高频谐振功率放大器设计
高频 谐振功率放大器
高频谐振功率放大器实验121180166 赵琛1、实验目的1.进一步掌握高频丙类谐振功率放大器的工作原理。
2.掌握丙类谐振功率放大器的调谐特性和负载特性。
3.掌握激励电压、集电极电源电压及负载变化对放大器工作状态的影响。
4. 掌握测量丙类功放输出功率,效率的方法。
二、实验使用仪器1. 丙类谐振功率放大器实验板2. 200MH泰克双踪示波器3. FLUKE万用表4. 高频信号源5. 扫频频谱仪(安泰信)6 . 高频毫伏表三、实验基本原理与电路1.高频谐振功率放大器原理电路高频谐振功率放大器是一种能量转换器件,它可以将电源供给的直流能量转换为高频交流输出。
高频谐振功率放大器是通信系统中发送装置的重要组件,其作用是放大信号,使之达到足够的功率输出,以满足天线发射和其它负载的要求。
高频谐振功率放大器研究的主要问题是如何获得高效率、大功率的输出。
放大器电流导通角θ愈小,放大器的效率η愈高。
如甲类功放的θ=180,效率η最高为50%,而丙类功放的θ<90°,效率η可达到80%。
谐振功率放大器采用丙类功率放大器,采用选频网络作为负载回路的丙类功率放大器称为高频谐振功率放大器。
高频谐振功率放大器原理电路如图3-1。
图中U b为输入交流信号,E B是基极偏置电压,调整E B,改变放大器的导通角,以改变放大器工作的类型。
E C是集电极电源电压。
集电极外接LC并联振荡回路的功用是作放大器负载。
放大器工作时,晶体管的电流、电压波形及其对应关系如图3-1所示。
晶体管转移特性如图3.2中虚线所示。
由于输入信号较大,可用折线近似转移特性,如图中实线所示。
图中'B U 为管子导通电压,g m为特征斜率(跨导)。
图3-1 高频谐振功率放大器的工作原理设输入电压为一余弦电压,即u b =U bm cos ωt 则管子基极、发射极间电压u BE 为u BE =E B +u b =E B +U bm cos ωt在丙类工作时,E B <'B U ,在这种偏置条件下,集电极电流iC 为余弦脉冲,其最大值为i Cmax ,电流流通的相角为2θ,通常称θ为集电极电流的通角,丙类工作时,θ<π/2 。
高频谐振功率放大器设计
课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目:高频谐振功率放大器设计初始条件:具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。
要求完成的主要任务:1、采用晶体管完成一个高频谐振功率放大器的设计2、电源电压V cc=+12V,采用NXO-100环形铁氧体磁芯,3、工作频率f0=6MHz4、负载电阻R L=75Ω时,输出功率P0≥100mW,效率η>60%5、完成课程设计报告(应包含电路图,清单、调试及设计总结)。
时间安排:二十周一周,其中三天硬件设计,四天软、硬件调试及答辩。
指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (1)2.高频谐振功率放大器原理 (3)2.1 甲类功率放大器 (5)2.1.1 静态工作点 (5)2.1.2 负载特性 (5)2.1.3 功率增益 (6)2.2 丙类功率放大器 (7)2.2.1 基本关系式 (7)2.2.2 负载特性 (10)2.3 变频变压器的绕制 (11)2.4 重要技术指标及测试方法 (12)2.4.1输出功率 (12)2.4.2 效率 (13)3.总体电路设计与参数计算 (14)3.1 丙类功率放大器的设计 (14)3.1.1 确定放大器工作状态 (14)3.1.2 计算谐振回路和耦合回路参数 (15)3.1.3 基极偏置电路参数计算 (15)3.2 甲类功率放大器的设计 (15)3.2.1 计算电路性能参数 (15)3.2.2计算静态工作点 (16)4.仿真测试 (17)4.1 multisim软件简介 (17)4.2 仿真电路及仿真波形图 (18)5.实际电路组装与调试 (19)5.1 电路组装要点 (19)5.2 高频谐振功率放大器的调整 (19)5.3实际电路模型及调试结果 (20)6.心得体会 (21)参考文献: (22)附录:元件清单 (23)摘要利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线电发射机中的重要单元电路。
高频谐振功率放大器的基本工作原理
高频谐振功率放大器的基本工作原理高频谐振功率放大器是一种常用于无线通信和射频系统中的放大器,其基本工作原理是通过谐振电路和功率放大器的相互配合来实现信号的放大。
本文将介绍高频谐振功率放大器的基本构成和工作原理。
一、高频谐振功率放大器的构成高频谐振功率放大器主要由三个部分组成:输入谐振电路、功率放大电路和输出谐振电路。
输入谐振电路是用来接收输入信号并将其滤波、匹配到功率放大器的。
它通常由电容和电感组成的谐振回路构成,能够选择性地传输特定频率的信号。
功率放大电路是用来放大输入信号的。
它通常采用晶体管或管子放大器等器件,通过输入电压的调节来实现信号的放大,同时也可以调节放大器的增益和输出功率。
输出谐振电路是用来匹配和传输已放大的信号到输出负载的。
它通常也由谐振回路组成,能够将功率放大后的信号传输到负载上。
二、高频谐振功率放大器的工作原理高频谐振功率放大器的工作原理基于谐振电路的特性和功率放大器的线性放大特性。
首先,输入信号经过输入谐振电路后,可以选择性地通过特定频率的谐振回路,其他频率的信号会被滤波掉。
这样就能保证只有特定频率的信号能够进入功率放大器进行放大。
然后,经过谐振回路的输入信号进入功率放大电路。
功率放大电路通常采用线性放大器,其输入电压的大小决定了输出信号的放大倍数。
通过调节输入电压的大小,就可以实现对输出信号的放大程度的控制。
最后,放大后的信号经过输出谐振电路,并传输到输出负载上。
输出谐振回路起到了匹配和传输的作用,能够将功率放大后的信号有效地传输给负载。
三、高频谐振功率放大器的优势高频谐振功率放大器具有以下优势:1. 高效性:通过谐振电路的匹配和能量传输,以及功率放大器的线性放大特性,高频谐振功率放大器能够实现高效率的信号放大,提高系统的整体效能。
2. 稳定性:谐振回路能够选择性地传输特定频率的信号,并且能够稳定地工作在谐振状态下,使得输出信号的幅度和频率更加稳定。
3. 可调性:通过调节输入信号的电压,可以实现对输出信号的放大倍数和功率的可调。
通信电子电路高频谐振功率放大器实验报告
实验室时间段座位号实验报告实验课程实验名称班级姓名学号指导老师高频谐振功率放大器预习报告实验目的1.通过实验,加深对丙类功率放大器基本工作原理的理解,掌握丙类功率放大器的调谐特性。
2.掌握输入激励电压,集电极电源电压及负载变化对放大器工作状态的影响。
3.通过实验进一步了解调幅的工作原理。
实验内容1.实验准备在实验箱主板上装上幅度调制与无线发射模块,接通电源即可开始实验。
2.测试前置放大级输入、输出波形高频信号源频率设置为6.3MHZ,幅度峰-峰值300mV左右,用铆孔线连接到1P05,用示波器测试1P05和1TP07的波形的幅度,并计算其放大倍数。
由于该级集电极负载是电阻,没有选频作用。
3. 激励电压、电源电压及负载变化对丙类功放工作状态的影响U对放大器工作状态的影响(1)激励电压bE=5V左右(用万用表测1TP08直流电压, 1W05 1K03置“右侧”。
保持集电极电源电压cR=10KΩ左右(1K04置“右侧”,用万用表测1TP11电阻, 1W6逆时针调到底),负载电阻L顺时针调到底,然后1K04置“左侧”)不变。
高频信号源频率1.9MHZ左右,幅度200mv(峰—峰值),连接至功放模块输入端(1P05)。
示波器CH1接1P08,CH2接1TP09。
调整高频信号源频率,使功放谐振即输出幅度(1TP08)U,观察1TP09电压波形。
信号源幅度变化最大。
改变信号源幅度,即改变激励信号电压b时,应观察到欠压、临界、过压脉冲波形。
其波形如图7-7所示(如果波形不对称,应微调高频信号源频率,如果高频信号源是DDS信号源,注意选择合适的频率步长档位)。
实验报告1.认真整理实验数据,对实验参数和波形进行分析,说明输入激励电压、集电极电源电压,负载电阻对工作状态的影响。
2.用实测参数分析丙类功率放大器的特点。
3.总结由本实验所获得的体会。
c实验报告一.实验目的1.通过实验,加深对丙类功率放大器基本工作原理的理解,掌握丙类功率放大器的调谐特性。
基于Multisim的高频谐振功率放大器仿真实验设计
1实验目的高频谐振功率放大器的主要功能是将微弱的电信号以足够大的功率发射出去,由于负载是LC 谐振回路,因此具有滤波的功能。
此外高频谐振功率放大器还可以构成调幅电路、倍频器电路,因此是组成无线发射机的重要电路,是“高频电子线路”课程的重点内容,也是电子信息类学生必须要掌握的知识。
然而这部分的内容理论性较强,涉及到的数学知识较多,教师采用传统的PPT 授课方法,对学生来说晦涩难懂[1]。
实验是检验理论最好的办法,但目前有些高校高频实验仪器单一、设备老旧,很难满足实验的需求。
仿真软件可以帮助我们较好地解决这个问题。
本文选用的Multisim 软件具有强大的仿真功能,除了拥有大量丰富的虚拟元件和多种虚拟测量仪器外,还提供完备的分析方法[2]。
只要将软件安装在电脑上,学生就可以在电脑上完成电路的设计、搭建、运行和测试的仿真练习。
为了帮助学生更好地掌握高频谐振功率放大器的工作过程,笔者总结多年的教学经验,借助Multisim 软件,设计了一套高频谐振功率放大器的仿真实验,包括验证实验和设计实验两部分,验证实验包括高频谐振功放工作状态分析、负载特性分析、调制特性分析,设计实验包括设计滤波匹配网络和倍频器,两部分实验逐渐推进。
希望通过实验仿真,解决理论教学中枯燥难懂的问题,帮助学生更深入地理解这部分知识。
2实验设计步骤2.1创建测试电路并分析电路组成要求学生使用Multisim 软件创建如图1所示的实验电路,引导学生观察分析该电路的组成,可以以填空题形式记录分析结果。
分析:在输入回路,用电感和电阻串联构成基极自偏置电路,保证晶体管Q 1工作在截止区。
而在输出回路,由直流电源V 1、电基于Multisim 的高频谐振功率放大器仿真实验设计【摘要】为了帮助学生更好地学习高频谐振功率放大器工作过程,设计了该电路仿真实验,内容包括工作状态分析、负载特性分析、调制特性分析、设计滤波匹配网络和倍频器。
借助Multisim 软件仿真了实验内容,仿真结果形象直观,与理论结果一致,可以有效调动学生学习积极性和创新主动性。
高频电子线路课程设计:高频谐振功率放大器
课程名称:高频电子线路设计课题:高频谐振功率放大器系别:机电工程学院专业班级:电子信息工程学生姓名:指导教师:设计时间:2009/12/7 —2009/12/12高频谐振功率放大器设计者:指导教师:摘要:本电路主要由谐振回路、耦合回路、基极偏置电路三部分组成。
本电路主要应用于发射机的末级功率放大,突出特点为有较高的输出功率和效率。
关键词:高频;甲类功放;丙类功放;谐振引言:利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线电发射机中的重要单元电路。
根据放大器中晶体管工作状态的不同或晶体管电流导通角θ的范围,可分为甲类、乙类、丙类及丁类等不同类型的功率放大器。
电流导通角越小,放大器的效率越高。
丙类放大器的导通角θ<90%,效率η可达到80%,高频功率放大器一般选择在丙类工作状态。
本设计采用甲类功放输出的最大不失真信号作为激励源,丙类功放作为末级功放以获得较大的输出功率和较高的效率。
1设计任务与要求设计一个高频谐振功率放大器。
=3W ,工作中心频率f0≈6.5MHz ,效率η>50 % ,负技术要求:输出功率P载RL=50Ω,电源电压VCC=9V,2△f0.7=3.25MHz2方案设计与论证利用选频网络作为负载回路的功率放大器称为谐振功率放大器。
根据放大器电流导通角θ的范围可以分为甲类、乙类、丙类及丁类等不同类型的功率放大器。
电流导通角θ愈小,放大器的效率η愈高。
如甲类功放的θ=180°,效率最高也只能达到50%,而丙类功放的θ<90%,效率η可达到80%。
甲类放大器电流的流通角为180°,适用于小信号低功率放大。
乙类放大器导通角等于180°;丙类放大器导通角则小于180°。
乙类和丙类都适用于大功率工作。
丙类工作状态的输出功率和效率是三种工作状态中最高者。
高频功率放大器大多工作于丙类。
但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。
高频谐振功率放大器设计与仿真-visionouc
丙类谐振功率放大器模块
丙类谐振功率放大器原理图如图所示
谐振功率放大器的特点: (1)放大管是高频大功率晶体管,能承受高电压和大电流 (2)输出端负载回路为调谐回路,既能完成调谐选频功能 ,又能实现放大器输出端负载的匹配。
(3)基极偏置电路为晶体管发射结提供负偏压,使电路工 作在丙类状态。 (4)输入余弦波时,经过放大,集电极输出电压是余弦脉 冲波形。 (5)晶体管的作用是在将供电电源的直流能量转变为交流 能量的过程中起开关控制作用,谐振回路LC是晶体管的 负载。
高频谐振功率放大器设计与仿真
指导老师:郑海永 小组成员:夏文杰 李潇 章磊
一、任务要求 二、设计思想 三、仿真过程与成品展示
1.1课程设计的任务
在无线电信号发射过程中,发射 机产生高频信号功率很小,因此在它 后面要经过一系列的放大,如缓冲级、 中间放大级、末级功率放大级等,获 得足够的高频功率后,才能输送到天 线上辐射出去。本次课程设计的任务 就是设计一高频谐振功率放大器。
甲类 :电路中管子的导通时间是整 个信号周期,集电极电流导通角为 180度。
放大器的 工作状态
乙类 :集电极电流导通角为90度。
丙类 : 集电极电流导通角小于90度。
系统框图
信 号 输 入 信 号 输 出
两级 甲类 放大器
工作在 丙类状态的 谐振放大器
选择两级甲类放大器放大输入 电压,再由丙类放大器获得较高的功 率和效率,并由具有滤波作用的调谐 回路获得近似不失真的正弦波信号。
系统整体电路图
丙类谐振功率放大器
Pcb板的电路搭建
进行所有元件的封装与布局
进行布线
进行最后的收尾
Pcb板的焊接
碰到的问题和困难
1.软件的使用困难 2.前期准备不足带来的麻烦 3.Pcb板和元件购买的困难 4.焊接的难度和对工艺了解的不足
高频谐振功率放大器
偏置电路优化
设计合适的偏置电路,以稳定放大器 的工作状态,提高其可靠性。
散热设计优化
根据实际散热需求,设计合理的散热 结构和散热方式,以提高放大器的可 靠性。
自动校准与补偿
利用自动校准和补偿技术,对放大器 的性能进行实时监测和调整,以提高 其稳定性和可靠性。
05
高频谐振功率放大器的 应用实例
在通信系统中的应用
放大器设计的基本原则
高效性
放大器应具有高效率,以减少能源消耗和散 热需求。
线性度
放大器应保持信号的线性放大,避免非线性 失真。
稳定性
放大器应具有稳定的性能,避免自激振荡和 失真。
可靠性
放大器应具有较高的可靠性和稳定性,以满 足长期使用需求。
放大器设计的步骤与方法
确定技术指标
根据应用需求,确定放大器的技术指标,如 输出功率、工作频率、带宽等。
分析放大器在不同频率下的稳定性表现,通常通 过测试不同频率下的增益和相位变化来评估。
温度稳定性
分析放大器在不同温度下的稳定性表现,通常通 过测试不同温度下的增益和相位变化来评估。
3
电源稳定性
分析放大器在不同电源电压下的稳定性表现,通 常通过测试不同电源电压下的增益和相位变化来 评估。
04
高频谐振功率放大器的 设计与优化
输入级是放大器的起始部分, 负责接收微弱的高频信号并将 其放大。
输入级通常采用晶体管或场效 应管等有源器件,通过小信号 放大来提高信号的幅度。
输入级的电路设计需考虑信号 源内阻、输入信号的幅度和频 率等参数,以确保信号能够有 效地传递到输出级。
输出级
输出级是放大器的末级,负责将经过放大的高频信号输出。
01
02
高频功率放大器设计
高频功率放大器设计1、概述及基本原理高频功率放大器是对载波信号或高频信号进行功率放大的电路。
利用选频网络作为负载回路的功率放大器成为谐振功率放大器。
随着现代通信技术的日益发展高频放大应用的领域也越来越广。
在某些场合高频放大技术的高低成为制约本领域技术发展的关键所在。
比如射频手机和高频信号收发机等,都需要用到高频功率放大器,并且作为一项非常重要的技术攻关项目。
特别是移动电话机中高频功率放大器品质的高低直接影响其产品的技术指标。
所以本次课程设计我选择高频功谐振率放大器。
如图1所示为高频功放基本原理图,图中,高频扼流圈提供直流通路,C1为隔直流电容,谐振回路分别为输入和输出滤波匹配网络。
其中天线等效阻抗,作为输出负载。
与非谐振功放比较,它们都要求安全高效地输出足够大的不失真功率,但有一些区别。
图1高频功放基本原理图谐振式高频功率放大器的特点是:①为了提高效率,放大器常工作于丙类状态,晶体管发射结为反向偏置,由Eb(VBB)来保证,流过晶体管的电流为余弦脉冲波形;②负载为谐振回路,除了确保从电流脉冲波中取出基波分量,获得正弦电压波形外,还能实现放大器的阻抗匹配。
2.方案及各部分设计原理分析2.1整体介绍基本部分组成,即电子管、谐振回路和电源。
电子管在放大器中起着把直流能量转换为交流能量的作用;谐振回路是电子管的负载;电源供给电子管各电极电压,它们共同保证电子管的正常工作。
放大器有两个主要电路:板极电路和栅极电路。
板极电路包括并联振荡回路和直流板极电压Ea的馈电电路。
振荡回路由电感L1、电容C1和电阻r组成。
电路中C1'为高频旁路电容,L1'为高频阻流圈。
在栅极电路中加入直流偏压Eg,一般Ea为负值。
电路中C2'和L2'分别是栅极回路的高频旁路电容和高频阻流圈。
2.2原理分析知道前级送来的高频激励电压为ug=Ugcosωt它加在栅极与阴极之间。
其中,ug是激励电压的瞬时值,Ug是激励电压的振幅值,ω=2πf是激励电压的角频率,f是激励电压的频率。
基于multisim的高频谐振功率放大器设计与仿真—课程设计
课程设计报告题目:基于multisim的高频谐振功率放大器设计与仿真学生姓名:学生学号:系别:电气信息工程学院专业:电子信息工程届别: 14届指导教师:电气信息工程学院制基于multisim的高频谐振功率放大器设计与仿真1课程设计的任务与要求1.1课程设计的任务在通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。
为了获得足够大的高频输出功率,必须采用高频功率放大器。
高频功率放大器是无线电发射没备的重要组成部分。
在无线电信号发射过程中,发射机的振荡器产生的高频振荡信号功率很小,因此在它后面要经过一系列的放大,如缓冲级、中间放大级、末级功率放大级等,获得足够的高频功率后,才能输送到天线上辐射出去。
本次课程设计的任务就是设计一高频谐振功率放大器。
1.2 课程设计的要求要求的技术指标为:输出功率Po≥125mW,工作中心频率fo=6MHz,η>65%,已知:电源供电为12V,负载电阻,RL=51Ω,晶体管用2N2219,其主要参数:Pcm=1W,Icm=750mA,VCES=1.5V,fT=70MHz,hfe≥10,功率增益Ap≥13dB(20倍)1.3 课程设计的研究基础利用选频网络作为负载回路的功放称为谐振功放。
根据放大器电流导通角的范围可分为甲类、乙类、丙类和丁类等功放。
电流导通角越小放大器的效率越高。
如丙类功放的小于180度,丙类功放通常作为发射机的末级,以获得较大的输出功率和较高的功率。
丙类谐振功率放大器原理图如图1所示。
图1谐振功率放大器的基本电路谐振功率放大器的特点:(1)放大管是高频大功率晶体管,能承受高电压和大电流。
(2)输出端负载回路为调谐回路,既能完成调谐选频功能,又能实现放大器输出端负载的匹配。
(3)基极偏置电路为晶体管发射结提供负偏压,使电路工作在丙类状态。
(4)输入余弦波时,经过放大,集电极输出电压是余弦脉冲波形。
实验三丙类高频功率放大器实验
实验三 丙类高频功率放大器实验一. 实验目的1.通过实验,加深对于高频谐振功率放大器工作原理的理解。
2.研究丙类高频谐振功率放大器的负载特性,观察三种状态的脉冲电流波形。
3.了解基极偏置电压、集电极电压、激励电压的变化对于工作状态的影响。
4.掌握丙类高频谐振功率放大器的计算与设计方法。
二。
预习要求:1.复习高频谐振功率放大器的工作原理及特点。
2.熟悉并分析图3所示的实验电路,了解电路特点。
三.电路特点及实验原理简介在高频范围内为获得足够大的高频输出功率,必须采用高频放大器,高频功率放大器主要用于发射机的未级和中间级,它将振荡产生的信号加以放大,获得足够高频功率后,再送到天线上辐射出去。
另外,它也用于电子仪器作未级功率放大器。
高频功率放大器要求效率高,输出功率大。
丙类放大器它是紧紧围绕如何提高它的效率而进行的。
高频功率放大器的工作频率范围一般为几百kHz —几十MHz 。
一般都采用LC 谐振网络作负载,且一般都是工作于丙类状态,如果要进一步提高效率,也可工作于丁类或戊类状态。
1.电路特点本电路的核心是谐振功率放大器,在此电路基础上,将音频调制信号加入集电极回路中,利用谐振功率放大电路的集电极调制特性,完成集电极调幅实验。
当电路的输出负载为天线回路时,就可以完成无线电发射的任务。
为了使电路稳定,易于调整,本电路设置了独立的载波振荡源。
2.高频谐振功率放大器的工作原理参见图1。
谐振功率放大器是以选频网络为负载的功率放大器,它是在无线电发送中最为重cR L要、最为难调的单元电路之一。
根据放大器电流导通角的范围可分为甲类、乙类、丙类等类型。
丙类功率放大器导通角θ<900,集电极效率可达80%,一般用作末级放大,以获得较大的功率和较高的效率。
图1中,Vbb 为基极偏压,Vcc为集电极直流电源电压。
为了得到丙类工作状态,Vbb应为负值,即基极处于反向偏置。
u b为基极激励电压。
图2示出了晶体管的转移特性曲线,以便用折线法分析集电极电流与基极激励电压的关系。
高频功率放大器课程设计
2.设计方案论证 2.设计方案论证
2.1 设计思路及方法 2.1.1 基于 Multisim 的高频功率放大器的仿真 的高频功率放大器的仿真 Multisim 是一个专门用于电子电路仿真和设计的 EDA 软件,它具有直观,方便的操作 界面,创建电路,选用元器件和虚拟测试仪器等均可直接从屏幕图形中选取,操作简便.它 具有完备的电路分析功能,可以完成电路的瞬态分析和稳态分析,时域分析和频域分析,器 件的线性和非线性分析,交直流灵敏度分析等电路分析方法.在进行仿真的过程中,可以存 储测试点的数据,测试仪器的工作状态,显示的波形.它先进的高频仿真设计和功能,是目 前众多仿真电路所不具备的. 2.1.2 放大器分类 利用选频网络作为负载回路的功率放大器称为谐振功率放大器. 根据放大器电流导通角
集电极输出功率: V2 1 1 Pc = Vc1m I c1m = I c1m R0 = cm 2 2 2 R0
式中,Vcm——集电极输出的交流电压的振幅.
Vcm=VCC- ICQRE1- VCE(sat)
式中,VCE(sat)称为饱和压降. ③电源 VCC 供给的直流功率
PD=VCC Ic0
式中,Ic0——集电极电流脉冲 ic 的直流分量.
VCC- VCm = VCE(sat)
沈 阳 大 学
课程设计说明书
NO.7
图 5 谐振功放的负载特性
图 6 负载电阻对电流的影响
2.4 设计举例 已知条件:VCC 为+12V,晶体管 3DA1 的主要参数为 PcM=1w,IcM=750mA,VCE(sat) ≥1.5V,hfe≥10,fT=70MHz. 主要技术指标: 输出功率 Po≥500mW, 工作中心频率 f0≈5MHz, 效率 η>50%, 负载 RL=50Ω. 解:要求总效率 η>50%,显然采用一级丙类功放,取 Po=500mW. (1)确定放大器的工作状态
高频谐振功率放大器实验报告
高频谐振功率放大器实验报告一、实验目的本次实验的目的是理解高频谐振电路的工作原理,以及掌握高频谐振功率放大器的设计、测试和调试方法。
二、实验器材本次实验所需的器材有:1.信号发生器2.谐振电路3.功率放大器4.示波器5.负载三、实验原理1.高频谐振电路的原理高频谐振电路是利用电容和电感构成谐振回路,当电路频率与谐振频率相同时,电路呈现出较大的阻抗,使得谐振电路的输出电压和输出功率得到显著提高。
2.高频谐振功率放大器的原理高频谐振功率放大器是将谐振电路和功率放大器组合在一起,实现对输入信号的放大。
其输入信号经过谐振回路谐振后,输出到功率放大器,通过功率放大器进行放大,最终输出到负载。
四、实验过程1.搭建高频谐振功率放大器电路首先,将信号发生器连接到谐振电路的输入端,谐振电路的输出端连接到功率放大器的输入端,功率放大器的输出端连接到负载。
然后,根据实验要求调整信号发生器的频率,并观察谐振电路的输出波形,以及功率放大器的输出波形。
2.测试谐振频率通过改变电容和电感的数值,调整谐振电路的谐振频率。
在调整过程中,使用示波器观察输出波形,并记录谐振电路的谐振频率。
3.测试输出功率根据实验要求,改变负载的阻抗,测试功率放大器的输出功率,并记录输出功率随负载变化的曲线。
五、实验结果在实验过程中,我们对高频谐振功率放大器进行了测试和调试,并获得了以下实验结果:1.谐振频率为8MHz,放大倍数为10。
2.随着负载阻抗的增加,输出功率逐渐下降,最大输出功率为5W。
3.在工作频率附近,输出波形呈现出较高的稳定性和准确性。
六、实验结论通过本次实验,我们理解了高频谐振电路的工作原理,以及高频谐振功率放大器的设计、测试和调试方法。
并成功完成了谐振频率和输出功率的测试,为下一步的实验奠定了基础。
高频谐振功率放大器实验报告
高频谐振功率放大器实验报告高频谐振功率放大器实验报告引言:高频谐振功率放大器是一种用于放大高频信号的重要电子元件。
它的设计和性能对于无线通信、雷达系统以及其他高频应用至关重要。
本实验旨在通过搭建一个高频谐振功率放大器的电路并进行测试,探究其工作原理和性能。
实验器材和方法:本实验使用的器材包括信号发生器、功率放大器、频谱分析仪以及示波器等。
首先,我们搭建了一个基于共射极放大器的高频谐振功率放大器电路。
然后,通过调节信号发生器的频率和功率放大器的偏置电压,我们得到了不同频率下的输出信号。
最后,通过频谱分析仪和示波器对输出信号进行测量和分析。
实验结果和讨论:在实验过程中,我们观察到了以下几点结果和现象。
1. 频率响应特性:通过改变信号发生器的频率,我们得到了功率放大器在不同频率下的输出功率。
我们发现,功率放大器的输出功率在某个特定频率附近达到最大值,而在其他频率下则显著降低。
这是因为在谐振频率附近,谐振电路对输入信号具有最大的增益,从而实现了信号的放大。
2. 谐振电路的选择:在实验中,我们使用了一个LC谐振电路作为功率放大器的输出匹配网络。
这是因为LC谐振电路具有较高的品质因数,能够在特定频率下实现较高的增益和较低的损耗。
同时,通过调节电感和电容的数值,我们可以调整谐振频率和带宽,以满足不同应用的需求。
3. 非线性失真:在实验中,我们注意到在谐振频率附近,功率放大器的输出信号存在一定的非线性失真。
这是因为功率放大器在工作过程中会引入非线性元件,如晶体管等。
这些非线性元件会导致输入信号的失真和谐波的产生。
因此,在实际应用中,我们需要采取相应的补偿措施,以减小非线性失真对系统性能的影响。
4. 功率放大器的效率:通过测量输入功率和输出功率,我们计算了功率放大器的效率。
我们发现,在谐振频率附近,功率放大器的效率较高,可以达到70%以上。
这是因为在谐振频率附近,功率放大器的输入和输出阻抗匹配较好,能够最大程度地转移能量。
高频谐振功率放大器实验实验报告
丙类高频谐振功率放大器与基极调幅实验报告一. 实验目的1.了解和掌握丙类高频谐振功率放大器的构成及工作原理。
2.了解丙类谐振功率放大器的三种工作状态及负载特性、调制特性、放大特性和调谐特性。
3. 掌握丙类谐振功率放大器的输出功率o P 、直流功率D P 、集电极效率C 测量方法。
4. 掌握用频谱仪观测信号频谱、频率及调制度的方法。
二.实验仪器及设备1.调幅与调频接收模块。
2.直流稳压电压GPD-3303D3.F20A 型数字合成函数发生器/计数器 4.DSO-X 2014A 数字存储示波器 5.SA1010频谱分析仪三.实验原理1.工作原理高频谐振功率放大器是通信系统重要的组成电路,用于发射机的末级。
主要任务是高效率的输出最大高频功率,馈送到天线辐射出去。
为了提高效率,晶体管发射结采用负偏置,使放大器工作于丙类状态(导通角θ<90O)。
高频谐振功率放大器基本构成如图1.4.1所示,丙类谐振功率放大器属于大信号非线性放大器,工程上常采用折线分析法,各级电压、电流波形如图1.4.2所示。
(a )原理电路 (b )等效电路图1.4.1 高频功率放大器图1.4.1中,晶体管放大区的转移(内部静态)特性折线方程为:()C C BE BZ i g v U =-1.4.1放大器的外电路关系为:cos BE B b m u E U t ω=+1.4.2cos CE C cm u E U t ω=-1.4.3当输入信号B BZ b u E U <+时,晶体管截止,集电极电流0C i =;当输入信号B BZ b u E U >+时,发射结导通,由式1.4.1、1.4.2和1.4.3得集电极电流C i 为:maxcos cos 1cos C C t i i ωθθ-=- 1.4.4式中,BZ U 为晶体管开启电压,C g 为转移特性的斜率。
以上分析可知,晶体管的集电极输出电流c i 为尖顶余弦脉冲,可用傅里叶级数展开为:++++=t I t I t I I t i m C m C m C C c ωωω3cos 2cos cos )(3210 1.4.5其中,0C I 为C i 的直流分量,m C I 1、2C m I 、…分别为c i 的基波分量、二次谐波分量、…。
高频实验2高频谐振功率放大器.ppt
Icmax
ic
ic1
ic2 ic3
故输出仍为不失 Ico 真的正弦波.
ωt
θc
θc
利用功放负载 LC回路的选频 功适能当,选择LC的 参数使之谐振与 基波频率,
-VBB
C
BT Ec
R+
L
Uc1
-
高频功放的工作状态: ic
高频功放的工作状态有三种,分别是: (1) 欠压工作状态
特点:晶体管的工作范围在放大区和截止区。
④ 缓慢增大输入信号幅度,使放大器处于临界工作状态,即Ie由尖顶余弦 脉冲变化到即将出现双峰的时刻,注意观测此时输出信号幅度与输入信号 幅度变化的特点(输出信号最大)。
⑤ 继续增大输入信号幅度。当输入信号幅度增大到一定程度时,放大器将由临
界进入到过压工作状态,即Ie由尖顶余弦脉冲变化到集电极电流脉冲则出现凹陷 的双峰,注意观测此时输出信号幅度与输入信号幅度变化的特点(输出电压振幅 增长缓慢)。
4测、试丙电路类框功图率和放实大验器测试负条载件特同性上测:定的测 R输结L试 入=根果条 信12据件 号,0:频Ω实说率Vc验明=c=谐测什+振1量么频2V率数是fo据高
① 使高功放处于最佳谐振状态。
功放的负载特性?
② 用示波器“ CH1”探头检测“高频功率放大器”实验板的 “Ie”波形;用示波器”CH2”探头检测“高频功率放大器” 实验板的“OUT”波形。
③ 适当调整高频信号发生器的输出信号 幅度,使放大器处于过压工作状态,即 使Ie出现双峰,并记录此时的电流波形。
④ 改变负载(用连接线),使负载电 阻依次变为75Ω→50Ω。观察并记录不 同负载时的电流波形。
三、实验应会技能 根据实验测量的结果,
高频实验三 高频丙类谐振功率放大器实验报告
高频实验三高频丙类谐振功率放大器实验报告实验目的:1. 理解高频振荡电路的谐振条件,并掌握它的基本工作原理;2. 理解高频功率放大器的基本原理;3. 掌握高频振荡电路的调谐方法;4. 熟练掌握高频功率放大器的参数选择和调试方法。
实验器材:1.高频发生器2.谐振电路板3.二级元件(J310晶体管、VMMK-2203二极管、0.2Ω15W电阻)4.射频电阻5.多用表6.示波器7.功率计8.负载实验原理:1.谐振电路谐振电路是在特定的频率下,由电感和电容构成的谐振回路,通过它产生的信号波,能够单纯频率的持续振荡,保证了信号的稳定性。
在PCB板上我们对谐振电路布线,包括多个元器件的互连、地线的走向等设计严谨,注重缩小回路面积,降低谐振频率,减小谐振面积,从而提高谐振质量和谐振Q值,增强谐振电路稳定性,提高谐振电路的抗干扰能力。
谐振频率的计算公式f=1/(2π(LC)^0.5)2.高频功率放大器高频功率放大器是在HF频段(3MHz~30MHz)内的放大器,在电视机、收音机、通信设备等广泛应用中,常采用的是质子放大器,它所具有的功率放大、稳定性好等性能,能胜任各种业余通信需求。
实验步骤:1.按照谐振电路图在PCB板上完成电路组装,安装元器件之间要严谨紧密。
2.将负载连接到电路的输出端,连接电源,连接示波器和功率计。
3.改变高频发生器的频率,寻找谐振点。
4.调谐谐振电路的电感和电容,使其达到最佳状态。
5.检验电路的信号质量、放大系数和输出功率。
实验结果:1.通过调谐谐振电路,我们最终定位到了谐振点,稳定的输出正弦波。
2.经过功率计测量,我们发现功率输出效果较为满意。
实验分析:1.在谐振电路的制作过程中,需要仔细考虑各个元器件之间的互连,并且严格控制回路面积,以提高谐振质量和谐振Q值。
2.对于高频功率放大器的参数调试,需要对电感和电容等元器件进行仔细调谐,以找到最佳状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津天狮学院《高频电子线路》设计报告题目:高频谐振功率放大器专业:(本14级电子信息工程班级:2班:黄霞总成绩:天津天狮学院信息与自动化学院2016年 5月 10 日课程设计任务具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、采用晶体管完成一个高频谐振功率放大器的设计2、电源电压V cc=+12V,采用NXO-100环形铁氧体磁芯,3、工作频率f0=6MHz4、负载电阻R L=75Ω时,输出功率P0≥100Mw,效率η>60%5、完成课程设计报告(应包含电路图,清单、调试及设计总目录摘要 (I)1 高频功率放大器简介 (1)1.1 高频功率放大器的分类 (1)1.2 高频功率放大器的主要技术指标. (2)1.3 功率放大器的三种工作状态 (2)1.4 高频功率放大器的分析方法 (3)2 放大器电路分析 (4)2.1 谐振功放基本电路组成 (4)2.2 集电极电流余弦脉冲分解 (5)2.3 谐振功率放大器的动态特性 (7)2.3.1 谐振功放的三种工作状态 (7)2.3.2 谐振功率放大器的外部特性 (8)3 单元电路的设计 (11)3.1 丙类功率放大器的设计 (11)3.1.1 放大器工作状态的确定 (11)3.1.2谐振回路和耦合回路参数计算 (12)3.2 甲类功率放大器的设计 (12)3.2.1电路性能参数计算 (12)3.2.2静态工作点计算 (14)3.3 电路原理图 (14)4 电路的安装与调试 (15)5 课程设计心得体会 (16)参考文献 (17)附录1 (18)摘要高频功率放大器是发送设备的重要组成部分之一,通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,而且通信距离越远,要求输出功率越大。
所以为了获得足够大的高频输出功率,必须采用高频功率放大器。
由于高频功率放大器的工作频率高,相对频带窄,所以一般采用选频网络作为负载回路。
本次课设报告先是对高频功率放大器有关理论知识作了一些简要的介绍,然后在性能指标分析基础上进行单元电路设计,最后设计出整体电路图,在软件中仿真验证是否达到技术要求,对仿真结果进行分析,最后总结课设体会。
关键词:高频谐振功率放大器谐振回路耦合回路工作状态1高频功率放大器简介在通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。
为了获得足够大的高频输出功率,必须采用高频功率放大器。
高频功率放大器是无线电发射没备的重要组成部分。
在无线电信号发射过程中,发射机的振荡器产生的高频振荡信号功率很小,因此在它后面要经过一系列的放大,如缓冲级、中间放大级、末级功率放大级等,获得足够的高频功率后,才能输送到天线上辐射出去。
这里提到的放大级都属于高频功率放大器的畴。
实际上高频功率放大器不仅仅应用于各种类型的发射机中,而且高频加热装置、高频换流器、微波炉等许多电子设备中都得到了广泛的应用。
高频功率放大器和低频功率放大器的共同特点都是输出功率大和效率高,但二者的工作频率和相对频带宽度却相差很大,决定了他们之间有着本质的区别。
低频功率放大器的工作频率低,但相对频带宽度却很宽。
例如,自20至20000 Hz,高低频率之比达1000倍。
因此它们都是采用无调谐负载,如电阻、变压器等。
高频功率放大器的工作频率高(由几百Hz一直到几百、几千甚至几万MHz),但相对频带很窄。
例如,调幅广播电台(535-1605 kHz的频段围)的频带宽度为10 kHz,如中心频率取为1000 kHz,则相对频宽只相当于中心频率的百分之一。
中心频率越高,则相对频宽越小。
因此,高频功率放大器一般都采用选频网络作为负载回路。
由于这后一特点,使得这两种放大器所选用的工作状态不同:低频功率放大器可工作于甲类、甲乙类或乙类(限于推挽电路)状态;高频功率放大器则一般都工作于丙类(某些特殊情况可工作于乙类)。
1.1 高频功率放大器的分类高频功率放大器按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。
高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。
谐振功率放大器的特点:①放大管是高频大功率晶体管,能承受高电压和大电流。
②输出端负载回路为调谐回路,既能完成调谐选频功能,又能实现放大器输出端负载的匹配。
③基极偏置电路为晶体管发射结提供负偏压,使电路工作在丙类状态。
④输入余弦波时,经过放大,集电极输出电压是余弦脉冲波形。
1.2 高频功率放大器的主要技术指标高频功率放大器的主要技术指标有:输出功率、效率、功率增益、带宽和谐波抑制度等。
这几项指标要互相矛盾的,在设计放大器时应根据具体要求,突出一些指标,兼顾其他一些指标。
例如,对于发射机的输出级,其特点是希望输出功率最高,对应的效率不一定会最高;对于单边带发射机,则要求功率放大器非线性失真尽可能小,也就是谐波抑制度是设计的主要问题。
显然,在这类功率放大器中,效率是不很高的。
1.3 功率放大器的三种工作状态高频功率放大器的效率是一个突出的问题,其效率的高低与放大器的工作状态有直接的关系。
放大器件的工作状态可分为甲类、乙类、丙类等,图1-1为甲、乙、丙三种状态时的晶体管集电极电流波形。
表1-1为甲、乙、丙三种工作状态的特点。
提高功率放大器效率的主要途径是使放大器件工作在乙类、丙类状态,但这些工作状态下放大器的输出电流与输入电压间存在很严重的非线性失真。
低频功率放大器因其信号的频率覆盖系数很大,不能采用谐振回路作负载,因此一般工作在甲类状态;采用推挽电路时可以工作在乙类状态;高频功率放大器因其信号的频率覆盖系数小,可以采用谐振回路作负载,故通常工作在丙类状态,通过谐振回路的选频作用,可以滤除放大器的集电极电流中的谐波成分,选出基波从而消除非线性失真。
因此,高频功率放大器具有比低频功率放大器更高的效率。
甲类 乙类 丙类图1-1 放大器的三种工作状态 表1-1 不同工作状态时放大器的特点工作状态 半导通角 理想效率 负 载 应 用 甲类 θc =180︒ 50% 电阻 低频 乙类 θc =90︒ 78.5% 推挽,回路低频,高频 甲乙类 90︒<θc <180︒ 50%<η<78.5% 推挽 低频 丙类 θc <90︒ η>78.5% 选频回路 高频 丁类开关状态90%~100%选频回路高频1.4 高频功率放大器的分析方法高频功率放大器因工作于大信号的非线性状态,不能用线性等效电路分析,工程上普遍采用解析近似分析方法——折线法来分析其工作原理和工作状态。
这种分析方法的物理概念清楚,分析工作状态方便,但计算准确度较低。
所谓折线法是将电子器件的特性曲线理想化,用一组折线代替晶体管静态特性曲线后进行分析和计算的方法。
对谐振功率放大器进行分析计算,关键在于求出电流的直流分量I C0和基频分量I cm1。
根据理想化原理晶体管的静态转移特性可用交横轴于V BZ 的一条直线来表示(V BZ 为截止偏压)。
如图为晶体管实际特性和理想折线。
理想化折线(虚线)i cg ceV BZ临界线过压区欠压区gcr EcIc图1-2 晶体管实际特性和理想折线2 放大器电路分析2.1 谐振功放基本电路组成如图2-1所示为高频功率放大器的基本电路。
为了使高频功率放大器有高效率地输出大功率,常常选择工作在丙类状态下工作。
我们知道,在一元件(呈电阻性)的耗散功率等于流过该元件的电流和元件两端电压的乘积。
由图可知基极直流偏压V BB 使基极处于反向偏压的状态,对于NPN 型管来说,只有在激励信号为正值的一段时间才有集电极电流产生,所以耗散功率很小。
晶体管的作用是在将供电电源的直流能量转变为交流能量的过程中起开关控制作用,谐振回路中LC 是晶体管的负载,电路工作在丙类工作状态。
v BB CCi图2-1 高频功率放大器基本电路图2-2为谐振功率放大器各级电压和电流波形。
(a )(b )(c )ω ti C U on 转移特性i Cω tω tω t U bm-θθu BEu b-θθi CmaxU on U BB u BE i Bi Cθθ-θU bmUBB图2-2 谐振功率放大器各级电压和电流波形2.2 集电极电流余弦脉冲分解当晶体管特性曲线理想化后,丙类工作状态的集电极电流脉冲是尖顶余弦脉冲。
这适用于欠压或临界状态。
晶体管的部特性为:i c = g c (e b–V BZ)它的外部电路关系式:e b = –V BB + V bm cosωte c = V CC –V cm cosωt当ωt=0时,i c = i c max因此,i c max = g c V bm(1–cos θc)若将尖顶脉冲分解为傅里叶级数,得i c =I c0+I cm1cosωt+I cm2cos2ωt+…+I cmn cosnωt+…由傅里叶级数的求系数法得其中)()(maxmax1maxCnCcmnCCcmCCCiIiIiIθαθαθα==)(=1)cos1)(1(sincoscossin2)()cos1(sincos)()cos1(cossin)(21ccccccnccccccccccnnnnnθθθθθπθαθπθθθθαθπθθθθα---⋅=--=--=图2-3 尖顶脉冲的分解系数由图可见,当θc≈120︒时,Icm1/Ic max 达到最大值。
在Ic max 与负载阻抗Rp 为某定值的情况下,输出功率将达到最大值。
这样看来,取θc=120︒应该是最佳通角了。
但此时放大器处于甲级工作状态效率太低。
为了兼顾效率和功率,常常取导通角70度左右。
2.3 谐振功率放大器的动态特性2.3.1 谐振功放的三种工作状态在非线性谐振功率放大器中,常常根据集电极是否进入饱和区,将放大区的工作状态分为三种:①欠压工作状态:集电极最大点电流在临界线的右方 ②过压工作状态:集电极最大点电流进入临界线之左的饱和区0.5 0.4 0.3 0.2 0.1 0 -0.05③临界工作状态:是欠压和过压状态的分界点,集电极最大点电流正好落在临界线上。
如图2-4为电压、电流随负载变化的波形图。
图2-4 电压、电流随负载变化波形高频放大器的工作状态是由负载阻抗R p、激励电压V b、供电电压V CC、V BB等4个参量决定的。