LED路灯电源及智能调光设计方案
LED智能路灯控制系统设计
LED智能路灯控制系统设计随着科技的不断进步,LED智能路灯控制系统逐渐成为城市照明的新趋势。
这一系统通过智能化技术,实现了对路灯的远程监控、节能调光、故障检测等功能,为城市提供了更高效、更智能的照明解决方案。
一、系统架构LED智能路灯控制系统的基本架构包括传感器、控制器、通信模块和云平台。
传感器用于感知环境数据,例如光照强度、温度、人流情况等。
控制器负责对LED灯进行调光和开关控制。
通信模块实现了系统内部各部件之间的数据传输,而云平台则用于远程监控和管理。
二、功能特点远程监控与管理:通过云平台,城市管理者可以实时监控每个LED路灯的工作状态,包括亮度、能耗、故障等信息。
这有助于及时发现并解决问题,提高了路灯的可靠性。
智能调光:根据不同时间段和实际需要,系统可以智能地调整LED灯的亮度。
在夜间或交通低峰期,降低亮度以节省能源;而在需要照明较强的情况下,则提高亮度,确保路面安全。
环境感知:利用各类传感器,系统能够感知周围环境的变化,如雨雪天气、人流密集等。
根据环境变化,自动调整照明模式,提高路灯的智能化水平。
能源节约:通过智能调光、远程监控等功能,LED智能路灯控制系统有效实现了能源的节约,降低了城市的能耗水平,符合可持续发展的理念。
三、技术创新物联网技术:LED智能路灯控制系统通过物联网技术实现了各个设备之间的互联互通。
传感器采集的数据可以实时传输到云平台,实现远程监控和管理。
人工智能算法:利用人工智能算法,系统能够分析历史数据和实时数据,预测未来的照明需求,并做出相应的调整。
这提高了系统的智能化水平。
无线通信技术:采用先进的无线通信技术,路灯控制系统可以实现更远距离的数据传输和更稳定的通信连接,确保系统的稳定性和可靠性。
四、应用前景LED智能路灯控制系统已经在一些城市得到了广泛应用,取得了显著的节能效果和城市管理的提升。
未来,随着技术的不断创新,这一系统将进一步发展,成为城市智能化的重要组成部分。
智慧路灯电路系统设计方案
智慧路灯电路系统设计方案智慧路灯是利用现代化技术进行城市路灯系统升级改造的一种新型路灯。
其主要特点是具有智能控制、能耗低、环保等优点。
下面将为您提供一种智慧路灯电路系统设计方案。
1. 设计目标:实现智能化控制和能耗优化,提高城市路灯系统的效率和可靠性。
2. 电路系统组成:(1) 太阳能光伏电池板:通过太阳能光伏发电,为路灯系统提供电能。
(2) 蓄电池:将光伏电池板发电的能量存储起来,以备晚上使用。
(3) 充电控制器:监控电池的充电状态,根据光伏电池板的输出电压和电流,控制电池的充电速度和充电时长。
(4) 电源管理单元:负责管理整个路灯系统的电能供应和能耗分配,控制智能路灯的开启和关闭。
(5) LED灯具:采用节能型LED灯具作为照明源,具有高亮度、长寿命等特点。
(6) 控制器单元:通过光感器、温度传感器等感知器件,实时监测环境光照和温度等信息,并根据预设的策略,自动调整路灯的亮度和开关状态。
(7) 通讯模块:将路灯系统与终端设备连接,可通过无线通信方式实现远程监控和控制。
3. 工作原理:(1) 光伏电池板将太阳能转化为直流电能,通过充电控制器将电能储存到蓄电池中。
(2) 蓄电池将储存的电能供给LED灯具,实现路灯的照明功能。
(3) 控制器单元感知环境光照和温度等信息,并根据预设的策略,控制LED灯具的亮度和开关状态。
(4) 电源管理单元控制智能路灯的开启和关闭,实现能耗优化。
(5) 通讯模块将路灯系统与终端设备连接,实现远程监控和控制功能,包括路灯的开关、亮度调节等。
4. 需要考虑的问题:(1) 光伏电池板的选用:需要选择具有高效转化率和耐用性好的光伏电池板,确保太阳能能够有效转化为电能。
(2) 蓄电池的选用:需要选择容量适当、充放电效率高的蓄电池,以确保路灯系统在连续阴雨天气中也能正常工作。
(3) 控制器单元的算法设计:需要设计合理的光照和温度等策略,以实现智能调控路灯的亮度和开关状态。
(4) 通讯模块的选择:需要选择稳定可靠的通讯模块,确保远程监控和控制的适用性和可靠性。
高效LED照明驱动及智能调光电路设计
Th sg fEfce tL ih ig Dr e a d It l e tDi me r ut e De in o f i n ED Lg t i n n e l n m i n v i g rCi i c
LUO Zu—g o CHEN a u . Yu n—r i' u
(. l t i P w r ol e Su hn nvrt o ehooy G agh u 1 60 C i 1 Ee c o e lg ,ot C i U i sy fTcnl ,u nzo 0 4 , h a; c r C e h a e i g 5 n
2 Ga g ogK yL brtyo l nE e yTcnl yg a ghu50 4 C ia . un d n e aoao e nr eh o ,u nzo 16 0,hn ) r fC a g o g
关键词 : 流驱 动 ; 源 P C; 恒 无 F 智能调 光
D I 码 :0 3 6 / . s .0 2— 2 9 2 1 . 2 0 4 O 编 1 .9 9 j i n 10 2 7 .0 0 .2 s 1
中图分 类号 :P 6 T38
文 献标识 码 : A
文章编 号 :0 2— 2 9 2 1 )2— 0 4— 4 10 2 7 (0 1 0 0 8 0
1 引 言
随着 L D组 件 品质 及 转 换 效 率 关 键 技 术 的 突 E 破 , 界专 家 多认 为在 未 来 三 至 五 年 内 ,E 业 L D将 成 为 照明主流 。用 L D替 代 白炽灯 或 荧光 灯 , E 环保 无 污染 , 使用 安 全 可靠 , 于 维 护 。L D是 一 个 非 线 便 E
A sr c : h s p p ri t d c s a f ce t E ih i g d v n C s p l d b h i s s p l , b t a t T i a e n r u e n ef i n D l t r i g I u p i y t e Man u p y o i L g n i e i p l ai n cr u ta d t e i tl g n o t lo E ih ,ti W M ih —e c e c E r e t a p i t i i n h n el e t n r fL D l t i s a P s c o c i c o g hg i f in y L D d v r i c nr l C MD 0 o t I S 8 2, t e n el e t i o h i tl g n d mme cr u t s i r i i many o o e o mee n mo u e n c i i l c mp s d f tr g i d l a d AT MEG 6 mir c n r l r i c n r ai n ry—e c e ta v n a e n ne l e t i A1 co o t l , a e l e e e g o e t z i f in d a t g s a d i tl g n mme o t lo i d rcnr f o
LED智能路灯控制系统设计
LED智能路灯控制系统设计近年来,随着智能科技的快速发展,智能路灯控制系统成为了城市建设中亟需解决的问题之一、传统的路灯控制系统存在着能耗高、管理不便等问题,而LED智能路灯控制系统则可以通过智能化的管理和控制方式,有效解决这些问题。
本文将对LED智能路灯控制系统的设计进行详细介绍。
一、系统设计目标1.节能降耗:通过合理的控制策略,减少能源的消耗,提高路灯的能效。
2.智能管理:实现对路灯的智能化管理,包括远程监控、故障报警、维修管理等。
3.环境友好:在设计过程中,考虑环境保护问题,减少对环境的污染。
二、系统组成1.智能控制器:通过控制器,实现对路灯的开关、亮度、时间等参数的设置和调节。
智能控制器还可以实现对路灯的自动感应控制,根据光线的强度和环境变化,自动调整亮度。
2.传感器:通过传感器获取路灯周围的环境信息,如光线的强度、温度、湿度等,将这些信息传输到智能控制器中,根据这些信息制定合理的控制策略。
3.通信网络:通过无线通信模块,实现智能控制器和上位机的数据传输。
数据传输可以采用WiFi、4G等通信方式,实现远程监控和管理。
4.上位机:上位机通过与智能控制器的通信模块进行数据交互,实现对路灯的远程监控、设置和管理。
上位机还可以对系统的运行情况进行统计和分析,为决策者提供数据支持。
三、系统工作流程1.感应环境:通过传感器感知周围环境的变化,包括光线、温度、湿度等方面。
2.数据传输:将感知到的环境信息通过无线通信模块传输到智能控制器中。
3.控制策略制定:智能控制器根据收集到的环境信息,结合预设的控制策略,制定最佳的路灯控制策略。
4.执行控制:根据制定的控制策略,智能控制器控制路灯的开关、亮度、时间等参数。
5.上位机监控:系统管理员通过上位机对智能路灯控制系统进行远程监控,包括路灯的开关状态、亮度、故障报警等。
四、系统的优势1.节能降耗:通过智能控制策略,实现对路灯的精细化控制,减少能源的浪费。
同时,LED路灯本身具有能效高、寿命长等特点,进一步提高能源的利用效率。
LED智能路灯控制系统设计
LED智能路灯控制系统设计LED智能路灯控制系统是一种基于现代通信技术、智能控制技术、计算机技术、传感器技术等多种技术的综合应用系统。
它可以实现对路灯的远程控制、自动化控制和节能控制,提高了路灯的运行效率,并且减轻了管理人员的工作压力。
本文将探讨一下LED智能路灯控制系统的设计。
一、系统架构LED智能路灯控制系统由三部分组成:路灯控制中心、路灯控制装置和路灯节点。
它们之间通过无线通信方式(或者有线通信方式)实现信息传输和控制命令传递。
其中,路灯控制中心是整个系统的核心部分,它是对路灯进行全局控制的地方。
二、系统功能(一)远程控制功能路灯控制中心可以实现对路灯的远程控制,管理人员可以随时通过网络操控中心控制路灯的开关、亮度、颜色等。
这种功能强化了路灯的可操作性,方便了管理人员的工作。
同时,路灯控制中心还可以根据路灯的实际情况,及时调整路灯的亮度和颜色,确保路灯的实用性和美观性。
路灯控制系统可以根据天气变化、节假日等情况,自动调节路灯的亮度和颜色。
例如,在晴天时,路灯可以降低亮度,节省能源;在节假日时,路灯可以变化颜色,增加节日氛围。
这些自动化控制的功能可以降低管理人员的工作量,提高了路灯的使用效率和质量。
路灯控制系统可以定时启动和关闭路灯,减少路灯运行时间,进而减少路灯能耗。
当路灯节点接收到中央控制的关灯指令时,智能节点掌握灭灯时间,路灯自动切断电源,灯头停止供电。
这种节能控制的功能可以降低管理成本,提高路灯的节能效率,并且降低对环境的影响。
三、系统优势(一)运行稳定LED智能路灯控制系统采用模块化设计以及B/S架构模式,系统稳定性高,具有很强的扩展性,可以在不中断其他路灯的工作情况下,对部分或全部的路灯进行控制,确保系统不会出现故障或意外中断的情况。
(二)易于操作LED智能路灯控制系统是一种高智能化的系统,它可以自动化完成大部分的控制操作,而且操作简单方便,易于管理操作人员上手学习,减少了工作量和工作强度。
智能路灯电源及智能调光方案与对策
智能路灯电源及智能调光方案与对策背景智能路灯是当今城市建设中的重要组成部分,它们不仅提供照明,还能通过智能调光和节能功能来降低能源消耗。
然而,智能路灯的电源及调光方案可能面临一些挑战和问题,本文将讨论这些问题并提出对策。
电源问题与对策智能路灯的电源供应需要稳定和可靠,以确保其正常运行。
然而,存在以下电源问题:1. 电源不稳定:由于电网负载波动和天气等因素,电源供应可能不稳定,影响智能路灯的正常工作。
对策是使用稳定的电源设备,并根据需要增加备用电源。
2. 能耗高:传统的电源供应方式可能存在能耗过高的问题,导致能源浪费。
对策是采用节能型电源设备,例如LED灯具和高效的电源管理系统。
3. 电源故障:电源设备可能出现故障,导致智能路灯无法正常工作。
对策是定期检查和维护电源设备,并及时修复或更换故障部件。
智能调光方案与对策智能调光是智能路灯的重要功能之一,可以根据环境光照程度和交通流量调整灯光亮度,以实现节能和提升驾驶安全。
但是,智能调光方案可能面临以下问题:1. 灯光亮度不准确:由于传感器的精度或设置不当,智能调光可能导致灯光亮度不准确,影响照明效果。
对策是使用高质量的传感器,并进行准确的灯光亮度设置和校准。
2. 灯光调节滞后:智能调光系统可能存在灯光调节滞后的问题,导致灯光亮度不能及时响应环境变化。
对策是优化智能调光系统的响应速度和控制算法,以实现及时的灯光调节。
3. 调光方案过于复杂:过于复杂的调光方案可能增加系统维护和管理的难度,降低系统的可靠性。
对策是选择简单而可靠的调光方案,并提供易于操作和管理的界面和工具。
结论智能路灯的电源及调光方案是确保其高效运行和节能的关键因素。
通过采用稳定可靠的电源设备、节能型电源管理系统以及准确响应环境变化的智能调光方案,可以解决电源和调光方面可能存在的问题,并实现智能路灯的可持续发展和智慧城市建设目标。
参考资料:- 文献1- 文献2。
LED智能路灯控制系统设计
LED智能路灯控制系统设计一、引言随着城市化进程的加快,人们对城市道路照明的要求也越来越高。
传统的路灯照明系统已经不能满足人们对高质量、节能、环保的要求。
LED智能路灯控制系统应运而生,它利用先进的LED技术和智能控制技术,能够实现对路灯的精准控制和管理,提供更加节能高效的路灯照明方案。
二、系统构成LED智能路灯控制系统主要由以下几个部分组成:1. LED路灯:采用高亮度、高能效的LED光源,具有长寿命、低功耗、高亮度等特点。
2. 控制器:采用先进的微控制器或PLC(可编程逻辑控制器),能够实现对LED路灯的亮度、开关、时间等方面的精准控制。
3. 传感器:包括光感应器、红外感应器等,用于感知周围环境的光照强度、人员车辆的情况,从而调节LED路灯的亮度和开关状态。
4. 通信模块:包括无线通信模块、有线通信模块等,用于实现LED路灯与中心控制系统之间的数据传输和通信。
5. 中心控制系统:可以是集中式或分布式的控制系统,用于远程监控和管理LED路灯的运行状态,实现对路灯的集中控制。
6. 云平台:用于数据存储、分析和管理,实现LED路灯运行数据的远程访问和管理。
四、系统优势LED智能路灯控制系统相比传统路灯系统具有如下优势:1. 节能高效:利用LED光源和智能控制技术,能够实现更加节能高效的路灯照明,降低能源消耗和运维成本。
2. 环保节能:LED光源无汞、无铅,不会产生紫外线、红外线等有害光线,符合环保要求。
3. 长寿命:LED光源具有长寿命、快速响应特点,减少了更换灯泡的频率,降低了维护成本。
4. 智能化管理:通过数据采集和分析,实现LED路灯的智能控制和管理,提高了管理效率和服务水平。
五、系统应用LED智能路灯控制系统适用于城市道路、广场、园林等公共场所的路灯照明。
通过智能控制和管理,能够提高道路照明质量,降低能源消耗,改善城市环境,提升城市形象。
也可应用于特殊场所,如高速公路、隧道、桥梁等,提高路灯照明的安全性和可靠性。
LED智能路灯控制系统设计
LED智能路灯控制系统设计随着城市的不断发展,城市道路的安全和照明需求也越来越重要。
传统的路灯照明系统存在能耗高、环境污染,光污染等问题。
而LED智能路灯控制系统的出现,为解决这些问题带来了新的希望。
LED智能路灯控制系统利用现代智能化技术,通过对路灯进行远程监控和控制,实现了能效高、节能环保、智能化管理等优点。
本文将结合相关软硬件技术,具体介绍LED智能路灯控制系统的设计。
一、系统整体架构LED智能路灯控制系统主要由硬件和软件两部分组成。
硬件部分包括LED路灯、智能控制器、通讯设备,软件部分包括远程监控平台、控制程序等。
系统整体架构如下:1. 硬件部分:LED路灯:采用LED光源,具有高亮度、节能等特点。
智能控制器:负责收集LED路灯的工作状态和环境数据,同时控制LED路灯的亮度和运行状态。
通讯设备:实现LED路灯与远程监控平台之间的数据交互和控制指令的传递。
2. 软件部分:远程监控平台:通过互联网实现LED路灯的远程监控和管理。
控制程序:根据监控平台下发的指令,实现LED路灯的亮度调节、开关控制等功能。
二、硬件设计1. LED路灯:LED路灯采用高亮度LED灯珠和光学器件,具有高能效、长寿命等优点。
LED路灯还内置光敏传感器和环境传感器,可以实时感知周围环境的亮度和温度,从而根据实际需求调节亮度和节能运行。
3. 通讯设备:通讯设备可选用有线或者无线通讯方式。
有线通讯方式可以采用RS485、CAN总线等通讯协议,实现LED路灯之间和监控平台之间的数据传输。
无线通讯方式可以采用LoRa、NB-IoT等低功耗广域网通讯技术,实现LED路灯与远程监控平台的无线连接。
1. 远程监控平台:远程监控平台基于云计算技术,实现LED路灯的远程监控和管理。
用户可以通过PC端或者手机APP端,实时查看LED路灯的工作状态和环境数据,同时下发控制指令,实现LED路灯的远程控制。
四、系统工作流程1. LED路灯工作状态监测:LED路灯的智能控制器实时监测LED路灯的工作状态和环境数据,包括亮度、温度、湿度等信息,并将数据上传到远程监控平台。
LED路灯的四种电源设计方案
LED路灯的四种电源设计方案LED路灯是LED照明中一个很重要应用。
在节能省电的前提下,LED路灯取代传统路灯的趋势越来越明显。
市面上,LED路灯电源的设计有很多种。
早期的设计比较重视低成本的追求;到近期,共识渐渐形成,高效率及高可靠性才是最重要的。
立锜科技近年来推出了一系列LED照明的驱动IC,也一直关注LED路灯的发展。
本文主要是针对几种不同LED路灯的应用,提出了适合的架构,并对其优缺点进行分析,以便让读者能根据具体状况和设计的路灯种类,找到最合适的方案。
方案一:直接AC输入,对6串 LED分别做恒流控制在本文介绍的几种方案之中,这一种方案应该是目前效率最高、电路成本最低的方案(图1)。
直接用光电耦合器对初级侧电路进行回溯控制,调节输出电压。
相对于其它传统方案,该方案的开关损耗少。
将CS的电压固定在0.25V,对6串LED分别做恒流控制。
IC会侦测FB的位置,将电压最低那串LED固定在0.5V。
此时由于各串LED的Vf值的总和不同,产生的压降会落在MOS管上,导致一些损耗。
如果是一般对Vf分BIN筛选过后的LED,损耗应该可以控制在2%以内,少于一般的开关损耗。
该方案的优点是:效率高、成本低,缺点是AC输入、需要较多的研发成本。
该方案适用于可以用AC直接输入的路灯。
方案二:DC或电池输入,对6串LED分别做恒流控制它采用多串的升压结构设计,LED驱动的方式与前一种类似,差别在于由AC输入改为DC或是由电池输入(图2)。
低压侧传感的设计只要选择适当的 MOS 管,LED可以串相当多的颗数。
相对于AC输入的方案,其设计较为简单。
但由于多了一次升压的开关,效率相对较低。
该方案的优点是:设计简单、电路成本低,缺点是效率较低。
它适合太阳能电池或通过适配器输入的路灯。
方案三:单串降压结构有些厂商仍喜欢用单串的设计,优点是维修容易,而且可以做模块化设计。
不同功率的路灯可以使用相同的灯条,只要更换面板,插上不同数目的灯条,就可以组合出各种不同功率的路灯。
LED路灯智能控制系统设计方案
LED 路灯智能控制系统设计方案摘要:出于对能源消耗及智能化水平的考虑,传统的路灯控制方式已不能满足社会发展的需求。
在分析了单片机MSP430 的性能优势之后,从绿色能源、节约能源和性价比的角度出发,提出了一个基于MSP430 为控制核心的设计方案。
单片机在规定亮灯时间内检测背景光强度,若背景光强度较弱启用热释电红外传感器开始探测人体和车辆发出的红外信号。
当有人或车辆进入传感器探测区域,单片机输出脉宽调制信号PWM,并根据背景光强度调整LED 路灯的亮度,选用合适的占空比来控制恒定电流源的工作电流来保证道路的可见度,从而完成对LED 路灯的智能化控制。
实验仿真结果充分证明了系统方案的可行性、高效性和稳定性。
引言近年来,随着经济的高速发展和汽车的逐渐普及,城市的交通问题已经引起人们越来越多的关注,城市道路照明的重要性也日益增大。
目前,我国大部分城市的路灯照明都采用”全夜灯恒照度”的方式,控制方式仍然是简单的光控和时控等传统方式,这大大增加了城市的用电量,为此,政府承担着巨额的财政支出,而路灯照明设备的使用寿命也大大降低。
因此,引入智能交通系统(ITS)成为提高城市交通管理水平的一个重要途径。
本设计以低功耗单片机MSP430 为主控部件,采用热释电红外传感器检测人体及车辆发出的红外信号,运用光敏电阻检测背景光的强度,通过恒定电流源来控制LED 灯光的强度。
根据各个季节天黑的时间不同设置各自的路灯开启和关闭时间,在规定时间对移动物体进行检测,实现对路灯的智能化控制,提高了路灯照明的有效性,避免了电力资源的浪费。
1 热释电红外传感器与菲涅耳透镜利用红外线传感器可以检测到物体发射出的红外线,从而可以检测到不同物体的存在。
制造热释电红外传感器的材料,以陶瓷氧化物及压电晶体用得最多,这类材料具有强烈的自发极化性能,当受到热辐射而产生温度变化时介质的极化状态随之发生变化。
由于内部电荷的速度远远高于表面电荷的变化速度,晶体两端会产生数量相等而极性相反的独立电荷,这就是电介质的热释电效应。
LED智能路灯控制系统设计
LED智能路灯控制系统设计
引言:
随着科技的不断进步,智能化已经在我们的日常生活中得到广泛应用。
在这个背景下,智能路灯控制系统应运而生。
智能路灯控制系统利用先进的传感器、通信技术和控制算法,实现路灯的自动亮度调节和远程监控,能够提高路灯的能效和服务水平,降低能源消耗和
维护成本。
本文将介绍一个基于LED智能路灯控制系统的设计。
一、设计目标:
1. 实现路灯亮度的自动调节功能,能够根据环境光照强度的变化来控制路灯的亮度,以节省能源。
2. 实现路灯故障检测和远程监控功能,及时发现故障并进行维护,提高路灯的服务
水平。
3. 降低路灯的维护成本,延长路灯的使用寿命。
二、系统组成:
1. 单个LED路灯节点:每个LED路灯节点都具备独立的亮度调节功能,并且能够通过无线通讯方式与主控制器进行通讯。
2. 主控制器:负责接收从路灯节点传回的数据,进行路灯亮度的调度管理,并且负
责监控路灯的运行状态和进行故障检测。
3. 云平台:通过云平台可以实现对全部路灯的集中管理和远程监控。
四、设计难点:
1. 路灯节点的设计:路灯节点需要具备高灵敏度的光敏传感器和可靠的无线通讯模块,并且要能够在夜间进行能量收集以保证自身供电。
2. 主控制器的设计:主控制器需要能够实时接收和处理路灯节点的数据,并根据需
求进行亮度调度管理。
主控制器还需要具备故障检测和远程通讯功能。
3. 数据传输和安全性:路灯节点和主控制器之间的数据传输需要保证可靠性,并且
要考虑数据加密和安全性。
智慧路灯电气施工方案设计(3篇)
第1篇一、项目背景随着城市化进程的加快,城市照明设施已成为城市基础设施的重要组成部分。
传统的路灯系统在节能、环保、智能化等方面存在诸多不足,已无法满足现代城市发展的需求。
为提升城市照明品质,降低能源消耗,提高城市管理效率,本项目提出采用智慧路灯系统,实现路灯的智能化控制和管理。
二、项目目标1. 实现路灯的远程监控和管理,提高照明效率;2. 降低能耗,实现绿色照明;3. 提高城市管理水平,方便市民出行;4. 节约人力资源,降低维护成本。
三、方案设计1. 系统组成智慧路灯系统主要由以下几部分组成:(1)路灯灯具:采用LED灯具,具有高效、节能、环保等特点;(2)控制器:负责路灯的智能控制和管理;(3)通信模块:实现路灯与监控中心的通信;(4)监控中心:对路灯系统进行实时监控和管理;(5)太阳能电池板:为路灯提供备用电源,实现绿色照明。
2. 施工方案(1)施工准备1)施工队伍:组建专业的施工队伍,包括电气工程师、电工、焊工等;2)施工材料:采购符合国家标准的LED灯具、控制器、通信模块、太阳能电池板等;3)施工工具:准备必要的施工工具,如扳手、螺丝刀、电线等。
(2)施工步骤1)现场勘查:对施工现场进行勘查,了解现场环境、地形地貌等,为后续施工提供依据;2)线路规划:根据现场情况,规划路灯线路,确保线路安全、可靠、美观;3)基础施工:根据线路规划,进行路灯基础施工,确保基础稳固、水平;4)灯具安装:将LED灯具安装到路灯杆上,确保灯具安装牢固、美观;5)控制器安装:将控制器安装到路灯杆上,确保控制器安装牢固、接线正确;6)通信模块安装:将通信模块安装到路灯杆上,确保通信模块安装牢固、接线正确;7)太阳能电池板安装:将太阳能电池板安装到路灯杆上,确保太阳能电池板安装牢固、接线正确;8)调试与验收:对整个智慧路灯系统进行调试,确保系统运行正常、稳定。
(3)注意事项1)施工过程中,注意安全操作,遵守相关安全规范;2)确保施工质量,严格按照国家标准和规范进行施工;3)施工过程中,注意环境保护,减少对周围环境的影响;4)施工完成后,进行系统调试和验收,确保系统运行正常。
路灯调光方案
路灯调光方案为了提高能源利用效率和降低能源消耗,路灯调光方案应运而生。
该方案旨在根据道路交通情况和环境光照强度,智能地调节路灯的亮度,以实现节能减排的目标。
下面将介绍一种基于智能感知和远程控制的路灯调光方案。
一、智能感知技术该路灯调光方案首先采用智能感知技术,通过感应器来实时获取道路上的交通流量。
这种感应器可以采用红外或微波等无线信号进行感应,准确地检测道路上汽车和行人的数量。
感应器还可以识别车辆的速度和行驶方向,从而更好地判断道路交通情况。
二、云平台数据分析获取到的感应数据将通过无线网络传输到云平台上,利用大数据分析技术对数据进行处理和分析。
云平台可以根据感应数据,实时地判断道路交通的繁忙程度,并预测未来的交通情况。
同时,云平台还可以结合天气数据和日出日落时间等因素,分析环境光照强度,为后续的路灯调光提供依据。
三、远程控制系统基于云平台的数据分析结果,远程控制系统将收到的数据进行分析和处理,制定相应的路灯调光方案。
该系统可以通过无线通信技术与路灯控制器进行远程通信,并实现对路灯亮度的调节。
通过远程控制系统,可以灵活地调整路灯的亮度,根据交通情况和环境光照强度合理控制路灯的亮度水平。
四、智能节能效果通过智能感知和远程控制系统实现的路灯调光方案,可以带来显著的节能效果。
在交通流量较大的道路上,路灯可以提供较高亮度,确保行车安全;而在交通流量较小时,则可以适当降低路灯亮度,减少能源消耗。
在光照强度较高的白天,路灯亮度也可以适当调低,进一步节约能源。
这种智能节能方案不仅可以减少能源消耗,还可以降低运维成本,提高路灯的使用寿命。
五、结语随着科技的发展,智能路灯调光方案将为城市的照明系统带来一场革命。
通过智能感知和远程控制,路灯调光可以更加智能化和灵活化,从而实现更高效的节能效果。
未来,这种智能化的路灯调光方案将逐渐得到普及,为城市的节能环保工作作出更大的贡献。
环保路灯电源及智能调光方案与对策
环保路灯电源及智能调光方案与对策问题背景目前,路灯的电源和照明调光方案对于环保和能源节约的要求愈发重要。
为了解决这一问题,本文提出了一种环保路灯电源及智能调光方案与对策。
环保路灯电源方案我们建议采用太阳能作为环保路灯的主要电源。
太阳能具有可再生、清洁的特点,能有效减少能源消耗和环境污染。
在每根路灯中安装太阳能电池板,将太阳能转化为电能供给灯具,以实现照明功能。
此外,为了提高夜间照明的稳定性和持久性,可以配备储能装置,如蓄电池。
通过将多余的太阳能电能储存在蓄电池中,可以在天黑或阴天时继续供电,确保路灯正常运行。
智能调光方案与对策为了提高能源的利用效率和减少能耗,建议采用智能调光方案。
智能调光系统可以根据路灯所处环境的光照强度来调整灯具的亮度,达到节能的目的。
具体来说,可以安装光敏传感器,监测周围光照情况,并根据采集的数据自动调整灯具的亮度。
在光照强度较强的环境下,灯具亮度会降低,而在光照强度较弱的环境下,灯具亮度会增加,以保持适当的照明效果。
另外,还可以结合人流量感应器,根据夜间人流密集情况调整灯具的亮度。
当人流密集时,灯具亮度会增加,提供更明亮的照明;而在人流稀少时,灯具亮度会降低,以避免能源浪费。
对策为了更好地实施环保路灯电源及智能调光方案,我们建议采取以下对策:1. 制定合理的路灯布局计划,结合人流密集区域和光照较强的区域进行安装,以充分利用太阳能的特点,提高能源利用效率。
2. 选用高效的太阳能电池板和储能装置,以确保能够在能源不足的情况下继续供电,保证路灯正常运行。
3. 选择可靠的光敏传感器和人流量感应器,确保调光系统的准确性和稳定性。
4. 定期进行检查和维护,保证路灯电源及智能调光系统的正常工作。
5. 加强宣传教育,提高公众对环保路灯的认识和支持,鼓励市民共同参与环保行动。
通过采用环保路灯电源及智能调光方案和以上对策,我们可以实现能源的节约和环境的保护,为城市提供更加可持续和环保的照明解决方案。
LED智能路灯控制系统设计
LED智能路灯控制系统设计随着科技的发展,智能化已经渗透到了我们生活的方方面面,智能路灯控制系统作为城市基础设施的一部分也正在逐渐的智能化发展。
LED智能路灯控制系统是通过智能化技术来实现对路灯的远程控制和管理,以提高路灯的能效和使用寿命,减少能源浪费。
本文将对LED智能路灯控制系统进行设计,以提高路灯的智能化管理水平。
一、系统总体设计1. 系统的功能需求(1)远程控制功能:通过网络远程对LED路灯进行开关、亮度和颜色温度的调节。
(2)光感应控制功能:根据周围环境的光照情况,自动调节LED路灯的亮度。
(3)温度感应控制功能:根据LED路灯自身的温度情况,自动调节LED路灯的亮度和散热功能。
(4)故障报警功能:实时监测LED路灯的工作状态,一旦发现故障情况,及时报警并进行修复。
(5)能耗监控功能:对LED路灯的能耗进行实时监控和统计分析,以达到节能减排的目的。
1. 控制器设计:选择高性能的智能化控制器,确保系统的稳定性和可靠性。
2. 光感应器设计:选择灵敏度高、反应快的光感应器,能够准确地感知周围的光照情况。
3. 温度传感器设计:选择高精度的温度传感器,能够实时准确地监测LED路灯的温度情况。
4. 故障监测模块设计:选用高可靠性的故障监测模块,确保LED路灯的故障情况及时报警并进行修复。
5. 能耗监控模块设计:选择高精度的能耗监控模块,实现对LED路灯能耗的实时监控和统计分析。
LED路灯控制系统整体设计原理如下:智能化控制器实现对LED路灯的远程控制,光感应器和温度传感器监测周围环境的光照情况和LED路灯的温度情况,故障监测模块实时监测LED路灯的工作状态,能耗监控模块实现对LED路灯能耗的实时监控和统计分析。
通过上述功能的相互配合,实现LED路灯的智能化管理。
五、系统的优势和应用前景LED智能路灯控制系统的设计,可以提高LED路灯的能效和使用寿命,减少能源浪费,减少人力资源投入,节约维护成本,提高道路照明的品质。
LED路灯智能控制器的设计
LED路灯智能控制器的设计硬件设计:1. 主控芯片:选择一款具有较高计算能力和丰富外设接口的微控制器,如ARM Cortex-M系列芯片。
2.通信模块:采用无线通信模块,如LTE、NB-IoT或LoRaWAN模块,与云平台进行数据交互。
3.光敏传感器:安装在路灯附近,用于监测环境亮度,并根据实际光线情况调整照明亮度。
4.温湿度传感器:用于监测环境温湿度,根据不同环境调整照明亮度以节约能源。
5.电源管理电路:为路灯系统提供稳定的电源供应,并对电源进行监测和管理。
软件设计:1.实时操作系统(RTOS):使用RTOS进行任务调度和管理,确保系统的实时性能和稳定性。
2.数据采集和处理:通过传感器采集到的数据,包括光照强度、温湿度等,进行数据处理和分析。
3.云平台连接:通过通信模块将数据发送到云平台,实现远程监控和控制。
4.智能控制算法:根据光敏传感器和温湿度传感器的数据,结合预设的算法,对照明亮度进行智能调节,以实现节能效果。
5.告警机制:根据异常数据和设定的规则,触发告警机制,及时通知维护人员进行处理。
功能设计:1.自适应亮度调节:根据光敏传感器的实时数据,在亮度不足的情况下提高照明亮度,在光线充足时适当降低亮度。
2.远程控制和管理:通过云平台可以实现对路灯的远程控制和管理,包括亮度调整、时间设置、故障告警等。
3.能耗统计和报表:将路灯的能耗数据进行统计,并生成统计报表,方便管理者进行能耗分析和优化。
4.异常检测和预警:通过采集到的数据进行异常检测,如温度异常、光照强度波动等,及时发出告警通知。
总结:LED路灯智能控制器的设计可以提高照明效果、降低能耗和方便管理。
通过光敏传感器和温湿度传感器的数据采集和处理,再结合智能控制算法,可以实现自适应亮度调节,实现节能效果。
利用云平台实现远程控制和管理,提供能耗统计和报表,同时提供异常检测和预警功能,保障路灯系统的正常运行。
LED路灯电源及智能调光设计方案
LED路灯电源及智能调光设计方案本文设计的LED 路灯驱动电路采用市电供电且不用电源变压器,驱动电路体积大为减少。
驱动电路实现恒流驱动的同时带有PFC 功能,符合当前绿色环保的要求;智能调光电路采用PWM 调光方式,LED 发出较纯的白光,不产生色偏。
驱动电路是由HV9931 控制的Buck —Boost —Buck 电路,直接由市电供电实现恒流驱动且带有PFC 功能;调光方式采用PWM 调光,用TLS2561 作为光强度传感器,由PIC16C62 控制产生PWM 调光信号控制HV9931 实现智能调光。
实验结果表明该电路转换效率高,功率因数高,输入电流的THD 小,白光LED 路灯光色纯正而且节能,很有市场前景而且有进一步研究的价值。
1 引言LED 被认为是绿色的第四代光源,是一种固体冷光源,具有高效、寿命长、安全环保、体积小、响应速度快等诸多优点,目前已经在城市景观装、交通信号与商业广告上广泛应用.近年来随着制造工艺的不断发展,大功率高亮度LED 性能不断提升,价格不断下降,目前达到同样的明明效果,LED 的耗电量大约是白炽灯的1 /10,荧光灯的1 /2[2]。
这些都使得其开始应用于一般照明中,而且很有发展前景,大有取代白炽灯和荧光灯这些传统光源的趋势,世博会上LED 灯的应用可以说代表着这个方向。
LED 调光可以节能,高亮度白光LED 的驱动和调光是近年来研究的热点,本文在这方面进行了些研究,并设计了一款带有功率因数校正的LED 路灯驱动和智能调光系统。
2 LED 特性、驱动要求及调光方式LED 的理论光效为300lm /W.目前实验室水平达260lm /W,市场化水平在120lm /W 以上。
高亮度LED 的一般导通电压约为3. 0 ~ 4。
3V,但其核心仍是PN 结,其伏安特性与普通二极管相同。
当加在LED 上电压小于其导通电压时,LED 上几乎没有电流通过。
但当LED 导通后,其正向电流随正向电压按指数规律变化,很小的电压波动就会引起很大的电流变化。
LED路灯智能控制系统设计方案
LED路灯智能控制系统设计方案智能LED路灯控制系统是一种基于物联网技术的路灯智能化管理系统,能够实时监测路灯的工作状态,并根据环境条件智能调节路灯的亮度,从而达到节能减排的目的。
系统设计方案如下:1.硬件设计:系统的硬件主要包括传感器、控制器、终端设备和通信模块等。
-传感器:采用光照度传感器、温度传感器和人体红外传感器等,用于实时监测路灯周围的环境条件,包括光照强度、温度和人流情况等。
-控制器:采用单片机或微处理器作为控制芯片,用于接收传感器的数据并进行处理,同时控制路灯的亮度和工作状态。
-终端设备:包括远程监控终端设备和管理终端设备,用于用户和管理人员查看和控制路灯的状态和亮度。
-通信模块:采用无线通信模块,如WiFi、蓝牙或NB-IoT等,与终端设备进行数据传输和控制指令的发送。
2.软件设计:系统的软件主要包括前端监控界面、后端数据处理和智能算法。
-前端监控界面:提供实时监控路灯状态和亮度的界面,用户可以通过终端设备查看路灯的工作情况,并对路灯进行远程控制。
-后端数据处理:接收传感器的数据,对数据进行处理和分析,生成报表和统计信息,并保存到数据库中。
-智能算法:根据传感器数据和用户的需求,采用智能算法来调节路灯的亮度。
例如,根据光照度传感器的数据,调节路灯的亮度,当光照强度较弱时,增加亮度,当光照强度较强时,减小亮度。
3.系统功能:-实时监测:通过传感器实时监测路灯的工作状态和周围环境条件,包括光照度、温度等。
-远程控制:用户可以通过终端设备远程控制路灯的开关、亮度等参数,方便管理和维护。
-灯光调节:根据传感器数据和智能算法,自动调节路灯的亮度,使其根据环境条件自适应调节,达到节能减排的目的。
-故障检测:系统能够检测路灯的故障情况,并及时报警,方便进行维修和更换。
-数据分析:系统能够对传感器数据进行分析和统计,生成报表和图表,为管理决策提供参考。
4.系统优势:-节能减排:智能控制系统能根据环境条件智能调节路灯的亮度,实现节能减排的效果。
OLED路灯电源及智能调光方案与对策
OLED路灯电源及智能调光方案与对策概述本文档旨在探讨OLED路灯电源及智能调光方案与对策。
我们将首先介绍OLED路灯的基本原理,然后讨论电源选型和智能调光方案,最后提出一些对策以应对可能的问题。
OLED路灯基本原理OLED(Organic Light Emitting Diode)是一种新型的发光材料,具有较高的亮度和色彩鲜艳的特点。
OLED路灯利用OLED技术实现照明,具有较低的能耗和长寿命的优势。
电源选型选取适合OLED路灯的电源是确保其正常运行的关键。
考虑到OLED路灯对电源的要求,我们建议选用高效稳定的直流电源。
此外,应注意电源的容量要满足OLED路灯的功率需求。
智能调光方案为了提高OLED路灯的使用体验和能源利用效率,引入智能调光方案是必要的。
智能调光方案可以根据环境亮度和需求实时调节OLED路灯的亮度。
常见的智能调光方案包括基于光感应器的自动调光系统和基于人流量感应的智能控制系统。
选择适合自身需求的智能调光方案,可以提高路灯的能源利用效率和降低使用成本。
对策在使用OLED路灯的过程中,可能会遇到以下问题和挑战,我们提出一些对策以解决这些问题:1. 维护和保养:定期检查和维护OLED路灯,确保其正常运行和延长使用寿命。
2. 温度控制:OLED路灯对温度较为敏感,应采取适当的散热措施,以确保其正常工作并保持较长的寿命。
3. 光污染:OLED路灯的光线可能对周围环境造成污染,应注意控制光线的分布和强度,以减少光污染对周围环境的影响。
结论OLED路灯电源及智能调光方案是提高照明系统效率和节约能源的重要举措。
通过选择合适的电源和智能调光方案,并采取相应的对策,可以确保OLED路灯的正常运行和优化使用效果。
本文档介绍了OLED路灯的基本原理,电源选型和智能调光方案,并提出了对策以应对可能的问题。
希望这些信息能对您有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LED路灯电源及智能调光设计方案本文设计的LED 路灯驱动电路采用市电供电且不用电源变压器,驱动电路体积大为减少。
驱动电路实现恒流驱动的同时带有PFC 功能,符合当前绿色环保的要求;智能调光电路采用PWM 调光方式,LED 发出较纯的白光,不产生色偏。
驱动电路是由HV9931 控制的Buck - Boost - Buck 电路,直接由市电供电实现恒流驱动且带有PFC 功能;调光方式采用PWM 调光,用TLS2561 作为光强度传感器,由PIC16C62 控制产生PWM 调光信号控制HV9931 实现智能调光。
实验结果表明该电路转换效率高,功率因数高,输入电流的THD 小,白光LED 路灯光色纯正而且节能,很有市场前景而且有进一步研究的价值。
1 引言LED 被认为是绿色的第四代光源,是一种固体冷光源,具有高效、寿命长、安全环保、体积小、响应速度快等诸多优点,目前已经在城市景观装、交通信号与商业广告上广泛应用。
近年来随着制造工艺的不断发展,大功率高亮度LED 性能不断提升,价格不断下降,目前达到同样的明明效果,LED 的耗电量大约是白炽灯的1 /10,荧光灯的1 /2[2].这些都使得其开始应用于一般照明中,而且很有发展前景,大有取代白炽灯和荧光灯这些传统光源的趋势,世博会上LED 灯的应用可以说代表着这个方向。
LED 调光可以节能,高亮度白光LED 的驱动和调光是近年来研究的热点,本文在这方面进行了些研究,并设计了一款带有功率因数校正的LED 路灯驱动和智能调光系统。
2 LED 特性、驱动要求及调光方式LED 的理论光效为300lm /W.目前实验室水平达260lm /W,市场化水平在120lm /W 以上。
高亮度LED 的一般导通电压约为3. 0 ~ 4. 3V,但其核心仍是PN 结,其伏安特性与普通二极管相同。
当加在LED 上电压小于其导通电压时,LED 上几乎没有电流通过。
但当LED 导通后,其正向电流随正向电压按指数规律变化,很小的电压波动就会引起很大的电流变化。
在导通区电压从额定值的80% 上升到100% ,电流则从其额定值的0% 上升到100%.图1 LED 相对光通量与正向电流关系图1 是LED 相对光通量和其正向电流IF 的关系图。
图中可以看出LED 的光通量和其正向电流成正比的关系,因此可能通过控制LED 的正向电流来控制其发光亮度。
LED 若采用恒压源驱动,很小的电压变化将引起很大的电流变化,因此恒压驱动只适用于要求不高的小功率的场合下。
在要求高的场合和大功率的场合下LED 都要采用恒流驱动。
研究表明,LED 发光亮度随工作时间下降,亮度下降后光效随电流的增加而减少,LED 的亮度与驱动电流成饱和关系。
LED 的电流达到其额定电流的70% ~80% 后,很大比例的电流转化成了热能,因此LED 的驱动电流宜为工作电流额定电流的70% ~80%。
在恒压驱动或PWM 调光中,最大电流不宜超过最小电流的3 倍,否则的话冲击电流会大大减少LED 的使用寿命[8].目前来说市场化单个LED的功率都不大,大都在10W 以下,实际用于照明是把多个LED 按一定方或串并联之后形成LED 阵列。
从图1 也可得出,改变LED 的电流即可改变LED 的亮度。
改变电流有两种方式,相应的LED 调光也有两种方式。
一种是连续调节LED 中电流的大小来改变LED 的亮度,这种方式称之为模拟调光,通过LED 中的电流是连续的;另一种是通改变LED流过电流的时间与关断的时间之比来改变LED 的亮度,LED 流过电流时电流是恒定的,关断时流过LED 的电流为零,这种方式称为PWM 调光,它是通过人眼察觉不到的频率快速的开关LED,开关频应不小于100Hz.两种调光方式当流过LED 中的平均电流相同时,其效果是一样的。
由于LED 在某一大小特定的电流时会发出最纯的白光,随着电流偏离这个值,会有色偏。
另外,LED 的响应时间只有几纳秒到几十纳秒,很适合频繁开关的场合,所以LED 调光以PWM 调光方式好,此外这种方式还有利于LED 散热。
3 LED 驱动电路3. 1 LED 驱动电路分类从LED 的驱动供电可将其驱动分为AC /DC 型和DC /DC 型,而LED 要求直流供电,AC 供电时要把交流转化成直流后再驱动LED,所以我们只要研究DC /DC 型即可。
DC /DC 型的LED 的驱动方式可分为电阻限流型,线性稳压电源型,电容电荷泵电路和电感开关变换电路。
电阻限流将电阻和LED 串连,通过电阻的分压限流和驱动LED 灯,这种方式控制精度不能保证,同时有大量电功率浪费在电阻上,只在要求不高的低压场合下使用。
线性稳压电源精度比电阻限流型高一些,但同样存在效率低的问题,实际中用的也不多。
实际中用得多的是电荷泵电路和电感式开关变换电路。
电荷泵电路利用电容对电荷的累积效应储存电能,把电容作用能量耦合元件,通过控制电力电子器件高频的开关进行切换,在时钟周期的一部分时间让电容储能,在时钟周期的剩余时间电容释放能量。
这种方式是通过电容的充电和放电时的不同连接方式得到不同的输出电压。
电感式开关变换电路又称为开关电源,是通过控制功率开关管导通与关断的时间关系来改变输出电压的,电感和电容一般作为滤波元件,使输出稳定。
相比较而言电荷泵型使用元件少,成本低,体积小,但其使用的开关元件多,效率相对低些,输出电压在输入电压的1 /3 ~ 3 倍这个变化围,输出功率较小,所以其多用在小功率场合下;而开关电源开关元件相对较少,效率高,可实现大围的电压输出,且输出电压连续可调,输出功率大,因此适用围更广,特别在功率场合下是首选。
开关电源的拓扑很多,LED 驱动电路中用得多的有Boost 电路,Buck-Boost及Buck 电路。
3. 2 基于HV9931 的LED 路灯驱动电路设计LED 驱动的芯片目前已经有一些了。
LED 路灯相对来说功率较大,而且是通过市电交流供电的,规定,功率达到一定值时要有功率因数校正装置,此外设计的LED 路灯要有调光功能以节能。
基于上述考虑,这里选用Supertex 公司的HV9931 作用驱动芯片。
HV9931 是种的8 引脚的PWM 集成控制器,有如下功能与特点:(1)输出电流恒定,适用于LED 恒流驱动;(2 )允许大围的8 ~ 450V的大围的直流输入电压,且有较大的降压比,因此用市电供驱动LED 灯时可不用变压器;(3)有功率因数校正功能,能获得单位功率因数和低输入电流谐波,达到规定,环保;(4)有PWM 调光和模拟调光功能,驱动LED 时可方便地实现调光控制,符合节能要求;(5)振荡器有固定频率和固定关断时间两种工作方式。
图2 基于HV9931 的LED 路灯驱动电路驱动电路如图2 所示,为开关电源驱动方式。
主电路是一个单级单开关的非隔离恒流输出的Buck-Boost-Buck 电路。
由L1、C1、D1、D5 和Q1组成的Buck-Boost 电路是输入级,工作于不连续导电模式;由C1、Q1、D2、D4 及L2 组成的Buck 电路是输出级,工作在连续导电模式下。
两级共用一个功率开关管Q1,电容C1 对输入级相当于负载,对输出级相当于直流电源。
系统降压比为两级降压比之乘积,这样由市电供电不需要变压器就能实现较低的电压输出。
开关Q1 导通时,输入级Buck-Boos 电流路径:整流电压→D1→L1→Q1→Rs1,L1中电流线性增加,输出级Buck 电路电流路径为:C1→Q1→Rs2→LED→L2,C1 提供能量;Q1 关断时,输入级电流路径:L1→C1→D5→D1,L1 中的能量转到C1 中,由于D1 存在,L1 电流不能反向,L1 电流降为0 后电流断续;输出级电流路径:L2→D4→LED,由于参数设置不同,L2 中电流不仅不会变为0,而且波动相对比较小。
电路工作于峰值电流模式下,振荡器使GATE输出高电平,使Q1 通导通;CS1 和CS2 端子分别是HV9931 部的两个电压比较器的反向输入端,两个比较器的同向输入端在芯片部接地,电路通过CS1 和CS2 端子同时检测输入电流和输出电流,CS1 是输入电流信号检测端子,CS2 输出电流信号检测端子,这两个端子只要有一个端子上的电压比地低,GATE 端子就输出低电平,Q1 就关断。
VDD是芯片的基准电压输出引脚,Rs1、Rcs1 和Rref1 可编程设定L1 中的最大峰值电流,Rs2、Rcs2 和Rref2 可编程设定输出电流。
在交流电的周期可认为占空比和开关频不变,故输入电流峰值包络线为正弦波,平均电流为正弦波,可实瑞功率因数校正。
C2 为输入电容,用作高频旁路,若用大电容则电路丧失功率因数校正功能。
RT 对应着部振荡器,有两种接法,分别设定恒定工作频和恒定的关断时间,图中采用的是恒定的关断时间的接法。
PWMD 引脚为数字调光信号输入引脚,该引脚为高电平时电路正常工作,该引脚为低电平时GATE 引脚始终输出低电平,开关管Q1 断,驱动电路不工作。
4 智能调光装置设计的系统若能根据环境光照的强弱来改变自身亮度,则会相应的节能,符合当前低碳生活的要求。
环境光线最差时,设计系统调光信的PWM 占空比接近100% (为不致使温度上升过高,留一定裕量)时使LED 最亮满足照度要求;当环境光照变化时会根据外部光照的强弱自动改变调光信号的PWM 的占空比,使LED 相应的暗一些,但照度满足要求;另外,在深夜人比较少时可适当降低亮度。
实现这一要求要有一个好的光强度传感器。
光敏电阻线性度差,频率响应低,光敏三极管灵敏度高,但温度特性和线性度差系统设计选用TLS2561作为光电强度传感器。
TLS2561 接近人眼对亮度的反应,能直接将光强度信号转化成数字信号输出,有可编程中断功能和标准的I2C 接口,能方便地与单片机相连。
单片机选用微芯公司的PIC16C62.这种单片机性能稳定,带有PWM 输出,能方便地实现I2C 总线通信。
光强度传感器TLS2561 将光信号转换成数字信号传送至单片机,经单片机处理产生调光的PWM信号,调光PWM 信号送至HV9931 的PWMD 端,以实现PWM 调光。
调光部分如图3 所示。
图3 调光系统框图系统还设计还考虑到的温度的影响。
LED 在相同电流下,随着PN 结温度的升高光通量将降低,同时还会影响LED 使用寿命。
所以系统中还加入的温度传感器,温度信号同样送至PIC16C62 处理,也会影响到其输出的PWM 调光信号的占空比。
这个不是本设计的主要问题,不详细叙述。
5 实验结果系统设计功率为72W,采用72 个1W 的高亮度LED 灯每24 个串联后再并联而成。
输出最大光强时设计PWM 调光信号占空比为90% ,此时测得LED 中总电流平均值为932mA;LED 驱动电路工作时开关管工作频率为100kHz,驱动电路效率为75% ,输入电流THD 小于20% ,功率因数大于0. 9,光电转换效率约95lm /W;调光用PWM 信号频率为120Hz,比不用智能调光电路时约节能9%.图4 给出了调光PWM 占空比为50% 时LED 中的电流波形。