一次函数基础知识点总结
一次函数总复习
第二十一章 一次函数总复习【基础知识汇总】1、正比例函数:一般表达式y=kx (k 为常数且k ≠0);图像为过(0,0)与(1,k )的一条直线2、一次函数:一般表达式y=kx+b (k 、b 为常数,且k ≠0);图像是一条经过(0,k b -)与(0,b )的直线。
其中(0,kb -)为直线与x 轴交点,(0,b )为直线与y 轴交点。
对一次函数(包括正比例函数)的基本要求:必须为整式函数,自变量项的系数k 不为0,自变量的最高指数为1。
3、一次函数图像与坐标轴围成的三角形的面积:如右图所示: S △AOB=2OBOA ⋅=2b kb ⋅- 4、k 、b 与图像所在象限及增减性:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限⇔⎩⎨⎧><0b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.b>0 b<0 b=0k>0经过第一、二、三象限经过第一、三、四象限 经过第一、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第一、二、四象限经过第二、三、四象限 经过第二、四象限图象从左到右下降,y 随x 的增大而减小5、倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.若两直线k 值相同,则两直线平行。
6、图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位 7、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入函数关系式中得到以待定系数为未知数的方程; (3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式。
一次函数基础知识总结
一次函数基础知识总结
一次函数也被称为线性函数,是数学中的基础概念之一。
本文将总结一次函数的基础知识。
什么是一次函数
一次函数是指形如 $y = mx + c$ 的函数,其中 $x$ 和 $y$ 分别表示自变量和因变量,$m$ 和 $c$ 分别表示斜率和截距。
斜率和截距
一次函数的斜率 $m$ 表示函数图像上每单位横向变化所对应的纵向变化。
斜率可正可负,正斜率表示图像向上倾斜,负斜率表示图像向下倾斜。
一次函数的截距 $c$ 表示函数图像与纵轴($x$ 轴)的交点,也可称为 $y$ 轴截距。
函数图像
一次函数的图像是一条直线,其斜率和截距决定了直线的方向和位置。
- 当斜率为正时,直线向上倾斜;
- 当斜率为负时,直线向下倾斜;
- 当斜率为零时,直线平行于横轴。
截距决定了直线与纵轴的交点位置。
函数的图像特征
一次函数的图像具有以下特征:
- 当斜率为正时,函数的图像从左下方向上右上运动;
- 当斜率为负时,函数的图像从左上方向下右下运动;
- 当斜率为零时,函数的图像平行于横轴。
一次函数的应用
一次函数在实际生活中有广泛的应用。
例如:
- 经济学中,一次函数可以用于描述价格和需求、供应之间的关系;
- 物理学中,一次函数可以用于描述速度和时间、位移之间的关系;
- 工程学中,一次函数可以用于描述成本和产量之间的关系。
总结
一次函数是数学中的基础概念,具有重要的应用价值。
本文对一次函数的定义、斜率、截距以及图像特征进行了总结,并介绍了一次函数在实际生活中的应用领域。
参考文献:。
一次函数知识点总结9篇
一次函数知识点总结9篇第1篇示例:一次函数是初中阶段数学学习的重要内容之一。
它是一种最简单的线性函数,也是数学中最基础的函数之一。
一次函数的定义是形如y=kx+b的函数,其中x为自变量,y为因变量,k和b为常数,且k≠0。
一次函数的图象是一条直线,因此也被称为线性函数。
下面将从定义、性质、图象、应用等几个方面,对一次函数进行总结。
一、定义:一次函数y=kx+b是一种形式简单的线性函数,其中k 和b是常数且k≠0。
其中k称为斜率,b称为截距。
斜率代表了函数图象的倾斜程度,正数表示向上倾斜,负数表示向下倾斜;截距表示了函数与y轴的交点位置,即当x=0时,函数值为b。
一次函数的自变量x的最高次数为1。
三、图象:一次函数的图象是一条直线,因此也称为线性函数。
直线的斜率决定了图象的倾斜方向,截距决定了图象与y轴的交点位置。
当斜率为正时,图象右上倾斜;当斜率为负时,图象右下倾斜。
当截距为正时,图象在y轴上方;当截距为负时,图象在y轴下方。
四、应用:一次函数在现实生活中有着广泛的应用。
比如工资和工作时间的关系,距离和时间的关系等等都可以用一次函数来表示。
在经济学中,一次函数也有着重要的应用,如成本和产量的关系、供求关系等。
一次函数的应用范围十分广泛,在生活中随处可见。
一次函数是数学中最基础的函数之一,了解一次函数的性质和图象能够帮助我们更好地理解和应用各种函数。
在学习数学中,学好一次函数是至关重要的一步,也为后续学习更高阶函数和解决实际问题打下了坚实基础。
希望通过本文的总结,能够对一次函数有更深入的了解和应用。
第2篇示例:一次函数是初中数学中的一个基础知识点,也是数学学习的入门部分。
对于学生来说,掌握一次函数的相关知识,不仅可以帮助他们更好地理解数学知识,更可以培养他们的逻辑思维能力和解决问题的能力。
接下来我们就来总结一下一次函数的相关知识点。
一、定义:在数学中,一次函数是指一个函数,其定义域是实数集合,且函数表达式为f(x) = kx + b,其中k和b为实数,且k不等于零。
一次函数知识点总结
一次函数知识点总结一次函数是初中数学中的重要内容,它不仅在数学学科中有着广泛的应用,还为后续学习其他函数奠定了基础。
接下来,让我们一起系统地梳理一下一次函数的相关知识点。
一、一次函数的定义一般地,形如 y = kx + b(k,b 是常数,k ≠ 0)的函数,叫做一次函数。
当 b = 0 时,即 y = kx(k 为常数,k ≠ 0),这时称 y 是 x 的正比例函数。
理解一次函数的定义需要注意以下几点:1、自变量 x 的次数是 1。
2、系数 k 不为 0。
3、常数项 b 可以为任意实数。
二、一次函数的图像一次函数的图像是一条直线。
1、当 k > 0 时,直线从左到右上升,y 随 x 的增大而增大;当 k < 0 时,直线从左到右下降,y 随 x 的增大而减小。
2、 b 的值决定了直线与 y 轴的交点坐标。
当 x = 0 时,y = b,所以直线 y = kx + b 与 y 轴的交点坐标为(0,b)。
例如,函数 y = 2x + 1 的图像是一条斜率为 2,截距为 1 的直线。
当 x = 0 时,y = 1,所以它与 y 轴交于点(0,1);当 y = 0 时,2x + 1 = 0,解得 x =-1/2,所以它与 x 轴交于点(-1/2,0)。
三、一次函数的性质1、增减性如前所述,k 的正负决定了函数的增减性。
2、对称性一次函数的图像是轴对称图形,直线 y = kx + b 关于直线 x =b/2k 对称。
四、一次函数的表达式1、已知两点坐标(x₁,y₁),(x₂,y₂),可以通过待定系数法求出一次函数的表达式。
设一次函数的表达式为 y = kx + b,将两点坐标代入,得到方程组:y₁= kx₁+ by₂= kx₂+ b解这个方程组,求出 k 和 b 的值,即可得到一次函数的表达式。
2、已知直线的斜率 k 和一个点的坐标(x₀,y₀),也可以用点斜式求出表达式:y y₀= k(x x₀)五、一次函数与方程、不等式的关系1、一次函数与一元一次方程一次函数 y = kx + b 的图像与 x 轴交点的横坐标,就是一元一次方程 kx + b = 0 的解。
一次函数的知识点总结
一次函数的知识点总结一、一次函数的基本概念一次函数是数学中最基础的函数之一,它的表达式为y = ax + b,其中a和b是常数,a不等于0。
在这个函数中,x称为自变量,y称为因变量,a称为斜率,b称为截距。
斜率表示了函数图象的倾斜程度,而截距表示了函数图象与y轴的交点位置。
从函数的表达式中可以看出,一次函数的图象是一条直线,即直线函数。
一次函数的定义域为实数集R,值域也为实数集R。
它的图象可以延伸到整个坐标平面上。
当a大于0时,函数图象是上升的直线;当a小于0时,函数图象是下降的直线。
二、一次函数的性质1. 斜率和截距一次函数的斜率a表示了函数图象的倾斜程度,它的绝对值越大,直线的斜率越大。
当a大于0时,函数图象向右上方倾斜;当a小于0时,函数图象向右下方倾斜。
而截距b表示了函数图象与y轴的交点位置,当b大于0时,函数图象在y轴上方;当b小于0时,函数图象在y轴下方。
2. 函数值对于一次函数y = ax + b,当给定x的值时,我们可以通过代入x的值得到对应的函数值y。
一次函数的函数值可以用来描述一根直线上的点的位置。
3. 函数的奇偶性一次函数是一个奇函数,它的图象关于原点对称。
这意味着,如果(x, y)在函数的图象上,则(-x, -y)也在函数的图象上。
4. 函数的单调性当a大于0时,一次函数是递增的;当a小于0时,一次函数是递减的。
递增意味着函数图象自左向右是上升的,递减意味着函数图象自左向右是下降的。
三、一次函数的图象一次函数的图象是一条直线,在坐标平面上呈现出一种特定的形状。
它的位置、斜率、倾斜方向和截距等特征可以通过图象来直观地展现。
1. 斜率和截距斜率a决定了函数图象的倾斜程度,它的绝对值越大,直线的斜率越大。
当a大于0时,函数图象是上升的直线;当a小于0时,函数图象是下降的直线。
而截距b决定了函数图象与y轴的交点位置,它是函数图象与y轴的交点的纵坐标。
2. 基本图象y = x + 1是一次函数的基本图象,它是一条经过原点,斜率为1的直线。
初二数学一次函数知识点总结_会计基础知识点总结
初二数学一次函数知识点总结_会计基础知识点总结一、一次函数的定义一次函数是指数为1的函数,通常写成y=kx+b的形式,其中k和b是常数,而x和y分别是自变量和因变量。
一次函数的图像是一条直线,斜率k决定了直线的倾斜程度,而截距b决定了直线和y轴的交点。
二、一次函数的斜率一次函数的斜率k表示了函数图像的倾斜程度,斜率的计算公式为k=(y₂-y₁)/(x₂-x₁),其中(x₁,y₁)和(x₂,y₂)是直线上的两个点。
斜率为正表示函数图像向上倾斜,而斜率为负表示函数图像向下倾斜,斜率为零表示函数图像是水平的。
三、一次函数的截距一次函数的截距b表示了函数图像和y轴的交点,截距通常是函数的常数项。
如果截距大于零,函数图像和y轴交于正半轴上方,如果截距小于零,函数图像和y轴交于负半轴上方。
六、一次函数的应用一次函数是数学中非常常见的一种函数,它在生活中有很多应用,比如描述直线运动的速度、工作时间和产量的关系等等。
了解一次函数的性质和特点对我们深入理解各种现象的规律非常有帮助。
会计基础知识点总结:一、资产资产是指企业拥有并且能够为企业带来经济利益的资源,包括货币、存货、固定资产、应收账款等。
资产按照其流动性可以分为流动资产和非流动资产。
二、负债负债是指企业需要向外部支付的经济利益,包括应付账款、借款、应交税费等。
负债按照到期时间可以分为流动负债和非流动负债。
三、所有者权益所有者权益是指企业资产扣除负债后属于所有者的剩余部分。
所有者权益包括股本、资本公积、盈余公积、留存收益等。
四、会计等式会计等式是指资产等于负债加所有者权益,反映了企业资产的来源和运用的关系。
通过会计等式可以清晰地了解企业的财务状况。
五、会计账户会计账户是记录企业经济业务的工具,包括资产负债表、利润表、现金流量表等。
会计账户对企业的财务状况和经营业绩进行了详细的记录和分类。
六、会计核算方法会计核算方法包括现金制度和权责发生制度,分别反映了企业结算货币的时间点和经济业务发生的时间点。
一次函数知识点总结初中数学
变量与函数要点一、变量、常量的概念在一个变化过程中,我们称数值发生变化的量为变量.数值保持不变的量叫做常量.要点诠释:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,s=60t,速度60千米/时是常量,时间t和里程s为变量.要点二、函数的定义一般地,在一个变化过程中. 如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.要点诠释:对于函数的定义,应从以下几个方面去理解:(1)函数的实质,揭示了两个变量之间的对应关系;(2)对于自变量x的取值,必须要使代数式有实际意义;(3)判断两个变量之间是否有函数关系,要看对于x允许取的每一个值,y是否都有唯一确定的值与它相对应.(4)两个函数是同一函数至少具备两个条件:①函数关系式相同(或变形后相同);②自变量x的取值范围相同.否则,就不是相同的函数.而其中函数关系式相同与否比较容易注意到,自变量x的取值范围有时容易忽视,这点应注意.要点三、函数值y是x的函数,如果当x=a时x=b,那么b叫做当自变量为a时的函数值.要点诠释:对于每个确定的自变量值,函数值是唯一的,但反过来,可以不唯一,即一y 中,当函数值为4时,自变量x的值为±个函数值对应的自变量可以是多个.比如:2x2.要点四、自变量取值范围的确定使函数有意义的自变量的取值的全体实数叫自变量的取值范围.要点诠释:自变量的取值范围的确定方法:首先,要考虑自变量的取值必须使解析式有意义:(1)当解析式是整式时,自变量的取值范围是全体实数;(2)当解析式是分式时,自变量的取值范围是使分母不为零的实数;(3)当解析式是二次根式时,自变量的取值范围是使被开方数不小于零的实数;(4)当解析式中含有零指数幂或负整数指数幂时,自变量的取值应使相应的底数不为零;(5)当解析式表示实际问题时,自变量的取值必须使实际问题有意义.要点五、函数的几种表达方式:变量间的单值对应关系有多种表示方法,常见的有以下三种:(1)解析式法:用来表示函数关系的等式叫做函数关系式,也称函数的解析式.(2)列表法:函数关系用一个表格表达出来的方法.(3)图象法:用图象表达两个变量之间的关系.要点诠释:函数的三种表示方法各有不同的长处.解析式法能揭示出变量之间的内在联系,但较抽象,不是所有的函数都能列出解析式;列表法可以清楚地列出一些自变量和函数值的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等;图象法可以直观形象地反映函数的变化趋势,而且对于一些无法用解析式表达的函数,图象可以充当重要角色.要点六、函数的图象对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.要点诠释:由函数解析式画出图象的一般步骤:列表、描点、连线.列表时,自变量的取值范围应注意兼顾原则,既要使自变量的取值有一定的代表性,又不至于使自变量或对应的函数值太大或太小,以便于描点和全面反映图象情况.正比例函数(基础)要点一、正比例函数的定义1、正比例函数的定义一般的,形如kx y =(k 为常数,且k ≠0)的函数,叫做正比例函数.其中k 叫做比例系数.2、正比例函数的等价形式(1)y 是x 的正比例函数;(2)kx y =(k 为常数且k ≠0);(3)若y 与x 成正比例;(4)k xy =(k 为常数且k ≠0);. 要点二、正比例函数的图象与性质正比例函数kx y =(k 为常数,且k ≠0)的图象是一条经过原点的直线,我们称它为直线kx y =.当k >0时,直线kx y =经过第一、三象限,从左向右上升,即随着x 的增大y 也增大;当k <0时,直线kx y =经过第二、四象限,从左向右下降,即随着x 的y 增大反而减小.要点三、待定系数法求正比例函数的解析式由于正比例函数kx y =(k 为常数,且k ≠0)中只有一个待定系数k ,故只要有一对x ,y 的值或一个非原点的点,就可以求得k 值.一次函数的图象与性质(基础)要点一、一次函数的定义一般地,形如b kx y +=(k,b 为常数,且k ≠0)的函数,叫做一次函数.要点诠释:当b =0时,b kx y +=即kx y =,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数k,b 的要求,一次函数也被称为线性函数.要点二、一次函数的图象与性质1.函数b kx y +=(k,b 为常数,且k ≠0)的图象是一条直线 ;当b >0时,直线b kx y +=是由直线kx y =向上平移b 个单位长度得到的; 当b <0时,直线b kx y +=是由直线kx y =向下平移|b |个单位长度得到的.2.一次函数b kx y +=(k,b 为常数,且k ≠0)的图象与性质:3. k ,b 对一次函数b kx y +=的图象和性质的影响:k 决定直线b kx y +=从左向右的趋势,b 决定它与y 轴交点的位置,k ,b 一起决定直线b kx y +=经过的象限.4. 两条直线l 1:11b x k y +=和l 2:22b x k y +=的位置关系可由其系数确定:(1)k 1≠k 2l 1与l 2相交; (2)k 1=k 2,且b 1≠b 2l 1与l 2平行;要点三、待定系数法求一次函数解析式一次函数b kx y +=(k,b 为常数,且k ≠0)中有两个待定系数k,b ,需要两个独立条件确定两个关于k,b 的方程,这两个条件通常为两个点或两对x,y 的值.要点诠释:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数b kx y +=中有k,b 两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以k,b 为未知数),解方程组后就能具体写出一次函数的解析式.要点四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点诠释:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.⇔⇔一次函数与一次方程(组)(基础)要点一、一次函数与一元一次方程的关系一次函数b kx y +=(k,b 为常数,且k ≠0).当函数y =0时,就得到了一元一次方程0=+b kx ,此时自变量x 的值就是方程0=+b kx 的解.所以解一元一次方程就可以转化为:当某一个一次函数的值为0时,求相应的自变量的值.从图象上看,这相当于已知直线b kx y +=(k,b 为常数,且k ≠0),确定它与x 轴交点的横坐标的值.要点二、一次函数与二元一次方程组每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这时的函数为何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标.要点诠释:1.两个一次函数图象的交点与二元一次方程组的解的联系是:在同一直角坐标系中,两个一次函数图象的交点坐标就是相应的二元一次方程组的解.反过来,以二元一次方程组的解为坐标的点一定是相应的两个一次函数的图象的交点.如一次函数42+-=x y 与21323-=x y 图象的交点为(3,-2),则⎩⎨⎧-==23y x 就是二元一次方程组⎪⎩⎪⎨⎧-=+-=2132342x y x y 的解. 2.当二元一次方程组无解时,相应的两个一次函数在直角坐标系中的直线就没有交点,则两个一次函数的直线就平行.反过来,当两个一次函数直线平行时,相应的二元一次方程组就无解.如二元一次方程组⎩⎨⎧+=-=1353x y x y 无解,则一次函数53-=x y 与13+=x y 的图象就平行,反之也成立.3.当二元一次方程组有无数解时,则相应的两个一次函数在直角坐标系中的直线重合,反之也成立.要点三、方程组解的几何意义1.方程组的解的几何意义:方程组的解对应两个函数的图象的交点坐标.2.根据坐标系中两个函数图象的位置关系,可以看出对应的方程组的解的情况: 根据交点的个数,看出方程组的解的个数;根据交点的坐标,求出(或近似估计出)方程组的解.3.对于一个复杂方程组,特别是变化不定的方程组,用图象法可以很容易观察出它的解的个数.一次函数与一元一次不等式(基础)要点一、一次函数与一元一次不等式由于任何一个一元一次不等式都可以转化为b ax +>0或b ax +<0或b ax +≥0或b ax +≤0(a 、b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数b ax y +=的值大于0(或小于0或大于等于0或小于等于0)时求相应的自变量的取值范围.要点诠释:求关于的一元一次不等式b ax +>0(a ≠0)的解集,从“数”的角度看,就是为何值时,函数b ax y +=的值大于0?从“形”的角度看,确定直线b ax y +=在x 轴(即直线y =0)上方部分的所有点的横坐标的范围.要点二、一元一次方程与一元一次不等式我们已经学过,利用不等式的性质可以解得一个一元一次不等式的解集,这个不等式的解集的端点值就是我们把不等式中的不等号变为等号时对应方程的解.要点三、如何确定两个不等式的大小关系d cx b ax +>+(a≠c ,且ac ≠0)的解集⇔b ax y +=的函数值大于d cx y +=的函数值时的自变量x 取值范围⇔直线b ax y +=在直线d cx y +=的上方对应的点的横坐标范围.x x。
初中生数学一次函数知识点总结9篇
初中生数学一次函数知识点总结9篇第1篇示例:初中数学是中学数学的起点,一次函数是数学学习的基础之一。
通过学习一次函数,初中生可以掌握数学思维和解决问题的能力,使其在学习数学的道路上更进一步。
下面将对初中生数学一次函数知识点进行总结。
一、一次函数的定义所谓一次函数,就是函数的自变量的最高次数为1的函数。
一次函数的一般形式为y=ax+b,其中a和b为常数,a≠0。
二、一次函数的图像一次函数的图像是一条直线,是通过两点确定的。
其中a决定了直线的斜率,斜率为正时,图像是上升的;斜率为负时,图像是下降的;斜率为0时,图像是水平的。
b决定了直线和y轴的交点。
三、一次函数的性质1. 一次函数的图像是一条直线;2. 一次函数的导数恒为常数,即该函数的增长速率恒定;3. 一次函数的解析式中的a决定了直线的斜率,b决定了与y轴的交点;4. 一次函数的定义域为一切实数,值域也为一切实数。
四、一次函数的运算1. 一次函数的加减运算:两个一次函数相加或相减仍然是一次函数;2. 一次函数的乘除运算:两个一次函数相乘或相除不一定是一次函数;3. 一次函数的复合运算:两个一次函数复合之后还是一次函数。
五、一次函数的应用1. 确定两点绘制直线:通过给定的两点,可以确定一条直线,进而解决相关问题;2. 求函数的零点:求一次函数的解析式中自变量为零时的函数值;3. 求函数的最值:通过一次函数的表达式求出极值点,可求出函数的最大值和最小值;4. 判断函数的单调性:通过分析一次函数的斜率,可得出函数的单调性。
初中生在学习一次函数时,应充分理解一次函数的定义、图像、性质和运算规律,灵活运用所学知识解决相关问题,提高数学思维和解决问题的能力。
多做练习、加强实践,不断巩固提升自己的数学水平,为将来更深入的学习打下坚实基础。
希望初中生能够在数学学习中取得更好的成绩,为未来的学习和发展打下良好的基础。
第2篇示例:初中生学习数学的一次函数是数学中的一个重要内容,也是数学知识体系中的基础部分。
一次函数知识点
一次函数知识点一次函数,也叫线性函数,是数学中最简单的函数之一。
它的函数表达式为 y = kx + b,其中 k 和 b 分别是函数的斜率和截距。
一、函数的斜率斜率是一次函数的重要特征,它代表了函数图像的倾斜程度。
一次函数的斜率可以通过以下方法求取:1.1 斜率的定义一次函数的斜率定义为函数图像上两点的纵坐标之差与横坐标之差的比值。
设一次函数上的两点为 P(x₁, y₁) 和 Q(x₂, y₂),则斜率的计算公式如下:k = (y₂ - y₁) / (x₂ - x₁)1.2 点斜式点斜式是一种表示一次函数的常用形式。
给定一次函数的一点P(x₁, y₁) 和斜率 k,点斜式的表达式为:y - y₁ = k(x - x₁)该表达式可以方便地确定函数图像。
1.3 截距式截距式是另一种表示一次函数的常用形式。
给定一次函数的截距 b 和斜率 k,截距式的表达式为:y = kx + b截距式使得我们更容易理解和计算函数的特征。
二、函数的图像一次函数的图像具有线性的特点,是一条直线。
通过斜率和截距的取值,我们可以推断并绘制出函数的图像:2.1 斜率的影响斜率 k 的正负决定了图像的斜向,即线的倾斜方向。
当 k > 0 时,函数图像向上增长;当 k < 0 时,函数图像向下增长;当 k = 0 时,函数图像平行于 x 轴。
2.2 截距的影响截距 b 决定了图像与 y 轴的交点,即函数的纵截距。
当 b > 0 时,函数图像与 y 轴交于正半轴;当 b < 0 时,函数图像与 y 轴交于负半轴;当 b = 0 时,函数图像经过原点。
三、函数的性质一次函数具有许多特性,我们需要了解并掌握这些特性来更好地理解和使用函数:3.1 函数值和自变量的关系对于一次函数 y = kx + b,当 x 取不同的值时,相应的 y 值也会随之变化。
由于函数图像是一条直线,所以函数值和自变量呈线性关系。
3.2 函数的增减性一次函数的增减性由斜率 k 的正负决定。
一次函数知识点总结
一次函数知识点总结一次函数(也称线性函数)在数学中是一种基本的函数类型,具有简单直观的图像和重要的应用。
下面将对一次函数的相关知识点进行总结。
1. 定义和表达式一次函数是指具有形如 y = kx + b 的函数,其中 k 和 b 是常数,且k ≠ 0。
其中 k 表示斜率,b 表示截距。
一次函数的图像是一条直线。
2. 斜率的意义斜率是一次函数最重要的特征之一,它表示了函数图像在平面上的倾斜程度。
具体而言,斜率 k 表示单位自变量变化时,因变量相应的变化量。
斜率可以正负,正斜率表示函数图像从左下到右上逐渐升高,负斜率表示函数图像从左上到右下逐渐降低。
3. 截距的意义截距是一次函数图像与 y 轴交点的纵坐标,也就是当 x = 0 时,对应的 y 值。
截距 b 表示了函数图像与 y 轴的相对位置关系,它是一次函数图像上的常数项。
4. 图像特征和性质一次函数的图像是一条直线,根据斜率和截距的不同取值,可以分为四种情况:正斜率正截距、正斜率负截距、负斜率正截距和负斜率负截距。
根据斜率的大小可以判断函数图像的陡峭程度,斜率越大,函数图像越陡峭。
5. 函数的性质一次函数的性质非常重要,有助于解决实际问题和理解其他函数类型。
一次函数是一个线性函数,它的图像是直线,因此具有以下性质:- 一次函数上的任意两个点可以唯一确定一条直线。
- 一次函数的函数值随自变量的变化是线性变化的。
- 一次函数图像关于 y 轴对称。
- 一次函数图像不存在极值和拐点。
6. 直线方程与一次函数的关系一次函数可以通过直线方程 y = ax + b 来表示,其中 a 是斜率,b 是截距。
直线方程是一种常见的形式,可以更直观地表示函数图像的性质和特点。
7. 一次函数的应用举例一次函数在实际问题中有广泛的应用。
例如,在经济学中,一次函数可以用来描述成本和收入的关系;在物理学中,一次函数可以用来表示速度和位移的关系;在统计学中,一次函数可以用来进行线性回归等。
一次函数高一数学知识点
一次函数高一数学知识点一次函数是高中数学中的基础知识点之一,也是日常生活中经常使用的数学概念之一。
它在数学中有着广泛的应用,而且对于高中学生来说,掌握一次函数的相关知识点是非常重要的。
本文将围绕一次函数的定义、性质、图像及应用等方面进行详细的介绍。
1. 一次函数的定义一次函数又称线性函数,它的定义如下:f(x) = kx + b其中,k和b分别是常数,k称为一次函数的斜率,b称为一次函数的截距。
一次函数的定义域是整个实数集,值域也是整个实数集。
2. 一次函数的性质(1)斜率:一次函数的斜率表示了函数图像的倾斜程度。
当斜率k>0时,函数图像向上倾斜;当斜率k<0时,函数图像向下倾斜;当斜率k=0时,函数图像为水平的。
(2)截距:一次函数的截距表示了函数图像与y轴的交点位置。
当截距b>0时,函数图像与y轴的交点在原点上方;当截距b<0时,函数图像与y轴的交点在原点下方;当截距b=0时,函数图像与y轴的交点在原点上。
(3)单调性:一次函数的单调性表示了函数图像的变化趋势。
当斜率k>0时,函数图像单调递增;当斜率k<0时,函数图像单调递减。
3. 一次函数的图像一次函数的图像是一条直线,其特点取决于斜率和截距的值。
当斜率k>0时,函数图像从左下方向右上方倾斜;当斜率k<0时,函数图像从左上方向右下方倾斜;当斜率k=0时,函数图像平行于x轴。
4. 一次函数的应用一次函数在实际问题中有着广泛应用,以下列举几个常见的应用场景:(1)速度与时间关系:当物体以匀速运动时,速度与时间之间的关系可以用一次函数来表示。
其中,斜率代表了速度的大小,截距代表了起始位置。
(2)物品价格与销量关系:在市场经济中,物品的价格和销量之间存在着一种关系,一次函数可以用来描述价格与销量的变化规律。
(3)工资与工作时长关系:在职场中,工资与工作时长之间通常存在着一种线性关系,一次函数可以用来表示工资与工作时长的变化趋势。
初中数学一次函数知识点
初中数学一次函数知识点一、一次函数的定义一次函数是指具有形式 $y = kx + b$ 的函数,其中 $k$ 和 $b$ 是常数,$k$ 是斜率,$b$ 是截距。
一次函数的图像是一条直线。
二、斜率($k$)1. 斜率 $k$ 表示函数中 $x$ 每变化一个单位,$y$ 相应变化的量的多少。
斜率是直线的倾斜程度的度量。
2. 当 $k > 0$ 时,函数图像从左下方向右上方倾斜;当 $k < 0$ 时,图像从左上方向右下方倾斜。
3. 当 $k = 0$ 时,函数变为常数函数,即 $y = b$,图像为一条水平直线。
三、截距($b$)1. 截距 $b$ 表示当 $x = 0$ 时,函数 $y$ 的值。
它是直线与$y$ 轴的交点。
2. 当 $b > 0$ 时,直线与 $y$ 轴的交点在原点上方;当 $b <0$ 时,交点在原点下方。
3. 当 $b = 0$ 时,直线通过原点,即图像通过坐标系的 (0,0) 点。
四、图像与系数的关系1. 直线的斜率和截距决定了直线在坐标系中的位置和形状。
2. 斜率和截距的不同组合可以生成不同的直线,但所有这些直线都是一次函数的图像。
五、一次函数的性质1. 一次函数是单调函数,即在整个定义域内,函数值随着自变量的增加而增加或减少。
2. 一次函数的图像不会与自身相交。
3. 一次函数的图像是连续的,并且在任何区间内都是可导的。
六、一次函数的应用1. 一次函数可以用于描述许多现实世界中的问题,如速度与时间的关系、成本与数量的关系等。
2. 在解决实际问题时,通常需要根据实际情况确定函数的斜率和截距。
七、一次函数的运算1. 一次函数可以通过加减乘除等基本运算进行变换。
2. 两个一次函数的和、差、积、商仍然是一次函数。
八、一次函数的图像绘制1. 确定斜率 $k$ 和截距 $b$。
2. 找到与 $y$ 轴的交点 (0, $b$)。
3. 使用斜率 $k$,从截距点开始,沿着斜率方向移动,找到其他点。
一次函数知识整理
基本知识提炼整理一、基本概念1.函数的概念一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数.2.一次函数和正比例函数的概念若两个变量x,y之间的关系式可以表示成y=kx+b(k,b为常数,且k≠0)的形式,则称y是x的一次函数(x是自变量).特别地,当b=0时,称y是x的正比例函数.二、一次函数和正比例函数的图象和性质过原点的一条直线专题总结及应用一、基础知识应用1.结合实例理解函数的概念.2.熟练掌握一次函数和正比例函数的概念.3.结合一次函数的图象,熟练掌握一次函数和正比例函数的性质.4.会求一次函数的表达式.5.能灵活运用一次函数的图象解决实际问题.例1 一报亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以每份0.2元的价格退回报社,在一个月内(以30天计算)有20天每天可以卖出100份,其余10天每天只能卖出60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为自变量x ,每月所获利润为y (元).(1)写出y 与x 之间的函数关系式,并指出自变量x 的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?..小结 解有关一次函数的应用题要注意运用数形结合的方法综合分析问题,将所学知识灵活运用,融会贯通,同时还要特别注意自变量的取值范围的限制,它是解决问题的关键之一.例2 拖拉机耕地时,每小时的耗油量假定是个常量,已知拖拉机耕地2小时油箱中余油28升,耕地3小时油箱中余油22升.(1)写出油箱中余油量Q (升)与工作时间t (时)之间的函数关系式; (2)画出函数图象;(3)这台拖拉机工作3小时后,油箱中的油还够拖拉机继续耕地几小时?(分析)由两组对应量可求出函数关系式,再画出图象(在自变量取值范围内).小结 运用一次函数图象及其性质可以帮助我们解决实际生活中的许多问题,如利润最大、成本最小、话费最省、最佳设计方案等问题,我们应善于总结规律,达到灵活运用的目的.二、数学思想方法的归纳及应用 1.函数方法函数方法就是应用运动、变化的观点来分析问题中的数量关系,抽象升华为函数的模型,进而解决有关问题的方法,函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.例1 利用图象解二元一次方程组⎩⎨⎧-=+=- ② ①.5,22y x y x .小结 解方程组通常用消元法.但如果把方程组中的两个方程看作是两个一次函数,画出这两个函数的图象,那么它们的交点坐标就是方程组的解.例2 我国是一个严重缺水的国家,大家应该倍加珍惜水资源,节约用水,据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05mL.小明同学在洗手时,没有把水龙头拧紧,当小明离开x小时后,水龙头滴了ymL水.(1)试写出y与x之间的函数关系式;(2)当滴了1620mL水时,小明离开水龙头几小时?.2.数形结合法数形结合法是指将数与形结合起来进行分析、研究、解决问题的一种思想方法.数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.例3 如图11-55所示,一次函数的图象与x轴、y轴分别相交于A,B两点,如果A 点的坐标为A(2,0),且OA=OB,试求一次函数的解析式.【说明】利用函数图象研究数量之间的关系是数形结合思想的具体运用,在解决有关函数问题时有着重要的作用.3.分类讨论法分类讨论法是在对数学对象进行分类的过程中寻求答案的一种思想方法.分类讨论法既是一种重要的数学思想,又是一种重要的教学方法.分类的关键是根据分类的目的,找出分类的对象,分类既不能重复,也不能遗漏,最后要全面总结.例4 在一次遥控车比赛中,电脑记录了速度的变化过程,如图11-56所示,能否用函数关系式表示这段记录?例5 某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售可获利15%,并可用本利和再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付仓储费用700元,问他如何销售获利较多?4.方程方法方程方法是指对所求数学问题通过列方程(组)使问题得解的方法.在函数及其图象中,方程方法的应用主要体现在运用待定系数法确定函数关系式中.例6 已知一次函数y=kx+b(k≠0)的图象经过点A(-3,-2)及点B(1,6),求此函数关系式,并作出函数图象.【说明】一次函数y=kx+b中含有两个待定系数k,b,根据待定系数法,只要列出方程组即可.例7 科学家通过研究得出:一定质量的某种气体在体积不变的情况下,压强p(kPa)随温度t(℃)变化的函数关系式是p=kt+b,其图象如图11-58所示的直线.(1)根据图象求出上述气体的压强P与温度t之间的函数关系式;(2)当压强p为200kPa时,求上述气体的温度.。
一次函数知识点
一次函数知识点一次函数作为中学数学中的重要内容之一,具有广泛的应用场景。
它是代数学的基础,也是我们日常生活中遇到的最简单的函数之一。
在这篇文章中,我将介绍一次函数的定义、性质以及一些常见的应用。
一、定义和性质一次函数又称线性函数,它的定义非常简单:y = kx + b,其中 k 和b 是常数,k 表示斜率,b 表示截距。
一次函数是一条直线,可以通过两个点来确定一条直线,也可以通过一个点和斜率来确定。
1. 斜率斜率表示了直线的倾斜程度,可以看做是 y 值的变化率。
斜率的计算公式为:k = Δy / Δx,其中Δy 表示 y 坐标的增量,Δx 表示 x 坐标的增量。
当斜率为正数时,直线向右上方倾斜;当斜率为负数时,直线向右下方倾斜;当斜率为零时,直线为水平线。
2. 截距截距表示直线与 y 轴的交点的纵坐标值,也可以说是直线在 x 轴上的截点。
当 x = 0 时,y = b,即直线与 y 轴的交点的纵坐标值为 b。
3. 平行和垂直的直线两条直线平行的条件是它们的斜率相等;两条直线垂直的条件是它们的斜率的乘积为 -1。
这些性质对于解题和理解直线的关系有着重要的作用。
二、常见应用一次函数在现实生活中有着广泛的应用,例如经济学中的供求关系、物理学中的速度与时间的关系等等。
1. 货币兑换当我们去旅行或者购买跨境商品时,可能需要进行货币兑换。
一次函数可以描述不同货币之间的汇率关系,通过观察不同货币对之间的汇率,我们可以计算出需要兑换的金额。
2. 距离与时间的关系在物理学中,一次函数可以描述物体在匀速直线运动中的位置与时间的关系。
例如,当一辆汽车以恒定的速度行驶时,它的位置与时间的关系可以表示为 y = kx + b,其中 y 表示汽车所在的位置,x 表示时间,k 表示汽车的速度,b 表示初始位置。
3. 成本和收益在经济学中,一次函数可以描述成本和收益之间的关系。
例如,在一家工厂中,生产的产品数量和成本之间存在一定的关系。
一次函数知识点总结小学
一次函数知识点总结小学一次函数是初中数学中的基础知识,也是后续学习二次函数、指数函数等更高级函数的重要基础。
在小学阶段,我们也会开始接触一次函数的概念,虽然不会深入学习它的相关定理和公式,但是了解一些基本知识还是很有必要的。
本文将对一次函数的相关概念、性质、图像以及实际应用进行总结,希望能够帮助小学生更好地理解一次函数。
一、一次函数的基本概念1. 一次函数的定义一次函数是指函数 f(x) = ax + b,其中 a 和 b 是常数且a ≠ 0。
其中 x 是自变量,f(x) 是因变量,a 是斜率,b 是截距。
一次函数描述了一条直线的特性,因此也称为线性函数。
2. 一次函数的定义域和值域一次函数的定义域是所有使得 f(x) 有意义的 x 的取值范围,通常是实数集 R。
而一次函数的值域是所有可能的函数值所组成的集合,通常也是实数集 R。
3. 一次函数的斜率和截距在一次函数 f(x) = ax + b 中,a 表示斜率,代表了函数曲线上的一点对应的斜率,反映了函数曲线的倾斜程度;b 表示截距,代表了函数曲线与 y 轴的交点的纵坐标,反映了函数曲线的位置。
二、一次函数的性质1. 斜率的性质斜率代表了函数曲线的倾斜程度,其性质如下:(1)当 a > 0 时,函数曲线向右上倾斜,当 a < 0 时,函数曲线向右下倾斜;(2)斜率的绝对值表示了函数曲线的倾斜程度,绝对值越大,倾斜程度越大;(3)当 a = 0 时,函数曲线平行于 x 轴,斜率为零。
2. 截距的性质截距代表了函数曲线与 y 轴的交点的纵坐标,其性质如下:(1)当 b > 0 时,函数曲线与 y 轴的交点在原点的上方,当 b < 0 时,函数曲线与 y 轴的交点在原点的下方;(2)截距的绝对值表示了函数曲线与 y 轴的距离,绝对值越大,距离越远;(3)当 b = 0 时,函数曲线经过原点。
3. 函数图像的性质一次函数的图像总是一条直线,其斜率和截距决定了直线的倾斜程度和位置。
一次函数知识点(全)
一次函数知识点(全)一次函数,也称为线性函数,是数学中最简单的一类函数之一,其定义域为全体实数,函数的表达式为f(x) = ax + b,其中a和b为常数。
一次函数以一条直线表示,具有线性关系,其图像是一条直线,斜率为a,截距为b。
一次函数的基本性质及应用:1. 斜率:一次函数的斜率a代表了直线的倾斜程度,也称为直线的导数或变化率。
斜率的计算方法为:a = (y2 - y1) / (x2 - x1),其中(x1,y1)和(x2,y2)为直线上的两个点。
斜率可正可负,若a > 0,表示直线向右上方倾斜;若a < 0,表示直线向右下方倾斜;若a = 0,表示直线水平。
2. 截距:一次函数的截距b代表了直线与y轴的交点,即x = 0时对应的y值。
截距可为正、负或零,当b > 0时,直线在y轴上方与之交点在正半轴;当b < 0时,直线在y轴下方与之交点在负半轴;当b = 0时,直线通过原点。
3. 表示方式:一次函数可以通过函数表达式、函数关系式、函数图像、函数性质等多种方式进行表示和描述。
4. 对称性:一次函数的图像关于直线y = x具有对称性,即将图像沿y = x对称后,两者完全重合。
5. 平行和垂直:两条直线平行的情况是它们的斜率相等,即a1 = a2;两条直线垂直的情况是它们的斜率之积等于-1,即a1 * a2 = -1。
6. 定义域和值域:一次函数的定义域为全体实数,即(-∞, +∞);值域为全体实数,即(-∞, +∞)。
7. 函数运算:一次函数可以进行相加、相减、相乘、相除等运算,运算结果仍为一次函数。
8. 应用:一次函数广泛应用于经济学、物理学、工程学等领域。
在经济学中,一次函数常用来描述成本、收入、利润等与产量的关系。
在物理学中,一次函数可以描述速度、位移与时间的关系。
在工程学中,一次函数可用于线性规划、线性回归等问题的建模与解决。
综上所述,一次函数是数学中基础的一类函数,具有简单明了的性质和应用。
一次函数知识点全
一次函数知识点全一次函数作为初中数学中最基础的函数之一,在我们的学习中扮演着非常重要的角色。
它是一个线性函数,表达式为y = kx + b,其中k和b为常数,x和y分别表示自变量和因变量。
在本文中,我们将全面介绍一次函数的各个知识点。
一、函数的定义和性质1. 函数的定义:一次函数是指自变量和因变量之间的关系能够用线性方程y = kx + b表示的函数。
其中k和b为常数,x和y分别表示自变量和因变量。
2. 定义域和值域:一次函数的定义域是所有实数集,值域也是所有实数集。
3. 单调性和增减性:一次函数的单调性取决于斜率k的正负。
当k > 0时,函数是递增的;当k < 0时,函数是递减的。
4. 零点和斜率:一次函数的零点是使得函数值为0的x值。
斜率表示函数图像的斜率,它等于函数的斜率系数k。
二、图像和性质1. 直线图像:一次函数的图像是一条直线。
当斜率k为正时,图像向上倾斜;当斜率k为负时,图像向下倾斜。
2. 截距:截距表示函数图像与坐标轴的交点。
一次函数有两个截距,分别为x轴截距和y轴截距。
x轴截距等于使得y = 0的x值,即-x轴的坐标;y轴截距等于使得x = 0的y值,即-y轴的坐标。
3. 平行和垂直:两条一次函数图像平行的条件是它们的斜率相等;两条一次函数图像垂直的条件是它们的斜率的乘积等于-1。
4. 点斜式和截距式:一次函数的点斜式表示为y - y₁ = k(x - x ₁),其中(x₁, y₁)为已知点,k为斜率;一次函数的截距式表示为y = kx + b,其中b为y轴截距。
三、应用1. 直线方程:一次函数在实际中常常用于解决直线方程的问题。
通过已知条件,可以确定一个点和斜率,从而写出一次函数的方程。
2. 性质推导:一次函数的各种性质可以通过代入特定的值来推导得出。
例如,已知两个点,可以求出斜率和截距;已知斜率和一个点,也可以确定该一次函数的方程。
3. 解方程:一次函数常用于解决实际问题中的方程。
一次函数知识点
一次函数基础知识点知识点1:一次函数的意义1、概念:一次函数:若两个变量x 、y 间的关系式可以表示成b kx y +=(k 、b 为常数,0≠k )的形式,称y 是x 的一次函数。
正比例函数:形如kx y =(0≠k )的函数,称y 是x 的正比例函数,此时也可说y 与x 成正比例,正比例函数是一次 函数,但一次函数并不一定是正比例函数2、说明:(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次” 意 义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y= kx 仍是一次函数;当b=0,k=0时,它不是一次函数. (4)注意自变量的取值范围3、练习1、下列函数(1)y=3πx ;(2)y=8x-6;(3)1y x =;(4)1y 8x 2=-;(5)2y 541x x =-+中,是一次函数的有( ) A 、4个 B 、3个 C 、2个 D 、1个2、当k_____________时,()2323y k x x =-++-是一次函数;当k_____________时,()212k y k x=-+是一次函数知识点2:求一次函数的解析式1、待定系数法的含义:要确定变量间的函数关系式,设出某些未知系数,然后根据所给条件利用方程或者是方程组来确定这些未知系数的方法。
2、用待定系数法确定一次函数表达式(1)规律:①确定正比例函数y=kx 的解析式:只须一个条件,求出待定系数k 即可.②确定一次函数b kx y +=的解析式:只须二个条件,求出待定系数k 、b 即可. (2)步骤: A 、设:设出一次函数解析式,即b kx y +=;B 、代:把已知条件代入b kx y +=中,得到关于k 、b 的方程(组);C 、求:解方程(组),求k 、b ;D 、写:写出一次函数解析式.3、例1:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.例2. 已知y-3与x 成正比例,且x=2时,y=7.(1)写出y 与x 之间的函数关系式;(2)当x=4时,求y 的值;(3)当y=4时,求x 的值.知识点3:一次函数的图象及其性质1、知识点(1)函数图象的画法:列表:列表给出自变量与函数的一些对应值; 描点:以表中每对对应值描点;连线:按自变量由小到大连接起来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数基础知识点总结
一、定义与定义式:
自变量x和因变量y有如下关系:y=kx+b(k为常数,k≠0)则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b (k为任意不为零的实数b取任何实数)
2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b ……①和y2=kx2+b ……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:(略)。