最新常州市中考数学模拟试卷(有配套答案)(word版)

合集下载

江苏省常州市2024届中考数学试卷(含答案)

江苏省常州市2024届中考数学试卷(含答案)

江苏省常州市2024届中考数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生应将答案全部填写在答题卡相应的位置上,写在本试卷上无效.考试结束后,请将本试卷和答题卡一并交回.考试时不允许使用计算器.2.答题前,考生务必将自己的姓名、考试号填写在试卷上,并填写好答题卡上的考生信息.3.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.的绝对值是( )A.B.C.2024D.2.若二次根式有意义,则可取的值是()A.B.0C.1D.23.计算的结果是()A.2B.C.D.4.下列图形中,为四棱锥的侧面展开图的是()A.B.C.D.5.如图,在纸上画有,将两把直尺按图示摆放,直尺边缘的交点P在的平分线上,则()A.与一定相等B.与一定不相等C.与一定相等D.与一定不相等6.2024年5月10日,记者从中国科学院国家天文台获悉,“中国天眼”FAST近期发现了6个距离地球约50亿光年的中性氢星系,这是人类迄今直接探测到的最远的一批中性氢星系.50亿光年用科学记数法表示为()A.光年B.光年C.光年D.光年7.如图,推动水桶,以点O为支点,使其向右倾斜.若在点A处分别施加推力、,则的力臂大于的力臂.这一判断过程体现的数学依据是()A.垂线段最短B.过一点有且只有一条直线与已知直线垂直C.两点确定一条直线D.过直线外一点有且只有一条直线与已知直线平行8.在马拉松、公路自行车等耐力运动的训练或比赛中,为合理分配体能,运动员通常会记录每行进所用的时间,即“配速”(单位:).小华参加的骑行比赛,他骑行的“配速”如图所示,则下列说法中错误的是()A.第所用的时间最长B.第的平均速度最大C.第和第的平均速度相同D.前的平均速度大于最后的平均速度二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将答案直接填写在答题卡相应位置上)9.16的算术平方根是.10.分解因式: = .11.计算:.12.若等腰三角形的周长是10,则底边长y与腰长x的函数表达式为.13.如图,在平面直角坐标系中,正方形的对角线相交于原点O.若点A的坐标是,则点C的坐标是.14.如图,是的直径,是的弦,连接.若,则.15.如图,在矩形中,对角线的垂直平分线分别交边于点E、F.若,,则.16.如图,在中,,,,D是边的中点,E是边上一点,连接.将沿翻折,点C落在上的点F处,则.17.小丽进行投掷标枪训练,总共投掷10次,前9次标枪的落点如图所示,记录成绩(单位:m),此时这组成绩的平均数是,方差是.若第10次投掷标枪的落点恰好在线上,且投掷结束后这组成绩的方差是,则(填“”、“”或“”).18.“绿波”,是车辆到达前方各路口时,均遇上绿灯,提高通行效率.小亮爸爸行驶在最高限速的路段上,某时刻的导航界面如图所示,前方第一个路口显示绿灯倒计时32s,第二个路口显示红灯倒计时44s,此时车辆分别距离两个路口480m和880m.已知第一个路口红、绿灯设定时间分别是30s、50s,第二个路口红、绿灯设定时间分别是45s、60s.若不考虑其他因素,小亮爸爸以不低于的车速全程匀速“绿波”通过这两个路口(在红、绿灯切换瞬间也可通过),则车速v()的取值范围是.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.解方程组和不等式组:(1)(2)20.先化简,再求值:,其中.21.某企业生产了2000个充电宝,为了解这批充电宝的使用寿命(完全充放电次数),从中随机抽取了20个进行检测,数据整理如下:完全充放电次数t充电宝数量/个23105(1)本次检测采用的是抽样调查,试说明没有采用普查的理由;(2)根据上述信息,下列说法中正确的是________(写出所有正确说法的序号);①这20个充电宝的完全充放电次数都不低于300次;②这20个充电宝的完全充放电次数t的中位数满足;③这20个充电宝的完全充放电次数t的平均数满足.(3)估计这批充电宝中完全充放电次数在600次及以上的数量.22.在3张相同的小纸条上分别写有“石头”、“剪子”、“布”.将这3张小纸条做成3支签,放在不透明的盒子中搅匀.(1)从盒子中任意抽出1支签,抽到“石头”的概率是________;(2)甲、乙两人通过抽签分胜负,规定:“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”.甲先从盒子中任意抽出1支签(不放回),乙再从余下的2支签中任意抽出1支签,求甲取胜的概率.23.如图,B、E、C、F是直线l上的四点,相交于点G,,,.(1)求证:是等腰三角形;(2)连接,则与l的位置关系是________.24.如图,在平面直角坐标系中,一次函数的图像与反比例函数的图像相交于点、.(1)求一次函数、反比例函数的表达式;(2)连接,求的面积.25.书画装裱,是指为书画配上衬纸、卷轴以便张贴、欣赏和收藏,是我国具有民族传统的一门特殊艺术.如图,一幅书画在装裱前的大小是,装裱后,上、下、左、右边衬的宽度分别是a m、b m、c m、d m.若装裱后与的比是,且,,,求四周边衬的宽度.26.对于平面内有公共点的两个图形,若将其中一个图形沿着某个方向移动一定的距离d后与另一个图形重合,则称这两个图形存在“平移关联”,其中一个图形叫做另一个图形的“平移关联图形”.(1)如图1,B、C、D是线段AE的四等分点.若,则在图中,线段AC的“平移关联图形”是________,________(写出符合条件的一种情况即可);(2)如图2,等边三角形的边长是2.用直尺和圆规作出的一个“平移关联图形”,且满足(保留作图痕迹,不要求写作法);(3)如图3,在平面直角坐标系中,点D、E、G的坐标分别是、、,以点G为圆心,r为半径画圆.若对上的任意点F,连接所形成的图形都存在“平移关联图形”,且满足,直接写出r的取值范围.27.将边长均为的等边三角形纸片叠放在一起,使点E、B分别在边上(端点除外),边相交于点G,边相交于点H.(1)如图1,当E是边的中点时,两张纸片重叠部分的形状是________;(2)如图2,若,求两张纸片重叠部分的面积的最大值;(3)如图3,当,时,与有怎样的数量关系?试说明理由.28.在平面直角坐标系中,二次函数的图像与x轴相交于点A、B,与y轴相交于点C.(1)________;(2)如图,已知点A的坐标是.①当,且时,y的最大值和最小值分别是s、t,,求m的值;②连接,P是该二次函数的图像上位于y轴右侧的一点(点B除外),过点P作轴,垂足为D.作,射线交y轴于点Q,连接.若,求点P的横坐标.参考答案1.C2.D3.B4.B5.A6.C7.A8.D9.410.11.12.13.14.15.16.17.18.19.(1)(2)解析:(1)解:,得:,解得:;把代入①,得:,解得:;∴方程组的解为:.(2)解:,由①,得:;由②,得:;∴不等式组的解集为:.20.,解析:解:,当时,原式.21.(1)见解析(2)①②(3)500个解析:(1)解:对充电宝的使用寿命进行调查,对充电宝具有破坏性,故不能采用普查的方式.(2)解:由统计表可知:这20个充电宝的完全充放电次数都不低于300次;故①正确;将数据排序后,第10个和第11个数据均位于,故这20个充电宝的完全充放电次数t的中位数满足;故②正确;由统计表的中的数据可知,的数据只有2个,故平均数一定大于400,故③错误;故答案为:①②;(3)解:(个).22.(1)(2)解析:(1)解:∵一共有3支签,写有“石头”的签有1支,且每支签被抽到的概率相同,∴从盒子中任意抽出1支签,抽到“石头”的概率是,故答案为:;(2)解:设分别用A、B、C表示“石头”、“剪子”、“布”,列表如下:甲乙由表格可知,一共有6种等可能性的结果数,其中甲获胜的结果数有,,,共3种,∴甲获胜的概率为.23.(1)见解析(2)解析:(1)证明:在和中,∴,∴,∴,∴是等腰三角形;(2)∵,,∴,∴,∴,∵,∵,∴,∴.24.(1),(2)解析:(1)解:∵一次函数的图像与反比例函数的图像相交于点、,∴,∴,∴反比例函数的解析式为:,,∴,解得:,∴一次函数的解析式为:;(2)解:设直线与轴交于点,∵,∴当时,,∴,∴的面积.25.上、下、左、右边衬的宽度分别是解析:解:由题意,得:,,∵与的比是,∴,解得:,经检验是原方程的解.∴上、下、左、右边衬的宽度分别是.26.(1),(2)图见解析(答案不唯一)(3)或解析:(1)解:∵B、C、D是线段AE的四等分点.,∴,∴,∴线段的平移图形是,;故答案为:,;(2)解:如图:即为所求;由作图可知:,∴四边形为菱形,∴,∵,∴四边形为菱形,∴,∴即为所求;(3)∵点D、E、G的坐标分别是、、,∴,∴,∵对上的任意点F,连接所形成的图形都存在“平移关联图形”,且满足,且,∴,当在圆外时,∵,,∴,∴,∴.当在圆内时,则:,∴,∴;综上:或.27.(1)菱形(2)(3),理由见解析解析:(1)解:如图所示,连接∵都是等边三角形,∴,∴四点共圆,∵点E是的中点,∴,∴为过的圆的直径,又∵,∴为过的圆的直径,∴点H为圆心,∴,∴,∴,∴,∴四边形是平行四边形,又∵,∴四边形是菱形,∴两张纸片重叠部分的形状是菱形;(2)解:∵都是等边三角形,∴,,∵,∴,∴,∴四边形是平行四边形,∵,∴是等边三角形,过点E作,∴设,则,,∴,∴,∵,∴当时,有最大值,最大值为;(3)解:,理由如下:如图所示,过点B作于M,过点E作于N,连接,∵都是边长为的等边三角形,∴,,∴由勾股定理可得,,∴,又∵,∴,∴,即.28.(1)3(2)①;②1或或解析:(1)解:当时,,即;(2)解:①将点A代入得,,解得:,∴解析式为:,而,∴对称轴为直线:,当,且时,∴y随着x的增大而减小,∴当,,当时,,由得,,解得:或(舍)∴;②在中,,由题意得,,,∴四边形为平行四边形或等腰梯形,当点P在x轴上方,四边形为平行四边形时,则,∵轴,∴,∵,∴,∵,∴设,则,∴,∴,∴,将点代入,得:,解得:或(舍),∴;当四边形为等腰梯形时,则,过点P作轴于点E,∵轴,∴,∴,∴,∴,∴,∵,∴,∴设,则,∴,∴,即;当点P在x轴下方抛物线上时,此时四边形为平行四边形,则,∴,设,∴,∴,∴,∴,∴,将点P代入,得:,解得:或,而当时,,故舍,∴,综上:点P的横坐标为1或或.。

最新江苏省常州市中考数学真题模拟试卷附解析

最新江苏省常州市中考数学真题模拟试卷附解析

江苏省常州市中考数学真题模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列说法中合理的是( )A .天气预报员说今天某地区下雨的概率是90%,由此可以断定今天该地区一定要下雨B .小莹在10次抛图钉的试验中发现3次钉尖朝上,据此他说钉尖朝上的概率一定是30%C .某种福利彩票的中奖概率是1%,买一张这样的彩票不一定中奖,而买100张一定会中奖D .在一次课堂上进行的试验中,甲、乙两组同学估计一枚硬币落地后正面朝上的概率分别为0.48和0.522.如图,将一正方形按如图方式分成n 个全等矩形,上、下各横排两个,中间竖排若干个,则n 的值为( )A .12B .10C .8D .63.四边形ABCD 中,AC ,BD 相交于点O ,能识别这个四边形是正方形的为( )A .AO=BO=CO=DO ,AC ⊥BDB .AB ∥CD ,AC=BDC .AD ∥BC ,∠A=∠CD .AO=C0,BO=D0,AB=DC4.1x -1=1x 2-1的解为( ) A .0 B .1 C .-1D .1或-1 5.下列计算正确的是( ) A .222448a a a +=B .()()2322366x x x -+=-C .()428428a b a b -=D .()222141x x +=+6.如图,可知三年中该区平均每年销售盒饭( ) A . 96万盒B . 95.5万盒C .112万盒D .无法判断7.有6个班的同学在大会议室里听报告,如果每条长凳坐5人,还缺8条长凳;如果每条长凳坐6人,就多出2条长凳.设来听报告的同学有x 人,会议室里有y 条长凳,则下列方程正①② 确的是( ) ①8256x x -=+;②5(8)6(2)y y -=+;③5(8)6(2)y y +=-;④8256x x +=-.A .①③B .②④C .①②D .③④8.下列说法中,不具有相反意义的一对量是( )A .向东 2.5千米和向西2千米B .上升 3米和下降1.5米C .零上 6℃和零下5℃D .收入5000元和亏损5 000元 二、填空题9.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为______________.10.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根,则k 的取值范围是 .11.如图,把直线3y x =-向上平移后得到直线AB ,直线AB 经过点(m ,n ),且35m n +=,则直线AB 的解析式是 .12.如图,有四个立方体,每个立方体的表面都分别按相同次序涂黑、白、红、黄、蓝、绿六色,将四个立方体叠放在一起,只能看到它们的部分颜色,则这个几何体最左边的一个面的颜色是 色.解答题13. 已知23x y =⎧⎨=⎩是方程组2122x y kx y +=-⎧⎨+=-⎩的解,则k= . 14.已知方程组3523x y y x =-⎧⎨=+⎩,用代入法消去x ,可得方程____ _____(不要化简). 15.如图,已知ΔABC ≌ΔADE ,则图中与∠BAD 相等的角是 . 16.在某校举办的足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分,某班足球队参加了12场比赛,共得22分,已知这个队只输了2场,那么此队胜 场.解答题17.如图,直线AB、CD相交于点O,若∠1=28°,则∠2= .18.一个长方体有条棱,有个面,有个顶点.19.计算:(1)36.6°+54°42′= ;(2)90°-23°26′= ;(3)180°-l5°24′-150°18′= .20.在统计分析数据时,常用的统计图有.三、解答题21.现有甲、乙两把不相同的锁,各配有 3 把钥匙,总共6把钥匙,从这 6 把钥匙中取2把,恰好能打开两把锁的概率是多少?要想打开甲、乙两把锁,至少取几把,至多取几把?22.如图,在四边形ABCD中,AC⊥BD,过四个顶点分别作对角线AC,BD的平行线,分别相交于E,F,G,H四点.求证:四边形EFGH是矩形.23.“所谓按行排序就是根据一行或几行中的数据值对数据清单进行排序,排序时Excel将按指定行的值和指定的“升序”或“降序”排序次序重新设定列.”这段话是对什么名称进行定义?24.解下列不等式:(1)4371x x+<-(2)324(5) 325x x xx+-+->--25.如图,已知线段a ,锐角∠α,画Rt △ABC ,使斜边AB=a ,∠A=∠α.26.如图,图中位置、尺寸修筑两条路,则草皮面积为多少?27.化简求值:22(2)(1)(1)(1)a b a b a b a +-+-++++,其中12a =,2b =-.28.计算:(1)(-2x )3·(4x 2y ) (2)(4×106)(8×104)·105(3)(m 3)4+m 10·m 2+m·m 5·m 629.某日小明在一条东西方向的公路上跑步;他从A 地出发,每隔 10 分钟记录下自己的跑步情况( 向东为正方向,单位:米):- l008, 1100 , -976 , 1010 , -827 , 9461小时后他停下来,此时他在A 地的什么方向?离A 地有多远?这 1小时内小明共跑了多远?30.如图,△ABC 中,DE ∥BC ,EF ∥AB ,23AE EC =,ABC 25S ∆=,求BFED S .【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.A4.A5.A6.A7.A8.D二、填空题9.()41,10.k>-1且k≠011.35y x =-+12.绿13.414.y=2(3y-5)+315.∠CAE16.617.28°18.12,6,819.(1)91°18′(2)66°34′ (3)14°18′20.条形统计图,折线统计图,扇形统计图三、解答题21.(1)设 1、2、3是开甲锁的钥匙,4、5、6是开乙锁的钥匙,任取 2 把共有 12、13、14、15,16,23,24,25,26,34,35,36,45,46,56 十五种,所以能打开甲、乙两把锁的概率为93155P == (2)至少取2把,至多取4把 22.先证□EFGH ,再证一个内角为直角即可23.按行排序24. (1)43x >;(2)6x ≥ 25.略26.28 m 227.22424a b ab ++,528.(1)-32x 5y ,(2)3.2×1016,(3)3m 1229.他在A 地的东面,离A 地245 米远,共跑了 5867 米 30.∵DE ∥BC ,EF ∥AB ,∴△ADE ∽△ABC,△CEF ∽△CAB, ∵23AE EC =,∴ 25AE AC =,∴4ADC S ∆=,又∵3,5CE AC =,∴9ECF S ∆=, ∴12BFED ABC ADE ECF S S S S ∆∆∆=--=.。

2023年江苏省常州市中考数学模拟检测试卷附解析

2023年江苏省常州市中考数学模拟检测试卷附解析

2023年江苏省常州市中考数学模拟检测试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,AB 切⊙O 于 B ,割线 ACD 经过圆心0,若∠BCD=70°,则∠A 的度数为( ) A .20°B .50°C .40°D .80°2. ,则a +bb 的值是( ) A .85 B .35C .32D .583.下列各点在抛物线23y x =上的是( ) A .(-1,-3)B .(一1,3)C .(-2,6)D .( 13,1)4.四边形ABCD 中,∠A :∠B :∠C :∠D=3:3:2:4,则此四边形是( ) A .一般四边形 B .平行四边形C .直角梯形D .等腰梯形5.如图,Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,则下列结论中不正确的是( )A .∠ACD=∠B B .CH=CE=EFC .AC=AFD .CH=HD 6. 解方程22(51)3(51)x x -=-的最适当的方法应是( ) A . 直接开平方法 B .配方法C .分式法D .因式分解法7.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数( ) A .至多6人 B .至少6人 C .至多5人 D .至少5人 8.若4a <,则关于x 的不等式(4)4a x a ->-的解集是( ) A .1x >-B .1x <-C .1x >D .1x <9.下列图形中,不是正方体的表面展开图的是( )10.如图,在△ABC 中,∠A :∠ABC :∠ACB =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( ) A .1:2B . 1:3C . 2: 3D . 1 : 411.用长为4 cm 、5 cm 、6 cm 的三条线段围成三角形的事件是( ) A .随机事件 B .必然事件 C .不可能事件 D .以上都不是 12.在△ABC 中,若∠A =70°-∠B ,则∠C 等于( ) A .35°B .70°C .110°D .140°13.下列说法正确的是( )A . 如果一件事情发生的机会是 99. 9%,那么它必然发生B . 即使一件事情发生的机会是0.0l%,它仍然可能发生C . 如果一件事情极有可能发生,那么它必然发生D . 如果一件事情不太可能发生,那么它就不可能发生 14.形如d c b a 的式子叫做二阶行列式,它的运算法则用公式表示为dc b a =ad -bc ,依此法则计算4132 的结果为( )A .11B .-11C .5D .-215.近似数36.0是由四舍五入得到的近似数,在下列关于其精确度的叙述中正确的是( )A .36.0与36精确度相同B .36.0精确到个数C .36.0有三个有效数字D .36.0有两个有效数字二、填空题16.如图,△ABC 中,AB=AC ,∠A=45°,AC 的垂直平分线分别交AB ,AC 于D ,E 两点,连接CD .如果AD=1,那么tan ∠BCD=________.17.已知直角三角形两条直角边的长是6和8,则其内切圆的半径是______.18.已知反比例函数y=-8x的图象经过点P(a+1,4),则a=_____.-319.三角形中,和顶角相邻的外角的平分线和底边的位置关系是 .20.图形的平移和旋转都不改变图形的和.21.如图所示,甲、乙、丙、丁四个长方形拼成正方形EFGH,中间阴影为正方形.已知甲、乙、丙、丁四个长方形面积的和是32cm2,四边形ABCD的面积是20cm2,则甲、乙、丙、丁四个长方形周长的总和为 cm.解答题三、解答题22.口袋里装有大小相同的卡片4张,且分别标有数字1,2,3,4.从口袋里抽取一张卡片不放回,再抽取一张.请你用列举法(列表或画树状图)分析并求出两次取出的卡片上的数字之和为偶数的概率.23.如图,一个底面直径AB=4 cm 的圆锥,内接一个底面直径为 2 cm,高线为 lcm 的圆柱. 求圆锥的高线和母线长.24.如图所示.在△ABC中,∠BAC=120°,AB=AC,BC=4,请你建立适当的平面直角坐标系,并写出A、B、C各点的坐标.25.一篇稿件有3020 千字,要8小时内打完,在第一小时内已打出 60 千字,问在剩余的时间内,每小时至少要打出多少字,才能按时完成任务?26.宏志高中高一年级近几年来招生人数逐年增加,去年达到 550 名,其中有面向全省招收的“宏志班”学生,也有一般普通班学生.由于场地、师资等限制,今年的招生人数最多比去年增加 100 人,其中普通班学生,可多招20%,“宏志班”学生可多招 10%,问今年最少可招收“宏志班”学生多少名?27.汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:捐款(元)1015305060人数3611136因不慎两处被墨水污染,已无法看清,但已知全班平均每人捐款38元.(1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.(2)该班捐款金额的众数、中位数分别是多少?28.如图所示,点E,F是△ABC边AC,AB上的点,请问在BC边上是否存在一点N,使△ENF的周长最小?29.如图所示,已知∠E=∠F=90°,∠B=∠C ,AE=AF ,则以下结论有哪些是成立的? 并挑选一个将理由补充完整.①∠1=∠2;②BE=CF ;③CD=FN ;④△AEM ≌△AFN . 成立的有: .我选 ,理由如下:30.将下列各数按从小 到大的次序排列,并用“<”号连结起来.1211-,1413-,2423-,65-,4746-. 612142447511132346-<-<-<-<-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.B4.C5.D6.D7.B8.B9.C10.D11.BC13.B14.A15.C二、填空题 16.-117.218.19. 平行20.形状,大小21.48三、解答题 22.解法一:列表∴P (和为偶数)41123== 方法二:画树状图:∴P13.23.由题意得SO CD SO AB '=,即214SO SO-=,∴SO=2 cm,答:圆雉高为2 cm ,母线长为 cm .3(4,3)2(4,2)1(4,1)4(3,4)2(3,2)1(3,1)4(2,4)3(2,3)1(2,1)4(1,4)3(1,3)2(1,2)4321答案不唯一,略25.423千字26.100名27.解:(1)被污染处的人数为11人.设被污染处的捐款数为x元,则 11x+1460=50×38 ,解得x=40答:(1)被污染处的人数为11人,被污染处的捐款数为40元.(2)捐款金额的中位数是40元,捐款金额的众数是50元.28.图的画法是:作点E关于BC所在直线的对称点E′,连结FE′,交BC于N,即得△NEF的周长最小29.①②④,以下略30.612142447-<-<-<-<-511132346。

最新江苏省常州市中考数学一模试卷附解析

最新江苏省常州市中考数学一模试卷附解析

江苏省常州市中考数学一模试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.圆O的直径为12cm,圆心O到直线l的距离为7cm,则直线l与圆O的位置关系是()A.相交B.相切C.相离D.不能确定2.已知圆A和圆B相切,两圆的圆心距为8cm,圆A的半径为3cm,则圆B的半径是()A.5cm B.11cm C.3cm D.5cm或11cm3.线段 PQ 的黄金分割点是R(PR>RQ),则下列各式中正确的是()A.PR RQPQ PQ=B.PR QRPQ PR=C.PQ RQPR PQ=D.PR PQPQ QR=4.如图,C是以AB为直径的⊙O上一点,已知AB=5,BC=3,则圆心O到弦BC的距离是()A.1.5 B.2 C.2.5 D.35.在一次乒乓球比赛中,甲、乙两名运动员7局球的比分依次是6:11,10:12,7:11,11:8,13:11,12:10,11:6,则运动员甲7局得分(6,10,7,11,13,12,Il)的众数、中位数、平均数分别是()A.6,11,11 B.11,12,10 C.11,11,9 D.11,11,106.如图,某电信公司提供了A B,两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则以下说法错误..的是()A.若通话时间少于120分,则A方案比B方案便宜20元B.若通话时间超过200分,则B方案比A方案便宜12元C.若通讯费用为60元,则B方案比A方案的通话时间多D.若两种方案通讯费用相差10元,则通话时间是145分或185分7.||3x≤的整数解是()A.0,1,2,3 B.0,1,2,3±±±C.1,2,3±+±D.-1,-2 ,-3,08.如图,直线a,b被直线c所截的内错角有()A.一对 B.两对 C.三对 D.四对9.关于x 、y 的方程组232(1)10x y kx k y -=⎧⎨++=⎩的解互为相反数,则k 的值是( ) A . 8 B . 9 C .10 D . 1110.用一个 5倍的放大镜去观察一个三角形,对此,四位同学有如下说法. 甲说:三角形的每个内角都扩大到原来的5倍;乙说:三角形每条边都扩大到原来的5倍;丙说:三角形的面积扩大到原来的5倍;丁说:三角形的周长扩大到原来的5倍.上述说法中,正确的个数是( )A .1B .2C .3D . 3 11.把分式方程12121=----x x x 的两边同时乘以(x-2),约去分母,得( ) A .1-(1-x )=1B .1+(1-x )=lC .1-(1-x )=x-2D .l+(1-x )=x-2 12.如果分式-23x -的值为负,则x 的取值范围是( ) A .x>2 B .x>3 C .x<3 D .x<213.如图,四边形EFGH 是四边形ABCD 平移后得到的,则下列结论中正确的个数是( ) ①平移的距离是线段AE 的长度;②平移的方向是点C 到点F ;③线段CF 与线段DG 是对应边;④平移的距离是线段DG 的长度.A .1个B .2个C .3个D .4个14.甲、乙两地相距m 千米,原计划火车每小时行x 千米. 若火车实际每小时行50千米,则火车从甲地到乙地所需时间比原来减少( )A .50m 小时B .m x 小时C .(50m m x -)小时 D .(50m m x -) 小时 二、填空题15. 已知母线长为 2 的圆锥的侧面展开图是一个圆心角为90°的扇形,则此圆锥的底面半径为 .16.如图,B 、D 、F 是⊙O 上不同的三点,P 是圆外一点,PB 经过⊙O 的圆心,PD 、PF 交 ⊙O 于C 、E ,请添加一个条件,使弦 CD= EF ,则添加的条件是 .17.反比例函数14y x =,其比例系数为 ,自变量 x 的取值范围是 . 18.已知代数式(5)10x x ++与代数式925x -的值互为相反数,则x = .19.如图,已知矩形ABCD 中,AB=2BC ,E 在CD 上,且AE=AB ,则BCEC = . 20.判断线段相等的定理(写出2个)如: .21.已知等腰△ABC 中,AB=AC ,∠B=60°,则∠A =_________. 22.方程组42x y x y +=⎧⎨-=⎩ 中的两方程相加可得 ;两方程相减可得 .所以方程组的解是 .23.天河宾馆在重新装修后,准备在大厅的主楼梯上铺设某种红色地毯.已知这种地毯每平方米售价30元,主楼梯宽2 m ,其侧面如图所示,则购买地毯至少需要 元.三、解答题24.如图,AB 、CD 是⊙O 的两条直径,过点A 作AE ∥CD 交⊙O 于点 E ,连结 BD 、DE ,求证:BD=DE .25.小玲家的鱼塘里养了2000条鲢鱼,现准备打捞出售,为了估计鱼塘中鲢鱼的总量,从鱼塘中捕捞了3次进行统计,得到数据如下表:鱼的条数平均每条鱼的质量第一次捕捞20 1.6 kg第二次捕捞10 2.2 kg第三次捕捞10 1.8 kg试求出鱼塘中鲢鱼的总质量约是多少?26.如图,在△ABC中,AB = AC,∠BAC =28°,分别以AB、,AC为边作等腰直角三角形ABD 和等腰直角三角形 ACE,使∠BAD= ∠CAE =90°.(1)求∠DBC的度数;(2)分别连按BE、CD. 试说明CD=BE.27.如图,把4×4的正方形方格图形分割成两个全等图形,请在下图中,沿虚线画出四种不同的分法,把4×4的正方形分割成两个全等图形.28.若n为整数,则22+--能被8整除吗?请说明理由.n n(21)(21)29.人们发现某种蟋蟀在1min 时间内所叫次数 x(次)与当地温度 T(℃)之间的关系可近似地表示成T= ax+b,下面是该种蟋蟀1min 所叫次数与温度变化情况对照表:蟓蟀叫的次数x…8498119…温度T(℃)…151720…(1)根据表中的数据确定 a,b 的值;(2)如果蟋蟀1min 时间内叫了 63 次,那么估计该地当时的温度大约是多少?30.如图,直线AD与BE相交于点0,∠1与∠2互余,∠2=62°,求∠3的度数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.B4.B5.D6.D7.B8.B9.D10.B11.D12.B13.B14.C二、填空题15.1216. PB 平分∠DPF 或PC =PE17.14,≠0 18.1 或-1519.32- 20.略21.60°22.26x =,22y =,31x y =⎧⎨=⎩23.480三、解答题24.∵AE ∥CD ,∴⌒AC = ⌒DE ,∵∠AOC=∠BOD ,∴⌒AC = ⌒BD ,DE=BD .25.3600 k26.(1)在△ABC 中,AB=AC ,∠BAC=28°,∴∠ABC=12×(180°-28°)=76°. ∵△ADB 为等腰直角三角形,∴AD=AB ,∠DBA=45°,∴∠DBC=∠DBA+∠ABC=45°+76°=121°.(2)∵△ABD 和△ACE 都是等腰直角三角形,AB=AD ,AC=AE ,∠BAD=∠CAE=90°, ∴∠BAD+∠BAC=∠CAE+∠BAC ,即∠CAD=∠BAE .又∵AB=AC ,∴AD=AB=AC=AE ,∴△CAD ≌△BAE ,∴CD=BE . 27.28.能被8整除29.(1)17a =,3b =;(2) 12℃ 30.28°。

2023年江苏省常州市中考数学摸底考试试卷附解析

2023年江苏省常州市中考数学摸底考试试卷附解析

2023年江苏省常州市中考数学摸底考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.一张矩形纸片按如图甲和乙所示对折,然后沿着图丙中的虚线剪下,得到①,②两部分,将①展开后得到的平面图形是()A.三角形B.矩形C.菱形D.梯形2.一个五边形能画出的对角线条数为()A.2条B.3条C.4条D.5条3.在一组50个数据的数组中,平均数是42,将其中两个数l30和50舍去,则余下的数的平均数为()A.38 B.39 C. 40 D.414.已知在△ABC和△DFE中,∠A=∠D=90°,则下列条件中不能判定△ABC和△DEF全等的是()A.AB=DE,AC=DF B.AC=EF,BC=DF C.AB=DE,BC=FE D.∠C=∠F,BC=FE 5.下列多项式的运算中正确的是()A.222()x y x y-=-B.22(2)(22)24a b a b a b----C.11(1)(1)1222la b ab+-=-D.2(1)(2)2x x x x+-=--6.某课外小组分组开展活动,若每组 7 人,则余下 3 人;若每组8人,则少5人,设课外小组的人数为 x人和分成的组数为y 组,根据题意可列方程组()A.7385y xy x=+⎧⎨+=⎩B.385y xx y=+⎧⎨=+⎩C.7385y xy x=-⎧⎨=+⎩D.7385y xy x=+⎧⎨=+⎩二、填空题7.如图,AB 是⊙O 的直径,D 在 AB 的延长线上,BD = BO,DC 切⊙O于点 C,则∠CAD= .8.已知I为△ABC的内心,∠B=50O,则∠AIC= .9.Rt△ABC中, 4cos2A-3=0,那么∠A=________.10.△ABC的两边分别为5,12,另一边c为奇数,且a+b+c•是3•的倍数,•则c•应为________,此三角形为________三角形.11.平行四边形相邻两边长分别为7和2,若较短的一条对角线与相邻两边所围成的三角形的周长为偶数.则这条对角线的长为.12.如图,l是四边形ABCD的对角线,如果AD∥BC,OB=OD有下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④A0=C0.其中正确的结论是 (把序号填上).13.P(2,a),Q(b,-3)关于x轴对称,则a= ,b= .14.如图,AB⊥BD,CD⊥BD,AB=DC,∠A=68°,则∠C= 度.15.为了了解某一路口的汽车流量,调查了10天每天同一时段里通过该路口的汽车车辆数,结果如下:167、183、209、195、178、204、215、191、208、197,试用计算器求出平均每天车辆数为(精确到1辆) 辆.16.袋中装有 6个小球,颜色为红、白、黑三种,除颜色外其他均相同. 若要求摸出一个球是自球和不是白球的可能性相等,则黑球和红球共有个.17.若1232n ,则n=_____.18.一个号码映在镜子里的像如图所示,则这个号码是________.19.看图填空.(A、0、B在一条直线上)(1)∠AOD= + =∠AOE- ;(2)∠BOE+∠EOC= ;(3)∠EOA-∠AOD= ;(4)∠AOC+ = 180°;(5)若0C平分∠AOD,0E平分∠BOD,则∠AOD=2 =2 .∠BOE= =12.20.华氏温度f和摄氏温度C的关系为9325f c=+,当人的体温为 37℃时,华氏温度为度.解答题21.为了解决老百姓看病难的问题,卫生部门决定大幅度降低药品价格,某种常用药品降价40%后的价格为a元,则降价前此药品价格为元.3a5解答题三、解答题22.如图,在灯光下有一把遮阳伞,画出遮阳伞在灯光下影子的示意图.(用线段表示)23.某校八年级将举行班级乒乓球对抗赛,每个班必须选派出一对男女混合双打选手参赛,八年级一班准备在小娟、小敏、小华三名女选手和小明、小强两名男选手中,选男、女选手各一名组成一对参赛,一共能够组出哪几对?如果小敏和小强的组合是最强组合,那么采用随机抽签的办法,恰好选出小敏和小强参赛的概率是多少?24.如图,在梯形ABCD中,AD∥BC,AB=CD,延长CB至E,使EB=AD,连AE,求证:AE=AC.25.某班组织一次数学测试,全班学生分为两组,这两组成绩(单位:分)的分布情况如下图所示.(1)全班学生数学成绩的众数是分.全班学生数学成绩为众数的有人,全班学生数学成绩的中位数是分;(2)分别计算这两个小组超过全班数学成绩中位数的人数占全班人数的百分比.26.如图争指出左面三个平面图形是右面这个物体的三视图中的哪个视图.27.如图已知∠B=∠C,AB=AC,则BD=CE,请说明理由(填充)解:在△ABD和△ACE中∠B=∠C()∠A= ( )AB= ( 已知)∴△ABD≌ ( )∴BD= ( )28.有这样一道题,计算)3()2(2)433(323323223y y x x y xy x xy y x x -+-++---- 的值,其中3,51-==y x ,有位同学说即使不告诉他x 的值,他也能求出来,你觉得他说的有道理吗?为什么?29.如图,一个长方体,(1)用符号表示出与棱A 1B 1平行的棱;(2)用符号表示出过棱AB 的端点且垂直于AB 的棱;(3)棱DD 1与棱BC 没有交点,它们平行吗?30.列式计算:(1)13 的相反数,加上-27 的绝对值,再加上负 31 的和.(2)从-3 中减去712-与16-的和,所得的差是多少? (3)和为-8. 6,一个加数为 -3. 2,求另一个加数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.C4.B5.D6.C二、填空题7.308.115°9.30°10.13,直角11.712.①②④13.3,214.6815.19516.317.-518.250219.(1)∠AOC,∠COD,∠DOE (2)∠BOC (3)∠DOE (4)∠COB (5)∠AOC,∠COD,∠DOE,∠BOD20.98.621.三、解答题22.线段 AB 就是阳伞柱灯光下的投影.23.共 6 对,恰好选出小敏和小强的概率是16. 24.连结BD25.(1)95,20,92.5;(2)第一组超过全班数学成绩中位数的人数占全班人数的百分比为111100%24%50+⨯=,第二组超过全班数学成绩中位数的人数占全班人数的百分比为94100%26%50+⨯=. 26.从左到右依次为主(或俯)视图、俯(或主)视图、左视图 27.略28.有道理,原式=-3y 3,与x 值无关,当3y =-时,原式=81 29.(1)AB ∥DC ∥D 1C 1∥A 1B 1 (2)AA 1⊥AB ,DA ⊥AB ,CB ⊥AB ,BB 1⊥AB (3)不平行. 30.(1)(13)|27|(31)17-+-+-=- (2)711(3)[()()]21264---+-=- (3)-8.6-(-3.2)=-5.4。

2023年江苏省常州市中考数学综合模拟试卷附解析

2023年江苏省常州市中考数学综合模拟试卷附解析

2023年江苏省常州市中考数学综合模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知α是等腰直角三角形的一个锐角,则sin α的值为( )A .12B .22C .32D .12.用两个全等的三角形拼成四边形,可拼成平行四边形的个数是( ) A .2个 B .3个 C .4个 D .5个3.根据下列条件能画出唯一△ABC 的是 ( )A .AB =3,BC =4,AC =8B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =64.下列命题中是真命题的是 ( )A .对角线互相垂直的四边形是平行四边形B .对角线相等的四边形是平行四边形c .对角线互相垂直且相等的四边形是平行四边形D .对角线互相平分的四边形是平行四边形5.在函数1y x =-中,自变量x 的取值范围是( )A .x ≥-lB .x ≠1C .x ≥1D .x ≤16.关于不等式22x a -+≥的解集如图所示,a 的值是( )A .0B .2C .-2D .-47.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等),任取一个两位数,是“上升数”的概率是( )A .21B .52C .53D .187 8.使分式221a a a ++的值为零的a 的值是( ) A .1B .-1C .0D .0 或-1 9.观察下面的图形,由图甲变为图乙,其中既不是通过平移也不是通过旋转得到的图案是( )10.如图,在数轴上表示到原点的距离为3个单位的点有( )A .D 点B .A 点C .A 点和D 点 D .B 点和C 点二、填空题11.若锐角 ∠A 满足02sin(15)3A -=,则∠A= . 12.计算:cos45°= ,sin60°×cos30°= .13.已知,AB 和DE 是直立在地面上的两根立柱.AB =5m ,某一时刻AB 在阳光下的投影为3m ,同时测量出DE 在阳光下的投影长为6m ,则DE = m .14.已知函数y =(m +2)x m(m+1)是二次函数,则m=______________.115.若二次函数2y ax =的图象经过(1,一2),则a= .16.当三角形面积是8cm 2时,它的底边上的高h (cm )与底边长x(cm)之间的函数解析式是 .h=16x17.已知一个样本容量为40的样本,把它分成七组,第一组到第五组的频数分别为5,12,8,5,6,第六组的频率为0.05,第七组的频率为 .18.点(22)A ,关于原点O 对称的点A '的坐标为( , ).19.如图,从2街4巷到4街2巷,走最短的路线的走法共有 种.20.如图,将△ABC 沿CA 方向平移CA 长,得△EFA ,若△ABC 的面积为3cm 2,则四边形BCEF 的面积是__________cm 2.21.如图所示,AD 是△ABC 的中线,AB=8.AC=6,则△ABD 与△ACD 的周长之差是 .22.如图,0A的方向是北偏东l5°,0B的方向是西偏北50°.(1)若∠AOC=∠AOB,则OC的方向是;(2)OD是OB的反向延长线,0D的方向是;(3)∠BOD可看作是0B绕点0逆时针方向旋转至0D所形成的角,作∠BOD的平分线OE,OE 的方向是;(4)在(1)、(2)、(3)的条件下,OF是OE的反向延长线,则∠COF= .三、解答题23.太阳光线与水平线的夹角在新疆地区的变化较大,夏至时夹角最大,冬至时夹角最小,最小夹角约为28.现有两幢居民住宅楼高为15米,两楼相距20米,如图所示.(1)在冬至时,甲楼的影子在乙楼上有多高?(2)若在本小区内继续兴建同样高的住宅楼,楼距至少应该多少米,才不影响楼房的采光(前一幢楼房的影子不能落在后一幢楼房上)?(计算结果精确到0.1米)24.如图,花丛中有一路灯灯杆 AB,在灯光下,小明在D点处的影长 DE= 3m,沿 BD 方向行走到达G点,DG= 5m,这时小明的影长GH= 5m .如果小明的身高为 1.7m,求路灯灯杆AB 的高度(精确到0.1 m).25.如图,△ABC中,∠ABC=100°,AM=AN,CN=CP,求∠MNP的度数.26.如图,在△ABC中,AB=AC=41 cm,D是AC上的点,DC= 1cm,BD=9 cm,求△ABC 的面积.27.如图,在直线a,b,c,d 构成的角中,已知∠1 =∠3,∠2=110°,求∠4 的度数.28.小敏在解方程2x+5=x+7时,是这样写解的过程的:2x+5=x+7=2x-x=7-5=x-2(1)小敏这样写对不对?为什么?(2)应该怎样写?29.在数轴上-7 与 37 之间插入三个数,使这五个数的每相邻两个点之间的距离相等. 求插入的三个数.30.如图所示,已知∠ACB=90° , AB=13 , AC=12 ,∠BCM=∠BAC,求cosB 及点B 到直线MN的距离.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.C4.D5.C6.A7.B8.D9.A10.C二、填空题11.75°12.2,3413.1014.15.-216.17.0.0518.(22)--,19.620.921.222.(1)北偏东70°(2)南偏东40°(3)南偏西50°(4)20三、解答题23.解:(1)如图所示,作DE AB ⊥,垂足为E由题意可知28ADE ∠=,20DE BC ==在Rt ADE △中,AE ADE DC =6.1028tan 20≈⋅= ,则DC EB AE =-= 即冬至时甲楼的影子在乙楼上约4.4(2)楼距至少28.2米,才不影响楼房的采光.24. 28 A 甲B C 乙设 AB=x, BD=y ,△ABE 中,∵CD ∥AB ,∴△ECD ∽△EAB ,∴1.733x y =+ △ABH 中,∵FG ∥AB ,∴△HGF ∽△HBA ,∴1.7510x y=+,解得 x=5.95 即路灯杆 AB 的高度约为 6.0 m . 25.40°26.184.5 cm 227.110°28.(1)错,解方程不能用连等表示 (2)改正:x=229.4,15,2630.如图过 B 作BH ⊥MNM 于H ,222213125BC AB AC =-=-=,5sin sin 13BC A BCH AB ===∠,5cos 13B = ∵sin 5BH BH BCH BC ∠==,∴2513BH =,即 B 到直线的距离为2513.。

最新江苏省常州市中考数学模拟考试试题附解析

最新江苏省常州市中考数学模拟考试试题附解析

江苏省常州市中考数学模拟考试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.给出下列四个事件:(1)打开电视,正在播广告;(2)任取一个负数,它的相反数是负数;(3)掷一枚均匀的骰子,骰子停止转动后偶数点朝上;(4)取长度分别为2,3,5的三条线段,以它们为边组成一个三角形.其中不确定事件是()A.(1)(2)B.(1)(3)C.(2)(3)D.(2)(4)2.已知△ABC如右图,则下列4个三角形中,与△ABC相似的是()3.为解决药价偏高给老百姓带来的求医难的问题,国家决定对某药品分两次降价.若设每次降价的百分率为x,该药品的原价是m元,降价后的价格是y元,则可列方程为()A.y=2m(1-x)B.y=2m(1+x)C.y=m(1-x)2 D.y=m(1+x)24.已知点(0,0),(0,一2),(-4,0),(一1,2),(2,-2),(-2,4).其中在x 轴上的点的个数有()A.0个B.1个C.2个D.3个5.图 1 是甲、乙、丙三人玩跷枝的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是()A. B.C.D.6.在数轴上表示不等式2x≥-的解集,正确的是().A.B.C.D.7.已知甲、乙两组数据的平均数都是5,甲组数据的方差2112S =甲,乙组数据的方差2110S =乙,则( ) A .甲组数据比乙组数据的波动大 B .乙组数据比甲组数据的波动大 C .甲组数据与乙组数据的波动一样大 D .甲、乙两组数据的波动性大小不能比较 8.与如图所示的三视图相对应的几何体是( )A .B .C .D .9.某牛奶厂家接到 170万箱牛奶的订购单,预计每天加工完 10万箱,正好能按时完成,后因客户要求提前3天交货,设每天应多加工x 万箱,则可列方程( ) A .17017031010x +=+ B .17017031010x -=+ C .17017031010x -=+D .17017031010x+=+ 10.在a 2□4a □4的空格□中,任意填上“+”或“-”,在所有得到的代数式中,能构成完全平方式的概率是( ) A .1B .12C .13D .1411.汽车上山速度为 a (km/h ),下山的速度为b (km/h ),上山和下山行驶的路程相同,则 汽车的平均速度为( ) A .11ab+B .1a b+ C .2aba b+ D .2a b +12.x 是一个两位数,y 是一个一位数,如果把y 放在x 的左边,那么所成的三位数表示为( ) A .yxB .100y x +C .10x y +D .100x y + 13.用长为 20m 的铁丝围成一个长方形方框使长为 6.2m ,宽为 x (m ),则可列方程为( )A .2 6.220x +⨯=B . 6.220x +=C .2 6.220x +=D .2( 6.2)20x +=二、填空题14.在一个有两层的书架中,上层放有语文、数学两本书,下层放有科学、英语、社会 3 本书,由于封面都被同样的纸包起来,无法辨认,现分别从上下层中各抽出一本书,恰好分别是数学和社会的概率是 .15.数形结合是重要的数学思想.一次数学活动中,小明为了求12 +122 +123 +……+12n 的值,设计了如图2所示的几何图形.请你利用这个几何图形求12 +122 +123 +……+12n 的值为(结果用n 表示).16.已知平行四边形的两条对角线互相垂直且长分别为12cm 和6cm ,那么这个平行四边形的面积为 2cm .17.如图,在平面直角坐标系中,OA=10,点B 的坐标为(8,0),则点A 的坐标为 .18.在△ABC 中,与∠A 相邻的外角等于l35°,与∠B 相邻的外角也等于l35°,则△ABC 是 三角形.19.下图是由一些相同的小正方体构成的几何体的三视图,则这个几何体共有小正方体 个.20.把梯形面积公式1()2S a b h =+变形成已知S ,b ,h 求a 的公式,则a = .21.在每周一次的县长接待日中,各种问题都有所反映,一个月后对这些问题进行统计,并制成统计图如图. 则在这一个月内接待的300人次中,反映中小学收费问题的有 人次,反映土地审批的有 人次,反映房产质量的比反映停车问题的多 人次.22.若223P a ab b =++,223Q a ab b =-+,则代数式[2()]P Q P P Q -----= .23.计算:()()4622-÷-=___________.三、解答题24.如图,在半径为27m 的圆形广场中央点 0的上空安装一个照明光源S ,S 射向地面的光束呈圆锥形,其轴截面△SAB 的顶角为 120°,求光源离地面的垂直高度 SO.25.某市市政府为了解决市民看病难的问题,决定下调药品的价格,某种药品经过连续两次降价后,由每盒200元下调至l28元,求这种药品平均每次降价的百分率是多少?26.设a,b是一个直角三角形两条直角边的长,且2222+++=,求这个直角三角a b a b()(4)21形的斜边长.327.已知:⊙0的半径为r,点0到直线l的距离为d,且r,d满足方程0+-d-r,试)422=(7判断⊙0与直线l的位置关系.28.如图,将△ABC先向上平移5格得到△A′B′C′,再以直线MN为对称轴,将△A′B′C′作轴对称变换,得到△A″B″C″,作出△A′B′C′和△A″B″C″.29.如图,四边形ABCD是轴对称图形:(1)画出它的所有对称轴;(2)若点P是BC上一点,则点P关于对称轴对称的点在哪条线段上?30.解下列方程:(1)3247x x-=-;(2)43(20)57(20)x x x x--=--;(3)911 36x x+-=;(4)2231 46x x+--=.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.C4.C5.C6.D7.B8.A9.A10.B11.C12.D13.D二、填空题 14. 1615. 1-12n 16.3617.(8,6)18.等腰直角19.520.2S bhh-21. 30,60,6022.12ab 23.-4三、解答题 24.由已知得:SA=SB ,∠ASB= 120°,∴∠A=∠B=30°,∵SO ⊥AB ,∴tan SOA OA=,∴tan 27SO OA A ===答:光源离地面的垂直高度为 9m .25.20%26..相离.28.略29.(1)图略;(2)在线段AB 或CD 上30.(1)合并同类项,得5x -=-,解得5x =.(2)移项、合并并同类项,得4(20)x x -=,解得16x =. (3)去分母,得2916x x --=,解得1x =-. (4)去分母,得3(2)2(23)12x x +--=,解得0x =.。

2023年江苏省常州市中考数学模拟考试试卷附解析

2023年江苏省常州市中考数学模拟考试试卷附解析

2023年江苏省常州市中考数学模拟考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,小敏在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,若命中篮筐中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5 mD .4.6 m2.抛物线223y x x =-++的顶点在( )A . 第一象限B .第二象限 C. 第三象限 D . 第四象限 3.如图,在⊙O 中,直径CD=5,CD ⊥AB 于E ,OE= 0.7,则AB 的长是( ) A .2.4B .4.8C .1.2D .2.5 4.两个圆的圆心都是O ,半径分别为 r 1和 r 2,且 r 1<OA<r 2,那么点A 在( )A .半径为r 1的圆内B .半径为r 2 的圆外C .半径为r 1的圆外,半径为r 2的圆内D .半径为r 1的圆内,半径为r 2的圆外5.抛物线y =(x -1)2+2的对称轴是( )A .直线x =-1B .直线x =1C .直线x =-2D .直线x =2 6.已知AABC 的三个内角度数比为2:3:4,则这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 7.下列图形中.成轴对称图形的是 ( )8.已知线段AB ,在BA 的延长线上取一点C ,使CA=3AB ,则线段CA 与线段CB 之比为( )A .3:4B .2:3C .3:5D .1:29.用四舍五入法对60340取近似数,保留两个有效数字,结果为( )A .6.03×104B .6.0×104C .6×104D .6.0×10310.某单位第一季度账面结余-1. 3 万元,第二季度每月收支情况为(收入为正):+4. 1 万 元,+3. 5 万元,-2. 4 万元,则至第二季度末账面结余为( )A .-0.3 万元B . 3.9 万元C .4.6 万元D .5.7 万元二、填空题11.一个凸多边形的内角和与外角和相等,它是 边形 . 12.定理“在一个三角形中,等角对等边”,它的逆定理是 .13.当2a =-时,2(1)a a +-= .14.请举出一个主视图和俯视图相同,但是左视图不同的几何体: .15.如图 ,直线a ∥b ,则∠ACB = .16.当x=2时,代数式ax 3+bx+1的值为6;那么当x=-2时,这个代数式的值是_____.17.一个汽车牌照在镜子中的像为,则该汽牌照号码为 .18.填空:(1)若1041n a a a ÷=,,则n= ; (2)若104n a a a ÷=,则n= ;(3)若1232n =,则n= ; (4)若0.000520 5.2010n =⨯,则n= .19.若223P a ab b =++,223Q a ab b =-+,则代数式[2()]P Q P P Q -----= .20.已知x 2+4x -2=0,那么3x 2+12x +2000的值为 .21.一个两位数,个位上的数字为a ,十位上的数字比个位上的数字大2,用代数式表示这个两位数为 .三、解答题22.小明为了测量某一高楼 MN 的高,在离 N 点 200 m 的 A 处水平放置了一个平面镜,小明沿 NA 方向后退到点C 正好从镑中看到楼的顶点M ,若 AC=l5m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1 m).23.某市的A 县和B 县春季育苗,分别急需化肥90 t 和60 t ,该市的C 县和D 县分别储化肥l00 t 和50 t ,全部调配给A 县和B 县,已知C 、D 两县化肥到A 、B 两县的运费(元/吨)如下表所示:(1)设C 县运到A 县的化肥为x(t),求总运费W(元)与x(t)的函数解析式,并写出自变量x 的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.24.已知分式:221A x =-,1111B x x=++-.()1x ≠±.下面三个结论:①A ,B 相等,②A ,B 互为相反数,③A ,B 互为倒数,请问哪个正确?为什么?25.如图①所示,长方形通过剪切可以拼成直角三角形,方法如下:仿照上图,用图示的方法,解答下列问题:(1)如图②所示,已知直角三角形,设计一种方案,将它分成若干块,再拼成一个与之等面积的长方形;(2)如图③所示,对任意一个三角形,设计一种方案,把它分成若干块,再拼成一个与它等面积的长方形.26.某市汽车站A到火车站F有四条不同的路线.如图所示,其中最短的路线是什么?(用字母表示)?27.某县教育局专门对该县2004年初中毕业生毕业去向做了详细调查,将数据整理后,绘制成统计图,根据图中信息回答:(1)已知上非达标高中的毕业生有2328人,求该县2004年共有初中毕业生多少人?(2)上职业高中和赋闲在家的毕业生各有多少人?(3)今年被该县政府确定为教育发展年,比较各组的百分率,你对该县教育发展有何积极建议?请写出一条建议.28.如图是武汉市目前水资源结构的扇形统计图,请根据图形回答下列问题:(1)图中各个扇形分别代表了什么?你知道地下水所占的百分比是多少吗?(2)从统计图中你能确定武汉市的供水资源主要来自哪里?29.有一种“24 点”的扑克牌游戏规则是:任抽4张牌,用各张牌上的数和加、减、乘、除四则运算(可用括号)列一个算式,先得计算结果为“24”者获胜(J、Q、K 分别表示11、12、13,A表示 1). 小明、小聪两人抽到的 4 张牌如图所示,这两组牌都能算出“24 点”吗?为什么?如果算式中允许包含乘方运算,你能列出符合要求的不同的算式吗?30.学校现有校舍面积20000平方米,为改善办学条件,计划拆除部分旧校舍,建造新校舍,使新建校舍的面积是拆除时校舍面积的3倍还多1000平方米.这样,计划完成的校舍总面积比现有校舍面积增加20%.已知拆除旧校舍每平方米需费用80元,建造新校舍每平方米需费用700元,问完成计划需费用多少元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.B4.C5.B6.A7.D8.A9.B10.B二、填空题四12.在一个三角形中,等边对等角13.114.答案不唯一,如横放的圆柱15.78°16.-417.SM1796318.(1)14;(2)14;(3)-5;(4)-419.12ab20.200621.1120a+三、解答题22.∴BC⊥CA,MN⊥AN,∴∠C=∠N,∵∠BAC=∠MAN..∴△BCA∽△MNA.∴BC ACMN AN=,即1.615200MN=, 1.620015213()MN m=⨯÷≈⋅.23.(1)W=10x+4800(40≤x≤90);(2)C县运到A县40 t,运到B县60 t;D县运到A县50 t 24.解:A B,互为相反数正确.因为:1111Bx x=-+-11(1)(1)(1)(1)x xx x x x-+=-+-+-(1)(1)(1)(1)x xx x--+=+-221Ax-==--.25.(2)26.从A经过线段BE到F27.(1)7760人 (2)1017人;923人 (3)如“赋闲在家的学生比例大,而职高发展不足,建议发展职高以吸纳赋闲在家的学生.”又如“普通高中之中,达标高中所占比例偏低,建议把更多的非达标高中发展为达标高中.”28.(1)长江水,地下水,水库水,湖泊水;7% (2)长江水29.(1)小明抽到的牌可以这样算:①(3-2+5)×4=24,②(3+4+5)×2 = 24 ,③ 52 - 4 + 3 = 24 , ④5+3+42 =24 ,允许包含乘方运算时可列式为 5+3+24 =24 (2)小聪抽到的牌可以这样算:①(11 + 10)+(5-2) =24 ,②11×10÷5+2 = 24 ,③11×2+10÷5=24,④lO÷5×11+2=24,允许包含乘方运算时可列式为 52-11+10 =2430.3970000元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省常州市中考数学试卷一、选择题(共8小题,每小题2分,满分16分)1.﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.2.计算3﹣(﹣1)的结果是()A.﹣4 B.﹣2 C.2 D.43.如图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体 D.圆锥体4.如图,数轴上点P对应的数为p,则数轴上与数﹣对应的点是()A.点A B.点B C.点C D.点D5.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A. cm B.5cm C.6cm D.10cm6.若x>y,则下列不等式中不一定成立的是()A.x+1>y+1 B.2x>2y C.>D.x2>y27.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2 B.4 C.5 D.78.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)的自变量和对应函数值如表:x …﹣1 0 2 4 …y1…0 1 3 5 …x …﹣1 1 3 4 …y2…0 ﹣4 0 5 …当y2>y1时,自变量x的取值范围是()A.x<﹣1 B.x>4 C.﹣1<x<4 D.x<﹣1或x>4二、填空题(共10小题,每小题2分,满分20分)9.化简:﹣=______.10.若分式有意义,则x的取值范围是______.11.分解因式:x3﹣2x2+x=______.12.一个多边形的每个外角都是60°,则这个多边形边数为______.13.若代数式x﹣5与2x﹣1的值相等,则x的值是______.14.在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是______km.15.已知正比例函数y=ax(a≠0)与反比例函数y=(k≠0)图象的一个交点坐标为(﹣1,﹣1),则另一个交点坐标是______.16.如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,则∠ODC=______.17.已知x、y满足2x•4y=8,当0≤x≤1时,y的取值范围是______.18.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是______.三、解答题(共10小题,满分84分)19.先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.20.解方程和不等式组:(1)+=1(2).21.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题:(1)本次共调查了______名市民;(2)补全条形统计图;(3)该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数.22.一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同(1)搅匀后从袋子中任意摸出1个球,求摸到红球的概率;(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求两次都摸到红球的概率.23.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.24.某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.(1)求甲、乙两种糖果的价格;(2)若购买甲、乙两种糖果共20千克,且总价不超过240元,问甲种糖果最少购买多少千克?25.如图,在平面直角坐标系xOy中,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,把Rt △AOB绕点A顺时针旋转角α(30°<α<180°),得到△AO′B′.(1)当α=60°时,判断点B是否在直线O′B′上,并说明理由;(2)连接OO′,设OO′与AB交于点D,当α为何值时,四边形ADO′B′是平行四边形?请说明理由.26.(1)阅读材料:教材中的问题,如图1,把5个边长为1的小正方形组成的十字形纸板剪开,使剪成的若干块能够拼成一个大正方形,小明的思考:因为剪拼前后的图形面积相等,且5个小正方形的总面积为5,所以拼成的大正方形边长为______,故沿虚线AB剪开可拼成大正方形的一边,请在图1中用虚线补全剪拼示意图.(2)类比解决:如图2,已知边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,请把纸板剩下的部分DBCE剪开,使剪成的若干块能够拼成一个新的正三角形.①拼成的正三角形边长为______;②在图2中用虚线画出一种剪拼示意图.(3)灵活运用:如图3,把一边长为60cm的正方形彩纸剪开,用剪成的若干块拼成一个轴对称的风筝,其中∠BCD=90°,延长DC、BC分别与AB、AD交于点E、F,点E、F分别为AB、AD的中点,在线段AC和EF处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼示意图,并求出相应轻质钢丝的总长度.(说明:题中的拼接都是不重叠无缝隙无剩余)27.如图,在平面直角坐标系xOy中,一次函数y=x与二次函数y=x2+bx的图象相交于O、A两点,点A(3,3),点M为抛物线的顶点.(1)求二次函数的表达式;(2)长度为2的线段PQ在线段OA(不包括端点)上滑动,分别过点P、Q作x轴的垂线交抛物线于点P 1、Q1,求四边形PQQ1P1面积的最大值;(3)直线OA上是否存在点E,使得点E关于直线MA的对称点F满足S△AOF=S△AOM?若存在,求出点E的坐标;若不存在,请说明理由.28.如图,正方形ABCD的边长为1,点P在射线BC上(异于点B、C),直线AP与对角线BD及射线DC分别交于点F、Q(1)若BP=,求∠BAP的度数;(2)若点P在线段BC上,过点F作FG⊥CD,垂足为G,当△FGC≌△QCP时,求PC的长;(3)以PQ为直径作⊙M.①判断FC和⊙M的位置关系,并说明理由;②当直线BD与⊙M相切时,直接写出PC的长.江苏省常州市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.【考点】绝对值.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选B.【点评】本题考查了绝对值的定义,关键是利用了绝对值的性质.2.计算3﹣(﹣1)的结果是()A.﹣4 B.﹣2 C.2 D.4【考点】有理数的减法.【分析】减去一个数等于加上这个数的相反数,所以3﹣(﹣1)=3+1=4.【解答】解:3﹣(﹣1)=4,故答案为:D.【点评】本题考查了有理数的减法,属于基础题,比较简单;熟练掌握减法法则是做好本题的关键.3.如图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体 D.圆锥体【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选A.【点评】本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.4.如图,数轴上点P对应的数为p,则数轴上与数﹣对应的点是()A.点A B.点B C.点C D.点D【考点】数轴.【分析】根据图示得到点P所表示的数,然后求得﹣的值即可.【解答】解:如图所示,点P表示的数是1.5,则﹣=0.75>﹣1,则数轴上与数﹣对应的点是C.故选:C.【点评】本题考查了数轴,根据图示得到点P所表示的数是解题的关键.5.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A. cm B.5cm C.6cm D.10cm【考点】圆周角定理;勾股定理.【分析】如图,连接MN,根据圆周角定理可以判定MN是直径,所以根据勾股定理求得直径,然后再来求半径即可.【解答】解:如图,连接MN,∵∠O=90°,∴MN是直径,又OM=8cm,ON=6cm,∴MN===10(cm).∴该圆玻璃镜的半径是: MN=5cm.故选:B.【点评】本题考查了圆周角定理和勾股定理,半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.6.若x>y,则下列不等式中不一定成立的是()A.x+1>y+1 B.2x>2y C.>D.x2>y2【考点】不等式的性质.【分析】根据不等式的基本性质进行判断,不等式的两边加上同一个数,不等号的方向不变;不等式的两边乘以(或除以)同一个正数,不等号的方向不变.【解答】解:(A)在不等式x>y两边都加上1,不等号的方向不变,故(A)正确;(B)在不等式x>y两边都乘上2,不等号的方向不变,故(B)正确;(C)在不等式x>y两边都除以2,不等号的方向不变,故(C)正确;(D)当x=1,y=﹣2时,x>y,但x2<y2,故(D)错误.故选(D)【点评】本题主要考查了不等式的性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向.7.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2 B.4 C.5 D.7【考点】垂线段最短.【分析】根据垂线段最短得出结论.【解答】解:如图,根据垂线段最短可知:PC<3,∴CP的长可能是2,故选A.【点评】本题考查了垂线段最短的性质,正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短;本题是指点C到直线AB连接的所有线段中,CP是垂线段,所以最短;在实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.8.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)的自变量和对应函数值如表:x …﹣1 0 2 4 …y1…0 1 3 5 …x …﹣1 1 3 4 …y2…0 ﹣4 0 5 …当y2>y1时,自变量x的取值范围是()A.x<﹣1 B.x>4 C.﹣1<x<4 D.x<﹣1或x>4 【考点】二次函数与不等式(组).【分析】先在表格中找出点,用待定系数法求出直线和抛物线的解析式,用y2>y1建立不等式,求解不等式即可.【解答】解:由表可知,(﹣1,0),(0,1)在直线一次函数y1=kx+m的图象上,∴,∴∴一次函数y1=x+1,由表可知,(﹣1,0),(1,﹣4),(3,0)在二次函数y2=ax2+bx+c(a≠0)的图象上,∴,∴∴二次函数y2=x2﹣2x﹣3当y2>y1时,∴x2﹣2x﹣3>x+1,∴(x﹣4)(x+1)>0,∴x>4或x<﹣1,故选D【点评】此题是二次函数和不等式题目,主要考查了待定系数法,解不等式,解本题的关键是求出直线和抛物线的解析式.二、填空题(共10小题,每小题2分,满分20分)9.化简:﹣= .【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.若分式有意义,则x的取值范围是x≠﹣1 .【考点】分式有意义的条件.【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵分式有意义,∴x+1≠0,即x≠﹣﹣1故答案为:x≠﹣1.【点评】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.11.分解因式:x3﹣2x2+x= x(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用完全平方公式分解因式即可.【解答】解:x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.故答案为:x(x﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.12.一个多边形的每个外角都是60°,则这个多边形边数为 6 .【考点】多边形内角与外角.【分析】利用外角和除以外角的度数即可得到边数.【解答】解:360÷60=6.故这个多边形边数为6.故答案为:6.【点评】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都360°.13.若代数式x﹣5与2x﹣1的值相等,则x的值是﹣4 .【考点】解一元一次方程.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x﹣5=2x﹣1,解得:x=﹣4,故答案为:﹣4【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是 2.8 km.【考点】比例线段.【分析】根据比例尺=图上距离:实际距离,依题意列比例式直接求解即可.【解答】解:设这条道路的实际长度为x,则:,解得x=280000cm=2.8km.∴这条道路的实际长度为2.8km.故答案为:2.8【点评】此题考查比例线段问题,能够根据比例尺正确进行计算,注意单位的转换.15.已知正比例函数y=ax(a≠0)与反比例函数y=(k≠0)图象的一个交点坐标为(﹣1,﹣1),则另一个交点坐标是(1,1).【考点】反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(﹣1,﹣1)关于原点对称,∴该点的坐标为(1,1).故答案为:(1,1).【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.16.如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,则∠ODC= 50°.【考点】圆内接四边形的性质.【分析】根据圆内接四边形的对角互补求得∠C的度数,利用圆周角定理求出∠BOD的度数,再根据四边形内角和为360度即可求出∠ODC的度数.【解答】解:∵∠A=70°∴∠C=180°﹣∠A=110°,∴∠BOD=2∠A=140°,∵∠OBC=60°,∴∠ODC=360°﹣110°﹣140°﹣60°=50°,故答案为:50°.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补以及圆周角定理是解答此题的关键.17.已知x、y满足2x•4y=8,当0≤x≤1时,y的取值范围是1≤y≤.【考点】解一元一次不等式组;同底数幂的乘法;幂的乘方与积的乘方.【分析】首先把已知得到式子的两边化成以2为底数的幂的形式,然后得到x和y的关系,根据x的范围求得y的范围.【解答】解:∵2x•4y=8,∴2x•22y=23,即2x+2y=23,∴x+2y=3.∴y=,∵0≤x≤1,∴1≤y≤.故答案是:1≤y≤.【点评】本题考查了幂的乘方和同底数的幂的乘法法则,理解幂的运算法则得到x和y的关系是关键.18.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是 1 .【考点】平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的性质.【分析】先延长EP交BC于点F,得出PF⊥BC,再判定四边形CDEP为平行四边形,根据平行四边形的性质得出:四边形CDEP的面积=EP×CF=a×b=ab,最后根据a2+b2=4,判断ab的最大值即可.【解答】解:延长EP交BC于点F,∵∠APB=90°,∠AOE=∠BPC=60°,∴∠EPC=150°,∴∠CPF=180°﹣150°=30°,∴PF平分∠BPC,又∵PB=PC,∴PF⊥BC,设Rt△ABP中,AP=a,BP=b,则CF=CP=b,a2+b2=22=4,∵△APE和△ABD都是等边三角形,∴AE=AP,AD=AB,∠EAP=∠DAB=60°,∴∠EAD=∠PAB,∴△EAD≌△PAB(SAS),∴ED=PB=CP,同理可得:△APB≌△DCB(SAS),∴EP=AP=CP,∴四边形CDEP是平行四边形,∴四边形CDEP的面积=EP×CF=a×b=ab,又∵(a﹣b)2=a2﹣2ab+b2≥0,∴2ab≤a2+b2=4,∴ab≤1,即四边形PCDE面积的最大值为1.故答案为:1【点评】本题主要考查了等边三角形的性质、平行四边形的判定与性质以及全等三角形的判定与性质,解决问题的关键是作辅助线构造平行四边形的高线.三、解答题(共10小题,满分84分)19.先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.【考点】多项式乘多项式.【分析】根据多项式乘以多项式先化简,再代入求值,即可解答.【解答】解:(x﹣1)(x﹣2)﹣(x+1)2,=x2﹣2x﹣x+2﹣x2﹣2x﹣1=﹣5x+1当x=时,原式=﹣5×+1=﹣.【点评】本题考查了多项式乘以多项式,解决本题的关键是熟记多项式乘以多项式.20.解方程和不等式组:(1)+=1(2).【考点】解分式方程;解一元一次不等式组.【分析】(1)先把分式方程化为整式方程求出x的值,再代入最简公分母进行检验即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)原方程可化为x﹣5=5﹣2x,解得x=,把x=代入2x﹣5得,2x﹣5=﹣5=≠0,故x=是原分式方程的解;(2),由①得,x≤2,由②得,x>﹣1,故不等式组的解为:﹣1<x≤2.【点评】本题考查的是解分式方程,在解答此类题目时要注意验根.21.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题:(1)本次共调查了2000 名市民;(2)补全条形统计图;(3)该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数.【考点】条形统计图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【分析】(1)根据“总人数=看电视人数÷看电视人数所占比例”即可算出本次共调查了多少名市民;(2)根据“其它人数=总人数×其它人数所占比例”即可算出晚饭后选择其它的市民数,再用“锻炼人数=总人数﹣看电视人数﹣阅读人数﹣其它人数”即可算出晚饭后选择锻炼的人数,依此补充完整条形统计图即可;(3)根据“本市选择锻炼人数=本市总人数×锻炼人数所占比例”即可得出结论.【解答】解:(1)本次共调查的人数为:800÷40%=2000,故答案为:2000.(2)晚饭后选择其它的人数为:2000×28%=560,晚饭后选择锻炼的人数为:2000﹣800﹣240﹣560=400.将条形统计图补充完整,如图所示.(3)晚饭后选择锻炼的人数所占的比例为:400÷2000=20%,该市市民晚饭后1小时内锻炼的人数为:480×20%=96(万).答:该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数为96万.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)根据数量关系算出样本容量;(2)求出选择其它和锻炼的人数;(3)根据比例关系估算出本市晚饭后1小时内锻炼的人数.本题属于中档题,难度不大,解决该题型题目时,熟练掌握各统计图的有关知识是关键.22.一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同(1)搅匀后从袋子中任意摸出1个球,求摸到红球的概率;(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求两次都摸到红球的概率.【考点】列表法与树状图法;概率公式.【专题】计算题.【分析】(1)直接利用概率公式求解;(2)先利用画树状图展示所有9种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:(1)摸到红球的概率=;(2)画树状图为:共有9种等可能的结果数,其中两次都摸到红球的结果数为1,所以两次都摸到红球的概率=.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.【考点】等腰三角形的性质.【分析】(1)首先根据等腰三角形的性质得到∠ABC=∠ACB,然后利用高线的定义得到∠ECB=∠DBC,从而得证;(2)首先求出∠A的度数,进而求出∠BOC的度数.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠DBC=∠ECB,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∴∠BOC=180°﹣80°=100°.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;关键是掌握等腰三角形等角对等边.24.某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.(1)求甲、乙两种糖果的价格;(2)若购买甲、乙两种糖果共20千克,且总价不超过240元,问甲种糖果最少购买多少千克?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设超市甲种糖果每千克需x元,乙种糖果每千克需y元.根据“3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元”列出方程组并解答;(2)设购买甲种糖果a千克,则购买乙种糖果(20﹣a)千克,结合“总价不超过240元”列出不等式,并解答.【解答】解:(1)设超市甲种糖果每千克需x元,乙种糖果每千克需y元,依题意得:,解得.答:超市甲种糖果每千克需10元,乙种糖果每千克需14元;(2)设购买甲种糖果a千克,则购买乙种糖果(20﹣a)千克,依题意得:10a+14(20﹣a)≤240,解得a≥10,即a=10.最小值答:该顾客混合的糖果中甲种糖果最少10千克.【点评】本题考查了一元一次不等式和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.25.如图,在平面直角坐标系xOy中,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,把Rt △AOB绕点A顺时针旋转角α(30°<α<180°),得到△AO′B′.(1)当α=60°时,判断点B是否在直线O′B′上,并说明理由;(2)连接OO′,设OO′与AB交于点D,当α为何值时,四边形ADO′B′是平行四边形?请说明理由.【考点】一次函数图象上点的坐标特征;平行四边形的判定;坐标与图形变化-旋转.【分析】(1)首先证明∠BAO=30°,再求出直线O′B′的解析式即可解决问题.(2)如图2中,当α=120°时,四边形ADO′B′是平行四边形.只要证明∠DAO′=∠AO′B′=90°,∠O′AO=∠O′AB′=30°,即可解决问题.【解答】解;(1)如图1中,∵一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,∴A(,0),B(0,1),∴tan∠BAO=,∴∠BAO=30°,AB=2OB=2,∵旋转角为60°,∴B′(,2),O′(,),设直线O′B′解析式为y=kx+b,∴,,解得,∴直线O′B′的解析式为y=x+1,∵x=0时,y=1,∴点B(0,1)在直线O′B′上.(2)如图2中,当α=120°时,四边形ADO′B′是平行四边形.理由:∵AO=AO′,∠OAO′=120°,∠BAO=30°,∴∠DAO′=∠AO′B′=90°,∠O′AO=∠O′AB′=30°,∴AD∥O′B′,DO′∥AB′,∴四边形ADO′B′是平行四边形.【点评】本题考查一次函数图象上的点的特征、平行四边形的性质和判定、旋转变换等知识,解题的关键是利用性质不变性解决问题,属于中考常考题型.26.(1)阅读材料:教材中的问题,如图1,把5个边长为1的小正方形组成的十字形纸板剪开,使剪成的若干块能够拼成一个大正方形,小明的思考:因为剪拼前后的图形面积相等,且5个小正方形的总面积为5,所以拼成的大正方形边长为,故沿虚线AB剪开可拼成大正方形的一边,请在图1中用虚线补全剪拼示意图.(2)类比解决:如图2,已知边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,请把纸板剩下的部分DBCE剪开,使剪成的若干块能够拼成一个新的正三角形.①拼成的正三角形边长为;②在图2中用虚线画出一种剪拼示意图.(3)灵活运用:如图3,把一边长为60cm的正方形彩纸剪开,用剪成的若干块拼成一个轴对称的风筝,其中∠BCD=90°,延长DC、BC分别与AB、AD交于点E、F,点E、F分别为AB、AD的中点,在线段AC和EF处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼示意图,并求出相应轻质钢丝的总长度.(说明:题中的拼接都是不重叠无缝隙无剩余)【考点】四边形综合题.【分析】(1)依题意补全图形如图1,利用剪拼前后的图形面积相等,得出大正方形的面积即可;(2)①先求出梯形EDBC的面积,利用剪拼前后的图形面积相等,结合等边三角形的面积公式即可;②依题意补全图形如图3所示;(3)依题意补全图形如图4,根据剪拼的特点,得出AC是正方形的对角线,点E,F是正方形两邻边的中点,构成等腰直角三角形,即可.【解答】解:(1)补全图形如图1所示,由剪拼可知,5个小正方形的面积之和等于拼成的一个大正方形的面积,∵5个小正方形的总面积为5∴大正方形的面积为5,∴大正方形的边长为,故答案为:;(2)①如图2,∵边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,∴DE=BC=1,BD=CE=1过点D作DM⊥BC,∵∠DBM=60°∴DM=,∴S=(DE+BC)×DM=(1+2)×=,梯形EDBC由剪拼可知,梯形EDBC的面积等于新拼成的等边三角形的面积,设新等边三角形的边长为a,∴a2=,∴a=或a=﹣(舍),∴新等边三角形的边长为,故答案为:;②剪拼示意图如图3所示,(3)剪拼示意图如图4所示,∵正方形的边长为60cm,由剪拼可知,AC是正方形的对角线,∴AC=60cm,由剪拼可知,点E,F分别是正方形的两邻边的中点,∴CE=CF=30cm,∵∠ECF=90°,根据勾股定理得,EF=30cm;∴轻质钢丝的总长度为AC+EF=60+30=90cm.【点评】此题是四边形综合题,主要考查了正方形的性质,等边三角形的性质,勾股定理,剪拼的特点,解本题的关键是根据题意补全图形,难点是剪拼新正三角形和筝形.27.如图,在平面直角坐标系xOy中,一次函数y=x与二次函数y=x2+bx的图象相交于O、A两点,点A(3,3),点M为抛物线的顶点.(1)求二次函数的表达式;(2)长度为2的线段PQ在线段OA(不包括端点)上滑动,分别过点P、Q作x轴的垂线交抛物线于点P 1、Q1,求四边形PQQ1P1面积的最大值;(3)直线OA上是否存在点E,使得点E关于直线MA的对称点F满足S△AOF=S△AOM?若存在,求出点E的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点A(3,3)代入y=x2+bx中,即可解决问题.(2)设点P在点Q的左下方,过点P作PE⊥QQ1于点E,如图1所示.设点P(m,m)(0<m<1),则Q(m+2,m+2),P1(m,m2﹣2m),Q1(m+2,m2+2m),构建二次函数,利用二次函数性质即可解决问题.(3)存在,首先证明EF是线段AM的中垂线,利用方程组求交点E坐标即可.【解答】解:(1)把点A(3,3)代入y=x2+bx中,得:3=9+3b,解得:b=﹣2,∴二次函数的表达式为y=x2﹣2x.(2)设点P 在点Q 的左下方,过点P 作PE ⊥QQ 1于点E ,如图1所示.∵PE ⊥QQ 1,QQ 1⊥x 轴,∴PE ∥x 轴,∵直线OA 的解析式为y=kx ,∴∠QPE=45°,∴PE=PQ=2.设点P (m ,m )(0<m <1),则Q (m+2,m+2),P 1(m ,m 2﹣2m ),Q 1(m+2,m 2+2m ),∴PP 1=3m ﹣m 2,QQ 1=2﹣m 2﹣m ,∴=(PP 1+QQ 1)•PE=﹣2m 2+2m+2=﹣2+,∴当m=时,取最大值,最大值为.(3)存在.如图2中,点E 的对称点为F ,EF 与AM 交于点G ,连接OM 、MF 、AF 、OF .∵S △AOF =S △AOM ,∴MF ∥OA ,∵EG=GF ,=,∴AG=GM ,∵M (1,﹣1),A (3,3),∴点G (2,1),∵直线AM 解析式为y=2x ﹣3,∴线段AM 的中垂线EF 的解析式为y=﹣x+2,由解得,∴点E坐标为(,).【点评】本题考查二次函数综合题、待定系数法、平行线的性质、一次函数、面积问题等知识,解题的关键是灵活应用待定系数法确定函数解析式,学会构建二次函数,利用二次函数性质解决最值问题,学会利用方程组求两个函数的交点,属于中考压轴题.28.如图,正方形ABCD的边长为1,点P在射线BC上(异于点B、C),直线AP与对角线BD及射线DC分别交于点F、Q(1)若BP=,求∠BAP的度数;(2)若点P在线段BC上,过点F作FG⊥CD,垂足为G,当△FGC≌△QCP时,求PC的长;(3)以PQ为直径作⊙M.①判断FC和⊙M的位置关系,并说明理由;②当直线BD与⊙M相切时,直接写出PC的长.【考点】圆的综合题.【分析】(1)在直角△ABP中,利用特殊角的三角函数值求∠BAP的度数;(2)设PC=x,根据全等和正方形性质得:QC=1﹣x,BP=1﹣x,由AB∥DQ得,代入列方程求出x 的值,因为点P在线段BC上,所以x<1,写出符合条件的PC的长;(3)①如图2,当点P在线段BC上时,FC与⊙M相切,只要证明FC⊥CM即可,先根据直角三角形斜边上的中线得CM=PM,则∠MCP=∠MPC,从而可以得出∠MCP+∠BAP=90°,再证明△ADF≌△CDF,得∠FAD=∠FCD,则∠BAP=∠BCF,所以得出∠MCP+∠BCF=90°,FC⊥CM;如图3,当点P在线段BC的延长线上时,FC与⊙M相切,同理可得∠MCD+∠FCD=90°,则FC⊥CM,FC与⊙M 相切;②当点P在线段AB上时,如图4,设⊙M切BD于E,连接EM、MC,设∠Q=x,根据平角BFD列方程求出x 的值,作AP的中垂线HN,得∠BHP=30°,在Rt△BHP中求出BP的长,则得出PC=﹣1;当点P在点C的右侧时(即在线段BC的延长线上),如图5,同理可得:PC=+1.。

相关文档
最新文档