大地测量学知识点
大地测量考点
![大地测量考点](https://img.taocdn.com/s3/m/03e04fc5e45c3b3566ec8b1a.png)
名词解释:1、大地测量学:研究地球的几何特征和基本物理现象特征及变化。
2、现代大地测量:以空间大地测量学为基础主要标志,研究地球及外部宇宙空间。
3、原子时:是一种以原子谐振信号周期为标准,并对它进行连续计数的时标。
4、国际原子时:国际时间局比较、综合世界各地原子钟数据,最后确定的原子时,简称TAI。
5、参考椭球:具有确定参数,经过局部定位和定向,同某一地区大地水准面最佳拟合的地球椭球。
6、总地球椭球:满足地心定位和双平行条件外,在确定椭球参数时能使它在全球范围内与大地体最密合的地球椭球。
7、椭球定位:指确定椭球中心的位置,可分为两类:局部定位和地心定位。
(局部定位要求在一定范围内椭球面与大地水准面有最佳符合,而对椭球的中心位置无特殊要求;地心定位要求全球范围内椭球面有最佳符合,同时要求椭球中心与地球质心一致或最为接近。
)8、椭球定向:指确定椭球旋转轴的方向,不论是局部定位还是地心定位,都应满足两个平行条件:椭球短轴平行于地球自转轴;大地起始子午面平行于天文起始子午面。
9、铅垂线:重力方向重合的线。
10、水准面:设想有一个静止的水面,向陆地延伸而形成的一个封闭的曲面。
也称重力等位面。
11、水准椭球:其表面为正常重力位水准面的旋转椭球。
12、正高系:是以大地水准面为高程基准面,地面上任一点沿垂线方向至大地水准面的距离。
13、正常高:地面点与似大地水准面间的距离。
14、高程异常:似大地水准面到参考椭球面间的距离。
15、高程基准面:地面点高程的统一起算面,由于大地水准面所形成的体形。
16、大地水准面:假想海洋处于完全静止和平衡状态时的海水面,并延伸到大陆地面以下所形成的闭合曲面。
17、垂线偏差:地面上一点的重力向量和相应椭球面上的法线向量之间的夹角。
18、重力垂线偏差:把实际重力场中的重力向量同正常重力场中的正常重力向量之间的夹角。
19、大地线:椭球面上两点间最短程曲线。
20、空间直角坐标系:以椭球中心O为原点,起始子午面与赤道交线为X轴,在赤道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴构成右手坐标系O-XYZ21.大地基准:求定旋转椭球的参数及其定向与定位。
第二章大地测量学基础知识
![第二章大地测量学基础知识](https://img.taocdn.com/s3/m/d52de52d910ef12d2bf9e786.png)
2.1 地球形状和大小
地球自然表面
极不规则,无法用数学表面进行描述
三 大地体
级 地球椭球体
近
似 参考椭球体
不规则性、动态性、不唯一性
规则的数学表面
标准数学曲面,不唯一性 1952:海福特椭球 1953:克拉索夫斯基椭球 1978:1975年国际椭球
2.2 测量常用坐标系
地理坐标系统:直接建立在球体上的, 用经纬度(φ, λ)表示地面点位的球面坐 标系统。
投 影
平面直角坐标系统:建立在平面上的 笛卡儿坐标系统,用(x,y)表达地 理对象位置。
第二章大地测量学基础知识
2.2 测量常用坐标系
2.2.1. 大地坐标系
大地坐标系是以参考椭球面作为基准面,以起始子午面和赤道 面作为在椭球面上确定某一点投影位置的两个参考面。
该椭球的基本元素是:
a= 6 378 140m ,
图2-3
b = 6 356 755.3m ,
f =1/298.257。
由于参考椭球体的扁率很小,当测区面积不大时,在普通测量中可把地 球近似地看作圆球体,其半径为:
R1(aab)63k7m 1 3
第二章大地测量学基础知识
2.1 地球形状和大小
地球体:极半径略短,赤道半径略长,北极略突出、南极略扁平,近似于梨
2.特点 1)水准面是一个重力等位面,水准面上各点处处与该点的重力方向(铅
垂线方向)垂直。
2)在地球表面上、下重力作用的范围内,通过任何高度的点都有一个水 准面,因而水准面有无数个。
第二章大地测量学基础知识
2.1 地球形状和大小
2.1.1.4 大地水准面
大地测量知识点复习
![大地测量知识点复习](https://img.taocdn.com/s3/m/e1e89cea9ec3d5bbfc0a741c.png)
大地测量知识点复习第一章绪论1.1大地测量学的定义和作用1.1.1大地测量学的定义大地测量学的定义:时间和空间参考系下,测量和描绘地球形状及其重力场并监测其变化,为人类活动提供地球空间信息的一门学科。
1.2大地测量学的基本体系和内容1.2.1大地测量学的基本体系1.量测学可分为两个分支,一是普通测量学,其研究范围是不大的地球表面。
二是大地测量学,其研究的是全球或相当大范围的地球区域。
其中现代大地测量学归纳为由几何大地测量学、物理大地测量学及空间大地测量学三个基本分支为主体所构成的基本体系。
2.几何大地测量学亦即天文大地测量学。
其基本任务是确定地球的形状和大小及确定地面点的几何位置。
3.物理大地测量学也称为理论大地测量学。
其基本任务是用物理方法确定地球形状及其外部重力场。
4.空间大地测量学主要研究以人造地球卫星及其他空间探测器为代表的空间大地测量理论、技术和方法。
1.2.2大地测量学的基本内容(1)确定地球形状及外部重力场及其随时间变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移),测定极移以及海洋水面地形及其变化。
(2)研究月球及太阳系行星的形状及重力场。
(3)建立和维持具有高科技水平的国家和全球的天文大地水平控制网和精密水准网以及海洋大地控制网,以满足国民经济和国防建设的需要。
(4)研究为获得高精度测量成果的仪器和方法等。
(5)研究地球表面向椭球面或平面的投影数学变换及有关的大地测量计算。
(6)研究大规模、高精度和多类别的地面网、空间网及其联合网的数据处理的理论和方法,测量数据库建立及应用等。
第二章坐标系统与时间系统2.1地球的运转2.1.1地球绕太阳公转1.开普勒三定律:(1)行星轨道是一个椭圆,太阳位于椭圆的一个焦点上。
(2)行星运动中,与太阳连线在单位时间内扫过的面积相等。
(3)行星绕轨迹运动周期的平方与轨道长半轴的立方之比为常数。
2.黄道:地球绕太阳旋转的轨道。
大地测量学复习资料(考试必备)
![大地测量学复习资料(考试必备)](https://img.taocdn.com/s3/m/2331b21d77c66137ee06eff9aef8941ea76e4b85.png)
⼤地测量学复习资料(考试必备)1.垂线同总地球椭球(或参考椭球)法线构成的⾓度称为绝对(或相对)垂线偏差2.以春分点作为基本参考点,由春分点周⽇视运动确定的时间,称为恒星时3.以真太阳作为基本参考点,由其周⽇视运动确定的时间,称为真太阳时。
⼀个真太阳⽇就是真太阳连续两次经过某地的上中天(上⼦午圈)所经历的时间。
4.以格林尼治平⼦夜为零时起算的平太阳时称为世界时5.原⼦时是⼀种以原⼦谐振信号周期为标准6.归算:就是把地⾯观测元素加⼊某些改正,使之成为椭球⾯上相应元素。
7.把以垂线为依据的地⾯观测的⽔平⽅向值归算到以法线为依据的⽅向值⽽加的改正定义为垂线偏差改正7.⼤地线椭球上两点间的最短程曲线。
8.设椭球⾯上P点的⼤地经度L,在此⼦午⾯上以椭圆中⼼O为原点建⽴地⼼纬度坐标系; 以椭球长半径a为半径作辅助圆,延长P2P与辅助圆相交P1点,则OP1与x 轴夹⾓称为P点的归化纬度u。
9.仪器加常数改正因测距仪、反光镜的安置中⼼与测距中⼼不⼀致⽽产⽣的距离改正,称仪器加常数改正,包括测距仪加常数和反光镜加常数。
10.因测距仪的基准频率等因素产⽣的尺度参数成为乘常数。
11.基本分划与辅助分划相差⼀个常数301.55cm,称为基辅差,⼜称尺常数12.控制⽹可靠性:控制⽹能够发现观测值中存在的粗差和抵抗残存粗差对平差的影响13.M是椭球⾯上⼀点,MN是过M的⼦午线,S为连接MP的⼤地线长,A为⼤地线在M点的⽅位⾓。
以M为极点;MN为极轴;P点极坐标为(S, A)⼀点定位,如果选择⼤地原点:则⼤地原点的坐标为:多点定位,采⽤⼴义弧度测量⽅程1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京,⽽在前苏联的普尔科沃。
相应的椭球为克拉索夫斯基椭球。
1954年北京坐标系的缺限:①椭球参数有较⼤误差。
②参考椭球⾯与我国⼤地⽔准⾯存在着⾃西向东明显的系统性的倾斜,在东部地区⼤地⽔准⾯差距最⼤达+68m。
注册测绘师-大地测量学概论知识点汇总
![注册测绘师-大地测量学概论知识点汇总](https://img.taocdn.com/s3/m/273da10a43323968001c9203.png)
大地测量学概论知识点知识点一:大地测量的任务(多选):大地测量是为研究地球的形状及表面特性进行的实际测量工作。
其主要任务是建立国家或大范围的精密控制测量网,内容有三角测量、导线测量、水准测量、天文测量、重力测量、惯性测量、卫星大地测量以及各种大地测量数据处理等。
①它为大规模地形图测制及各种工程测量提供高精度的平面控制和高程控制;②为空间科学技术和军事用途等提供精确的点位坐标、距离、方位及地球重力场资料;③为研究地球形状和大小、地壳形变及地震预报等科学问题提供资料。
知识点二:大地测量的特点(了解):(1)长距离、大范围;(2)高精度;(3)实时、快速;(4)“四维”;(5)地心;(6)学科融合知识点三:大地坐标系统与参考框:大地测量系统规定了大地测量的起算基准、尺度标准及其实现方式。
大地测量系统包括坐标系统、高程系统、深度基准和重力参考系统。
与大地测量系统相对应,大地参考框架有坐标(参考)框架、高程(参考)框架和重力测量(参考)框架三种。
知识点四:大地测量参心坐标框架:根据其原点位置不同,分为地心坐标系统和参心坐标系统。
大地测量常数是指与地球一起旋转且和地球表面最佳吻合的旋旋转椭球(即地球椭球)几何参数和物理参数。
54坐标系、80坐标系所采用参考椭球、大地原点;54坐标系:克拉索夫斯基椭球,前苏联的普尔科沃;80坐标系:1975年国际椭球体;陕西西安知识点五:地心坐标系:国际地面参考框架(itrf)是国际地面参考系统(itrs)的具体实现。
它以甚长基线干涉测量(vlbi)、卫星激光测距(slr)、激光测月(llr)、gps和卫星多普勒定轨定位(doris)等空间大地测量技术构成全球观测网点,经数据处理,得到itrf点(地面观测点)站坐标和速度场等。
2000国家大地控制网是定义在itfs 2000地心坐标系统中的区域性地心坐标框架。
区域性地心坐标框架一般由三级构成。
第一级为连续运行站构成的动态地心坐标框架,它是区域性地心坐标框架的主控制;第二级是与连续运行站定期联测的大地控制点构成的准动态地心坐标框架;第三级是加密大地控制点.(itrf)已成为国际公认的应用最广泛、精度最高的地心坐标框架。
大地测量学知识点
![大地测量学知识点](https://img.taocdn.com/s3/m/3df0f4580b1c59eef9c7b41d.png)
一、水准面与大地水准面1、水准面我们把重力位相等的面称为重力等位面,也就是我们通常所说的水准面。
水准面有无数个。
1)水准面具有复杂的形状。
2)水准面相互既不能相交也不能相切。
3)每个水准面都对应着唯一的位能W=C=常数,在这个面上移动单位质量不做功,亦即所做的功等于0,即dW=-gsds,可见水准面是均衡面。
4)在水准面上,所有点的重力均与水准面正交。
于是水准面又可定义为所有点都与铅垂线正交的面。
故设想与平均海水面相重合,不受潮汐、风浪及大气压变化影响,并延伸到大陆下面处处与铅垂线相垂直的水准面称为大地水准面大地水准面作为测量外业的基准面,而与其相垂直的铅垂线则是外业的基准线。
似大地水准面与大地水准面在海洋上完全重合,而在大陆上也几乎重合,在山区只有2-4m 的差异我们选择参考椭球面作为测量内业计算的基准面,而与其相垂直的法线则是内业计算的基准线。
1.参心坐标系建立一个参心大地坐标系,必须解决以下问题:(1)确定椭球的形状和大小;(2)确定椭球中心的位置,简称定位;(3)确定椭球中心为原点的空间直角坐标系坐标轴的方向,简称定向;(4)确定大地原点。
我国几种常用参心坐标系:BJZ54、GDZ802.地心坐标系地心坐标系分为地心空间大地直角坐标系和地心大地坐标系等。
地心空间大地直角坐标系又可分为地心空间大地平面直角坐标系和空间大地舜时直角坐标系。
1)建立地心坐标系的意义:2)建立地心坐标系的最理想方法是采用空间大地测量的方法。
3)地心坐标系的表述形式(判断)1)WGS一84大地坐标系WGS-84坐标系统的全称是World Geodical System-84(世界大地坐标系-84),它是一个地心地固坐标系统。
WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS所采用的坐标系统―WGS-72坐标系统而成为GPS的所使用的坐标系统。
WGS一84坐标系的几何定义是:坐标系的原点是地球的质心,Z轴指向BIHl984.0定义的协议地球极(CTP)方向,X轴指向BIHl984.0的零度子午面和CTP赤道的交点,y轴和Z、X轴构成右手坐标系。
大地测量学基础知识
![大地测量学基础知识](https://img.taocdn.com/s3/m/7af8e229dd3383c4ba4cd227.png)
第一章1.大地测量学的定义大地测量学是在一定的时间-空间参考系统中,测量和描绘地球及其他行星体的一门学科。
2.大地测量学的基本体系以三个基本分支为主所构成的基本体系。
几何大地测量学物理大地测量学空间大地测量学3.大地测量学的基本任务精确确定地面点位及其变化研究地球重力场、地球形状和地球动力现象4.大地测量学的基本内容1、大地测量基础知识(基准面和基准线,坐标系统和时间系统,地球重力场等);2、大地测量学的基本理论(地球椭球基本的理论,高斯投影的基本理论,大地坐标系统的建立与坐标系统的转换等);3、大地测量基本技术与方法(经典的、现代的)4、大地控制网的建立(包括国家大地控制网、工程控制网。
形式有三角网、导线网、高程网、GPS网等);5、大地测量数据处理(概算与平差计算)。
5.大地测量学的基本作用1、为地形测图与大型工程测量提供基本控制;2、为城建和矿山工程测量提供起始数据;3、为地球科学的研究提供信息;4、在防灾、减灾和救灾中的作用;5、发展空间技术和国防建设的重要保障。
第二章1.岁差章动极移由于日、月等天体的影响,类似于旋转陀螺,地球的旋转轴在空间围绕黄极发生ε=︒,旋转周期为26000缓慢旋转,形成一个倒圆锥体,其锥角等于黄赤交角23.5年,这种运动称为岁差。
月球绕地球旋转的轨道称为白道,由于白道对黄道有约5︒的倾斜,使得月球引力产生的大小和方向不断变化,从而导致地球旋转轴在岁差的基础上叠加18.6年的短周期运动,振幅为9.21'',这种现象称为章动。
地球自转轴存在相对于地球体自身内部结构的相对位置变化,从而导致极点在地球表面上的位置随时间而变化,这种现象称为极移。
2.恒星时太阳时原子时以春分点作为基本参考点,由春分点周日视运动确定的时间,称为恒星时。
以真太阳作为基本参考点,由其周日视运动确定的时间,称为真太阳时。
原子时是一种以原子谐振信号周期为标准,并对它进行连续计数的时标。
大地测量学知识点整理
![大地测量学知识点整理](https://img.taocdn.com/s3/m/2737a49b6e1aff00bed5b9f3f90f76c661374c34.png)
大地测量学知识点整理大地测量学是地球科学中的重要分支,主要研究地球形状、地球尺度、地球重力场以及地球形变等内容,以提供高精度的地球表面形状数据和相应的地球参数,为地理信息系统、地震监测、导航定位等应用领域提供数据支撑。
下面整理了大地测量学的相关知识点,供参考。
1.大地测量学的基本概念和目标-大地测量学是研究地球形状、地球尺度和地球重力场等基本问题的学科。
-目标是通过测量获取地球形状和地球的尺度,研究地球形变以及地球的物理特性。
2.大地测量学中的基本概念-测地线:两点间的最短路径,是地球上长度最短的曲线。
-大地弧长:测地线上两点之间的弧长。
-大地方位角:从给定点出发沿大地弧到达目标点的方位角。
-大地纬度:从球心到椭球面上一点所沿椭球面正常方向得到的经过球面正北方向的夹角。
-大地经度:从球心到椭球面上一点所沿椭球面正常方向得到的经过球面正东方向的夹角。
3.大地测量中的基本测量方法-天文测量法:利用天体的观测数据,如经纬度、高度角等进行测量。
-重力法:通过测量地球上不同位置的重力加速度来推断地球上的形状和尺度。
-大地水准测量法:通过测量水平方向上的高程差来确定地球形状。
-大地测角法:通过测量角度来计算地球上两点之间的距离和方位。
-大地卫星测高法:利用卫星测高技术获取地球表面高程信息。
4.大地测量学中的地球形状与尺度参数-长半轴:椭球长半径。
-短半轴:椭球短半径。
-扁率:长半轴与短半轴之差与长半轴的比值。
-第一偏心率:椭球短半轴和长半轴之差与短半径之和的比值。
-第二偏心率:椭球短半轴和长半轴之差与长半径之和的比值。
-极曲率半径:极点处其中一纬度圈切线半径的倒数。
5.大地测量学中的地球重力场参数-重力加速度:单位质点在地球表面所受的重力作用的大小。
-重力位能:单位质点在其中一高度上的重力位能。
-重力势:单位质点受重力作用产生的势能。
-重力梯度:垂直于重力方向的重力场的变化率。
-重力异常:其中一点的重力场与理论重力场之差。
大地测量学重点
![大地测量学重点](https://img.taocdn.com/s3/m/8813f23beefdc8d376ee3241.png)
1、地轴方向相对于空间的变化:岁差和章动地轴相对于地球本体内部结构的相对位置变化:极移2、对于时间的描述,可采用一维的时间坐标轴,有时间原点、度量单位(尺度)两大要素,原点可根据需要进行指定,度量单位采用时刻和时间间隔两种形式3、以地球自转运动为基础,建立了恒星时和世界时;以地球公转运动为基础,建立了历书时;以物质内部运动为基础,建立了原子时(1)恒星时①以春分点作为基本参考点,由春分点周日视运动确定的时间,称为恒星时②由于岁差和章动的影响,地球自转轴的指向在空间是变化的,从而导致春分点的位置发生变化,相应于某一时刻瞬时极的春分点成为真春分点,相应于平极的春分点称为平春分点,据此把恒星时分为真恒星时和平恒星时(2)世界时①以真太阳作为基本参考点,由其周日视运动确定的时间,称为真太阳时②以格林尼治子夜起算的平太阳时称为世界时③平太阳(在赤道上匀速运动)连续两次经过平春分点的时间间隔为一回归年(3)历书时与力学时历书时对应的地球运动的理论框架是牛顿力学,根据广义相对论,太阳质心系和地心系的时间将不同,从而定义了这两个坐标系的时间:太阳系质心力学时和地球质心力学时4、建立大地基准就是求定旋转椭球的参数及其定向(椭球旋转轴平行于地球的旋转轴,椭球的起始子午面平行于地球的起始子午面)和定位(旋转椭球中心与地球中心的相对关系)5、天球:以地球质心为中心,以无穷大为半径的假想球体称为天球,春分点和天球赤道面,是建立天球坐标系的重要基准点和基准面6、坐标参考系统:分为天球坐标系和地球坐标系①天球坐标系用于研究天体和人造卫星的定位与运动②地球坐标系用于研究地球上物体的定位与运动,是以旋转椭球为参照体建立的坐标系统,分为大地坐标系和空间直角坐标系两种形式7、椭球定位是指确定椭球中心的位置;椭球定向是指确定椭球旋转轴的方向8、地固坐标系①地心坐标系:原点与地球质心重合,以总地球椭球为基准②参心坐标系:原点与参考椭球中心重合,以参考椭球为基准9、协议地球坐标系与瞬时地球坐标系之间的差异是由于极移引起的10、WGS-84和CGCS2000均为地心坐标系11、国际地球参考框架ITRF是ITRS的具体实现,是通过IERS分布于全球的跟踪站的坐标和速度场来维持并提供用户使用的12、(1)正高、正常高、大地高三者的基准面和基准线基准面基准线正高大地水准面铅垂线正常高似大地水准面铅垂线大地高参考椭球面法线(2)我国规定采用正常高高程系统作为我国高程的统一系统13、(1)测定垂线偏差一般有以下四种方法:天文大地测量方法;重力测量方法;天文重力测量方法以及GPS方法(2)测定大地水准面差距一般有一下几种方法:地球重力场模型法、斯托克司方法、卫星无线电测高方法、GPS高程拟合法以及最小二乘配置法等14、卯酉圈曲率半径恰好等于法线介于椭球面和短轴之间的长度,亦即卯酉圈的曲率中心位于椭球的旋转轴上15、将水平方向归算至椭球面上,包括垂线偏差改正、标高差改正及截面差改正,习惯上称此三项改正为三差改正16、投影变形一般有长度变形、方向变形、角度变形和面积变形17、我国大地测量中,采用横轴椭球柱面等角投影,即所谓的高斯投影18、高斯投影必须满足的三个条件:(1)中央子午线投影后为直线(2)中央子午线投影后长度不变(3)投影具有正形性质,即正形投影条件19、传统的大地测量是把建立平面控制网和高程控制网分开进行的,分别以地球椭球面和大地水准面为参考面确定地面点的坐标和高程20、全球定位系统GPS可为用户提供精密的三维坐标、三位速度和时间信息21、质量标准包括精度标准、可靠性标准、费用标准等22、控制网的优化设计的分类:①零类设计:基准设计②一类设计:图形设计③二类设计:权设计④三类设计:加密设计23、工程测量控制网一般可分为以下三类:①测图控制网②施工控制网③变形观测专用控制网。
大地测量学复习要点总结
![大地测量学复习要点总结](https://img.taocdn.com/s3/m/20d7b3d9b9f3f90f76c61be6.png)
大地测量学复习重点第一章绪论1、测量学的分支:分为普通测量学(简称测量学)和大地测量学。
2、大地测量学的定义和作用定义:是指在一定的时间与空间参考系中,测量和描绘地球形状及其重力场并监测其变化,为人类活动提供关于地球的空间信息的一门学科。
作用:①大地测量学是一切测绘科学技术的基础。
在国民经济建设和社会发展中发挥着决定性的基础保证作用。
②大地测量学在防灾,减灾,救灾及环境监测、评价与保护中发挥着特殊作用。
③大地测量是发展空间技术和国防建设的重要保障。
3、大地测量学的基本体系由几何大地测量学(天文大地测量学)、物理大地测量学(理论大地测量学)、空间大地测量学构成。
4、几何大地测量学、物理大地测量学以及空间大地测量学的基本任务和内容①基本任务:是确定地球的形状和大小及确定地面点的几何位置。
主要内容:国家大地测量控制网(包括平面控制网和高程控制网)建立的基本原理和方法,精密角度测量,距离测量,水准测量;地球椭球数学性质,椭球面上测量计算,椭球数学投影变换以及地球椭球几何参数的数学模型等。
②基本任务:是用物理方法(重力测量)确定地球形状及其外部重力场。
主要内容:包括位理论,地球重力场,重力测量及其归算,推求地球形状及外部重力场的理论与方法。
③基本任务:主要研究以人造地球卫星及其他空间探测器为代表的空间大地测量的理论、技术与方法。
5、现代大地测量的特征答:①研究范围大(全球:如地球两极、海洋);②从静态到动态,从地球内部结构到动力过程;③观测精度越高,相对精度达到10-8~10-9,绝对精度可到达毫米;④测量与数据处理周期短,但数据处理越来越复杂。
第二章时间和坐标系统1、天球的概念概念:所谓天球,是指以地球质心O(或测站)为中心,半径r为任意长度的一个假想的球体。
在天文学中,通常均把天体投影到天球的球面上,并利用球面坐标来表达或研究天体的位置及天体之间的关系。
2、大地基准与大地基准的建立大地基准:指用以描述地球形状的参考椭球的参数,以及参考椭球在空间中的定位及定向,还有在描述这些位置时所采用的单位长度的定义。
(完整word版)《大地测量学》复习知识点总结word汇编
![(完整word版)《大地测量学》复习知识点总结word汇编](https://img.taocdn.com/s3/m/15080ca50342a8956bec0975f46527d3240ca6d3.png)
大地测量学第一章1.大地测量学的定义?大地测量学与普通测量学有哪些主要区别?大地测量学是研究精确测定和描绘地面控制点空间位置、研究地球形状和大小、研究地球表面和外部重力场及其变化的学科。
区别在于:(1)测量的精度等级更高,工作更加严密。
(2)测量的范围更加广阔,常常是上百平方公里乃至整个地球。
(3)侧重研究的对象不同。
普通测量学侧重于研究如何测绘地形图以及进行工程施工测量的理论和方法。
大地测量学侧重于研究如何建立大地坐标系、建立科学化、规范化的大地控制网并精确测定控制网点坐标的理论和方法。
2.大地测量学的任务和主要研究内容是什么?简述其在国民经济建设中的地位。
一·基本任务可以概括为:1.在地球表面的陆地上建立高精度的大地测量控制网,并监测其数据随时间的变化;2.确定地球重力场及其随时间的变化,测定和描述地球动力学现象;3.根据地球表面和外部空间的观测资料确定地球形状和大小。
二·主要研究内容:1.确定地球形状及外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移),测定极移以及海洋水面地形及其变化等。
2.研究月球及太阳系行星的形状及重力场。
3.研究建立和维持高科技水平的工程和国家水平控制网和精密水准网的原理和方法;4.研究获得高精度测量成果的精密仪器和科学的使用方法;5.研究地球表面测量成果向椭球及平面的数学投影变换及有关问题的测量计算;6.研究高精度和多类别的地面网、空间网及其联合网的数学处理的理论和方法。
三·国民经济建设中的地位:(1)为地形测图和大型工程测量提供基本控制;(2)大地测量学在国民经济各项建设和社会发展中发挥着基础先行性的重要保证作用;(3)大地测量学在防灾、减灾、救灾及环境监测、评价与保护中发挥着特殊的作用;(4)大地测量是发展空间技术和国防建设的重要保障;(5)大地测量在当代地球科学研究中的地位显得越来越重要。
地测专业基础知识点
![地测专业基础知识点](https://img.taocdn.com/s3/m/13d2f5efd0f34693daef5ef7ba0d4a7302766cd0.png)
地测专业基础知识点
1.地球测量学基础知识:地球形状和大小、地球的各种坐标系统、地
球的大地水准面和等高线、地球的自转和公转等。
2.大地测量学:测地线的基本概念和性质、大地测量学的基本原理和
方法、大地测量学中的高程、大地水准面和高程系统等。
3.地形测量学:地面表面形态的测量和描述、地物档案的建立和维护、数字高程模型(DEM)的生成和应用等。
4.GPS测量与导航:GPS测量原理、GPS信号接收与处理、GPS定位和
导航的基本原理和方法、GPS测量在地测中的应用等。
5.遥感与地球信息系统(GIS):遥感数据源与获取方式、遥感影像
的处理和解译、GIS数据库的建立和管理、GIS在地测领域的应用等。
6.地图投影与坐标系统:地图投影的基本原理和分类、常用地图投影
的具体应用、坐标系统的选择与转换等。
7.测绘仪器与软件:各种测绘仪器的原理和使用、测绘软件的功能和
应用、测绘精度与误差分析等。
8.海洋测绘学:船舶测绘的原理和方法、海洋测量的基础知识、海洋
地球物理测量等。
9.卫星测量与导航:卫星测量的基本原理和方法、卫星导航系统的基
本原理和应用、卫星测量与导航在地测中的应用等。
10.阵地地形测量:战场上的地形测量与战争模拟。
11.土地评估与土地规划:土地的权益和规划评估、土地利用规划和决策支持系统等。
以上仅为地测专业基础知识点的一部分,涉及面广泛,内容深入。
掌握这些基础知识,可以为日后从事地测工作打下坚实的基础。
另外,随着技术的发展和应用的推进,地测专业的知识体系也在不断更新和完善,因此,持续学习和不断更新知识是地测专业人员的必备素质。
大地测量学基础课程知识要点
![大地测量学基础课程知识要点](https://img.taocdn.com/s3/m/1ebcb8f310661ed9ac51f35d.png)
大地测量学基础课程知识要点1、大地水准面:假定海水面完全处于静止和平衡状态(没有风浪、潮汐及大气压变化的影响),把这个海水面伸延到大陆下面,形成一个封闭曲面,在这个面上都保持与重力方向正交的特性,则这个封闭曲面称为大地水准面。
2、球面角超:球面多边形的内角和与相应平面上的内角和与(n-2)×180°的差值(或答为球面三角形和180°也可)。
3、底点纬度:在y =0时,把x直接作为中央子午线弧长对应的大地纬度B,叫底点纬度。
4、高程异常:似大地水准面与椭球面的高程差。
5、水准标尺零点差:一对水准标尺的零点误差之差。
6.重力位相等的面称为重力等位面,这也就是我们通常所说的水准面。
7.垂直于旋转轴的平面与椭球面相截所得的圆,叫纬圈。
8.我国规定采用正常高高程系统作为我国高程的统一系统。
9、主曲率半径M是任意法截弧曲率半径RA的极小值。
10、M、R、N三个曲率半径间的关系可表示为N>R>M。
11、方向改正中,三等和四等三角测量不加垂线偏差改正和截面差改正,应加入标高差改正。
12.大地基准是指能够最佳拟合地球形状的地球椭球的参数及椭球定位和定向。
13.兰伯特投影是正形正轴圆锥投影。
14.圆锥面与椭球面相切的纬线称之为标准纬线。
15、截面差改正数值主要与照准点的高程有关。
16、我国采用的1954年北京坐标系应用的是克拉索夫斯基椭球参数。
17.在高斯平面上,过p点的子午线的切线的北极方向与坐标轴x正向的交角叫子午线收敛角。
18.与椭球面上一点的子午面相垂直的法截面同椭球面相截形成的闭合圈称为卯酉圈。
19.由水准面不平行而引起的水准环线闭合差,称为理论闭合差20.空间坐标系:以椭球体中心为原点,起始子午面与赤道面交线为X轴,在赤道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴,构成右手坐标系O-XYZ。
21.垂线偏差改正:将以垂线为依据的地面观测的水平方向观测值归算到以法线为依据的方向值应加的改正。
大地测量学知识点
![大地测量学知识点](https://img.taocdn.com/s3/m/ba6bf46316fc700abb68fcb6.png)
大地坐标系:采用大地经度L 、大地纬度B 和大地高H 来描述地面上一点的空间位置的。
克莱罗定理:大地测量学:在一定的时间与空间参考系中,测量和描绘地球及其他行星体的一门学科。
开普勒三定律:行星运动的轨迹是椭圆;太阳位于其椭圆的一个焦点上; 在单位时间内扫过的面积相等;运动的周期的平方与轨道的长半轴的立方的比为常数。
岁差:由于日、月等天体的影响,有类似于旋转陀螺在重力场中的进动,地球的旋转轴在空间围绕黄极发生缓慢旋转,是地轴方向相对于空间的长周期运动,旋转周期为26000年。
章动:月球运行的轨道与月的之间距离是不断变化的,使得月球引力产生的大小和方向不断变化,从而导致北天极在天球上绕黄极旋转的轨道不是平滑的小圆,而是类似圆的波浪曲线运动。
,极移:地球自转轴存在相对于地球体自身内部结构的相对位置变化,从而导致极点在地球表面上的位置随时间而变化。
大地经度L:为大地起始子午面与该点所在的子午面所构成的二面角,由起始子午面起算,向东为正,称东经(0°~180°),向西为负,称西经(0°~180°)。
)sin 1(2ϕβγγϕ⋅+=e大地纬度:大地纬度B是过该点作椭球面的法线与赤道面的夹角,由赤道面起算,向北为正,称北纬(0°~90°),向南为负,称南纬(0°~90°)。
大地水准面:平均海水面按处处与重力方向垂直的特性向大陆、岛屿内延伸而形成的闭合曲面,是完全静止的海水面所形成的重力等位面。
总(平均)地球椭球:与地球的物理性质、大地体的几何大小相同的旋转椭球体。
参考椭球:大地水准面形状不规则,而最佳拟合于区域性大地水准面的旋转椭球面叫做~。
正常椭球:大地水准面的规则形状(一般指旋转椭球面)。
<椭球定位:指确定该椭球中心的位置,分为:局部定位和地心定位。
椭球定向:指确定椭球旋转轴的方向。
一点定位:多点定位: 大地测量参考框架:固定在地面上的控制网坐标参考架,高程参考架,重力参考架。
大地测量学基础知识要点考点总结
![大地测量学基础知识要点考点总结](https://img.taocdn.com/s3/m/0c4568f7f705cc1755270999.png)
《大地测量基础》知识要点第二章坐标与时间系统1、地轴方向相对于空间的变化(岁差和章动)2、地轴相对于地球本身相对位置变化(极移)3、地球自转速度变化(日长变化)4、描述上述三种地球自转运动规律的参数称为地球定向参数(EOP),描述地球自转速度变化的参数和描述极移的参数称为地球自转参数(ERP),EOP 即为ERP 加上岁差和章动5、时间的描述包括时间原点、单位(尺度)两大要素6、地球的自转运动:恒星时(ST) 世界时UT 未经任何改正的世界时表示为UT0,经过极移改正的世界时表示为UT1,进一步经过地球自转速度的季节性改正后的世界时表示为UT2。
地球的公转:历书时ET与力学时DT(太阳系质心力学时TDB 地球质心力学时TDT)物质的振动:原子时(A T) 协调世界时(UTC)7、大地基准所谓基准是指用以描述地球形状的参考椭球的参数(如参考椭球的长短半轴),以及参考椭球在空间中的定位及定向,还有在描述这些位置时所采用的单位长度的定义。
8、天球坐标系:用于研究天体和人造卫星的定位与运动。
地球坐标系:用于研究地球上物体的定位与运动,是以旋转椭球为参照体建立的坐标系统,分为大地坐标系和空间直角坐标系两种形式。
9、高程参考系统❖以大地水准面为参照面的高程系统称为正高以似大地水准面为参照面的高程系统称为正常高;❖大地水准面相对于旋转椭球面的起伏如图所示,正常高及正高与大地高有如下关系:H=H正常+ζH=H正高+N10、大地测量参考系统的具体实现,是通过大地测量手段确定的固定在地面上的控制网(点)所构建坐标参考架、高程参考框架、重力参考框架。
11、参考椭球: 具有确定参数(长半径a和扁率α),经过局部定位和定向,同某一地区大地水准面最佳拟合的地球椭球.总地球椭球:除了满足地心定位和双平行条件外,在确定椭球参数时能使它在全球范围内与大地体最密合的地球椭球.椭球定位:是指确定椭球中心的位置,可分为两类:局部定位和地心定位。
大地测量学知识点
![大地测量学知识点](https://img.taocdn.com/s3/m/bc5ca275a26925c52cc5bfe9.png)
1.大地坐标系:地面点在参考椭圆的位置用大地经度和纬度表示,若地面的点不在椭球面上,它沿法线到椭球面的距离称为大地高2.空间大地直角坐标系:是大地坐标系相应的三维大地直角坐标系3.地心坐标系:定义大地坐标系时,如果选择的旋转椭球为总地球椭球,椭球中心就是地质中心,再定义坐标轴的指向,此时建立的大地坐标系叫做地心坐标系大地方位角:p点的子午面与过p点法线及Q点的平面所成的角度正高系统:地面上一点沿铅垂线到大地水准面的距离正常高系统:一点沿铅垂线到似水准面的距离国家水准网布设的原则:从高级到低级,从整体到局部,分为四个等级布设,逐级控制,逐级加密4.理论闭合差:在闭合的环形水准路线中,由于水准面不平行所产生的闭合差5.大地高系统:地面一点沿法线到椭球面的距离6.平面控制网的测量方法三角测量:在地面上按一定的要求选定一系列的点,他们与周围的邻近点通视,并构成相互联接的三角网状图形,称为三角网,网中各点称为三角点,在各点上可以进行水平角测量,精确观测各三角内角,另外至少精确测量一条三角形边长度D和方位角,作为网的起始边长和起始方位角,推算边长,方位角进而推算各点坐标三边测量:根据三角形的余弦公式,便可求出三角形内角,进而推算出各边的方位角和各点坐标7.国家高程基准的参考面有平均海水面,大地水准面,似大地水准面,参考椭球面1956年黄海高程系统1985年国家高程基准8.角度观测误差分析视准轴误差:视准轴不垂直于水平轴产生水平轴误差:水平轴不垂直于垂直轴产生这2个的消除误差方法为取盘左盘右读数取平均值垂直轴倾斜误差:垂直轴本身偏离铅垂线的位置,即不竖直解决的方法:观测时,气泡不得偏离一格,测回之间重新整理仪器,观测目标的垂直角大于3度,按气泡偏离的格数计算垂直轴倾斜改正9.方向观测法是在一测回内将测站上所有要观测的方向先置盘左位置,逐一照准进行观测,再盘右的位置依次观测,取盘左盘右的平均值作为各方向的观测值。
大地测量学基础知识要点考点总结
![大地测量学基础知识要点考点总结](https://img.taocdn.com/s3/m/48ee6a516d175f0e7cd184254b35eefdc8d315f5.png)
大地测量学基础知识要点考点总结1.大地测量学基本概念和基本原理:包括大地测量学的定义、目的、分类、基本量的定义和测量等。
2.大地测量学的发展历程:包括古代大地测量学的发展和现代大地测量学的发展。
3.大地测量学的基本坐标系统:包括大地水准面、基准面和基准点的概念以及其相互关系。
4.大地测量学的椭球模型:包括椭球参数、椭球面方程、椭球面上的坐标转换等。
5.大地测量学的重力场:包括重力梯度、重力异常、引力公式等。
6.测地线理论:包括测地线的定义、性质、测量以及测角和测距的原理等。
7.大地测量学的变形监测:包括地壳运动、地壳变形监测的方法和技术等。
8.大地水准面:包括大地水准面的概念、测量方法、精度要求等。
9.基线测量:包括基线测量的原理、仪器设备、观测方法和数据处理等。
10.卫星测高技术:包括全球卫星定位系统(GPS)原理、卫星高程测量方法、误差源和应用等。
1.理解大地测量学的基本概念、基本原理和发展历程,并能够将其应用于实际问题的解决中。
2.熟悉大地测量学的基本坐标系统和椭球模型,并能够进行坐标转换和相关计算。
3.理解重力场的基本概念和计算方法,并能够应用于重力异常和引力公式的计算中。
4.理解测地线的定义、性质和测量方法,并能够进行测角和测距的原理和计算。
5.了解大地测量学的变形监测方法和技术,并能够解决地壳变形监测的实际问题。
6.理解大地水准面的概念、测量方法和精度要求,并能够进行水准线的计算和数据处理。
7.了解基线测量的原理、仪器设备和观测方法,并能够进行基线测量数据的处理和分析。
8.了解卫星测高技术的原理、方法、误差源和应用,并能够应用于卫星高程测量问题的解决中。
总之,掌握大地测量学的基础知识对于理解地球形状、地球重力场、地球表面点的坐标、地球表面形状及其变形等内容至关重要。
通过深入学习和理解这些基础知识,可以为实际工程测量和科学研究提供可靠的测量基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大地测量学知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN大地坐标系:采用大地经度L 、大地纬度B 和大地高H 来描述地面上一点的空间位置的。
克莱罗定理:大地测量学:在一定的时间与空间参考系中,测量和描绘地球及其他行星体的一门学科。
开普勒三定律:行星运动的轨迹是椭圆;太阳位于其椭圆的一个焦点上;在单位时间内扫过的面积相等;运动的周期的平方与轨道的长半轴的立方的比为常数。
岁差:由于日、月等天体的影响,有类似于旋转陀螺在重力场中的进动,地球的旋转轴在空间围绕黄极发生缓慢旋转,是地轴方向相对于空间的长周期运动,旋转周期为26000年。
章动:月球运行的轨道与月的之间距离是不断变化的,使得月球引力产生的大小和方向不断变化,从而导致北天极在天球上绕黄极旋转的轨道不是平滑的小圆,而是类似圆的波浪曲线运动。
极移:地球自转轴存在相对于地球体自身内部结构的相对位置变化,从而导致极点在地球表面上的位置随时间而变化。
大地经度L:为大地起始子午面与该点所在的子午面所构成的二面角,由起始子午面起算,向东为正,称东经(0°~180°),向西为负,称西经(0°~180°)。
大地纬度:大地纬度B是过该点作椭球面的法线与赤道面的夹角,由赤道面起算,向)sin 1(2ϕβγγϕ⋅+=e北为正,称北纬(0°~90°),向南为负,称南纬(0°~90°)。
大地水准面:平均海水面按处处与重力方向垂直的特性向大陆、岛屿内延伸而形成的闭合曲面,是完全静止的海水面所形成的重力等位面。
总(平均)地球椭球:与地球的物理性质、大地体的几何大小相同的旋转椭球体。
参考椭球:大地水准面形状不规则,而最佳拟合于区域性大地水准面的旋转椭球面叫做~。
正常椭球:大地水准面的规则形状(一般指旋转椭球面)。
椭球定位:指确定该椭球中心的位置,分为:局部定位和地心定位。
椭球定向:指确定椭球旋转轴的方向。
一点定位:多点定位: 大地测量参考框架:固定在地面上的控制网坐标参考架,高程参考架,重力参考架。
1954年北京坐标系:是我国广泛采用的大地测量坐标系。
该坐标系源自于原苏联采用过的1942年普尔科沃坐标系。
该坐标系采用的参考椭球是克拉索夫斯基椭球。
1980年国家大地坐标系(亦称1980西安坐标系) :是1978年我国决定建立新的国家大地坐标系统,对全国天文大地网施行整体平差。
采用国际大地测量协会1975年推荐的参考椭球。
新1954年北京坐标系(BJ54新):是由1980年国家大地坐标系(GDZ80)转换得,,,K K K K K K K K L B A H H λϕα====正∑∑==min)min(22新新或ζN来。
BJ54新是在GDZ80的基础上改变GDZ80相对应的75国际椭球的几何参数为克拉索夫斯基椭球参数,并将坐标原点(椭球中心)平移,使坐标轴保持平行而建立起来的。
WGS-84:是美国国防部1984年为GPS 系统建立的一个协议地球参考系CTS 。
是目前GPS 所采用的坐标系统,GPS 卫星所发布的广播星历参数就是基于此坐标系统的。
2008年7月1日后新生产的各类测绘成果应采用2000国家大地坐标系将。
为什么要进行坐标转换(换算)1) 同一基准坐标系变化了(表示点位方法) ;2) 不同基准坐标系变化了(椭球参数,椭球定位定向);3) 控制网的起算数据变动了。
站心坐标系:以测站为原点,测站上的法线(垂线)为Z 轴方向的坐标系常用来描述参照于测站点的相对空间位置关系,或者作为坐标转换的过渡坐标系。
工程上在小范围内有时也直接采用站心坐标系。
引力位:单位质点受物质M 的引力作用产生的位能称为引力位,或者说将单位质点从无穷远处移动到该点引力所做的功。
重力位W :是引力位V 和离心力位Q 之和:正常重力位:是一个函数简单、不涉及地球形状和密度便可直接计算得到的地球重力位的近似值的辅助重力位。
QV W +=正常重力:正常重力位对于正常水准面法线(n )的变化量。
地球正常(水准)椭球的基本参数,又称地球大地基准常数是:大地高:由两部分组成地形高部分及大地水准面(或似大地水准面)高部分。
水准面近似于旋转椭球面,且离心加速度在两极处最小,在赤道上最大。
故同一水准面上,靠近两极处的重力值大于赤道附近的重力值。
水准面是不平行的,即:大范围内闭合水准路线闭合差理论值不等于零。
理论闭合差:由于水准面不平行,对应的Δh和Δh′不相等,水准环线高程闭合差也不等于零,称为理论闭合差。
大地高系统:是以参考椭球面为基准面。
大地高:是该点沿参考椭球面法线至参考椭球面的距离。
大地高也称为椭球高,一般用符号H 大表示。
正高系统:是以大地水准面为基准面。
正高:是沿该点的垂线至大地水准面的距离,正高用符号H 正表示。
正常高系统:是以似大地水准面为基准面。
正常高:是沿该点垂线至似大地水准面的距离,正常高用符号H 常表示。
大地水准面高度又称大地水准面差距 N ;似大地水准面高度又称高程异常ζ,它们基本上确定着大地水准面或似大地水准面的起伏。
H 大=H 正+N H 大=H 常+ζ 将正高系统中不能精确测定的 ,用正常重力代替,便得到另一种系统的高程,称,,,2fM J a A mg其为正常高。
我国规定采用正常高高程系统作为我国高程的统一系统。
正常高和正高之差,在高山地区两者最多相差4米,在平原地区两者只差几厘米,在海水面上为零。
故大地水准面的高程原点对似大地水准面也是适用的。
高程基准面:就是地面点高程的统一起算面,由于大地水准面所形成的体形——大地体是与整个地球最为接近的体形,因此通常采用大地水准面作为高程基准面。
水准测量的基准面:是水准面,国家水准测量则应以大地水准面作为统一的高程基准面。
严格地讲,大地水准面与平均海水面不同。
我国漫长的海岸线上的各验潮站所推求的平均海水面并不相同,最大相差达数十厘米。
水准原点:为了长期、牢固地表示出高程基准面的位置,作为传递高程的起算点,必须建立稳固的水准起算点,用精密水准测量方法将它与验潮站的水准标尺进行联测,以高程基准面为零推求水准原点的高程。
我国水准原点建在青岛观象山一个主点,两个附点。
离水准原点30km 处还有一个备用水准原点—沙子口水准点。
1956年黄海高程系统:1950年至1956年7年间青岛验潮站的潮汐资料推求的平均海水面作为我国的高程基准面。
(潮汐变化周期为年)其水准原点的高程为。
1985国家高程基准:根据青岛验潮站 1952~1979年中取19年的验潮资料计算确定,并从1988年1月1日开始启用。
其水准原点的高程为。
水准面是个等位面,相邻两水准面的重力位差处处相同。
水准面是不平行的。
实际工作中涉及的四种高程系统:大地高系统、正高系统、正常高系统、力高系统。
B B AB A AAB h dh ελ=++⎰正常高高差的计算公式:ε称水准面不平行改正。
λ称为高程异常改正。
u是垂线偏差,ξ为垂线偏差在子午圈分量,η为垂线偏差在卯酉圈上分量。
测定垂线偏差的方法:天文大地测量方法、重力测量方法、天文重力测量方法、GPS 测量方法。
按照广义弧度测量方程,采用最小二乘可求得椭球定位参数和旋转参数及椭球几何参数。
天文经度:包含测站垂线的子午面与起始子午面的夹角;天文纬度:测站垂线的与赤道面的夹角;天文方位角:包含测站垂线的子午面与测站垂线和照准点所形成的垂直面的夹角;天文天顶距:测站垂线与观测方向的夹角。
拉普拉斯方程:椭圆的扁率:椭圆的第一偏心率:椭圆的第二偏心率:为简化书写,在旋转椭球计算中常引入以下符号:子午平面坐标系与大地坐标系的关系:在赤道圈上: B=u=φ=0在两极处: B=u=φ=90°在其他处: ∣B∣>∣u∣>∣φ∣法截面:过椭球面上任意一点可作一条垂直于椭球面的法线,包含这条法线的平面。
法截线:法截面与椭球面的交线曲线的曲率:是曲线弯曲程度的反映,它是用曲线上无限邻近两点的切向量的交角对弧长的变化率来度量的。
曲线上任一点的曲率的倒数称为曲率半径。
曲率越大或曲率半径越小,曲线的弯曲程度越高。
子午圈曲率半径随纬度变化情况:卯酉圈:过椭球面上一点的法线,可作无限个法截面,其中一个与该点子午面相垂直的法截面同椭球面相截形成的闭合的圈称为卯酉圈。
麦尼尔定理:假设通过曲面上一点引两条截弧,一为法截弧,一为斜截弧,且在该点上这两条截弧具有公共切线,这时斜截弧在该点处的曲率半径等于法截弧的曲率半径乘以两截弧平面夹角的余弦。
卯酉圈曲率半径的特点: 卯酉圈曲率半径恰好等于法线介于椭球面和短轴之间的长度,亦即卯酉圈的曲率中心位在椭球的旋转轴上。
椭球面上几种曲率半径的关系:子午圈曲率半径M及卯酉圈曲率半径N,是两个互相垂直的法截弧的曲率半径,这在微分几何中统称为主曲率半径。
法截弧:由椭球面上A点的法线与B点所确定的法截面与椭球面相割得到的曲线称为A到B的法截弧。
相对法截弧: A到B的法截弧与B到A的法截弧。
互为正反法截弧。
当A,B两点位于同一子午圈或同一平行圈上时,正反法截线则合二为一,但不是平行圈。
在通常情况下,正反法截线是不重合的。
因此在椭球面上A,B,C三个点处所测得的角度(各点上正法截线之夹角)将不能构成闭合三角形。
定义1:椭球面上两点间的最短程曲线叫大地线(测地线)。
定义2:大地线是主法线与曲面法线处处重合的曲线。
将地面观测的长度归算至椭球面:右端第二项是倾斜改正的主项,经此项改正,测线变为平距;第三项为测线高出椭球面引起的投影改正,经此项改正后,测线变成弦线;第四项则是由弦长改化为弧长的改正项。
勒让德定理:对于较小的球面三角形,可用平面三角公式来解算,只需使三个平面角等于相应的球面角减去三分之一的球面角超,而边长保持不变。
球面角超的定义:整周数N值解算:有可变频率法和固定频率法两种。
测距的精度表达式: m=a+b×D。
a是固定误差,b是比例误差。
高斯平均引数正算公式:从公式可知,欲求ΔL,ΔB及ΔA,必先有Bm及Am。
但由于B2和A21未知,故精确值尚不知,为此须用逐次趋近的迭代方法进行公式的计算。
一般情况下主项趋近3次,改正项趋近2次就可满足要求。
高斯平均引数反算公式:距离观测值的改正:1.气象改正ΔDn;2.仪器加常数改正ΔDC ;3.仪器乘常数改正ΔDR;4.波道曲率改正ΔDk ;5.归心改正ΔDe ;6.周期误差改正ΔDθ。
实测的距离加上以上的改正,就得到两点间的倾斜距离。
气象改正数应按各测回分别改正,其他各项改正是在N测回取均值后进行。
长度比m就是投影面上一段无限小的微分线段ds,与椭球面上相应的微分线段dS二者之比。
投影后一点的长度比依方向不同而变化。
其中最大及最小长度比的方向,称为主方向。