工程流体力学考试重点
工程流体力学复习知识总结
一、二、三、是非题。
1.流体静止或相对静止状态的等压面一定是水平面。
(错误)2.平面无旋流动既存在流函数又存在势函数。
(正确)3.附面层分离只能发生在增压减速区。
(正确)4.等温管流摩阻随管长增加而增加,速度和压力都减少。
(错误)5.相对静止状态的等压面一定也是水平面。
(错误)6.平面流只存在流函数,无旋流动存在势函数。
(正确)7.流体的静压是指流体的点静压。
(正确)8.流线和等势线一定正交。
(正确)9.附面层内的流体流动是粘性有旋流动。
(正确)10.亚音速绝热管流摩阻随管长增加而增加,速度增加,压力减小。
(正确)11.相对静止状态的等压面可以是斜面或曲面。
(正确)12.超音速绝热管流摩阻随管长增加而增加,速度减小,压力增加。
(正确)13.壁面静压力的压力中心总是低于受压壁面的形心。
(正确)14.相邻两流线的函数值之差,是此两流线间的单宽流量。
(正确)15.附面层外的流体流动时理想无旋流动。
(正确)16.处于静止或相对平衡液体的水平面是等压面。
(错误)17.流体的粘滞性随温度变化而变化,温度升高粘滞性减少;温度降低粘滞性增大。
(错误)18流体流动时切应力与流体的粘性有关,与其他无关。
(错误)四、填空题。
1、1mmH2O= 9.807 Pa2、描述流体运动的方法有欧拉法和拉格朗日法。
3、流体的主要力学模型是指连续介质、无粘性和不可压缩性。
4、雷诺数是反映流体流动状态的准数,它反映了流体流动时 惯性力与 粘性力 的对比关系。
5、流量Q1和Q2,阻抗为S1和S2的两管路并联,则并联后总管路的流量Q为 ,总阻抗S 为 。
串联后总管路的流量Q 为 ,总阻抗S 为 。
6、流体紊流运动的特征是 脉动现像 ,处理方法是 时均法 。
7、流体在管道中流动时,流动阻力包括 沿程阻力 和 局部阻力 。
8、流体微团的基本运动形式有: 平移运动 、 旋转流动 和 变形运动 。
9、马赫数气体动力学中一个重要的无因次数,他反映了 惯性力与 弹性力 的相对比值。
贵州大学工程流体力学期末考试重点
第一章绪论1.流体自然界中容易流动的物质称为流体,它包括液体和气体。
从形态上看,流体与固体的主要区别在于固体具有固定的形状,而流体则随容器而方圆。
从力学分析的角度看,固体一般可承受拉、压、剪、扭,而流体则几乎不能承受拉力,处于静止状态的流体还不能抵抗剪力,即流体在很小的剪力作用下将发生连续不断的变形。
至于气体与液体的差别则主要在于气体容易压缩,而液体难于压缩,另外液体能形成自由表面而气体不能。
2.流体连续介质模型流体连续介质模型假定流体是由质点(或微团)毫无间隙的组成,其物理性质各向同性,且在空间和时间上具有连续性,因此可采用数学中的连续函数作为分析工具。
工程流体力学在研究流体运动时,由于只研究外力作用下的机械运动规律,而流体分子除稀薄气体外,相互间一般是极为密集的,因此将流体视为连续介质既有必要又有可能3.流体的主要物理性质流体的主要物理性质主要包括惯性(密度、重度)、黏滞性(黏度)和压缩性等。
其中,表征惯性的密度ρ和重度γ是大家较为熟悉的,主要掌握ρ与γ的关系γ=ρg及影响因素,应熟记在常温下,淡水的密度ρ=1000kg / m3和重度γ=9800N / m3。
黏滞性是流体在运动状态下抵抗剪切变形速率能力的量度,是流体的固有属性,是流体运动中产生机械能损失的根源。
流体的黏滞性具有传递运动和阻碍运动的双重性,实际中我们见到的流体流动就是这对矛盾的统一。
压缩性(定义:流体因所受压力变化而引起的体积变化或密度变化的现象)了解体积压缩系数(或称体积压缩率)和体积弹性系数(或称体积模量)K 的意义及关系,建立“不可压缩流体”概念。
在工程流体力学中,一般视流体为不可压缩。
表面张力表面张力是液体自由表面在分子作用半径范围内,由于分子引力大于斥力而在表层沿表面方向产生的拉力。
表面张力定义为自由表面内单位长度上所受的横向拉力。
4.作用在流体上的力在工程流体力学中,通常将作用在流体上的力分为表面力和质量力两大类。
工程流体力学复习重点概念
三、简答题1、 稳定流动及不稳定流动。
---在流场中流体质点通过空间点时所有的运动要素都不随时间改变,这种流动称为稳定流;反之,通过空间点处得流体质点运动要素的全部或局部要素随时间改变,这种流动叫不稳定流。
2、 产生流动阻力的原因。
---外因:水力半径的大小;管路长度的大小;管壁粗糙度的大小。
内因:流体流动中永远存在质点的摩擦和撞击现象,质点摩擦所表现的粘性,以及质点发生撞击引起运动速度变化表现的惯性,才是流动阻力产生的根本原因。
3、 串联管路的水力特性。
---串联管路无中途分流和合流时,流量相等,阻力叠加。
串联管路总水头损失等于串联各管段的水头损失之和,后一管段的流量等于前一管段流量减去前管段末端泄出的流量。
4、 如何区分水力光滑管和水力粗糙管,两者是否固定不变?---不是固定不变的。
通过层流边层厚度及管壁粗糙度值的大小进展比拟。
水力粗糙管。
水力光滑管;∆<∆>δδ5、 静压强的两个特性。
---1.静压强的方向是垂直受压面,并指向受压面。
2.任一点静压强的大小和受压面方向无关,或者说任一点各方向的静压强均相等。
6、 连续介质假设的内容。
---即认为真实的流体和固体可以近似看作连续的,充满全空间的介质组成,物质的宏观性质依然受牛顿力学的支配。
这一假设忽略物质的具体微观构造,而用一组偏微分方程来表达宏观物理量〔如质量,数度,压力等〕。
这些方程包括描述介质性质的方程和根本的物理定律,如质量守恒定律,动量守恒定律等。
7、 实际流体总流的伯诺利方程表达式为〔22222212111122z g v a p h g v a p z +++=++-γγ〕,其适用条件是稳定流,不可压缩流体,作用于流体上的质量力只有重力,所取断面为缓变流动。
8、 因次分析方法的根本原理。
---就是因次和谐的原理,根据物理方程式中各个项的因次必须一样,将描述复杂物理现象的各个物理量组合而成无因次数群π,从而使变量减少。
工程流体力学期末复习重点
工程流体力学期末复习重点work Information Technology Company.2020YEAR第一章1、流体的定义:流体是一种受任何微小剪切力作用都能连续变形的物质,只要这种力继续作用,流体就将继续变形,直到外力停止作用为止。
2、流体的连续介质假设流体是由无数连续分布的流体质点组成的连续介质。
表征流体特性的物理量可由流体质点的物理量代表,且在空间连续分布。
3、不可压缩流体—流体的膨胀系数和压缩系数全为零的流体 4、流体的粘性是指当流体质点 / 微团间发生相对滑移时产生切向应力的性质,是流体在运动状态下具有抵抗剪切变形的能力。
5、牛顿内摩擦定律作用在流层上的切向应力与速度梯度成正比,其比例系数为流体的动力粘度。
即— 动力粘性系数、动力粘度、粘度,Pa s 或kg/(m s)或(N s)/m 2。
6、粘性的影响因素 (1)、流体的种类(2)、流体所处的状态(温度、压强)压强通常对流体粘度影响很小:只有在高压下,气体和液体的粘度随压强升高而增大。
温度对流体粘度影响很大:对液体,粘度随温度上升而减小;对气体,粘度随温度上升而增大。
粘性产生的原因液体:分子内聚力 T 增大,μ 降低 气体:流层间的动量交换 T 增大,μ 增大dydu μτ=第二章第三章 1、欧拉法速度: 加速度:2、流场 —— 充满运动流体的空间称为流场流线——流线是同一时刻流场中连续各点的速度方向线。
流管—— 由流线所组成的管状曲面称为流管。
流束—— 流管内所充满的流体称为流束。
流量—— 单位时间内通过有效断面的流体量w dtdzv dt dy u dt dx ===dtdzz u dt dy y u dt dx x u t u Dt Du a x ∂∂+∂∂+∂∂+∂∂==以体积表示称为体积流量 Q (m 3/s )以质量表示称为质量流量 Q m (kg/s )3、当量直径4、亥姆霍兹(Helmholtz)速度分解定理旋转线变形角变形5雷诺数的物理意义惯性力粘性力2223l V lV l ma F inerρρ=∝=Vl l l VA dy du A F vis μμμτ==∝=2)()(0y z z y x u u z y zx xy xx δωδωδεδεδε-++++=)()(0z x x z y v v x z xy yz yy δωδωδεδεδε-++++=)()(0x y y x z w w y x yz xz zz δωδωδεδεδε-++++=第四章1、系统 (System):是一定质量的流体质点的集合。
《流体力学考》考点重点知识归纳(最全)
《流体力学考》考点重点知识归纳1.流体元:就有线尺度的流体单元,称为流体“质元”,简称流体元。
流体元可看做大量流体质点构成的微小单元。
2.流体质点:(流体力学研究流体在外力作用下的宏观运动规律)(1)流体质点无线尺度,只做平移运动(2)流体质点不做随即热运动,只有在外力的作用下作宏观运动;(3)将以流体质点为中心的周围临街体积的范围内的流体相关特性统计的平均值作为流体质点的物理属性;3.连续性介质模型的内容:根据流体指点概念和连续介质模型,每个流体质点具有确定的宏观物理量,当流体质点位于某空间点时,若将流体质点的物理量,可以建立物理的空间连续分布函数,根据物理学基本定律,可以建立物理量满足的微分方程,用数学连续函数理论求解这些方程,可获得该物理量随空间位置和时间的连续变化规律。
4.连续介质假设:假设流体是有连续分布的流体质点组成的介质。
5.牛顿的粘性定律表明:牛顿流体的粘性切应力与流体的切变率成正比,还表明对一定的流体,作用于流体上的粘性切应力由相邻两层流体之间的速度梯度决定的,而不是由速度决定的:6.牛顿流体:动力粘度为常数的流体称为牛顿流体。
7.分子的内聚力:当两层液体做相对运动时,两层液体的分子的平均距离加大,分子间的作用力变现为吸引力,这就是分子的内聚力。
液体快速流层通过分子内聚力带动慢流层,漫流层通过分子的内聚力阻滞快流层的运动,表现为内摩擦力。
、流体在固体表面的不滑移条件:分子之间的内聚力将流体粘附在固体表面,随固体一起运动或静止。
8.温度对粘度的影响:温度对流体的粘度影响很大。
液体的粘度随温度升高而减小,气体的粘度则相反,随温度的升高而增大。
压强对粘性的影响:压强的变化对粘度几乎没有什么影响,只有发生几百个大气压的变化时,粘度才有明显改变,高压时气体和液体的粘度增大。
9.描述流体运动的两种方法拉格朗日法:拉格朗日法又称为随体法。
它着眼于流体质点,跟随流体质点一起运动,记录流体质点在运动过程中会各种物理量随所到位置和时间的变化规律,跟中所有质点便可了解整个流体运动的全貌。
工程流体力学考试知识点
流体:受到微小剪切力的作用能够发生连续不断变形。
(易于流动,没有固定形状)紊流:是一种随机的三维非定常有旋流动。
紊流的基本特征:1,不规则流动状态;2,参数随时间空间随机变化;3,空间分布大小形状各不相同漩涡;4,具有瞬息万变的流动特征;5,流动参数符合概率规律;6,相邻参数有关联。
镜像法:是确定干扰后流场的方法之一,是一种特别的奇点法。
连续模型:不考虑分子之间的间隔,而把流体看成由无数个流体微团所组成的宏观流体的连续流动。
(必要性:不这样就只能用离散数学求解 合理性:对于分子的运动并不在意) 适用范围:物体特征尺寸/流体分子特征尺寸≧100时适用。
扩散性:流体的分子因随机运动产生矢量位移的运动。
压缩性:温度一定时,流体的体积随着着压力的升高而减少。
不可压均质:c Dt D ==ρρ,0/ 黏性:流体微团发生相对滑移时产生切向阻力的性质。
表面力:作用在分离体表面上的力。
质量力:通过某种力或场作用在全部流体质点上的力。
应力:单位面积上的负表面力。
雷诺应力:在不可压缩流体的雷诺方程中,j i -μμρ称为雷诺应力,当i=j 时为法相。
应力/变形张量:[P]/[S]它是描述运动黏性流体内任一点应力状态的物理量。
耗散函数:Γ表示单位时间内单位体积流体由机械能耗散成热能。
ii ij x P ∂∂'=μ 拉格朗日法:着眼于个别流体质点来研究流体运动。
欧拉法:着眼于流场空间点参数的变化来研究。
当地加速度:Q 变化引起速度变化。
迁移加:Q 不变,因管道形状导致速度改变。
欧拉法好处:1.欧拉法得到的是场,可以用场论分析。
2.用欧拉法得到的运动方程是一阶。
3.工程上关心空间点参数。
本构方程:物质对所受应力的力学相应方程。
(应力与内部变形速度之间的关系)三个假设:假设1:切向应力与变形速度呈线性关系。
假设2:在流体内一点,变形速度主轴均与应力主轴重合。
假设3:每一点的平均法相应力是由不直接依赖于变形速度压强以及同体变形速度成比例的附加应力组合而成。
工程流体力学总复习要点
第三 章
一、概念 1.质量力与表面力 2.流体静力学基本方程及静止条件 二、计算 1.非惯性坐标系中静止流体的计算 2.静止液体中平板的受力
第四章
一、概念 1.系统与控制体 2.输运公式的作用 二、计算 1.四大守恒方程的计算应用 2.各守恒方程的综合应用
第五章
一、概念
1.常见的边界条件有哪些? 2.建立流动微分方程的基本方法 3. 管内流动最大速度与平均速度的关 系
二、推导
1.狭缝流动、管内流动及平板降膜流 动的剪应力与速度分布
第六章
一、概念 1.连续性方程与质量守恒方程的关系 2.N-S方程的适用条件 3.N-S方程各项的含义 二、计算与ห้องสมุดไป่ตู้导 1. 三维不可压缩流体连续性方程
第七章 一、概念 1.势函数与流函数存在的条件 2.无旋流动的判别方法 二、计算 1.给定流场能求势函数和流函数, 反之亦然。
第一章
一、概念 1.流体的连续介质模型 2.流体的主要物理性质 3.牛顿剪切定律 4.牛顿流体与非牛顿流体 5.理想流体与实际流体 二、计算 1.拉普拉斯公式
第二章
一、概念 1.层流与湍流 2.稳态流动与非稳态流动 3.拉格朗日法与欧拉法 4.迹线与流线 5.有旋流动与无旋流动 二、计算 1.流线方程与迹线方程
第八章 一、概念 1.流动相似包含哪几方面? 2.动力相似 3.量纲分析方法有几种?
第十章
一、概念 1.边界层的定义 2.边界层分离的原因 3.逆压梯度 二、计算 1.平板层流边界层厚度的计算
谢谢观赏!
工程流体力学复习知识总结
一、是非题。
1.流体静止或相对静止状态的等压面一定是水平面. (错误)2.平面无旋流动既存在流函数又存在势函数。
(正确)3.附面层分离只能发生在增压减速区。
(正确)4.等温管流摩阻随管长增加而增加,速度和压力都减少。
(错误)5.相对静止状态的等压面一定也是水平面。
(错误)6.平面流只存在流函数,无旋流动存在势函数。
(正确)7.流体的静压是指流体的点静压。
(正确)8.流线和等势线一定正交. (正确)9.附面层内的流体流动是粘性有旋流动。
(正确)10.亚音速绝热管流摩阻随管长增加而增加,速度增加,压力减小。
(正确)11.相对静止状态的等压面可以是斜面或曲面。
(正确)12.超音速绝热管流摩阻随管长增加而增加,速度减小,压力增加.(正确)13.壁面静压力的压力中心总是低于受压壁面的形心。
(正确)14.相邻两流线的函数值之差,是此两流线间的单宽流量。
(正确)15.附面层外的流体流动时理想无旋流动. (正确)16.处于静止或相对平衡液体的水平面是等压面. (错误)17.流体的粘滞性随温度变化而变化,温度升高粘滞性减少;温度降低粘滞性增大。
(错误 )18流体流动时切应力与流体的粘性有关,与其他无关。
(错误)二、填空题。
1、1mmH2O= 9。
807 Pa2、描述流体运动的方法有欧拉法和拉格朗日法。
3、流体的主要力学模型是指连续介质、无粘性和不可压缩性。
4、雷诺数是反映流体流动状态的准数,它反映了流体流动时惯性力与粘性力的对比关系。
5、流量Q1和Q2,阻抗为S1和S2的两管路并联,则并联后总管路的流量Q为,总阻抗S为。
串联后总管路的流量Q为,总阻抗S为 .6、流体紊流运动的特征是脉动现像 ,处理方法是时均法。
7、流体在管道中流动时,流动阻力包括沿程阻力和局部阻力。
8、流体微团的基本运动形式有:平移运动、旋转流动和变形运动。
9、马赫数气体动力学中一个重要的无因次数,他反映了惯性力与弹性力的相对比值。
10、稳定流动的流线与迹线重合。
机械工程流体力学与热力学重点考点梳理
机械工程流体力学与热力学重点考点梳理1. 流体力学概述1.1 流体力学的基本概念1.2 流体的性质和分类1.3 流体运动的描述方法2. 流体静力学2.1 流体的压力和压强2.2 大气压力和气压测量2.3 浮力与浮力条件2.4 压力的传递和帕斯卡定律2.5 压力的稳定性和压力图形3. 流体动力学基础3.1 流体的密度、质量流量和体积流量3.2 流体的速度和速度梯度3.3 流体的连续性方程3.4 流体的动量守恒方程3.5 流体的能量守恒方程4. 流体流动与阻力4.1 管道流动的基本条件4.2 管道流动的雷诺数和阻力系数4.3 流体流动的类型和特性4.4 流体的黏性和黏性流动4.5 流体阻力的计算方法5. 流体力学实验5.1 流体力学实验的基本原理5.2 流体流动实验的设备和仪器5.3 流体力学实验的设计和数据处理5.4 流体力学实验的安全措施和注意事项6. 热力学基础6.1 热力学的基本概念和假设6.2 系统和热力学性质6.3 热力学过程和热力学定律6.4 热力学方程和热力学函数6.5 理想气体和非理想气体的热力学性质7. 热力学循环与功效7.1 热力学循环的基本概念和分类7.2 热力学循环的效率和性能参数7.3 理想气体的热力学循环7.4 实际热力学循环的特点和改进方法7.5 热力学循环在工程中的应用8. 热传导与传热8.1 热传导的基本原理和方程8.2 热传导的几何参数和导热性质8.3 热传导的稳态和非稳态8.4 传热方式的分类和特性8.5 传热计算和传热设备9. 边界层和对流传热9.1 边界层的形成和特性9.2 边界层的分类和厚度9.3 粘性流体的边界层和无粘流体的边界层 9.4 边界层传热和换热系数9.5 对流传热的机制和传热表达式10. 流体力学与热力学应用10.1 流体力学在飞行器设计中的应用10.2 流体力学在水力工程中的应用10.3 流体力学在能源系统中的应用10.4 热力学在汽车工程中的应用10.5 热力学在热能工程中的应用以上为机械工程流体力学与热力学的重点考点梳理,掌握了这些知识点,可以对机械系统中的流体行为和热力学性能进行分析和设计,为工程实践提供理论支持。
工程流体力学知识点总结
速度场
u=u(x,y,z,t) v=v(x,y,z,t) w=w(x,y,z,t)
流体运动质点的空间坐标随时间变化 x=x(t) y=y(t) z=z(t)
速度 u=dx/dt v=dy/dt w=dz/dt
加速度 a=a(x,y,z,t)(重点)
a x ut流 u体ux 运 v 动uy 学w 基uz 础
ay
v t
u
v x
v
v y
w
v z
az
w t
u
w x
v
w y
w
w z
局部(时变) av(v)v t
对流(迁ቤተ መጻሕፍቲ ባይዱ)
若用矢量表示,则有
为哈密尔顿矢性微分算子。
同理,其他运动参数流可体表运示为动:学基础
Dp p u p v p wp t t x y z
u v w
t t x y z
第二节 几个基本概念
ax= 2x/t2 ay= 2y/t2
w=z/t az= 2z/t2
二、 Euler法(欧拉流法体)运(重动点学)基础
基本思想:考察空间每一点上的物理量及其变化。着眼于 运动流体所充满的空间。 独立变量:空间点坐标 (x, y, z)
vv(x,y,z,t) pp(x,y,z,t) (x,y,z,t)
dpgdz
流体静力学
对于不可压缩流体 con,st对上式在流体连续区域
内进行积分,可得:
z p C g
该式为重力场中不可压缩流体的静压强基本方程式。
积分常数C可以由平衡液体自由表面边界条件确定:
zz0, pp0
z0
p0 g
C
所以 即
z p g
z0
工程流体力学考试重点-很准的哦
1. 质量力:质量力是作用于每一流体质点(或微团)上的力,与体积或质量成正比。
2. 表面力:表面力是作用在所考虑的流体表面上的力,且与流体的表面积大小成正比。
外界通过接触传递,与表面积成正比的力。
3. 当不计温度效应,压强的变化引起流体体积和密度的变化,称为流体的压缩性。
当流体受热时,体积膨胀,密度减小的性质,称为流体的热胀性。
4. 单位压强所引起的体积变化率(压缩系数dpdVV p 1-=α)。
↑p α越容易压缩。
↓↑⇒=-==E d dp dV dp VE P P αρρα,。
5. 单位温度所引起的体积变化率(体积热胀系数dTdVV V 1=α)。
6. 黏性是流体抵抗剪切变形的一种属性。
当流体内部的质点间或流层间发生相对运动时,产生切向阻力(摩擦力)抵抗其相对运动的特性,称作流体的黏性。
流体的黏性是流体产生流动阻力的根源。
7. dy du AF μ= 其中F ——内摩擦力,N ;dydu ——法向速度梯度,即在与流体方向相互垂直的y 方向流体速度的变化率,1/s ;μ——比例系数,称为流体的黏度或动力黏度,s Pa ∙。
8. dyduμτ= 表明流体层间的内摩擦力或切应力与法向速度梯度成正比。
9. 液体的黏度随温度升高而减小,气体的黏度则随温度升高而增大。
液体主要是内聚力,气体主要是热运动。
温度↑: 液体的分子间距↑ 内聚力↓; 气体的分子热运动↑ 分子间距↓ 内聚力↑。
10. 三大模型:1)连续介质模型;2)不可压缩流体模型;3)理想流体模型。
11. 当把流体看作是连续介质后,表征流体性质的密度、速度、压强和温度等物理量在流体中也应该是连续分布的。
优点:可将流体的各物理量看作是空间坐标和时间的连续函数,从而可以引用连续函数的解析方法等数学工具来研究流体的平衡和运动规律。
12. 流体静压强的特性:1)流体静压强的方向垂直指向受压面或沿作用面的内法线方向;2)平衡流体中任意一点流体静压强的大小与作用面的方位无关,只与点的空间位置有关。
大学《工程流体力学》期末复习重点总结
第一章1、流体定义受任何微小切力都会产生连续变形(流动)的物质。
2、流体承受的作用力流体承受的力主要为压力,流动的流体可以承受切力。
3、流体特性:易流动性及粘性。
4、流体质点的概念流体质点就是流体中宏观尺寸非常小而微观尺寸又足够大的任意一个物理实体,也称流体微团 。
5、流体质点具有四层含义:(1)宏观尺寸非常小; (2)微观尺寸足够大; (3)是包含有足够多分子的一个物理实体; (4)形状可以任意划分。
6、连续介质的概念:把流体视为由无数连续分布的流体微团所组成的连续介质,这就是流体的连续介质假设。
8、粘性的概念:流体运动时内部产生切应力的性质叫作流体的粘性。
9、粘性产生的原因 :分子间的相互引力;分子不规则热运动所产生的动量交换10、牛顿内摩擦定律δμV A F = dydV μτ±= 物理意义:切应力与速度梯度成正比。
12、体胀系数:())1(1lim 0TV V dT dV V T V V T T V ∆∆≈=∆∆=→∆βα当压强不变时,每增加单位温度所产生的流体体积相对变化率。
压缩系数:())1(1lim 0pV V dp dV V p V V k p p T ∆∆-≈-=∆∆-=→∆β 当温度不变时,每增加单位压强所产生的流体体积相对变化率。
体积弹性系数:)(1Vp V dV dp V k K T ∆∆-≈-== 每产生一个单位体积相对变化率所需要的压强变化量。
12、理想流体的概念假定不存在粘性,即其μ=ν=0的流体为理想流体或无粘性流体。
13、不可压缩流体的概念压缩系数和体胀系数都为零的流体叫做不可压缩流体, 或 ρ=C (常量)14、流体的主要力学模型连续介质、无粘性和不可压缩性第2章 流体静力学1、作用在流体上的力质量力(重力、惯性力)、表面力(法向力、切向力)2、静压力特性:方向性、等值性4、等压面及选取流体中压强相等的点组成的面叫等压面。
等压面的选取:(1)同种流体;2)静止;3)连续。
工程流体力学复习重点
工程流体力学复习重点一般把符合牛顿内摩擦定律的流体称为牛顿流体,如水,空气,汽油,煤油,乙醇。
不符合牛顿内摩擦定律的流体,称为非牛顿流体,如聚合物溶液,泥浆,血浆,新拌水泥砂浆,新版混凝土,泥石流。
黏度主要与流体的种类和温度有关,黏性是流体分子间的内聚力和分子不规则的热运动产生动量交换的结果。
假设黏度不存在的流体称为理想流体。
作用在流体隔离器表面的力(其大小与作用面积成正比)称为表面力。
与力正交的应力称为压应力或压力,与作用面平行的应力称为剪应力。
作用于流体隔离体内每个流体微团上,其大小与流体质量成比例的力称为质量力。
对于非惯性坐标系,质量力还包括惯性力。
平衡流体中的应力垂直于作用面,并沿着作用面的内法线方向平衡流体中任一一点的静压强大小与其作用面的方位无关等压面:由平衡流体中压力相等的点组成的平面或曲面称为等压面。
等压表面的两个性质:1。
等压面与等势面重合。
2.等压面恒定且与质量力正交。
压力的测量是基于没有大气分子就没有绝对真空的假设。
它被称为绝对压力,用单位表示。
绝对压强和相对压强是按两种不同基准计量的压强,它们之间相差一个当地大气压强pa值拉格朗日方法关注流体中每个粒子的运动,研究每个粒子的运动过程,然后综合所有被研究流体粒子的运动,得出整个运动的研究规律。
欧拉法:以流场内空间点作为研究对象,研究质点通过空间点时运动参数随时间的变化规律把足够的空间点综合起来,得出整个流场的规律。
如果流场中某个空间点上的所有运动元素都不随时间变化,这种流动称为恒定流,否则称为非定常流。
运动要素仅随一个坐标变化的流动称为一元流。
流线是在某一时刻在流场中绘制的空间曲线。
此时,所有粒子的速度向量都与该曲线相切迹线则是同一质点在这一时段内运动的轨迹线。
流线的特征:一一般来说,流线不能相交,它只能是一条平滑的曲线2流场中每一点都有流线通过,流线充满整个流场,这些流线构成某一时刻流场内的流谱。
3.在恒流条件下,流线的形状、位置和流动谱不随时间变化,流线与轨迹一致。
《流体力学考》考点重点知识归纳(最全)
《流体力学考》考点重点知识归纳1.流体元:就有线尺度的流体单元,称为流体“质元”,简称流体元。
流体元可看做大量流体质点构成的微小单元。
2.流体质点:(流体力学研究流体在外力作用下的宏观运动规律)(1)流体质点无线尺度,只做平移运动(2)流体质点不做随即热运动,只有在外力的作用下作宏观运动;(3)将以流体质点为中心的周围临街体积的范围内的流体相关特性统计的平均值作为流体质点的物理属性;3.连续性介质模型的内容:根据流体指点概念和连续介质模型,每个流体质点具有确定的宏观物理量,当流体质点位于某空间点时,若将流体质点的物理量,可以建立物理的空间连续分布函数,根据物理学基本定律,可以建立物理量满足的微分方程,用数学连续函数理论求解这些方程,可获得该物理量随空间位置和时间的连续变化规律。
4.连续介质假设:假设流体是有连续分布的流体质点组成的介质。
5.牛顿的粘性定律表明:牛顿流体的粘性切应力与流体的切变率成正比,还表明对一定的流体,作用于流体上的粘性切应力由相邻两层流体之间的速度梯度决定的,而不是由速度决定的:6.牛顿流体:动力粘度为常数的流体称为牛顿流体。
7.分子的内聚力:当两层液体做相对运动时,两层液体的分子的平均距离加大,分子间的作用力变现为吸引力,这就是分子的内聚力。
液体快速流层通过分子内聚力带动慢流层,漫流层通过分子的内聚力阻滞快流层的运动,表现为内摩擦力。
、流体在固体表面的不滑移条件:分子之间的内聚力将流体粘附在固体表面,随固体一起运动或静止。
8.温度对粘度的影响:温度对流体的粘度影响很大。
液体的粘度随温度升高而减小,气体的粘度则相反,随温度的升高而增大。
压强对粘性的影响:压强的变化对粘度几乎没有什么影响,只有发生几百个大气压的变化时,粘度才有明显改变,高压时气体和液体的粘度增大。
9.描述流体运动的两种方法拉格朗日法:拉格朗日法又称为随体法。
它着眼于流体质点,跟随流体质点一起运动,记录流体质点在运动过程中会各种物理量随所到位置和时间的变化规律,跟中所有质点便可了解整个流体运动的全貌。
《工程流体力学》综合复习资料
《工程流体力学》综合复习资料一、 单项选择1、实际流体的最基本特征是流体具有 。
A 、粘滞性B 、流动性C 、可压缩性D 、延展性2、 理想流体是一种 的流体。
A 、不考虑重量B 、 静止不运动C 、运动时没有摩擦力3、作用在流体的力有两大类,一类是质量力,另一类是 。
A 、表面力B 、万有引力C 、分子引力D 、粘性力4、静力学基本方程的表达式 。
A 、常数=pB 、 常数=+γp z C 、 常数=++g 2u γp z 2 5、若流体内某点静压强为at p 7.0=绝,则其 。
A 、 at p 3.0=表B 、Pa p 4108.93.0⨯⨯-=表C 、O mH p 27=水真γ D 、mmHg p 7603.0⨯=汞真γ6、液体总是从 大处向这个量小处流动。
A 、位置水头B 、压力C 、机械能D 、动能7、高为h 的敞口容器装满水,作用在侧面单位宽度平壁面上的静水总压力为 。
A 、2h γB 、221h γ C 、22h γ D 、h γ 8、理想不可压缩流体在水平圆管中流动,在过流断面1和2截面()21d d >上流动参数关系为 。
A 、2121,p p V V >>B 、2121,p p V V <<C 、2121,p p V V <>D 、2121,p p V V ><A 、2121,p p V V >>B 、2121,p p V V <<C 、2121,p p V V <>D 、2121,p p V V ><9、并联管路的并联段的总水头损失等于 。
A 、各管的水头损失之和B 、较长管的水头损失C 、各管的水头损失10、在相同条件下管嘴出流流量 于孔口出流流量,是因为 。
A 、小,增加了沿程阻力B 、大,相当于增加了作用水头C 、等,增加的作用水头和沿程阻力相互抵消D 、大,没有收缩现象,增加了出流面积二、填空题1、空间连续性微分方程表达式 。
流体力学考试重点【范本模板】
1、流体力学的研究对象:①流体在平衡和运动时的压力分布、速度分布。
②与固体之间的相互作用.③流动过程中的能量损失。
2、流体的定义:流体是一种受任何微小的剪切力作用时,都会产生连续的变形的物质.3、流体的特征:①易流性(不能承受剪切力)②形状不定性③受力特性(绵续性)液体:①无固定体积②没有自由表面。
气体:易于压缩。
4、连续介质假说:质点(而不是分子)是组成宏观流体的最小基元,质点与质点之间没有间隙。
这就是连续介质假说。
连续介质是为研究流体的宏观机械运动而提出的一种流体模型。
5、连续介质假说的目的:不仅理论分析中可以运用数学这一强有力工具,也为实验研究提供了可能。
6、流体压缩性:流体受压体积减小的性质。
(βp)流体膨胀性:流体受热体积增加的性质。
(βt)液体压缩性、膨胀性都很小,为不可压缩流体。
气体是可压缩流体。
7、流体的粘性:流体阻止发生剪切变形的特性,粘性力是它的动力表现。
实际流体都具有粘性,称为粘性流体。
8、粘性的度量:粘度【动力粘度(μ)运动粘度(ν)】(取决于流体的种类和温度)ν=μρ9、温度对液体和气体粘性的影响截然不同:温度升高时,液体的粘性降低,气体的粘性增加。
10、牛顿内摩擦定律:流体作层状流动(层流)时,粘性内摩擦切应力符合牛顿内摩擦定律。
τ=μdudy11、作用于流体上的力包括:表面力和质量力。
表面力指作用在所研究的流体表面上的力。
质量力是流体质点受某种力场的作用力,它的大小与流体的质量成正比.12、流体静压力:指流体处于静止或相对静止时,作用于流体的内法向应力.13、流体静压力两特性:①流体静压力的作用方向总是沿其作用面的内法线方向。
②在静止流体中任意一点压力的大小与作用的方位无关,其值均相等。
14、等压面具有两特性:①平衡流体中,通过任意一点的等压面,必与该点所受的质量力互相垂直。
②当两种互不相混的液体处于平衡时,它们的分界面必为等压面.15、流体静压力两种表示:①绝对压力Ρ②相对压力Ρg绝对压力是以绝对真空为零点算起的压力。
工程流体力学期末考试及答案
工程流体力学期末考试及答案工程流体力学期末考试及答案工程流体力学是涉及流体动力学、流体力学基础知识、流体静力学等多个方面的学科。
以下是本次工程流体力学期末考试的部分试题及答案,旨在帮助读者更好地掌握流体力学的基本概念和方法。
1、基础知识问题:请简要解释以下两个概念: a) 流量:在单位时间内,通过某一截面积的物质量或能量。
b) 推力:使物体运动或阻止其运动的力。
答案:a) 流量是指在单位时间内,通过某一截面积的物质量或能量。
它是一个重要的流体力学参数,反映了流体在管道中的流动能力。
流量的大小与流体密度、速度和管道截面积有关。
b) 推力是指使物体运动或阻止其运动的力。
在流体力学中,推力主要由流体对物体运动方向上的压力差产生,如在水坝或涡轮机中,由于水压力的作用产生推力,使水轮机旋转。
2、流体动力学问题:请简述伯努利定理的基本内容,并说明其在工程实践中的应用。
答案:伯努利定理指出,在理想不可压缩流体中,沿着平行且在同一方向上,任何高度相同的两点,速度相等,压强降低。
在工程实践中,伯努利定理可用于分析飞机机翼的设计,解释为何机翼在空气中能够产生升力。
3、流体静力学问题:请解释浮力原理,并说明其在工程实践中的应用。
答案:浮力原理指出,浸没在流体中的物体,受到一个垂直向上且与物体体积成正比的力,称为浮力。
浮力的大小等于物体所排开的流体的重量。
在工程实践中,浮力原理广泛应用于船舶设计、水坝设计等。
4、工程应用问题:请说明涡轮机的工作原理,并阐述其在工程实践中的应用。
答案:涡轮机是一种将流体动能转化为机械能的设备。
它由一系列的旋转叶片组成,当流体流经叶片时,叶片受到流体的冲击力而旋转,将流体的动能转化为旋转机械能。
涡轮机在工程实践中广泛应用于发电厂、航空发动机等。
以上是本次工程流体力学期末考试的部分试题及答案,希望对读者掌握流体力学基本知识有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 质量力:质量力是作用于每一流体质点(或微团)上的力,与体积或质量成正比。
2.表面力:表面力是作用在所考虑的流体表面上的力,且与流体的表面积大小成正比。
外界通过接触传递,与表面积成正比的力。
3.当不计温度效应,压强的变化引起流体体积和密度的变化,称为流体的压缩性。
当流体受热时,体积膨胀,密度减小的性质,称为流体的热胀性。
4.单位压强所引起的体积变化率(压缩系数dp dVV p 1-=α)。
↑p α越容易压缩。
↓↑⇒=-==E d dp dV dp V E P P αρρα,。
5. 单位温度所引起的体积变化率(体积热胀系数dT dVV V 1=α)。
6.黏性是流体抵抗剪切变形的一种属性。
当流体内部的质点间或流层间发生相对运动时,产生切向阻力(摩擦力)抵抗其相对运动的特性,称作流体的黏性。
流体的黏性是流体产生流动阻力的根源。
7.dy du A F μ= 其中F ——内摩擦力,N ;dy du ——法向速度梯度,即在与流体方向相互垂直的y 方向流体速度的变化率,1/s ;μ——比例系数,称为流体的黏度或动力黏度,s Pa ∙。
8. dy duμτ= 表明流体层间的内摩擦力或切应力与法向速度梯度成正比。
9.液体的黏度随温度升高而减小,气体的黏度则随温度升高而增大。
液体主要是内聚力,气体主要是热运动。
温度↑: 液体的分子间距↑ 内聚力↓; 气体的分子热运动↑ 分子间距↓ 内聚力↑。
10. 三大模型:1)连续介质模型;2)不可压缩流体模型;3)理想流体模型。
11.当把流体看作是连续介质后,表征流体性质的密度、速度、压强和温度等物理量在流体中也应该是连续分布的。
优点:可将流体的各物理量看作是空间坐标和时间的连续函数,从而可以引用连续函数的解析方法等数学工具来研究流体的平衡和运动规律。
12.流体静压强的特性:1)流体静压强的方向垂直指向受压面或沿作用面的内法线方向;2)平衡流体中任意一点流体静压强的大小与作用面的方位无关,只与点的空间位置有关。
13.01,01,01=∂∂-=∂∂-=∂∂-z p Z y p Y x p X ρρρ。
)(Zdz Ydy Xdx dp ++=ρ全微分方程。
14.在平衡流体中,压强相等的各点所组成的面称为等压面。
特性:1)在平衡流体中,通过任意一点的等压面,必与该点所受的质量力相互垂直。
当流体处于绝对静止时,等压面是水平面。
2)当两种互不相溶的液体处于平衡状态时,分界面必定是等压面。
15. 对于不可压缩流体,密度ρ是常数,C g p z =+ρ:不可压缩流体静压强基本议程式的物理意义是:z 是单位重量流体对基准平面的位能,g p ρ是单位重量的流体具有的压力能,单位重量静止流体的压力能gpρ和位能z 之和为一常数。
这是能量守恒定律在静止流体能量特性的表现。
16. 压强的计量基准:以完全真空(0'=p )为基准起算的压强称为绝对压强,用'p 表示。
以当地大气压强为基准来计量的压强称为相对压强,用p 表示。
绝对压强'p总是正值,而相对压强p 则可正可负。
a p p p -=',绝对压强和相对压强之差是一个当地大气压a p 。
17. 压强的三种度量单位:1)用单位面积上的力来表示,即应力单位。
以压强的基本定义出发:Pa (N/m );2)以大气压的倍数表示。
以大气压来表示:标准大气压 atm 温度为0℃,海平面上的压强,即101.325kPa 。
工程大气压 at 海拔200米处的正常大气压1at=1kgf/cm2,1kgf=9.8N ;3)以液柱高度表示压强。
以液柱表示:mH2O,mmH2O 或mmHg 。
18. X C X C X A p A gh P ==ρ 液体作用在柱面上水静压力的水平分力,其大小等于作用在该柱面在铅垂平面的投影面上的水静压力。
水平分力的作用线通过投影面积的压强中心,方向指向柱面。
C h 为平面X A 形心C 处的淹没深度。
19. P Z gV P ρ= 液体作用在柱面上水静压力的铅直分力等于压力体内液体的重量。
20.22Z X PP P += 合力P 的作用线与水平线的夹角为:)/arctan(X Z P P =θ21. 压力体:实压力体:压力体abc 包含液体体积,垂直分力方向垂直向下。
虚压力体:压力体abc 不包含液体体积,垂直分力方向垂直向上。
22. 描述流体运动的两种方法:1)拉格朗日法:是以流场中每一流体质点作为描述对象的方法,它以流体个别质点随时间的运动为基础,通过综合足够多的质点运动而获得整个流动规律。
2)欧拉法;是以流体质点流经流场中各空间点的运动即以流场作为描述对象研究流动的方法。
23. 欧拉法加速度表达式:z w w y w v x w u t w a z v w y v v x v u t v a z u w y u v x u u t u a z y x ∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂=,加速度由两部分组成:第一部分是由于某一空间点上的流体质点的速度随时间的变化而产生的,称为当地加速度,又称为时变加速度,t w t v t u ∂∂∂∂∂∂,,;第二部分是某一瞬时由于流体质点的速度随空间点的变化而引起的,称为迁移加速度,又称为位变加速度,z u w y u v x u u ∂∂∂∂∂∂,,,当地加速度和迁移加速度之和称为总加速度。
24. 恒定流:又称定常流,是指流场中的流体流动时空间点上各运动要素均不随时间而变化的流动。
25. 非恒定流:又称非定常流,是指流场中的流体流动空间点上各水力运动要素随时间的变化而变化的流动。
26. 流线:是某一瞬时在流场中所作的一条曲线,在这条曲线上的各流体质点的速度方向都与该曲线相切,因此流线是同一时刻,不同流体质点所组成的曲线。
(1)同一时刻的不同流线,不能相交;(2)流线不能是折线,而是一条光滑的曲线;(3)流线簇的疏密反映了速度的大小。
27. 均匀流:是指流场中同一条流线各空间点上的流速相同的流动,否则,则为非均匀流。
28. 非均匀流:非均匀流流场中相应点的流速大小或方向同时沿程改变,即沿流程方向速度分布不均匀。
29. 渐变流是流速的大小和方向沿流线逐渐改变的非均匀流。
两个重要性质:1)渐变流过流断面近似为平面;2)渐变流过流断面上的压强近似按静压分布即C pz =+γ,C为常数。
30. 急变流是流速的大小和方向沿程急剧改变的流动,其特征是流线间夹角很大或曲率半径较小或二者兼而有之,流线是曲线,过水断面不是一个平面。
31. 根据流场中各运动要素与空间坐标的关系,流体运动又分为一维流动、二维流动和三维流动。
若流体的运动要素是三个空间坐标和时间t 的函数,这种流动称为三维流动。
若只是两个空间坐标和时间t 的函数,就称为二维流动。
若仅是一个空间坐标和时间t 的函数,则称为一维流动。
32. 流束:过流体中任一过流断面上各点作流线,则得到充满流管的一束流线簇,称为流束。
在流束中与各流线相铝直的横截面称为过流断面。
33. (1)有压流动:总流的全部边界受固体边界的约束,即流体完全充满流道的流动;(2)无压流动:总流边界的一部分受固体边界约束,另一部分与气体或空气接触,流体有自由液面的流动;(3)射流:总流边界不受固体边界约束,液流完全与气体或空气接触,形成自由液面的流动。
34. 流量是指单位时间内通过渠道、管道等某一过流断面的通量。
体积流量:⎰=udA Q A (s m /3);质量流量:⎰=udA Q A m ρ(3m )。
35. 断面平均流速A Q A udA v A ==⎰36.恒定总流的连续性方程:11122211121A v dA u dA u A A ρρρ=⇒=⎰⎰。
对于不可压缩均质流体,由于21ρρ=,则2211A v A v =。
37. 分流: ,332211321A v A v A v Q Q Q +=+=38. 汇流: ,332211321A v A v A v Q Q Q =+=+39. 恒定总流的能量方程:1)理想流体恒定元流的能量方程:g u p z g u p z 2222222111++=++γγ。
单位重量理想元流的能量方程式一般表达式为:C g u p z =++22γ。
物理意义:z 表示单位重量流体所具有的位置势能(简称位能),γp 表示单位重量流体所具有的压强势能(简称压能),γp z +表示单位重量流体所具有的总势能,g u 22表示单位重量流体所具有的动能,g up z 22++γ表示单位重量流体所具有的总机械能。
几何意义:z 表示位置水头,γp 表示压强水头,γp z +表示测压管水头(又称为静压),g u 22表示速度水头,g u p z 22++γ表示总水头(又称为全压)。
40. 理想不可压缩的元流能量方程的几何意义说明理想不可压缩流体在重力作用下作恒定流动时,沿同一流线(或微元流束)上各点的单位重量流体所具有的位置水头、压强水头和速度水头之和保持不变,即总水头是一常数。
41. 黏性流体恒定总流的能量方程(伯努利方程)1222222111122-+++=++w h gv p z gv p z αγαγ适用条件:1)流体是不可压缩的,流动为恒定流;2)质量力只有重力;3)过流断面为均匀流或渐变流断面;4)两过流断面间没有能量的输入或输出,否则应进行修正,修正如下:21222222111122-+++=±++w h g v p z H g v p z αγαγ式中,H 为单位重量流体流过水泵或风机所获得的能量(取“正号”)或流进水轮机失去的能量(取“负号”);5)若流动过程中有分流或汇流时,分别列出断面1、2及断面1、3之间的伯努利方程 对于有分流情况:21222222111122-+++=++w h g v p z g v p z αγαγ,31233332111122-+++=++w h g v p z g v p z αγαγ;对于有汇流情况:31233332111122-+++=++w h g v p z g v p z αγαγ,32233332222222-+++=++w h g v p z g v p z αγαγ。
42. 注意的问题:1)弄清题意;2)选择合适的过流断面;3)选好基准面;4)求解流量时,一般要结合一维流动的连续性方程联立求解;5)能量方程的1p 和2p 应为同一度量单位,或同为绝对压强或同为相对压强;6)过流断面上的参数,如速度、压强和位置高度,应为同一点的参数。
静压强的两个重要特性: 1.静压强的方向与受压面垂直并指向受压面。
2.任一点静压强的大小和受压面方向无关,或者说作用于同一点上各方向的静压强大小相等。