的价值并更新总价值forjinrange(len(items)):ifj<i:#不考虑之前的物品对当前物品的价值影响current_value+=items[j][1]*items[i][0]/capacityelse:#考虑之前的物品对当前物品的价值影响(假设不考虑前一个物品的重量)current_value+=items[j][0]*(capacity-items[i][0])/capacity#将当前物品从物品列表中移除(放入背包中)delitems[i]#将当前价值添加到结果列表中result.append(current_value)returnresult```四、应用场景枚举算法在许多实际应用中都有应用,如计算机科学、运筹学、工程学等。
回溯法解决01背包问题
回溯法是一个既带有系统性又带有跳跃性的搜索算法。
它在包含问题的所有解的解空间树中按照深度优先的策略,从根节点出发搜索解空间树。
算法搜索至解空间树的任一节点时,总是先判断该节点是否肯定不包含问题的解。
如果肯定不包含,则跳过对以该节点为根的子树的系统搜索,逐层向其原先节点回溯。
否则,进入该子树,继续按深度优先的策略进行搜索。
运用回溯法解题通常包含以下三个步骤:∙针对所给问题,定义问题的解空间;∙确定易于搜索的解空间结构;∙以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;在0/1背包问题中,容量为M的背包装载。
从n个物品中选取装入背包的物品,物品i的重量为Wi,价值为Pi。
最佳装载指装入的物品价值最高,即∑PiXi(i=1..n)取最大值。
约束条件为∑WiXi ≤M且Xi∈[0,1](1≤i≤n)。
在这个表达式中,需求出Xi的值。
Xi=1表示物品i装入背包,Xi=0表示物品i不装入背包。
∙即判断可行解的约束条件是:∑WiXi≤M(i=0..n),Wi>0,Xi∈[0,1](1≤i≤n)∙目标最大值:max∑PiXi(i=0..n-1),Pi>0,Xi=0或1(0≤i<n)0/1背包问题是一个自己选取问题,适合于用子集树表示0/1背包问题的解空间。
在搜索解空间树时,只要左儿子节点是一个可行节点,搜索就进入左子树,在右子树中有可能包含最优解才进入右子树搜索,否则将右子树剪去。
程序分析:将物品个数,每个物品体积/价值输入,计算总物品体积S,输入背包体积V,如果V<0或者V>S则前置条件错误,即背包体积输入错误,否则顺序将物品放入背包。
假设放入前i件物品,背包没有装满,继续选取第i+1件物品,若该物品“太大”不能装入,则弃之继而选取下一件直到背包装满为止;如果剩余物品中找不到合适物品以填满背包,则说明“刚刚”装入的第i件物品不合适,应将i拿出,继续从i+1及以后的物品中选取,如此重复,直到找到满足条件的解。
(原创精品)n=3时的0-1背包问题(回溯法)
用回溯法解决3种可选择物品的0-1背包问题当n=3时,其解空间是{(0,0,0)(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}n=3时的0-1背包问题:w=[16,15,15]p=[45,25,25]c=30开始时,Cr=C=30,V=0,A为唯一活结点,也是当前扩展结点扩展A,先到达B结点Cr=Cr-w1=14,V=V+v1=45此时A、B为活结点,B成为当前扩展结点扩展B,先到达DCr<w2,D导致一个不可行解,回溯到B再扩展B到达EE可行,此时A、B、E是活结点,E成为新的扩展结点扩展E,先到达JCr<w3,J导致一个不可行解,回溯到E再次扩展E到达K由于K是叶结点,即得到一个可行解x=(1,0,0),V=45K不可扩展,成为死结点,返回到EE没有可扩展结点,成为死结点,返回到BB没有可扩展结点,成为死结点,返回到AA再次成为扩展结点,扩展A到达CCr=30,V=0,活结点为A、C,C为当前扩展结点扩展C,先到达FCr=Cr-w2=15,V=V+v2=25,此时活结点为A、C、F,F成为当前扩展结点扩展F,先到达LCr=Cr-w3=0,V=V+v3=50L是叶结点,且50>45,皆得到一个可行解x=(0,1,1),V=50L不可扩展,成为死结点,返回到F再扩展F到达MM是叶结点,且25<50,不是最优解M不可扩展,成为死结点,返回到FF没有可扩展结点,成为死结点,返回到C再扩展C到达GCr=30,V=0,活结点为A、C、G,G为当前扩展结点扩展G,先到达N,N是叶结点,且25<50,不是最优解,又N不可扩展,返回到G再扩展G到达O,O是叶结点,且0<50,不是最优解,又O不可扩展,返回到GG没有可扩展结点,成为死结点,返回到CC没有可扩展结点,成为死结点,返回到AA没有可扩展结点,成为死结点,算法结束,最优解X=(0,1,1),最优值V=50。
0-1背包问题(回溯法)
0-1背包问题(回溯法)实验报告姓名:学号:指导老师:一.算法设计名称:0-1背包问题(回溯法)二.实验内容问题描述:给定n 种物品和一背包。
物品i 的重量是w i ,其价值为v i ,背包的容量为C 。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i 只有两种选择,即装入背包或不装入背包。
不能将物品装入背包多次,也不能只装入部分的物品。
三.实验目的1.运用回溯思想,设计解决上述问题的算法,找出最大背包价值的装法。
2.掌握回溯法的应用四.算法设计:问题求解思路1.由0-1背包问题的最优子结构性质,建立计算m[i][j]的递归式如下:i i i w j w j j i m i v w j i m j i m j i m <≤≥⎩⎨⎧-+---=0],1[]}[],1[],,1[max{),(2.查找装入背包物品的回溯函数:从0-1二叉树的根开始搜索:若是叶子节点,则判断此时的价值是否比当前最优的价值大,否则将之替换,并获得最优解向量且返回;若不是叶子节点,则向左右子树搜索,先改变当前的数据状态,递归的调用自己,然后恢复数据状态表示回溯。
3.边界函数bound主要是当还未搜索到叶子节点时,提前判断其子树是否存可能存在更优的解空间,否则进行回溯,即裁剪掉子树的解空间。
关键数据结构及函数模块:(Backtrack.h )#ifndef __BACKTRACK_H__#define __BACKTRACK_H__class BP_01_P{public:∑=ni i i x v 1max ⎪⎩⎪⎨⎧≤≤∈≤∑=n i x C x w i n i i i 1},1,0{1BP_01_P(int w,int n):m_Sum_weitht(0),m_Number(0) {m_Sum_weitht=w;m_Number=n;bestHav=0;bestVal=0;curVal=0;curHav=0;m_hav=new int[n];m_val=new int[n];temop=new int[n];option=new int[n];}~BP_01_P(){delete []m_hav;delete []m_val;delete []temop;delete []option;}void traceBack(int n);int bound(int n);void printBestSoulation();int *m_hav;//每个物品的重量int *m_val;//每个物品的价值int *temop;//01临时解int *option;//01最终解int bestHav;//最优价值时的最大重量int bestVal;//最优的价值int curVal;//当前的价值int curHav;//当前的重量private:int m_Sum_weitht;//背包的总容量int m_Number;//物品的种类};#endif __BACKTRACK_H__五:主要的算法代码实现:(Backtrack.cpp)边界函数:bound( )int BP_01_P::bound(int n){int hav_left=m_Sum_weitht-curHav;int bo=curVal;while(n<m_Number && m_hav[n]<=hav_left){hav_left-=m_hav[n];bo+=m_val[n];n++;}if(n<m_Number){bo+=m_val[n]*hav_left/m_hav[n];//bo+=hav_left;}return bo;}回溯递归函数:traceBack( )void BP_01_P::traceBack(int n){if(n>=m_Number){if(curVal>=bestVal){bestVal=curVal;for(int i=0;i<n;i++){option[i]=temop[i];}return ;}}if(curHav+m_hav[n]<=m_Sum_weitht)//向左子树搜索 {curHav=curHav+m_hav[n];curVal=curVal+m_val[n];temop[n]=1;//标记要选择这个物品traceBack(n+1);curHav=curHav-m_hav[n];curVal=curVal-m_val[n];}if(bound(n+1)>bestVal)//向右子树搜索{temop[n]=0;//标记要丢弃这个物品traceBack(n+1);}}主控函数:(main.cpp)#include <iostream>#include "Backtrack.h"using namespace std;int main(){int number,weigth;cout<<"包的总容量:";cin>>weigth;cout<<"物品的种类:";cin>>number;BP_01_P *ptr=new BP_01_P(weigth,number);cout<<"各种物品的重量:"<<endl;for(int i=0;i<number;i++)cin>>ptr->m_hav[i];cout<<"各种物品的价值:"<<endl;for(i=0;i<number;i++)cin>>ptr->m_val[i];ptr->traceBack(0);ptr->printBestSoulation();cout<<"总重量:"<<ptr->bestHav<<"\t总价值:"<<ptr->bestVal<<endl;return 0;}六:算法分析采用回溯法解决0-1背包问题,明显比动态规划法更优良。
分别用回溯法和分支限界法求解0-1背包问题
华北水利水电学院数据结构与算法分析实验报告2009 ~2010 学年第 1 学期2009 级计算机专业班级:200915326 学号:200915326 姓名:郜莉洁一、实验题目:分别用回溯法和分支限界法求解0-1背包问题二、实验内容:0-1背包问题:给定n种物品和一个背包。
物品i的重量是Wi,其价值为Vi,背包的容量为C。
应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。
不能将物品i装入背包多次,也不能只装入部分的物品i。
三、程序源代码:A:回溯法:// bag1.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream.h>#define MaxSize 100 //最多物品数int limitw; //限制的总重量int maxwv=0; //存放最优解的总价值int maxw;int n; //实际物品数int option[MaxSize]; // 存放最终解int op[MaxSize]; //存放临时解struct {int weight;int value;}a[MaxSize]; //存放物品数组void Knap( int i, int tw, int tv) //考虑第i个物品{int j;if(i>=n) //找到一个叶子结点{if (tw<=limitw && tv>maxwv) //找到一个满足条件地更优解,保存它{maxwv=tv; maxw=tw;for(j=0;j<n;j++) option[j]=op[j];}}else{op[i]=1; //选取第I个物品Knap(i+1,tw+a[i].weight, tv+a[i].value);op[i]=0; //不选取第I个物品,回溯Knap(i+1,tw,tv);}}int main(int argc, char* argv[]){int j;n=3; //3物品a[0].weight=16;a[0].value=45;a[1].weight=15;a[1].value=25;a[2].weight=15;a[2].value=25;//a[3].weight=1;a[3].value=1;limitw=30; //限制重量不超过30 Knap(0,0,0);cout<<"最佳装填方案是:"<<endl;for(j=0;j<n;j++)if(option[j]==1)cout<<"第"<<j+1<<"种物品"<<endl;cout<<"总重量="<<maxw<<",总价值="<<maxwv<<endl;return 0;}回溯法测试结果:测试数据:物品一:重量:16,价格:45;物品二:重量:15,价格:25;物品三:重量:15,价格:25;B:分支限界法:#include <stdio.h>#include<malloc.h>#define MaxSize 100 //最多结点数typedef struct QNode{float weight;float value;int ceng;struct QNode *parent;bool leftChild;}QNode,*qnode; //存放每个结点typedef struct{qnode Q[MaxSize];int front,rear;}SqQueue; //存放结点的队列SqQueue sq;float bestv=0; //最优解int n=0; //实际物品数float w[MaxSize]; //物品的重量float v[MaxSize]; //物品的价值int bestx[MaxSize]; // 存放最优解qnode bestE;void InitQueue(SqQueue &sq ) //队列初始化{sq.front=1;sq.rear=1;}bool QueueEmpty(SqQueue sq) //队列是否为空if(sq.front==sq.rear)return true;elsereturn false;}void EnQueue(SqQueue &sq,qnode b)//入队{if(sq.front==(sq.rear+1)%MaxSize){printf("队列已满!");return ;}sq.Q[sq.rear]=b;sq.rear=(sq.rear+1)%MaxSize;}qnode DeQueue(SqQueue &sq)//出队{qnode e;if(sq.front==sq.rear){printf("队列已空!");return 0;}e=sq.Q[sq.front];sq.front=(sq.front+1)%MaxSize;return e;}void EnQueue1(float wt,float vt, int i ,QNode *parent, bool leftchild)qnode b;if (i==n) //可行叶子结点{if (vt==bestv){bestE=parent;bestx[n]=(leftchild)?1:0;}return;}b=(qnode)malloc(sizeof(QNode)); //非叶子结点b->weight=wt;b->value=vt;b->ceng=i;b->parent=parent;b->leftChild=leftchild;EnQueue(sq,b);}void maxLoading(float w[],float v[],int c){float wt=0;float vt=0;int i=1; //当前的扩展结点所在的层float ew=0; //扩展节点所相应的当前载重量float ev=0; //扩展结点所相应的价值qnode e=NULL;qnode t=NULL;InitQueue(sq);EnQueue(sq,t); //空标志进队列while (!QueueEmpty(sq)){wt=ew+w[i];vt=ev+v[i];if (wt <= c){if(vt>bestv)bestv=vt;EnQueue1(wt,vt,i,e,true); // 左儿子结点进队列}EnQueue1(ew,ev,i,e,false); //右儿子总是可行;e=DeQueue(sq); // 取下一扩展结点if (e == NULL){if (QueueEmpty(sq)) break;EnQueue(sq,NULL); // 同层结点尾部标志e=DeQueue(sq); // 取下一扩展结点i++;}ew=e->weight; //更新当前扩展结点的值ev=e->value;}printf("最优取法为:\n");for( int j=n-1;j>0;j--) //构造最优解{bestx[j]=(bestE->leftChild?1:0);bestE=bestE->parent;}for(int k=1;k<=n;k++){if(bestx[k]==1)printf("\n物品%d:重量:%.1f,价值:%.1f\n",k,w[k],v[k]);}printf("\n");printf("最优价值为:%.1f\n\n",bestv);}void main(){int c;float ewv[MaxSize];printf(" //////////////////// 0-1背包问题分枝限界法/////////////////////\n\n");printf("请输入物品的数量:\n");scanf("%d",&n);printf("请输入背包的最大承重量:\n");scanf("%d",&c);printf("\n请输入物品的重量和单位重量价值:\n\n");for(int i=1;i<=n;i++){printf("物品%d:",i);scanf("%f%f",&w[i],&ewv[i]);v[i]=w[i]*ewv[i];printf("\n");}maxLoading(w, v, c);}分支限界法测试结果:五、小结(包括收获、心得体会、存在的问题及解决问题的方法、建议等)注:内容一律使用宋体五号字,单倍行间距,不得少于100字。
0-1背包问题的递归方法
0-1背包问题的递归方法0-1背包问题是一个经典的动态规划问题,可以使用递归方法求解。
定义一个函数`knapsack(weights, values, capacity, n)`,其中`weights`和`values`分别代表物品的重量和价值,`capacity`代表背包的容量,`n`代表当前考虑的物品个数。
递归的思路是对于每个物品,有两种选择:放入背包中或者不放入背包中。
1. 如果第`n`个物品的重量大于背包的容量`capacity`,则不放入背包中,返回`0`;2. 否则,有两种选择:- 选择放入第`n`个物品,则总价值为第`n`个物品的价值加上考虑前`n-1`个物品,背包容量减去第`n`个物品重量的最优解; - 不放入第`n`个物品,则总价值为考虑前`n-1`个物品,背包容量不变的最优解。
代码如下所示:```pythondef knapsack(weights, values, capacity, n):if n == 0 or capacity == 0:return 0if weights[n-1] > capacity:return knapsack(weights, values, capacity, n-1)else:return max(values[n-1] + knapsack(weights, values, capacity-weights[n-1], n-1),knapsack(weights, values, capacity, n-1))```可以通过调用`knapsack`函数来求解0-1背包问题,如下所示:```pythonweights = [2, 3, 4, 5]values = [3, 4, 5, 6]capacity = 5n = len(weights)result = knapsack(weights, values, capacity, n)print(result)```以上代码会输出最优解的总价值。
01背包问题回溯法c语言
01背包问题回溯法c语言背包问题是一个很经典的动态规划问题,其中最常见的一种形式就是 01 背包问题。
在该问题中,给定一组物品的重量和价值,以及一个背包的容量限制,要求选择一些物品,使得在不超过背包容量的前提下,背包中物品的总价值最大。
这里我们将讨论如何使用回溯法解决01 背包问题,使用C 语言进行编程实现。
首先,我们需要定义问题的数据结构。
我们可以使用一个数组来表示不同物品的重量和价值,背包的容量可以通过一个常量来表示。
```c#define N 5 // 物品的个数#define MAX_WEIGHT 10 // 背包的容量int weights[N] = {2, 3, 4, 5, 9}; // 物品的重量int values[N] = {3, 4, 5, 8, 10}; // 物品的价值int bestValue = 0; // 最优解的价值int bestSelection[N]; // 最优解中物品的选择情况```接下来,我们可以定义一个递归函数来实现回溯法。
该函数将遍历所有可能的物品选择情况,并更新当前的最优解。
```cvoid backtrack(int depth, int weight, int value, int selection[]) {if (depth == N) {if (weight <= MAX_WEIGHT && value > bestValue) {bestValue = value;for (int i = 0; i < N; i++) {bestSelection[i] = selection[i];}}return;}// 不选择当前物品selection[depth] = 0;backtrack(depth + 1, weight, value, selection);// 选择当前物品selection[depth] = 1;backtrack(depth + 1, weight + weights[depth], value + values[depth], selection); }```最后,我们可以在主函数中调用回溯函数,得到最优解。
回溯法解背包问题实验报告
实验4回溯法解0-1背包问题一、实验要求1.要求用回溯法求解0-1背包问题;2.要求交互输入背包容量,物品重量数组,物品价值数组;3.要求显示结果。
二、实验仪器和软件平台仪器:带usb接口微机软件平台:WIN-XP + VC++6.0三、实验源码#include "stdafx.h"#include<iostream>#include<cstdio>#include<conio.h>#include<iomanip>using namespace std;template<class ty>class Knap{public:friend void Init();friend void Knapsack();friend void Backtrack(int i);friend float Bound(int i);bool operator<(Knap<ty> a)const{if(fl<a.fl) return true;else return false;}private:ty w; //重量ty v; //价值float fl; //单位重量的价值v/wint kk; //记录第几个物品int flag; //记录是否放入包中};template<class ty>void Sort(Knap<ty> *li,int n){int i,j,k; Knap<ty> minl;for(i=1;i<n;i++){minl=li[0]; k=0;for(j=1;j<=n-i;j++){if(minl<li[j]){minl=li[j]; swap(li[j],li[k]); k=j;}}}}namespace jie //命名空间{int c=0,n=0;int *x=NULL;Knap<int> *bag=NULL;int cp=0,cw=0;int bestp=0;}using namespace jie;void Init(){int i=0;cout<<endl;cout<<"请输入物品数量n = ";cin>>n; cout<<endl;cout<<"请输入背包容量C = ";cin>>c; cout<<endl;bag=new Knap<int> [n];x=new int[n];cout<<"请依次输入"<<n<<"个物品的重量W:"<<endl;for(i=0;i<n;i++)cin>>bag[i].w;cout<<endl;cout<<"请依次输入"<<n<<"个物品的价值P:"<<endl;for(i=0;i<n;i++)cin>>bag[i].v;for(i=0;i<n;i++){bag[i].flag=0; bag[i].kk=i;bag[i].fl=1.0*bag[i].v/bag[i].w;}}void Backtrack(int i){if(i>=n) //到达叶节点{bestp=cp; //更新最优价值return;}if(cw+bag[i].w<=c) //进入左子树{bag[i].flag=1; cw+=bag[i].w;cp+=bag[i].v; Backtrack(i+1);cw-=bag[i].w; cp-=bag[i].v;}if(Bound(i+1)>bestp)//进入右子树{bag[i].flag=0; Backtrack(i+1);}}//计算当前节点处的上界float Bound(int i){int cleft = c-cw; //剩余容量float b = cp;while (i<n&&bag[i].w<=cleft){//以物品单位重量价值递减序装入cleft-=bag[i].w ;b+=bag[i].v;i++;}//装满背包if (i<n) b+=1.0*bag[i].v/bag[i].w * cleft;return b;}void Knapsack() //计算最优解和变量值{int L(0); //用L累计价值,初始价值设置为0for(int k=0;k<n;k++){x[bag[k].kk]=bag[k].flag; //x=0表示未放入背包,x=1表示放入背包L+=bag[k].flag*bag[k].v; //价值累加}cout<<endl;cout<<"当前最优价值为:"<<L<<endl;cout<<"变量值x = ";for(int i=1;i<=n;i++){cout<<x[i-1];}delete []bag; bag=NULL;delete []x; x=NULL;cout<<endl; getch();}int main(){cout<<endl;cout<<"|**********回溯法解0-1背包问题**********|"<<endl;Init();Backtrack(0);Knapsack();return 0;}四、运行结果五、实验小结通过该实验,我充分了解了回溯法与分支界限法的区别。
背包问题的各种求解方法
背包问题的各种求解⽅法⼀、“0-1背包”问题描述: 给定n中物品,物品i的重量是w i,其价值为v i,背包的容量为c.问应如何选择装⼊背包中的物品,使得装⼊背包中的物品的总价值最⼤?形式化描述:给定c>0,w i>0,v i>0,1≤i≤n,要求找⼀个n元0-1向量(x1,x2,...,x n),x i∈{0,1},1≤i≤n,使得∑w i x i≤c,⽽且∑v i x i达到最⼤。
因此0-1背包问题是⼀个特殊的整形规划问题:max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n⼆、动态规划求解(两种⽅法,顺序或逆序法求解) 1.最优⼦结构性质 1.1 简要描述 顺序:将背包物品依次从1,2,...n编号,令i是容量为c共有n个物品的0-1背包问题最优解S的最⾼编号。
则S'=S-{i}⼀定是容量为c-w i且有1,...,i-1项物品的最优解。
如若不是,领S''为⼦问题最优解,则V(S''+{i})>V(S'+{i}),⽭盾。
这⾥V(S)=V(S')+v i.逆序:令i是相应问题最优解的最低编号,类似可得。
1.2 数学形式化语⾔形式化的最优⼦结构 顺序(从前往后):设(y1,y2,...,y n)是所给问题的⼀个最优解。
则(y1,...,y n-1)是下⾯相应⼦问题的⼀个最优解: max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n-1如若不然,设(z1,...,z n-1)是上述⼦问题的⼀个最优解,⽽(y1,...,y n-1)不是它的最优解。
由此可知,∑v i z i>∑v i y i,且∑v i z i+w n y n≤c。
因此∑v i y i+v n y n>∑v i y i(前⼀个范围是1~n-1,后⼀个是1~n) ∑v i z i+w n y n≤c这说明(z1,z2,...,y n)是⼀个所给问题的更优解,从⽽(y1,y2,...,y n)不是问题的所给问题的最优解,⽭盾。
回溯法解决01背包问题算法
回溯法解决01背包问题算法回溯法是一种常见的解决0-1背包问题的算法。
以下是使用Python编写的基于回溯法的0-1背包问题的解决方案:```pythondef knapsack(weights, values, capacity):n = len(weights)dp = [[0 for _ in range(capacity + 1)] for _ in range(n + 1)]for i in range(1, n + 1):for w in range(1, capacity + 1):if weights[i - 1] <= w:dp[i][w] = max(dp[i - 1][w], dp[i - 1][w - weights[i - 1]] + values[i - 1])else:dp[i][w] = dp[i - 1][w]return dp[n][capacity]def backtrack(weights, values, capacity, i, w):if i == 0 or w == 0:returnif weights[i - 1] <= w:backtrack(weights, values, capacity, i - 1, w - weights[i - 1])print(f"Pick {values[i - 1]} with weight {weights[i - 1]}")backtrack(weights, values, capacity, i - 1, w)else:backtrack(weights, values, capacity, i - 1, w)def knapsack_backtrack(weights, values, capacity):backtrack(weights, values, capacity, len(weights), capacity)```在这个代码中,`knapsack`函数使用动态规划方法来解决问题,而`backtrack`函数使用回溯法。
回溯法求0-1背包问题
学号:日期:《算法设计与分析》实验报告姓名:得分:____________、实验内容:用回溯法求解0/1背包问题注:给定n种物品和一个容量为C的背包,物品i的重量是W i,其价值为V i,背包问题是如何使选择装入背包内的物品,使得装入背包中的物品的总价值最大。
其中,每种物品只有全部装入背包或不装入背包两种选择。
、所用算法的基本思想及复杂度分析:1. 回溯法求解背包问题:1)基本思想:回溯法:为了避免生成那些不可能产生最佳解的问题状态,要不断地利用限界函数(bounding function) 来处死那些实际上不可能产生所需解的活结点,以减少问题的计算量。
这种具有限界函数的深度优先生成法称为回溯法。
对于有n种可选物品的0/1背包问题,其解空间由长度为n的0-1 向量组成,可用子集数表示。
在搜索解空间树时,只要其左儿子结点是一个可行结点,搜索就进入左子树。
当右子树中有可能包含最优解时就进入右子树搜索。
2)复杂度分析:回溯法求解0/1背包问题的时间复杂度为:T(n) 0(2n)。
空间复杂度:有n个物品,即最多递归n层,存储物品信息就是一个一维数组,即回溯法求解0/1背包问题的空间复杂度为0(n) o2. 以动态规划法验证:1)基本思想:令V(i,j)表示在前i(1 i n)个物品中能够装入容量为j(1 j C) 的背包中的物品的最大值,则可以得到如下动态函数:V(i,0) V(0,j) 0V(i,j)V(i 1,j)(j W i)maxV(i 1, j),V(i 1, j wj y (j wj按照下述方法来划分阶段:第一阶段,只装入前1 个物品,确定在各种情况下的背包能够得到的最大价值;第二阶段,只装入前2 个物品,确定在各种情况下的背包能够得到的最大价值;以此类推,直到第n 个阶段。
最后,V n,C)便是在容量为C的背包中装入n个物品时取得的最大价值。
2)复杂度分析:动态规划法求解0/1 背包问题的时间复杂度为:T(n) O(n C) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、实验目的
(1)掌握回溯法设计策略。
(2)通过0-1背包问学习回溯法法设计技巧2.实验内容
源程序:
#include<iostream>
using namespace std;
double c;//背包容量
int n; //物品数
double w[100];//物品重量数组
double p[100];//物品价值数组
double cw=0;//当前重量
double cp=0;//当前价值
double bestp=0;//当前最优值
double bound(int i)
{ double cleft,b;
//计算上界
cleft=c-cw;//剩余容量
b=cp;
//以物品单位重量价值递减序装入物品
while(i<=n&&w[i]<=cleft)
{
cleft-=w[i];
b+=p[i];
i++;
}
//装满背包
if(i<=n)
b+=p[i]*cleft/w[i];
return b;
}
void Backtrack(int i)
{
if(i>n)
{
if(cp>bestp)
bestp=cp;
return;
}
if(cw+w[i]<=c) //搜索左子树
{
cw+=w[i];
cp+=p[i];
Backtrack(i+1);
cp-=p[i];
cw-=w[i];
}
if(bound(i+1)>bestp)//搜索右子树
Backtrack(i+1);
}
double Knapsack (double pp[],double ww[],double d) {
int i;
double TP=0,TW=0;
cw=0.0;cp=0.0;bestp=0.0;//计算所有物品的重量及价值
for(i=1;i<=n;i++)
{
TP=TP+pp[i];
TW=TW+ww[i];
}
if(TW<=d)//所有物品装入背包
bestp=TP;
else
{
Backtrack(1);
}
return bestp;
};
int main()
{
int i,j;
double t,a,x[100];
cout<<"请输入物品种类数和最大载重量:"<<endl;
cin>>n;cin>>c;
cout<<"请输入各物品重量:"<<endl;
for(i=1;i<=n;i++)
cin>>w[i];
cout<<"请输入各物品价值:"<<endl;
for(i=1;i<=n;i++)
cin>>p[i];
//排序
for(i=1;i<=n;i++)
x[i]=p[i]/w[i];
for(i=1;i<=n;i++)
for(j=i+1;j<=n;j++)
if(x[i]<x[j])
{
t=x[i];
x[i]=x[j];
x[j]=t;
a=p[i];
p[i]=p[j];
p[j]=a;
a=w[i];
w[i]=w[j];
w[j]=a;
}
//排序结束
/////////////////////////////
Knapsack(p,w,c);
cout<<"结果:"<<endl;
cout<<bestp<<endl;
return 0;
}
结果:。