材料化学-晶体结构缺陷
晶体结构缺陷的类型
二 按缺陷产生旳原因分类
晶体缺陷
辐照缺陷 杂质缺陷
电荷缺陷 热缺陷 非化学计量缺陷
1. 热缺陷
定义:热缺陷亦称为本征缺陷,是指由热起伏旳原因所产生 旳空位或间隙质点(原子或离子)。
类型:弗仑克尔缺陷(Frenkel defect)和肖特基缺陷 (Schottky defect)
T E 热起伏(涨落) 原子脱离其平衡位置
面缺陷旳取向及分布与材料旳断裂韧性有关。
面缺陷-晶界
晶界示意图
亚晶界示意图
晶界: 晶界是两相邻晶粒间旳过渡界面。因为相邻晶粒 间彼此位向各不相同,故晶界处旳原子排列与晶内不同, 它们因同步受到相邻两侧晶粒不同位向旳综合影响,而做 无规则排列或近似于两者取向旳折衷位置旳排列,这就形 成了晶体中旳主要旳面缺陷。
-"extra" atoms positioned between atomic sites.
distortion of planes
selfinterstitiallids
Two outcomes if impurity (B) added to host (A):
• Solid solution of B in A (i.e., random dist. of point defects)
OR
Substitutional alloy (e.g., Cu in Ni)
Interstitial alloy (e.g., C in Fe)
Impurities in Ceramics
本章主要内容:
§2.1 晶体构造缺陷旳类型 §2. 2 点缺陷 §2.3 线缺陷 §2.4 面缺陷 §2.5 固溶体 §2.6 非化学计量化合物
材料化学-缺陷化学
25
基质原子 杂质原子 间隙式
取代式
26
26
带电缺陷
带电缺陷一般在缺陷符号的右上角标明所带 的有效电荷数.
“X”表示缺陷是中性的, “·”表示缺陷带有正电荷, “′”表示缺陷带有负电荷。 一个缺陷总共带有几个单位的电荷,则用几 个这样的符号。
27
点缺陷名称
中性 点缺陷所带有效电荷 ·正电荷
负电荷 缺陷在晶体中所占的格点
28
29
30
• 若在HCl气氛中焙烧ZnS时,晶体中将产生Zn2+离子空位和 C1-离子取代S2-离子的杂质缺陷,这两种缺陷则可分别 用符号VZn和ClS•来表示。又如在SiC中,当用N5+取代C4 +时,生成的缺陷可表示为NC•。在Si中,当B3+取代Si4+时, 生成的缺陷可用符号BSi表示。
5
2、无机材料中的缺陷化学与功能陶瓷
6
缺陷的来源
① 热缺陷:在高于绝对温度零度时,晶格离子(原子或离
子)的热运动导致生成点缺陷,缺陷浓度与缺陷的 形成能有关。缺陷形成能越低,缺陷浓度越大。
② 掺杂缺陷:由于存在杂质或者掺杂剂,当形成固溶体时,
造成晶格结点上分布粒子的差异。缺陷浓度与杂 质或掺杂剂浓度有关。
31
32
表3-1 化学缺陷符号
化学缺陷符号
VM Mi XM MX (VMVX)或(MiXi) LM SX e’ h.
含义 金属离子空位 金属离子处在晶格间隙 非金属阴离子处在金属阳离子位置上 金属阳离子处在非金属阴离子位置上 缺陷缔合 引入的溶质L处在金属离子的位置上 引入的溶质S处在非金属离子的位置上 电子 空穴
3_《材料科学基础》第三章_晶体结构缺陷((上)
点缺陷(零维缺陷)--原子尺度的偏离.
按 缺
例:空位、间隙原子、杂质原子等
陷 线缺陷(一维缺陷)--原子行列的偏离.
的
例:位错等
几 何
面缺陷(二维缺陷)--表面、界面处原子排列混乱.
形
例:表面、晶界、堆积层错、镶嵌结构等
态 体缺陷(三维缺陷)--局部的三维空间偏离理想晶体的周期性
例:异相夹杂物、孔洞、亚结构等
1、 固溶体的分类
(1) 按杂质原子的位置分: 置换型固溶体—杂质原子进入晶格中正常结点位置而取代基
质中的原子。例MgO-CoO形成Mg1-xCoxO固溶体。 间隙型固溶体—杂质原子进入晶格中的间隙位置。
有时俩
(2)按杂质原子的固溶度x分: 无限(连续)固溶体—溶质和溶剂任意比例固溶(x=0~1)。
多相系统
均一单相系统
Compounds AmBn
原子间相互反应生成
均一单相系统
结构
各自有各自的结构
A structure
structure
+ B structure
结构与基质相同 A structure
结构既不同于A也不同于B New structure
化学计量 A/B
不定
固溶比例不定
m:n 整数比或接近整数比的一定范围内
四、固溶体Solid solution(杂质缺陷)
1、固溶体的分类 2、置换型固溶体 3、间隙型固溶体 4、形成固溶体后对晶体性质的影响 5、固溶体的研究方法
①固溶体:含有外来杂质原子的单一均匀的晶态固体。 例:MgO晶体中含有FeO杂质 → Mg1-xFexO
基质 溶剂 主晶相
杂质 溶质 掺杂剂
萤石CaF2(F-空位)
晶体结构与缺陷
晶体结构与缺陷晶体是一种有着高度有序排列的原子、离子或分子的固体材料。
晶体的结构对其性质和应用具有重要影响,而缺陷则是晶体中不完美的部分。
本文将探讨晶体结构、晶格缺陷和它们在材料中的影响。
一、晶体结构晶体结构是指晶体中原子、离子或分子的排列方式。
晶体的结构可以通过晶体学方法(如X射线衍射)来表征。
根据晶体的结构特征,可以将晶体分为多种类型,包括立方晶系、正交晶系、单斜晶系等。
晶体结构的基本单位是晶胞,晶胞由晶体中最小的重复单元构成。
在晶体结构中,晶胞有各种不同的排列方式,例如简单立方晶胞、面心立方晶胞和体心立方晶胞。
这些不同的排列方式导致了不同类型的晶体结构。
二、晶格缺陷晶格缺陷是指晶体中原子、离子或分子位置的非理想性质。
晶格缺陷可以通过外部环境和材料制备过程中的条件引入。
晶格缺陷可以分为点缺陷、线缺陷和面缺陷三类。
1. 点缺陷点缺陷是指晶体中少数几个原子、离子或分子的位置与理想排列位置有所偏离。
最常见的点缺陷是空位缺陷和杂质缺陷。
空位缺陷是指晶体中某个位置上的原子或离子缺失,而杂质缺陷是指原子或离子被其他类型的原子或离子替代。
点缺陷可以对晶体的性质和行为产生重要影响。
例如,在半导体材料中,控制杂质缺陷的浓度可以改变材料的电导率。
在金属材料中,点缺陷可以影响金属的硬度、延展性和热导率等物理性能。
2. 线缺陷线缺陷是指晶体中沿某个方向出现的缺陷线。
常见的线缺陷包括位错和螺旋位错。
位错是晶体中原子排列顺序的偏移,而螺旋位错则是沿某个方向上原子排列的扭曲。
线缺陷可以导致晶体的塑性变形和断裂行为。
位错的运动可以使晶体发生滑移,从而导致材料的塑性变形。
而螺旋位错则可以在晶体中形成螺旋状的断裂。
3. 面缺陷面缺陷是指晶体中的平面缺陷。
最常见的面缺陷是晶界和孪晶。
晶界是两个晶粒之间的界面,它们的晶体结构可能有所不同。
孪晶是指两个对称的晶体结构在某个面上镜面对称的结合。
面缺陷可以对晶体的物理性能产生重要影响。
晶界可以影响晶体的弹性模量和导电性能。
材料化学-晶体结构缺陷详解
V (V V ) VNa
Cl Na Cl
2 书写点缺陷反应式的规则
(1)位置关系(溶剂): 对于计量化合物(如NaCl、Al2O3),在缺陷反应式中 作为溶剂的晶体所提供的位置比例应保持不变,但每类位置 总数可以改变。
2ClCl CaCl2 ( s) Ca VK
(3)溶质原子(杂质原子):
LM 表示溶质L占据了M的位置。如:CaNa SX 表示S溶质占据了X位置。
(4)自由电子及电子空穴:
有些情况下,价电子并不一定属于某个特定位置的原子,在 光、电、热的作用下可以在晶体中运动,这样电子和空穴称 为自由电子(符号e/ )和电子空穴(符号h. )。
(5)带电缺陷 不同价离子之间取代如Ca2+取代Na+——Ca · Na Ca2+取代Zr4+——Ca”Zr 把离子化合物看作完全由离子构成(这里不考虑化学 键性质),则在 NaCl晶体中,如果取走一个Na+与取走Na 原子相比较,相当于少取走一个电子e , 晶格中多了一个e, 因此VNa 必然和这个e/相联系,形成带电的空位——
Schottky缺陷的产生
2 组成缺陷
概念——杂质原子进入晶体,或者外界气氛等因素引起基质产生空位的缺陷。 原子进入晶体的数量一般小于0.1%。 种类——间隙杂质 置换杂质空位
特点——杂质缺陷的浓度与温度无关,只决定于溶解度。
存在原因——本身存在,有目的加入(改善晶体的某种性能)
3 电荷缺陷
晶体内原子或离子的外层电子由于受到外界激发,有少部 分电子脱离原子核对它束缚,而成为自由电子,对应留下空穴。
VCl NaCl VNa
形成——正常格点的原子由于热运动跃迁到晶体表面, 在晶体内正常格点留下空位。 从形成缺陷的能量来分析—— Schttky缺陷形成的能量小Frankel 缺陷形成的能量 因此对于大多数晶体来说,Schttky 缺陷是主要的。 热缺陷浓度表示 :
材料科学基础--第2章晶体缺陷PPT课件
12
2.1.5点缺陷与材料行为
Or, there should be 2.00 – 1.9971 = 0.0029 vacancies per unit cell. The number of vacancies per cm3 is:
17
Other Point Defects
Interstitialcy - A point defect caused when a ‘‘normal’’ atom occupies an interstitial site in the crystal.
11
2.1.4 过饱和点缺陷
晶体中的点缺陷浓度可能高于平衡浓度,称为过饱和点 缺陷,或非平衡点缺陷。获得的方法:
高温淬火:将晶体加热到高温,然后迅速冷却(淬火 ),则高温时形成的空位来不及扩散消失,使晶体在低 温状态仍然保留高温状态的空位浓度,即过饱和空位。
冷加工:金属在室温下进行冷加工塑性变形也会产生 大量的过饱和空位,其原因是由于位错交割所形成的割 阶发生攀移。
6
2.1.1 分类
3.置换原子(Substitutional atom) 异类原子代换了原有晶体中的原子,而处于晶体点阵的结 点位置,称为置换原子,亦称代位原子。 各种点缺陷,都破坏了原有晶体的完整性。它们从电学
和力学这两个方面,使近邻原子失去了平衡。空位和直 径较小的置换原子,使周围原子向点缺陷的方向松弛, 间隙原子及直径较大的置换原子,把周围原子挤开一定 位置。因而在点缺陷的周围,就出现了一定范围的点阵 畸变区,或称弹性应变区。距点缺陷越远,其影响越小 。因而在每个点缺陷的周围,都会产生一个弹性应力场 。
第三章 晶体结构缺陷
第三章晶体结构缺陷【例3—1】写出MgO形成肖特基缺陷的反应方程式。
【解】MgO形成肖特基缺陷时,表面的Mg2+和O2-离子迁到表面新位置上,在晶体内部留下空位,用方程式表示为:该方程式中的表面位置与新表面位置无本质区别,故可以从方程两边消掉,以零O(naught)代表无缺陷状态,则肖特基缺陷方程式可简化为:【例3-2】写出AgBr形成弗伦克尔缺陷的反应方程式。
【解】AgBr中半径小的Ag+离子进入晶格间隙,在其格点上留下空位,方程式为:【提示】一般规律:当晶体中剩余空隙比较小,如NaCl型结构,容易形成肖特基缺陷;当晶体中剩余空隙比较大时,如萤石CaF2型结构等,容易产生弗伦克尔缺陷。
【例3—3】写出NaF加入YF3中的缺陷反应方程式.【解】首先以正离子为基准,Na+离子占据Y3+位置,该位置带有2个单位负电荷,同时,引入的1个F-离子位于基质晶体中F-离子的位置上。
按照位置关系,基质YF3中正负离子格点数之比为1/3,现在只引入了1个F-离子,所以还有2个F-离子位置空着。
反应方程式为:可以验证该方程式符合上述3个原则。
再以负离子为基准,假设引入3个F-离子位于基质中的F-离子位置上,与此同时,引入了3个Na+离子。
根据基质晶体中的位置关系,只能有1个Na+离子占据Y3+离子位置,其余2个Na+位于晶格间隙,方程式为:此方程亦满足上述3个原则.当然,也可以写出其他形式的缺陷反应方程式,但上述2个方程所代表的缺陷是最可能出现的。
【例3-4】写出CaCl2加入KCl中的缺陷反应方程式。
【解】以正离子为基准,缺陷反应方程式为:以负离子为基准,则缺陷反应方程式为:这也是2个典型的缺陷反应方程式,与后边将要介绍的固溶体类型相对应。
【提示】通过上述2个实例,可以得出2条基本规律:(1)低价正离子占据高价正离子位置时,该位置带有负电荷。
为了保持电中性,会产生负离子空位或间隙正离子。
(2)高价正离子占据低价正离子位置时,该位置带有正电荷。
材料化学7晶体结构缺陷及点缺陷研究方法
❖同一晶体中,Schottky 缺陷与Frenkel 缺 陷的能量往往存在很大的差别。
习题
将一个钠原子从钠晶体内部移到晶体表面所需 的能量为 1 ev。试计算300 K 下晶体中肖特基 缺陷的浓度。
点缺陷浓度的两种表示方式
格位浓度: 1 mol 格点位置中所含的缺陷的个数 。
3.2 热缺陷的平衡浓度
热缺陷是由于热振动引起的。在热 平衡条件下,热缺陷的多少仅和晶体所 处的温度有关。在给定的温度下,热缺 陷的数量可以用热力学中的自由能最小 原理来进行计算。
以 Schottky 缺陷为例
设构成完整单质晶体的原子数为N,在T K时形 成了 n 个孤立的空位。每个空位的形成能为
❖MgO-CaO之间则不容易形成固溶体:Mg 的半径 为 0.072 nm,Ca 的半径为 0.099 nm。原子半径 差接近 30%。
置换型固溶体固溶度的影响因素:晶体结构
❖两组元形成连续固溶体的必要条件是它们具有
相同的晶体结构。
❖晶体结构相同的两个组元,即使半径差稍微大
于15%,也可能形成连续固溶体。
面缺陷 (二维缺陷)
CaF2多晶体表面 SEM 照片,显示 出了晶界的存在。
在界面处原子的排列顺序发生了 变化,从而形成了面缺陷。
❖ 绝大多数晶态材料都是以多晶体的形式存在的。 每一个晶粒都是一个单晶体。多晶体中不同取向 的晶粒之间的界面称为晶界。
❖ 晶界附近的原子排列比较紊乱,构成了面缺陷。
(1) 等价置换固溶体
Al2O3 固溶进入Cr2O3
Al2O3
Cr2O3 2AlCXr
3O
X O
(2) 不等价置换固溶体:空位机制
材料科学-晶体缺陷
具有完善共格关系的界面
具有弹性畸变的共格界面
半共格界面
非共格界面
位错塞积群的一个重要效应是在它的前端引起应力集中。当 有n个位错被外加切应力τ推向障碍物时,在塞积群的前端 将产生n倍于外力的应力集中。
2.4 材料中面缺陷
严格来说,界面包括外表面(自由表面)和内界面。 表面是指固体材料与气体或液体的分界面,它与摩擦、 磨损、氧化、腐蚀、偏析、催化、吸附现象,以及光 学、微电子学等均密切相关;而内界面可分为晶粒边 界和晶内的亚晶界、孪晶界、层错及相界面等。
式中dW为产生dS表面所作的功。表面能也可以单位长度上 的表面张力(N/m)表示。 表面能与晶体表面原子排列致密程度有关,原子密排的 表面具有最小的表面能。所以自由晶体暴露在外的表面通 常是低表面能的原子密排晶面。
2.4.2 晶界和亚晶界
晶界 亚晶界 确定晶界位置用:
(1)两晶粒的位向差θ (2)晶界相对于一个点阵某一平面的夹角φ。 按θ的大小分类:
点缺陷
线缺陷
面缺陷
点缺陷
材料科学基础
第二章
点缺陷是最简单的晶体缺陷,它是在结点上或邻近的微观区域内偏离晶体 结构正常排列的一种缺陷。
晶体点缺陷包括:
空位
间隙原子
杂质
置换原子
点缺陷对结构和性能的影响
材料科学基础
第二章
点缺陷引起晶格畸变,能量升高,结构不稳定,易发生转变。 点缺陷的存在会引起性能的变化:
位错的直接观测: 利用透射电子显微镜(Transmission Electron Microscope,简称TEM)可直 接观察到材料微结构中的位错。TEM观察的第一步是将金属样品加工成电子束可 以穿过的薄膜。在没有位错存在的区域,电子通过等间距规则排列的各晶面时将 可能发生衍射,其衍射角、晶面间距及电子波长之间满足布拉格定律(Bragg's law)。而在位错存在的区域附近,晶格发生了畸变,因此衍射强度亦将随之变 化,于是位错附近区域所成的像便会与周围区域形成衬度反差,这就是用TEM观 察位错的基本原理,因上述原因造成的衬度差称为衍射衬度。 在图7和图8中,中间稍亮区域(晶粒)里的暗线就是所观察到位错的像。由于多 晶材料中不同晶粒的晶体学取向不同,因此晶粒之间亦存在衬度差别,这就是图 7和图8中中间区域较周围区域更亮的原因。值得注意的是,图中位错像所具有的 “蜿蜒”的形态,这是位错线在厚度方向穿过试样(薄膜)的位错在TEM下的典 型形态;还需注意的是图中位错像的终结处实际上是因为位错线到达了试样表面, 而非终结在了试样内部。所有位错都只能以位错环的形式终结于晶粒的内部。
无机材料科学基础第三章晶体结构缺陷
(4)溶质原子(杂质原子):
LM 表示溶质L占据了M的位置。如:CaNa SX 表示S溶质占据了X位置。 (5)自由电子及电子空穴:
有些情况下,价电子并不一定属于某个特定位置的原子,在光、电、热 的作用下可以在晶体中运动,原固定位置称次自由电子(符号e/ )。同 样可以出现缺少电子,而出现电子空穴(符号h. ),它也不属于某个特定 的原子位置。
(5)热缺陷与晶体的离子导电性
纯净MX晶体:只有本征缺陷(即热缺陷) 能斯特-爱因斯坦(Nernst-Einstein)方程:
n k 2 e 2 z T [a 2cex k E c p ) T a ( 2a ex k E a p )T ]( n k 2 e 2 z T D
式中 D —— 带电粒子在晶体中的扩散系数; n —— 单位体积的电荷载流子数,即单位体 积的缺陷数。 下标c、a —— 阳离子、阴离子
离子晶体中:CaF2型结构。
从形成缺陷的能量来分析——
Schttky缺陷的形成能量小,Frankel 缺陷的 形成能量大,因此对于大多数晶体来说, Schttky 缺陷是主要的。
(4) 点缺陷对结构和性能的影响
• 点缺陷引起晶格畸变(distortion of lattice),能量升 高,结构不稳定,易发生转变。
3第三章-晶体结构缺陷
(2). 杂质缺陷 一般反应式: 杂质
CaCl2溶解在KCl中
• 每引进一个CaCl2分子,同时带进二个Cl-和一个Ca2+离子。1个Ca2+置
基质
产生的各种缺陷
换一个K+,但由于引入2个Cl-,为保持原有格点数之比K:Cl=1:1,必
2. 产生原因(cause of produce)
弗仑克尔缺陷
热缺陷 肖特基缺陷
由产生原因分类 杂质缺陷 非化学计量结构缺陷
(1) 热缺陷(thermal defect)
a. 定义:当晶体温度高于绝对0K时,由于晶格内原 子热振动,使一部分能量较大的原子偏离 平衡位置造成缺陷。 b. 特点:由原子热振动引起,缺陷浓度与温度有关。
• (3) 在同一晶体中生成弗伦克尔缺陷与肖特基缺陷的能量往往 存在很大差别。 • (4) 缺陷形成能的大小与晶体结构、离子极化率等有关。 • NaCl型结构的离子晶体,生成一个间隙离子和一个空位缺陷 需要7~8 eV。所以即使温度到2000度,离子缺陷浓度也很小 • 对于CaF2晶体,F-离子生成弗伦克尔缺陷与肖特基缺陷的形 成能分别为2.8 eV和5.5eV,所以晶体中以弗伦克尔缺陷为主。
b.特点:由气氛或压力变化引起,缺陷浓度与气氛性质、
压力有关。
[例] TiO2 晶体
Ti格点数 1 Ti原子数 1 TiO2 : ,如果 ,化学计量 O格点数 2 O原子数 2 Ti格点数 1 Ti原子数 1 TiO1.998 : ,但 ,非化学计量 O格点数 2 O原子数 1.998
V (V V ) VNa
材料物理化学-第四章 晶体的点缺陷与线缺陷
第四章晶体结构缺陷晶体缺陷的产生与晶体的生长条件,晶体中原子的热运动以及对晶体的加工工艺等有关。
事实上,任何晶体即使在绝对零度都含有缺陷,自然界中理想晶体是不存在的。
既然存在着对称性的缺陷,平移操作不能复制全部格点,那么空间点阵的概念似乎不能用到含有缺陷的晶体中,亦即晶体理论的基石不再牢固。
但缺陷的存在只是晶体中局部的破坏。
作为一种统计,一种近似,一种几何模型,缺陷存在的比例毕竟只是一个很小的量(这指的是通常的情况),从占有原子百分数来说,晶体中的缺陷在数量上是微不足道的。
因此,整体上看,可以认为一般晶体是近乎完整的。
因而对于实际晶体中存在的缺陷可以用确切的几何图形来描述,这一点非常重要。
它是我们今后讨论缺陷形态的基本出发点。
事实上,把晶体看成近乎完整的并不是一种凭空的假设,大量的实验事实(X射线及电子衍射实验提供了足够的实验证据)都支持这种近乎理想的对称性。
当然不能否认,当缺陷比例过高以致于这种“完整性”无论从实验或从理论上都不复存在时,此时的固体便不能用空间点阵来描述,也不能被称之为晶体。
这便是材料中的另一大类别:非晶态固体。
对非晶固体和晶体,无论在原子结构理论上或是材料学家对它们完美性追求的哲学思想上都存在着很大差异,有兴趣的同学可以对此作进一步的理解。
缺陷是晶体理论中最重要的内容之一。
晶体的生长、性能以及加工等无一不与缺陷紧密相关。
因为正是这千分之一、万分之一的缺陷,对晶体的性能产生了不容小视的作用。
这种影响无论在微观或宏观上都具有相当的重要性。
4.1热力学平衡态点缺陷4.1.1 热缺陷的基本类型点缺陷形成的热力学平衡当晶体的温度高于绝对零度时,晶格内原子吸收能量,在其平衡位置附近温度越高,热振动幅度加大,原子的平均动能随之增加。
热振动的原子在某一瞬间可以获得较大的能量,挣脱周围质点的作用,离开平衡位置,进入到晶格内的其它位置,而在原来的平衡格点位置上留下空位。
这种由于晶体内部质点热运动而形成的缺陷称为热缺陷。
材料科学中的晶体缺陷与分析方法
材料科学中的晶体缺陷与分析方法晶体缺陷是指晶体内部的结构畸变和非理想排布,这些缺陷对晶体的热力学、物理、化学等性质有着重要的影响。
因此,研究晶体缺陷以及如何对其进行分析方法的研究具有重要的应用价值。
材料科学中,晶体缺陷对于制备高性能材料、电子器件、生物医学材料等都有着重要的影响。
本文将重点介绍晶体缺陷的种类、成因及分析方法。
一、晶体缺陷的种类与成因晶体缺陷可以根据其空间尺度分为点缺陷、线缺陷和面缺陷。
其中,点缺陷包括离子替位、点缺陷、夹杂物等;线缺陷包括螺型位错、堆积型位错等;面缺陷包括晶界、孪晶、双晶等。
晶体缺陷是由于材料制备、加工、热处理、高能粒子注入等过程中所造成的。
其中,离子替位是指在晶体内部的原子位置上,离子取代了原来的离子,从而引起了缺陷。
跟离子替位相似的表示新结晶相的出现。
夹杂物是指某类元素或化合物在形成晶体时未完全排除,由于尺寸或成分的差异而形成的缺陷;点缺陷是指材料晶体中原子位置的改变,包括插入、空位和离子替代三种形式。
螺型位错是指材料中的某个晶面沿螺旋线移动,造成一个部分薄膜在晶体内部存在与晶体前后存在错位。
堆积型位错是指某个晶面堆积在了它本身的上面,形成了一种新的晶面。
晶界是指两个不同晶粒之间或是一块单晶体内部的不同方向晶面之间的交界面。
晶界是晶体中一种重要的缺陷类型,可以影响晶体的强度、塑性、导电性等性质。
二、晶体缺陷的分析方法晶体缺陷对于材料性能的影响十分显著,因此对晶体缺陷的分析和研究是当今材料科学的重要课题。
目前,人们主要使用多种表征工具来探索晶体缺陷的性质和机制。
1. 透射电镜技术透射电镜技术是分析晶体缺陷的一个重要手段。
透射电镜通过高能电子穿透样品并在对侧形成图像,可探测材料中的晶体缺陷。
透射电镜可以检测出位错、夹杂物、穿过晶粒的线缺陷以及晶界等结构的缺陷。
2. X射线衍射技术晶体缺陷可以在X射线衍射图案中产生明显的影响。
通过观察X射线衍射图案,可以确定晶体中的缺陷、晶面旋转角度、晶体结晶方向等参数。
《材料化学》晶体结构缺陷
VX•• VX 2h•
缺陷类型
电荷数 缺陷位置
❖填隙离子
M
•• i
Xi
❖错放位置
M
•••• X
XM
❖杂质离子 LXM
Ca
X Mg
;
CaZr ;
Ca
• Na
3.4 缺陷反应方程
写缺陷反应方程需注意的一些基本原则
位置关系 位置增殖 质量平衡 电荷守恒
缺陷反应方程
在 AgBr 中形成 Frenkel 缺陷,相应的缺陷 反应方程为:
点缺陷 (零维缺陷)
• 这类缺陷包括晶体点阵结点位置上可能存在的 空位和取代的外来杂质原子,也包括在固体化 合物中部分原子的错位。在点阵结构的间隙位 置存在的间隙原子也属于点缺陷。
• 点缺陷问题是固体化学研究的主要课题和核心 问题之一。
点缺陷有时候对材料性能是有害的
锗酸铋 (BGO) 单晶无色透明,在室温下有 很强的发光性能,是性能优异的新一代闪烁晶体
体缺陷 (三维缺陷)
在三维方向上尺寸都比较大的缺陷。 例如,固体中包藏的杂质、沉淀和空洞等。
ZrO2增韧莫来石陶瓷中的气 孔 (过烧引起)。这种缺陷会
导致材料性能的劣化。
TiCN 颗粒增强氧化铝陶瓷中 的 TiCN 颗粒。这种人为引进 的缺陷可以改善材料的性能。
3.1.2 点缺陷的分类
按几何位置及成分分类
线缺陷 (一维缺陷)
• 是指晶体中沿某一条线附近原子的排列偏离了 理想的晶体点阵结构。主要表现为位错。
• 位错可以分为刃位错和螺位错两种类型。
当晶体中有一个晶面在生长过程中中断了,便在相 隔一层的两个晶面之间造成了短缺一部分晶面的情 况。这就形成了刃位错。
缺陷化学总结(二)(二)
缺陷化学总结(二)(二)引言概述:缺陷化学是研究材料中的缺陷结构对其性质和功能影响的学科。
本文将从五个主要方面对缺陷化学进行深入探讨,分析缺陷结构产生的原因、缺陷结构对材料性能的影响以及缺陷调控的方法与应用。
正文内容:1. 缺陷结构的形成机制- 晶格缺陷:点缺陷、线缺陷、面缺陷- 晶体生长过程中的缺陷:原子迁移、激发扩散、拉普拉斯增长- 外部条件对缺陷结构的影响:温度、压力、成分变化2. 缺陷结构与材料性能的关系- 电学性质的变化:导电性、电阻率、电子迁移率- 光学性质的变化:吸收率、透光性、发光性能- 机械性质的变化:强度、韧性、硬度- 热学性质的变化:导热性、热膨胀系数、热稳定性3. 缺陷调控的方法与技术- 材料合成过程中的控制:温度、压力、溶剂、添加剂- 结构调控方法:合金化、掺杂、热处理、离子注入- 表面修饰技术:化学修饰、物理修饰、生物修饰- 动态调控方法:外场作用、电磁辐射、力学应变4. 缺陷化学在材料研究中的应用- 电子器件领域:半导体材料、光电材料、导电涂层- 能源材料领域:储能材料、光催化材料、电解质材料- 生物医学领域:药物输送材料、组织工程材料、生物传感器 - 环境保护领域:吸附材料、催化剂、气体分离材料5. 未来发展方向与挑战- 高效调控缺陷结构的方法与技术的发展- 缺陷调控在材料设计与合成中的应用- 多尺度缺陷结构与性能的关联研究- 可持续发展与环境友好型缺陷控制总结:缺陷化学作为一门跨学科的研究领域,对于理解材料性能与功能的关系具有重要意义。
通过深入理解缺陷结构的形成机制、缺陷对材料性能的影响以及缺陷调控的方法与应用,可以进一步推动材料科学与工程的发展,并为新型功能材料的设计与合成提供理论指导和技术支持。
武汉理工大学考研材料科学基础重点 第3章-晶体结构缺陷
第二章晶体结构缺陷缺陷的含义:通常把晶体点阵结构中周期性势场的畸变称为晶体的结构缺陷。
理想晶体:质点严格按照空间点阵排列的晶体。
实际晶体:存在着各种各样的结构的不完整性。
本章主要内容:2.1 晶体结构缺陷的类型2.2 点缺陷2.3 线缺陷2.4 面缺陷2.5 固溶体2.6 非化学计量化合物⏹ 2.1 晶体结构缺陷的类型分类方式:几何形态:点缺陷、线缺陷、面缺陷和体缺陷等形成原因:热缺陷、杂质缺陷、非化学计量缺陷、电荷缺陷和辐照缺陷等●一、按缺陷的几何形态分类1. 点缺陷(零维缺陷)缺陷尺寸处于原子大小的数量级上,即三维方向上缺陷的尺寸都很小。
包括:空位:正常结点没有被质点占据,成为空结点间隙质点:质点进入正常晶格的间隙位置,成为间隙质点错位原子或离子杂质质点:指外来质点进入正常结点位置或晶格间隙,形成杂质缺陷双空位等复合体点缺陷与材料的电学性质、光学性质、材料的高温动力学过程等有关。
2. 线缺陷(一维缺陷)位错指在一维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,即缺陷尺寸在一维方向较长,另外二维方向上很短,如各种位错。
线缺陷的产生及运动与材料的韧性、脆性密切相关。
3.面缺陷面缺陷又称为二维缺陷,是指在二维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷,即缺陷尺寸在二维方向上延伸,在第三维方向上很小。
如晶界、表面、堆积层错、镶嵌结构等。
面缺陷的取向及分布与材料的断裂韧性有关。
4.体缺陷体缺陷亦称为三维缺陷,是指在局部的三维空间偏离理想晶体的周期性、规则性排列而产生的缺陷。
如第二相粒子团、空位团等。
体缺陷与物系的分相、偏聚等过程有关。
●二、按缺陷产生的原因分类1. 热缺陷定义:热缺陷亦称为本征缺陷,是指由热起伏的原因所产生的空位或间隙质点(原子或离子)。
类型:弗仑克尔缺陷和肖特基缺陷。
弗伦克尔缺陷是质点离开正常格点后进入到晶格间隙位置,其特征是空位和间隙质点成对出现。
肖特基缺陷是质点由表面位置迁移到新表面位置,在晶体表面形成新的一层,同时在晶体内部留下空位。
晶体结构缺陷
56第二章 晶体结构缺陷我们在讨论晶体结构时,是将晶体看成无限大,并且构成晶体的每个粒子(原子、分子或离子)都是在自己应有的位置上,这样的理想结构中,每个结点上都有相应的粒子,没有空着的结点,也没有多余的粒子,非常规则地呈周期性排列。
实际晶体是这样的吗?测试表明,与理想晶体相比,实际晶体中会有正常位置空着或空隙位置填进一个额外质点,或杂质进入晶体结构中等等不正常情况,热力学计算表明,这些结构中对理想晶体偏离的晶体才是稳定的,而理想晶体实际上是不存在的。
结构上对理想晶体的偏移被称为晶体缺陷。
实际晶体或多或少地存在着缺陷,这些缺陷的存在自然会对晶体的性质产生或大或小的影响。
晶体缺陷不仅会影响晶体的物理和化学性质,而且还会影响发生在晶体中的过程,如扩散、烧结、化学反应性等。
因而掌握晶体缺陷的知识是掌握材料科学的基础。
晶体的结构缺陷主要类型如表2—1所示。
这些缺陷类型,在无机非金属材料中最基本和最重要的是点缺陷,也是本章的重点。
表2—1 晶体结构缺陷的主要类型2.1 点缺陷研究晶体的缺陷,就是要讨论缺陷的产生、缺陷类型、浓度大小及对各种性质的影响。
60年代,F .A .Kroger 和H .J .Vink 建立了比较完整的缺陷研究理论——缺陷化学理论,主要用于研究晶体内的点缺陷。
点缺陷是一种热力学可逆缺陷,即它在晶体中的浓度是热力学参数(温度、压力等)的函数,因此可以用化学热力学的方法来研究晶体中点缺陷的平衡问题,这就是缺陷化学的理论基础。
点缺陷理论的适用范围有一定限度,当缺陷浓度超过某一临界值(大约在0.1原子%左右)时,由于缺陷的相互作用,会导致广泛缺陷(缺陷簇等)的生成,甚至会形成超结构和分离的中间相。
但大多数情况下,对许多无机晶体,即使在高温下点缺陷的浓度也不会超过上述极限。
缺陷化学的基本假设:将晶体看作稀溶液,将缺陷看成溶质,用热力学的方法研究各种缺陷在一定条件下的平衡。
也就是将缺陷看作是一种化学物质,它们可以参与化学反应——准化学反应,一定条件下,这种反应达到平衡状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 质量平衡:缺陷方程两边必须保持质量平衡; 4. 电中性:缺陷反应两边必须具有相同数目的总有效电荷,
但不必为零; 5. 表面位置:不用特别表示,当一个M原子从晶体内部迁
移到表面时,M位置数增加。
15
有效电荷:缺陷及其周围的总电荷减去理想晶体中同一区 域的电荷之差。
—— 对于自由电子和空穴:有效电荷等于实际电荷;
平衡常数为:
Ag
Vi
Ag
• i
VAg
K
[ Agi• ][VAg ] [ Ag ][Vi ]
令N为晶体中格位总数,Ni为间隙总数,即:
[VAg
]
[
Ag
• i
]
Ni
[Ag ] N Ni
对于大多数规则晶体结构,有:
[Vi ] N
仅与体系自身结构特性有关
23
因此,
K
N
2 i
N
2 i
(N Ni )(N ) N 2
13
缺陷反应方程式
1. 位置关系:在化合物 MaXb 中,M 位置的数目必须与 X
位置的数目成一个正确的比例;
2. 位置增殖:当缺陷发生变化时,有可能引入或消除空位, 相当于增加或减少点阵位置数,这种变化必须服从位置 关系;
—— 引起位置增殖的缺陷:VM,VX,MM,MX,XM, XX,等等;
—— 不引起位置增殖的缺陷: e’,h˙,Mi,Li,等等;
35
俘获空穴中心
通过俘获空穴而形成色心。
卤素蒸气中加热
NaCl
NaCl1+
Vk心:两个相 邻卤素离子俘
获一个空穴
H心:一列卤 素离子中插入 一个卤素原子
36
非整比晶体中的空位和填隙子
异价离子掺杂,如: CaCl2 NaCl CaNa • VNa '2ClCl
将 CaCl2 掺杂到 NaCl 中,二价 Ca2+ 离子取代一价Na+, 得到 Na1-2xCaxVNaxCl
—— 高价正离子取代低价正离子,增大正离子空位数。
37
3.4 缺陷簇
缺陷簇:点缺陷引起的晶格结构畸变。 如图:
38
例如Frenkel缺陷:晶格结点空位和填隙离子带相反的电 荷,如果它们彼此接近时,会互相吸引成对。虽然整个晶 体表现出电中性,但缺陷对带有偶极性,它们可互相吸引 形成较大的聚集体或缺陷簇 —— 类似形式的缺陷簇可以 在化合物中起到第二相的晶核的作用;
3
晶体缺陷是件坏事,是需 要克服消除的——如半导 体材料单晶硅和单晶锗, 杂质含量要求<10-9;
晶体缺陷是件好事,更多 的晶体材料需要人们有计 划、有目的地制造晶体缺 陷——如ZnS晶体的晶体 缺陷(ZnS + 0.0001% AgCl)作为蓝色荧光粉。
4
晶体缺陷的应用
燃料电池; 传感器; 通讯发射 / 接收器件; 光子晶体,等等。
33
注:晶体的显色与电子的来源无关,而取决于基质晶体。
Na蒸气中加热
NaCl
浅黄色
K蒸气中加热 NaCl
浅黄色
K蒸气中加热
KCl
紫色
34
类F心
F’ 心:一个负离子空位俘获两个电子构成的电子中心 ; F2 心,F3 心……:两个或两个以上的 F 心紧靠在一起而
构成的电子中心,又称为 M 心, R 心,等等; 杂质参与的电子中心: FA 心:相邻的六个正离子中的一个被杂质离子所取代; FB 心:相邻的六个正离子中有两个被杂质离子所取代。
负离子 / 正离子空穴对;
异价杂质 / 离子空穴对,等等。
39
3.5 换位原子
换位原子:在晶格结构中发生位置互换的原子或离子对。 当换位原子数超过一定程度时,晶格结构从有序变为无序;
——两种或两种以上元素的体系中; 本质上属于点缺陷。
40
3.6 线缺陷
线缺陷,也称位错,一维 尺度很大而另外两维尺度 很小的原子错排,包括两 种类型:
Na
Cl
V
s Na
VCsl
VNa
VCl
Na,s
Cl,s
反应平衡常数:
K
[VNa ][VCl ][ Na,s ][Cl ,s ] [Na ][Cl ][VNsa ][VCsl ]
对于Schottky缺陷,有:
简化可得:
[
N
a
,
s
]
[V
s Na
],
[C
l
,
s
]
[VCsl
]
K
[VNa ][VCl ] [Na ][Cl ]
[D]V 缺陷D的个数 / cm3
也可以用格位浓度 [D]G 来表示:
[ D ]G
1mol固体中缺陷D的数目 1mol固体中所含的分子数
M • NA
[ D ]V
其中, 是该固体的密度,M是其摩尔质量,NA 为阿佛
加德罗常数。
17
3.3 点缺陷
Schottky缺陷: 1. 正负离子空位成对出现; 2. 为补偿空位,对应
天然光子晶体 —— 蛋白石
5
3.1 晶体结构缺陷的类型
点缺陷:缺陷尺寸处在一两个原子大小的量级; 线缺陷:在晶体结构中的一维缺陷,通常指位错; 面缺陷:通常指晶界、表面等等; 体缺陷:指三维方向上尺度都比较大的缺陷。
6
点缺陷的类型
根据几何位置和成分分类:
原子或离子进 入晶体中正常 结点之间的间
隙位置
晶体中正常结 点位置没有被 原子或离子占
据
外来原子进入晶格 ——取代型杂质: 杂质原子取代正常 结点上的原子或离 子 ——填隙型杂质: 杂质原子进入间隙
填隙子 空位
杂质原子
7
按照缺陷形成机制分类:
热缺陷 杂质缺陷 非化学计量缺陷
8
热缺陷:由于原子的热振动而产生的缺陷; 特点:缺陷浓度随温度升高呈指数增加。 1. Frenkel缺陷:由于热振动,部分能量较大的原子离开正
石英
中子辐照
棕色
25
能带理论基本概念:
1. 对于理想完整的晶体,在温度 为0K时,可以用一系列完全填 充的能带即满带和完全空着的 能带即导带来描述其电子能量 分布;
2. 满带(价带)与导带之间存在 着禁带。电子需要借助外界能 量才能被激发从价带跃迁至导 带,引起电子电导。
26
使晶体显色的方法
引入化学杂质 引入过量的金属离子 X-Ray或射线辐照,中子或电子轰击
材料化学
第三章 晶体结构缺陷
结构缺陷的类型; 缺陷表示方法; 点缺陷与缺陷热力学; 线缺陷与面缺陷; 非整比和缺陷。
2
关于缺陷的观点
1. 在理想晶体中,所有原子都按照理想的晶格点阵排列; 2. 在实际晶体中,在高于 0K 的任何温度下都或多或少地
存在着对理想晶体结构的偏离,即结构缺陷。
21
因此,
NV N A exp( H / 2RT ) 仅与体系自身特性有关
通常也表示为:
n exp( E )
N
2kT
其中,n/N 为缺陷浓度,E 为缺陷生成能,k =
1.38×10-23 J•K-1。
22
Frenkel缺陷的生成热力学
以AgCl晶体为例,Frenkel缺陷平衡:
Schottky 缺陷,在晶体 表面有两个额外的原子。
18Biblioteka Frenkel缺陷:空位与填隙子有相反的电荷并 可以彼此吸引成对;
整体上呈电中性,存在偶极矩; 缺陷对可以相互吸引形成较大
的聚集体或缺陷簇,在相变中 起到晶核的作用。
19
Schottky缺陷的生成热力学
以NaCl晶体为例,Schottky缺陷平衡:
—— 对于化合物晶体:缺陷的有效电荷一般不等于实际 电荷,例如,将CaCl2掺杂到NaCl中,缺陷反应表示为: CaCl2 NaCl CaNa • VNa '2ClCl
Al2O3 ZrO2
16
点缺陷的浓度表示
固体中各类点缺陷以及电子、空穴的浓度,一般以体积浓 度来表示,即每立方厘米中所含有的该缺陷的个数:
12
4. 溶质:LM,Si分别表示L溶质处于M位置,S溶质处于间 隙位置;
5. 自由电子及空穴:分别以e’和h˙表示;
6. 带电缺陷:用缺陷元素与自由电子或空穴的组合来表示, 如: V’Na = VNa + e’,V˙Cl = VCl + h˙
7. 缔合中心:一个点缺陷与另一个带相反符号的点缺陷相 互缔合成一组或一群,如(VMVX),(XiMi),等等。
根据平衡常数与温度的函数关系,得到:
[VAg ] [ Agi• ] Ni N exp( G / 2RT ) N A exp( H / 2RT )
仅与体系自身特性有关
通常也表示为:
n exp( E )
N
2kT
其中,n/N 为缺陷浓度,E 为缺陷生成能,k =
1.38×10-23 J•K-1。
24
色心
色心 —— 一种能够吸收可见 光的晶体缺陷,是由于电子补 偿而引起的点缺陷。
有的晶体,如果用 x 射线、
射线、中子、或电子辐照,往 往会产生颜色;
将经辐照变色的晶体加热,又 能使晶体去掉颜色。
电子辐照
金刚石
蓝色
理想完整的离子晶体 能隙很大,在可见光 范围无吸收,只有紫 外波段有吸收,纯的 离子晶体通常为绝缘 体,且无色透明。
20
令N为每一类格位的总数,NV为每一类空位的总数,有:
K (NV )2 (N NV )2
对于小的浓度缺陷,有:
N N NV NV N K
平衡常数可以表示为温度的指数函数:
K exp( G / RT ) exp( H / RT ) exp( S / R) A exp( H / RT )