4[1].1_圆的对称性(1)垂径定理
圆的对称性----垂弪定理的应用
圆的对称性----垂弪定理的应用【教学目标】:1、巩固垂径定理。
2、应用垂径定理解决实际问题。
3、培养学生协作能力、探索能力、解决实际问题的能力。
4、对学生进行爱国主义教育。
【教学重点】:垂径定理的应用【教学难点】:用垂径定理解决实际问题【教学过程】:一、情景导入:今天我们想用学过的知识解决实际问题,大家有兴趣吗?有信心吗?(学生异口同声:有!显然很兴奋。
这节课气氛不会差。
)出示大屏幕:播放童谣《小放牛》(在第一张幻灯片中插入超链接):赵州桥来什么人修?玉石栏杆什么人留?什么人骑驴桥上过?什么人推车压了一道沟?”“赵州桥来鲁班修;玉石栏杆圣人留;张国老骑驴桥上过;柴王爷推车压了一道沟。
”在听音乐的同时介绍《赵州桥的传说》.设计意图:创造一种意境,利用声画效果结合学生感兴趣的话题自然地引入课题。
二、问题提出:当我们踏入河北石家庄的赵县,一阵悠扬的童谣《小放牛》会给我们带进有着古老传说的赵州桥。
1400年前,为隋代李春所建。
跨度(弧对弦长):37.4m,拱高(弧中点到弦的距离):7.2m,桥拱的半径是多少?设计意图:通过实例,培养学生的实际建模能力。
弘扬祖国古老文化,进行爱国主义教育。
三、问题解决:1、首先复习垂弪定理的内容。
引导学生用垂弪定理解题。
2、学生进行讨论,小组间进行。
教师教师巡视并适时指点,对表现好的给以热情鼓励,表现差的温馨提示。
3、教师演示模型并讲解。
4、公布解题过程,让学生对照突出其成就感。
设计意图:让学生充分发挥自己能力,协作解决一些力所能及的问题。
体会垂径定理的重要性。
四、问题引申:若有一条宽16m、高4m的货船,能否从桥下顺利通过?设计意图:给学生一个更大的思考空间,深刻体会数学应用的重要性。
五、问题探索与解决:1、小组间讨论:船会怎样走才能顺利过桥。
请画出示意图。
教师用模型展示。
2、在什么情况下轮船才能顺利过桥。
3、教师演示模型并讲解。
4、公布解题过程,让学生对照突出其成就感。
人教版九年级数学上册《第一单元_课时2_圆的轴对称性—垂径定理》名师教学设计
《圆的轴对称性——垂径定理》教学设计一、教学内容分析小学时,我们已经知道,圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴.也就是说,将圆沿着直径所在的直线对折,直线两侧的部分完全重合.这点学生通过动手操作不难理解,但是该如何证明呢?这是本课时首先要解决的问题.教科书中提供了一种证明轴对称的常用方法,即在圆上任意选取一点,证明该点关于给定对称轴(直径所在直线)的对称点也在圆上,这种证明轴对称的方法需要学生理解掌握.垂径定理将圆的轴对称性具体化、符号化,我们可以由下面这个问题引入垂径定理.如果我们在⊙O 中任意画一条弦AB ,观察图形(见下),它还是轴对称图形吗?若是,你能找到它的对称轴吗?有几条呢?同学们通过动手实验不难得出,此时只要作出垂直于弦AB 的直径,沿着直径所在直线对折,图形的左右两边就可以完全重合,即图形关于该直径所在直线成轴对称.显然,我们只能找到一条这样的直径,因此图形只有一条对称轴.我们不妨设直径CD 与弦AB 垂直相交于点P (如图),观察图形,想想你能找出图中隐含的哪些相等关系.如图所示,通过动手操作发现:将⊙O 沿直径CD 所在的直线对折,CD 两侧的半圆重合,点A 与点B 重合,C A =BC ,D A = BD ,AP=BP.根据轴对称的性质,对称轴垂直平分对应点的连线段,我们可以得到,直线CD 是弦AB 的中垂线.学生通过直观感受总结出垂径定理的内容,接下来要引导学生通过严谨的逻辑推理来验证结论的正确性,这也体现了探究图形性质的科学过程.让学生分组讨论证明方法,引导学生构造辅助线,通过全等的知识证明垂径定理.上述图形结构特征可以概括为:(1)直径(半径或过圆心的直线); (2)垂直于弦; (3)平分弦; (4)平分优弧; (5)平分劣弧.可以证明:由(1)(2)可以推出(3)(4)(5). 即垂直于弦的直径平分弦,并且平分弦所对的两条弧.我们把圆的这个性质叫做垂径定理. 符号语言:如右图,∵直径CD ⊥AB 于P , ∴C A =BC ,D A = BD ,AP=BP.引发学生思考:由(1)(3)是否可以推出(2)(4)(5)呢? 即平分弦(非直径)的直径垂直弦,并且平分弦所对的两条弧. 上述结论可以通过全等三角形的知识证明,我们把圆的这个性质叫做垂径定理的推论.此处一定强调“非直径”,因为任意两条直径都是互相平分的,但并不一定都垂直.符号语言:如右图,∵直径CD 与弦AB 相交于P ,且AP=BP , ∴C A =BC ,D A = BD ,CD ⊥AB.通过类比学习,引导学生思考:知道上述5个条件中两个条件是否就可以推导出其他3个结论呢?总结为“知二推三”,也就是说垂径定理有9个推论,这个可以留给学生课后分组讨论研究. 二、学情分析学生在七、八年级已经学习过轴对称图形的有关概念和性质、等腰三角形的对称性,以及证明垂径定理要用到的三角形全等的知识,并且在小学已初步了解了圆的对称性,具备了学习这节课的知识基础;学生通过学习平行四边形、角平分线、中垂线等几何内容,已经掌握了探究图形性质的不同手段和方法,具备了几何定理的分析探索和证明能力.但是垂径定理及其推论的条件和结论复杂,学生难以理解并应用. 三、教学目标1.通过观察、实验,使学生理解圆的轴对称性.2.掌握垂径定理,理解其证明过程,并会用它解决有关的证明与计算问题.3.掌握垂径定理的推论,理解其证明过程,并会用其解决有关的证明与计算问题.4.通过对定理的探究,提高观察、分析和归纳概括能力. 重点难点垂径定理及其推论的内容与证明是本节课学习的重点和难点. 四、评价设计.学习评价量表标准等级会用文字语言、图形语言、符号语言描述垂径定理 A 会用文字语言、图形语言、符号语言描述垂径定理的推论 A 会证明垂径定理及其推论 C 能利用垂径定理及其推论解决简单的计算问题B能利用垂径定理及其推论解决简单的证明问题C五、教学活动设计教学环节教学活动设计意图教师活动学生活动导入新知问题1 约1400年前,我国隋代建造的赵州石拱桥(如图)主桥拱是圆弧形,它的跨度(弧所对的弦长)是37 m,拱高(弧的中点到弦的距离)为7.23 m,求赵州桥主桥拱的半径(结果精确到0.1 m).1.分析实际问题,将其转化为数学模型.赵州桥的桥拱呈圆弧形,如图,C为弧AB的中点,且CD⊥AB.已知CD=7.23 m,AB=37m,求该圆的半径.学生猜测(1):AD=BD.学生猜测(2):CD过圆心.不过该如何证明呢?带着这个问题进行本节课的学习.通过实际问题导入新知,引发学生思考,激发学习兴趣.探究新知问题 2 请拿出准备好的圆形纸片,沿着它的直径对折,重复做几次,你发现了什么?由此你能猜想哪些线段相等?哪些弧相等?2.(1)沿着直径将圆翻折,圆的直径两边的部分能够完全重合.圆是轴对称图形,直径所在直线为圆的对称轴,所以圆有无数条对称轴.(2)连接关于直径所在直线对称的两个点所形通过动手操作——沿着直径折叠圆,让学生直观感受圆的轴对称性,体会观察、实验在选定一条直径,在圆上任取一点,证明该点关于已知直径所在直线的对称点也在圆上.3.(1)作AB⊥CD,交⊙O 于B点,若能证明AP=BP即可.(2)连接OA,OB,通过三角形全等可以得到AP=BP.所以B为A的对称点.A B.=BC,D=D(2)可以从圆的轴对称性质出发证明,只要证明A和B是关于直线CD的对称点即可.连接OA,OB,通过证明△OAP与△OBP 全等,得到AP=BP,说明DC所在直线为线段AB的对称轴根据圆的轴对称性得到:AC=BC,A B.D=D(2)可以从圆的轴对称性质出发证明,只要证明A和B为关于直线CD的对称点即可.(3)此处强调非直径的弦,因为圆的所有直径都是互相平分的,但不一定垂直.(4)垂径定理还有别的推论吗?需要继续研究.论.解决问题提问1:对于活动1提出的问题,你现在有思路了吗?请大家小组讨论,给出问题的计算过程.如图,赵州桥的桥拱呈圆弧形,C为AB的中点,且CD⊥AB,已知CD=7.23 m,AB=37m,求该圆的半径.提问2:应用垂径定理解决问题的一般思路是什么?1.根据垂径定理的推论,可知CD的延长线必定过O点,且AD=BD.设半径为r,则OB=r,OD=r-7.23,BD=18.5,根据勾股定理列方程为:222r18.5=r(-7.23).一般思路:垂径定理构造直角三角形勾股定理建立方程.帮助学生进行知识迁移,熟练运用垂径定理及其推论解决计算问题.重要辅助线:过圆心作弦的垂线.典型例题例1 如图,AB是⊙O的直径,弦CD⊥AB于点E,点 M在⊙O上,MD恰好经过圆心O,连接MB,若CD=16,BE=4,求⊙O的直径.例2 H5N1亚型高致病性禽流感是一种传染速度很快的疾病,为防止禽流感蔓延,政府规定:离疫点3 km范围内为扑杀区,所有禽类全部扑杀;离疫点3~5 km范围内为免疫区,所有禽类强制免疫.同时,对扑杀区和免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感疫区,如图所示,O为疫点,在扑杀区内公路CD长为4 km.问:这条公路在免疫区内有多少千米?例1 解设半径为R,因为CD=16,直径AB⊥CD,根据垂径定理得AB平分CD,所以DE=8.因为BE=4,所以OE=R-4.根据勾股定理列方程得:222R8=R(-4).解得R=10,则直径等于20.例2 分析:利用垂径定理解决实际问题,首先需要理解题意,将实际问题抽象为数学模型.如图,过点O作OE⊥CD交CD于E,连接OC,OA,在Rt△OCE中就可以求出OE,在Rt△OAE中求出AE,进而求出AC,最后求出结论.帮助学生进行知识迁移,学以致用,熟练运用垂径定理及其推论解决计算及证明问题.利用垂径定理的关键是:熟悉基本图形,会过圆心作弦的垂线,熟悉连接半径等辅助线的作法,能够结合勾股定理、设参法等知识或方法解决问题.例3 如图,已知AB是圆O的直径,弦CD交AB于点E,∠CEA=30°,OE=4,DE=53,求弦CD及⊙O的半径.例4如果圆中两条弦互相平行,那么两条弦所夹的弧相等吗?例3 解如图,作OM⊥CD. ∵OE=4 cm,∠CEA=30°,∴OM=2 cm,EM=23cm DE=53 cm,∴D M=33 cm.∴OD=31 cm,即⊙O的半径为31 cm.OM⊥CD,∴CD=63 cm(根据垂径定理)例4 解通过画图可知,有三种情况.下图所示.在图(1)中,作 MN⊥AB 交圆于 M,N点,充分利用垂径定理即可解决此问题.∵ MN⊥AB,∴M=MA B.∵CD∥AB,∴ MN⊥CD.∴MC=MD.∴M MCA-=MB MD-∴=DAC B.同理:在其他两个图形中AC B的结也能得到=D论.六、板书设计圆的轴对称性——垂径定理七、达标检测与作业A级1.如图,在⊙O中,直径AB⊥CD于M.(1)AB=10,CD=8,求OM的长;(2)CD=8,OM=3,求AB的长;(3)CD=8,BM=2,求AB的长.2.如图,是一条直径为2 m的通水管道横截面,其水面宽1.6 m,则这条管道中此时水最深为 m.B级3.如图,AB是⊙O的弦,P是AB上一点,AB=10,BP:PA=4:1.若⊙O的半径为7,求线段OP 的长.4.如图,AB为⊙O的直径,P为OB的中点,∠APC=30°.若AB=16,求CD的长.5.如图,AB,CD是⊙O的弦,M,N分别为AB,CD的中点,且∠AMN=∠CNM.求证:AB=CD.6.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径.如图是水平放置的破裂管道有水部分的截面,若这个输水管道此时的水面宽为16c m,且水最深高度为4c m,求这个圆形截面的半径.C级7.已知AB,CD为⊙O的两条平行弦,⊙O的半径为5 cm,AB=8 cm,CD=6 cm,求AB,CD之间的距离.8.有一石拱桥的桥拱呈圆弧形.如图所示,正常水位时水面宽AB=60 m,水面到拱顶距离CD=18 m;当洪水泛滥时,水面宽 MN=32 m时,高度为5 m的船此时能否通过该桥?请说明理由.八、教学反思本节课遵循研究几何图形的一般过程:提出问题、猜想、实验、证明、得出结论、应用.研究过程中将直观感知、动手实验、逻辑推理有机结合,全面提高学生的数学核心素养.从以赵州桥为背景的实际问题出发,创设学习氛围,激发学生的学习兴趣,引发学生的探究欲望;接着通过实验操作让学生直观感受圆轴对称的性质;引导学生证明圆的轴对称性,并指出证明图形轴对称的一般方法,便于学生积累几何证明方法,产生学习迁移;利用圆的轴对称性和全等三角形的知识证明本节课的重点和难点——垂径定理及其推论;最后运用垂径定理及其推论解决赵州桥问题和平行弦所夹弧等问题.整个过程层层铺垫,环环相扣.本节课渗透研究问题的方法.比如在证明垂径定理的过程中,向学生渗透“先由特殊到一般,再由一般到特殊”的基本思想方法.由动手操作、逻辑推理得到圆的轴对称性,这是由特殊到一般;再利用圆的轴对称性证明垂径定理及其推论,这是由一般到特殊.教师作为引导者,课堂上尽管给了学生充足的思考时间,但还没有完全放开.比如,在“提出问题”环节,可以让学生给出各种问题形式,而不是由老师给出问题或者例题.在探究垂径定理的证明时,应引导学生进行充分的讨论交流等.11/ 11。
圆的轴对称性与垂径定理
O
把圆O的半径ON绕圆心O旋转任意一个角度, N'
N
O
把圆O的半径ON绕圆心O旋转任意一个角度, N'
N
O
把圆O的半径ON绕圆心O旋转任意一个角度, N'
N
O
把圆O的半径ON绕圆心O旋转任意一个角度,
由此可以看出,点N'仍落在圆上。
N' N
O
结论:把圆绕圆心旋转任意一个角度后,
仍与原来的圆重合。
C
分析:要想证明在圆里面有关弧、弦相等,根据这节课所学
的圆心角定理,应先证明什么相等?
证明: ∵AC与BD为⊙O的两条互相垂直的直径,
∴∠AOB=∠BOC=∠COD=∠DOA=90º
∴
⌒⌒ ⌒ ⌒ AB=BC=CD=DA
AB=BC=CD=DA(圆心角定理)
点此继续
∵把圆心角等分成功360份,则每一份的圆 心角是1º.同时整个圆也被分成了360份.
A
如图:
B
AOB= COD
o
C
D
下面我们一起来观察一下圆心角与它所对的弦、弧A 有什么关系? B
如图: AOB= COD
o
C
D
∵∠AOB= ∠COD,
∴半径OB与OA重合,
∴ 点A与点C重合,点B与点D重合。
∴ AB=CD, 根据圆的性质,A⌒B与C⌒D重合。
此时,称作
两条圆弧相等。
记作:“A⌒B=C⌒D”
圆绕圆心旋转
A
.
B
O
圆绕圆心旋转
圆绕圆心旋转
圆绕圆心旋转
圆绕圆心旋转
圆绕圆心旋转
圆绕圆心旋转
圆绕圆心旋转
3.1圆的对称性
探究一:垂径定理的三种语言
定理 垂直于弦的直径平分弦以及弦所对的两条弧.
C
A B O
M└
●
∵ CD是直径, CD⊥AB, ∴ AM=BM,
⌒ ⌒ ⌒ ⌒ AC = BC, AD = BD. ③直径平分弦 结论 ④平分弦所对的劣弧 ⑤平分弦所对的优弧
D
条件
①一条直径 ②垂直于弦
垂 直 直 径
C
半 径
OC OB BC 10 8 6
2 2 2 2
8
C
10 8
答:截面圆心O到水面的距离为6.
D
想一想:排水管中水最深多少?
解决求赵州桥拱半径的问题
例2、赵州桥的主桥是圆弧形,它的跨 度(弧所对的弦的长)为37.4m, 拱高 (弧的中点到弦的距离)为7.2m,你能 求出赵州桥主桥拱的半径吗?
解:连结OA. ∵OM⊥AB, 1 ∴ AM AB
AM OA 2 OM 2 3
∴AB=2AM=6(cm).
2、 如图,已知在⊙O中,弦AB的长
为8厘米,圆心O到AB的距离为3厘米, 求⊙O的半径。
A
E
. O
B
题后小结:
1.作圆心到弦的距离和连 半径是圆中常见的辅助线;
8
C D
10
C
经过圆心的弦叫做直径(如直径AC).
D
观察并回答
(1)两条直径AB、CD,CD平分AB吗? (2)若把直径AB向下平移,变成非直径的弦, 弦AB是否一定被直径CD平分?
C B
B C
O
O
A
思考:当非直径的弦AB与直径CD有什么位置关系 时,弦AB有可能被直径CD平分?
D
A
重庆市云阳县水口初级中学九年级数学上册24.1.1圆对称性垂径定理教案
1.教学重点
-核心内容:圆的对称性、垂径定理及其应用。
-详细内容:
a.圆的轴对称性和中心对称性,特别是圆心的位置关系。
b.垂径定理的表述及其证明过程。
c.垂径定理在实际问题中的应用,如求弦长、半径等。
-举例解释:通过圆的直观图和实际模型,强调圆心到弦的垂线平分弦长,并说明这是解决圆相关问题的关键。
重庆市云阳县水口初级中学九年级数学上册24.1.1圆对称性垂径定理教案
一、教学内容
《重庆市云阳县水口初级中学九年级数学上册》第24章《圆》的第一节“圆对称性垂径定理”,内容包括:
1.圆的对称性:通过实例引导学生理解圆的轴对称性和中心对称性,强调圆心的作用。
2.垂径定理:介绍垂径定理的内容,通过几何图形演示,让学生理解直径垂直于弦的性质及其应用。
实践活动环节,学生分组讨论和实验操作进行得相对顺利,但我观察到一些小组在讨论时并没有充分参与到问题解决的过程中,而是依赖个别同学的思考和操作。我意识到,在未来的教学中,我需要更多地鼓励每个学生积极参与,确保每个同学都能在实践中学习和思考。
小组讨论环节,学生们对于垂径定理在实际生活中的应用提出了不少有趣的观点,但我也发现他们在将理论知识应用到实际问题时的局限性。这可能是因为他们对定理的理解还不够深入,或者缺乏将理论知识转化为实际应用的能力。我考虑在后续的教学中增加更多实际案例的分析,让学生看到数学知识是如何在现实世界中发挥作用的。
3.垂径定理的应用:举例说明垂径定理在实际问题中的应用,如求圆中弦长、半径等。
4.相关练习题:布置一些典型习题,巩固学生对垂径定理的理解和应用。
二、核心素养目标
《圆对称性垂径定理》教学旨在培养学生的以下核心素养:
1.空间观念:通过探究圆的对称性,培养学生对几何图形的空间想象能力和直观感知能力。
(一) 圆的相关概念及垂径定理
AODBCAO(一) 圆的相关概念及垂径定理一、知识梳理(一)圆的有关概念1.圆的基本概念:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。
固定点O 叫做圆心;线段OA 叫做半径;圆上各点到定点(圆心O )的距离都等于定长(半径r);反之,到定点的距离等于定长的点都在同一个圆上(另一定义); 以O 为圆心的圆,记作“⊙O ”,读作“圆O ”2.圆的对称性及特性:(1)圆是轴对称图形,圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴; (2)圆也是中心对称图形,它的对称中心就是圆心.(3)一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.这是圆特有的一个性质:圆的旋转不变性 3.弦:连接圆上任意两点的线段叫做弦。
4.弦心距:圆心到弦的距离叫做弦心距. 5.直径:经过圆心的弦叫直径。
注:圆中有无数条直径6.圆弧:(1)圆上任意两点间的部分,也可简称为“弧”以A,B 两点为端点的弧.记作AB ⋂,读作“弧AB”. (2)圆的任意一条直径的两个端点把圆分成两条弧,其中每一条弧都叫半圆。
如弧AD. (3)小于半圆的弧叫做劣弧,如记作AB ⋂(用两个字母). 7.圆心角:顶点在圆心,两边和圆相交的角叫做圆心角。
说明:(1)直径是弦,但弦不一定是直径,直径是圆中最长的弦。
(2)半圆是弧,但弧不一定是半圆。
(3)等弧只能是同圆或等圆中的弧,离开“同圆或等圆”这一条件不存在等弧。
(4)等弧的长度必定相等,但长度相等的弧未必是等弧。
(二)弦、弧、弦心距、圆心角的关系定理:在同圆或等圆中,弦、弧、弦心距、圆心角四组量中只要有一组量相等,则其余三组量也相等。
(三)和圆有关的角:1、圆周角:顶点在圆上,它的两边和圆还有另一个交点的角叫做圆周角。
2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等。
推论2:圆的两条平行弦所夹的弧相等。
苏科版2022年九年级数学上册 《圆的对称性》教材预习辅导讲义(附解析)
2.2 圆的对称性圆的对称性圆是轴对称图形,过圆心的任意一条直线都是它的对称轴;圆是中心对称图形,圆心是它的对称中心. 【点拨】圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合. 弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【点拨】(1)一个角要是圆心角,必须具备顶点在圆心这一特征; (2)注意关系中不能忽视“同圆或等圆”这一前提. (3)圆心角的度数与它所对的弧的度数相等. 垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 【点拨】(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段. 垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【例题1】已知:如图,⊙O 中弦AB CD .求证:AD=BC .看例题,涨知识教材知识总结【例题2】如图,在⊙O 中,弧AB =弧AC ,∠A =120°,求∠ABC 的度数.【例题3】如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若BE =5,CD =6,求AE 的长.【例题4】如图,在O 中,AB 是直径,弦EF ∥AB .(1)请仅用无刻度.....的直尺画出劣弧EF 的中点P ;(保留作图痕迹,不写作法) (2)在(1)的条件下,连接OP 交EF 于点Q ,10AB =,6EF =,求PQ 的长度.一、单选题1.下列说法正确的是()①平分弧的直径垂直平分弧所对的弦②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③B.①③C.②④D.①④2.如图,在⊙O中,弦AB的长为8cm,M是AB上任意一点,且OM的最小值为3,则⊙O的半径为()A.4cm B.5cm C.6cm D.8cm3.下列命题是真命题的是()A.在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧也相等B.平分弦的直径垂直于弦C.一组对边平行且一组对角相等的四边形是平行四边形D.两条直线被第三条直线所截,内错角相等4.如图,CD为⊙O的直径,弦AB CD⊥,垂足为E,1CE=,10AB=,则CD的长为()A.20 B.24 C.25 D.265.如图,在O中,⊥OD AB于点D,AD的长为3cm,则弦AB的长为()A.4cm B.6cm C.8cm D.10cm课后习题巩固一下6.如图,AB是O的直径,弦CD AB⊥于点E,如果20CD=,那么线段OE的长为()AB=,16A.4 B.6 C.8 D.97.如图,AB为圆O的一弦,且C点在AB上.若6BC=,AB的弦心距为3,则OC的长度为何?AC=,2()A.3 B.4 C11D138.如图,AB是O的直径,OD垂直于弦AC于点D,DO的延长线交O于点E.若42DE=,AC=4则BC的长是()A.1 B2C.2 D.49.如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=()A.100°B.110°C.115°D.120°10.如图,在半径为5的A 中,弦BC ,DE 所对的圆心角分别是BAC ∠,DAE ∠.若6DE =,180BAC DAE ∠+∠=︒,则弦BC 的弦心距为( ).A 41B 34C .4D .3二、填空题11.在⊙O 中,弦AB =16cm ,弦心距OC =6cm ,那么该圆的半径为__cm .12.如图,AB 为⊙O 的弦,半径OC ⊥AB 于E ,AB =8,CE =2,则⊙O 的半径为_____.13.已知⊙O 的半径为6cm ,弦AB =6cm ,则弦AB 所对的圆心角是________度.14.如图,在O 中,AB BC CD ==,连接AC ,CD ,则AC __2CD (填“>”,“ <”或“=” ).15.如图,AB ,CD 是O 的直径,弦CE AB ,CE 所对的圆心角为40°,则AOC ∠的度数为______.16.如图,A 、B 、C 、D 为⊙O 上的点,且 AB BC CD ==.若∠COD =40°,则∠ADO =______度.三、解答题17.如图,O的弦AB、CD相交于点E,且AB CD=.求证:BE DE=.18.如图,在⊙O中,直径AB=10,弦AC=8,连接BC.(1)尺规作图:作半径OD交AC于E,使得点E为AC中点;(2)连接AD,求三角形OAD的面积.∠,求19.如图,已知AB是O的直径,P是AO上一点,点C、D在直径两侧的圆周上,若PB平分CPD 证:劣弧BC与劣弧BD相等.20.如图,已知弓形的弦长AB=8,弓高CD=2(CD⊥AB并经过圆心O).求弓形所在⊙O的半径r的长.21.如图,正方形ABCD 内接于⊙O , AM DM =,求证:BM =CM .22.如图,AB 为圆O 的直径,点C 在圆O 上.(1)尺规作图:在BC 上求作一点E ,使OE AC ∥(不写作法,只保留作图痕迹); (2)探究OE 与AC 的数量关系.23.如图,在⊙O 中,AB 、AC 是互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E . (1)求证:四边形ADOE 是正方形; (2)若AC=2cm ,求⊙O 的半径.24.如图,在扇形AOB 中,90AOB ∠=︒,C 、D 是AB 上两点,过点D 作DE OC ∥交OB 于E 点,在OD 上取点F ,使OF DE =,连接CF 并延长交OB 于G 点. (1)求证:OCF DOE ≌△△; (2)若C 、D 是AB 的三等分点,23=OA ①求OGC ∠;②请比较GE 和BE 的大小.2.2 圆的对称性解析教材知识总结圆的对称性圆是轴对称图形,过圆心的任意一条直线都是它的对称轴;圆是中心对称图形,圆心是它的对称中心.【点拨】圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【点拨】(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意关系中不能忽视“同圆或等圆”这一前提.(3)圆心角的度数与它所对的弧的度数相等.垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.【点拨】(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(4)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(5)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(6)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【例题1】已知:如图,⊙O中弦AB CD=.求证:AD=BC.【答案】见解析【分析】先根据等弦所对的劣弧相等得到AB CD=,从而得到AD AB BD CD BD BC=-=-=,再由等弧所对的弦相等即可得到AD BC=.【解析】证明:∵AB=CD,∴AB CD=,∴AD AB BD CD BD BC=-=-=,∴AD BC=.【例题2】如图,在⊙O中,弧AB=弧AC,∠A=120°,求∠ABC的度数.【答案】30°【分析】根据同圆中,相等的弧所对的弦相等,再根据等腰三角形的性质即可求解.【解析】解:∵在⊙O中,弧AB=弧AC,∴AB=AC,∵∠A=120°,∴∠ABC=()1801203012⨯︒-︒=︒.【例题3】如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,CD=6,求AE的长.看例题,涨知识【答案】95【分析】如图,连接OC ,设OE x =,由垂径定理知132CE CD ==,5OC BE OE x =-=-,在Rt OCE 中,由勾股定理知222CE OC OE =-,解出x 的值,由2AE BE OE =-,计算求解即可. 【解析】解:如图,连接OC ,设OE x =由垂径定理知132CE CD ==5OC BE OE x =-=-在Rt OCE 中,由勾股定理知222CE OC OE =- ∴()22235x x =-- 解得85x =92525AE BE OE x =-=-=∴AE 的长为95.【例题4】如图,在O 中,AB 是直径,弦EF ∥AB .(1)请仅用无刻度.....的直尺画出劣弧EF的中点P;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接OP交EF于点Q,10AB=,6EF=,求PQ的长度.【答案】(1)见解析;(2)1【分析】(1)如图,连接BE,AF,BE交AF于C,作直线OC交EF于点P,点P即为所求.(2)利用垂径定理结合勾股定理求得OQ=4,进一步计算即可求解.【解析】(1)解:如图中,点P即为所求.(2)解:连接OF,由作图知OP⊥EF,EQ=QF=12EF=3,∵AB=10,∴OF=OP=12AB=5,∴OQ222254OF QF-=-,∴PQ= OP-OQ=1,∴PQ的长度为1.一、单选题1.下列说法正确的是()①平分弧的直径垂直平分弧所对的弦课后习题巩固一下②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③B.①③C.②④D.①④【答案】D【分析】根据垂径定理及其推论进行判断.【解析】解:根据垂径定理,①正确;②错误.平分弦(不是直径)的直径平分弦所对的弧;③错误.垂直于弦且平分弦的直线必过圆心;④正确.故选:D.2.如图,在⊙O中,弦AB的长为8cm,M是AB上任意一点,且OM的最小值为3,则⊙O的半径为()A.4cm B.5cm C.6cm D.8cm【答案】B【分析】根据垂线段最短知,当OM⊥AB时,OM有最小值.根据垂径定理和勾股定理求解.【解析】解:根据垂线段最短知,当OM⊥AB时,OM有最小值,此时,由垂径定理知,点M是AB的中点,AB=4,连接OA,AM=12由勾股定理知,OA2=OM2+AM2.即OA2=42+32,解得:OA=5.所以⊙O的半径是5cm.故选:B.3.下列命题是真命题的是()A.在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧也相等B.平分弦的直径垂直于弦C.一组对边平行且一组对角相等的四边形是平行四边形D.两条直线被第三条直线所截,内错角相等【答案】C【分析】利用圆的有关性质、垂径定理、平行四边形的判定方法及平行线的性质分别判断后即可确定正确的选项.【解析】A 、在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧不一定相等,故原命题错误,是假命题,不符合题意;B 、平分弦(不是直径)的直径垂直于弦,故原命题错误,是假命题,不符合题意;C 、如图,四边形ABCD ,AB ∥CD ,∠A=∠C ,∵AB ∥CD ,∴∠A +∠D =180°,又∵∠A =∠C ,∴∠C +∠D =180°,∴AD ∥BC ,∴四边形ABCD 是平行四边形,故一组对边平行且一组对角相等的四边形是平行四边形,正确,是真命题,符合题意;D 、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意.故选:C .4.如图,CD 为⊙O 的直径,弦AB CD ⊥,垂足为E ,1CE =,10AB =,则CD 的长为( )A .20B .24C .25D .26【答案】D 【分析】连接OA ,设圆的半径为x ,则OE =x -1,由垂径定理可得AB ⊥CD ,AE =5,Rt △OAE 中由勾股定理建立方程求解即可;【解析】如图,连接OA ,设圆的半径为x ,则OE =x -1,由垂径定理可得AB ⊥CD ,AE =BE =12AB =5,Rt △OAE 中,OA 2=AE 2+OE 2,x 2=25+(x -1)2,解得:x =13,,∴CD =26, 故选: D .5.如图,在O 中,⊥OD AB 于点D ,AD 的长为3cm ,则弦AB 的长为( )A .4cmB .6cmC .8cmD .10cm【答案】B 【分析】根据垂径定理求出AD =BD =3cm 即可.【解析】解:∵AB 为非直径的弦,⊥OD AB ,∴AD =BD =3cm ,∴AB =AD +BD =6cm .故选B .6.如图,AB 是O 的直径,弦CD AB ⊥于点E ,如果20AB =,16CD =,那么线段OE 的长为( )A .4B .6C .8D .9【答案】B 【分析】连接OD ,那么OD =OA =12AB ,根据垂径定理得出DE =12CD ,然后在Rt △ODE 中,根据勾股定理求出OE .【解析】解:如图,∵弦CD ⊥AB ,垂足为E∴CE =DE =1116822CD =⨯=, ∵OA 是半径∴OA =11201022AB =⨯=, 在Rt △ODE 中,OD =OA =10,DE =8,22221086OE OD DE =--=,故选:B .7.如图,AB 为圆O 的一弦,且C 点在AB 上.若6AC =,2BC =,AB 的弦心距为3,则OC 的长度为何?( )A .3B .4C 11D 13【答案】D 【分析】作⊥OD AB 于点D ,由垂径定理得4AD BD ==,Rt OCD △中勾股定理即可求解.【解析】解:作⊥OD AB 于点D ,如图所示,由题意可知:6AC =,2BC =,3OD =, 8AB ∴=,4AD BD∴==,2CD∴=,在Rt OCD△中22223213OC OD CD∴+=+故选:D.8.如图,AB是O的直径,OD垂直于弦AC于点D,DO的延长线交O于点E.若42AC=4DE=,则BC的长是()A.1 B2C.2 D.4【答案】C【分析】根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.【解析】设OD=x,则OE=OA=DE-OD=4-x.∵AB是O的直径,OD垂直于弦AC于点,42AC=∴1222AD DC AC===∴OD是△ABC的中位线∴BC=2OD∵222OA OD AD=+∴222(4)(22)x x-=+,解得1x=∴BC=2OD=2x=2故选:C9.如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=()A.100°B.110°C.115°D.120°【答案】C【分析】过点O 作OP ⊥AB 于点P ,OQ ⊥AC 于点Q ,OK ⊥BC 于点K ,由于DE =FG =MN ,所以弦的弦心距也相等,所以OB 、OC 是角平分线,根据∠A =50°,先求出180130ABC ACB A ∠+∠=︒-∠=︒,再求出,进而可求出∠BOC .【解析】解:过点O 作OP ⊥AB 于点P ,OQ ⊥AC 于点Q ,OK ⊥BC 于点K ,∵DE =FG =MN ,∴OP =OK =OQ ,∴OB 、OC 平分∠ABC 和∠ACB , 12OBC ABC ∴∠=∠,12OCB ACB ∠=∠, ∵∠A =50°,∴180130ABC ACB A ∠+∠=︒-∠=︒,∴1122OBC OCB ABC ACB ∠+∠=∠+∠ ()12ABC ACB =∠+∠ 65=︒,∴∠BOC =()180OBC OCB ︒-∠+∠18065=-︒115=︒故选:C .10.如图,在半径为5的A 中,弦BC ,DE 所对的圆心角分别是BAC ∠,DAE ∠.若6DE =,180BAC DAE ∠+∠=︒,则弦BC 的弦心距为( ).A41B 34C.4 D.3【答案】D【分析】作AH⊥BC于H,作直径CF,连接BF,先利用等角的补角相等得到∠DAE=∠BAF,再利用圆心角、弧、弦的关系得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,则AH为△CBF的中位线,然后根据三角形中位线性质得到AH=12BF=3.【解析】作AH⊥BC于H,作直径CF,连接BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴DE BF=,∴DE=BF=6,∵AH⊥BC,∴CH=BH,而CA=AF,∴AH为△CBF的中位线,∴AH=12BF=3,故选:D.二、填空题11.在⊙O中,弦AB=16cm,弦心距OC=6cm,那么该圆的半径为__cm.【答案】10【分析】根据题意画出相应的图形,由OC垂直于AB,利用垂径定理得到C为AB别的中点,由AB的长求出BC的长,再由弦心距OC的长,利用勾股定理求出OB的长,即为圆的半径.【解析】解:如图所示:过点O作OC AB⊥于点C,∵AB=16cm,OC⊥AB,∴BC=AC12=AB=8cm,6OC cm=,在Rt△BOC中,2210.OB OC BC cm∴=+故答案为:10.12.如图,AB为⊙O的弦,半径OC⊥AB于E,AB=8,CE=2,则⊙O的半径为_____.【答案】5【分析】如图,连接OA,设OA=r.在Rt△AOE中,根据OA2=OE2+AE2,构建方程即可解决问题;【解析】解:如图,连接OA,设OA=r.∵OC⊥AB,∴AE=EB=4,∠AEO=90°,在Rt△AOE中,∵OA2=OE2+AE2,∴r2=42+(r﹣2)2,∴r=5,故答案为:5.13.已知⊙O的半径为6cm,弦AB=6cm,则弦AB所对的圆心角是________度.【答案】60【分析】连接OA、OB,可证得△OAB是等边三角形,由此得解.【解析】如图,连接OA、OB,∵OA=OB=AB=6,∴△OAB是等边三角形∴∠AOB=60°故弦AB所对的圆心角的度数为60°.故答案为:60.14.如图,在O中,AB BC CD==,连接AC,CD,则AC__2CD(填“>”,“ <”或“=” ).【答案】<【分析】根据AB BC CD==推出AB=BC=CD,利用三角形三边关系得到答案【解析】解:∵AB BC CD==,AB BC CD∴==,<+,AC AB BCAC CD∴<,2故答案为:<.∠的度数为______.15.如图,AB,CD是O的直径,弦CE AB,CE所对的圆心角为40°,则AOC【答案】70°【分析】连接OE,由弧CE的所对的圆心角度数为40°,得到∠COE=40°,根据等腰三角形的性质和三角形的内角和定理可求出∠OCE ,根据平行线的性质即可得到∠AOC 的度数.【解析】解:连接OE ,如图,∵弧CE 所对的圆心角度数为40°,∴∠COE =40°,∵OC =OE ,∴∠OCE =∠OEC ,∴∠OCE =(180°-40°)÷2=70°,∵CE //AB ,∴∠AOC =∠OCE =70°,故答案为:70°.16.如图,A 、B 、C 、D 为⊙O 上的点,且 AB BC CD ==.若∠COD =40°,则∠ADO =______度.【答案】30【分析】先根据圆心角定理可得40AOB BOC COD ∠=∠=∠=︒,从而可得120AOD ∠=︒,再根据等腰三角形的性质即可得.【解析】解:∵AB BC CD ==,40COD ∠=︒,∴40AOB BOC COD ∠=∠=∠=︒,∴120AOD ∠=︒, 又OA OD =,∴1(180)302ADO OAD AOD ∠=∠=︒-∠=︒, 故答案为:30.三、解答题17.如图,O 的弦AB 、CD 相交于点E ,且AB CD =.求证:BE DE =.【答案】详见解析【分析】由弧、弦、圆心角的关系进行证明,结合等角对等边,即可得到结论成立.【解析】证明:AB CD=,CAB D∴=,AB AC CD AC∴-=-,即AD BC=,B D∴∠=∠,BE DE∴=;18.如图,在⊙O中,直径AB=10,弦AC=8,连接BC.(1)尺规作图:作半径OD交AC于E,使得点E为AC中点;(2)连接AD,求三角形OAD的面积.【答案】(1)见解析;(2)10【分析】(1)过点O作OD⊥AC,交AC于点E,交⊙O于点D;(2)由题意可得OD=5,由(1)得:OE⊥AC,点E为AC中点,继而可得118422AE AC==⨯=,然后根据三角形的面积公式即可求得答案.【解析】(1)解:如图,点E即为所求;(2)解:如图,连接AD,∵⊙O的直径是10,∴OD=5,由(1)得:OE⊥AC,点E为AC中点,∴118422AE AC==⨯=,∴11541022OADS OD AE=⋅=⨯⨯=.19.如图,已知AB是O的直径,P是AO上一点,点C、D在直径两侧的圆周上,若PB平分CPD∠,求证:劣弧BC与劣弧BD相等.【答案】见详解【分析】过点O分别作OE⊥PC,OF⊥PD,垂足分别为E、F,连接OC、OD,由题意易得OE=OF,然后可得BOC BOD∠=∠,进而问题可求证.【解析】证明:过点O分别作OE⊥PC,OF⊥PD,垂足分别为E、F,连接OC、OD,如图所示:∵PB 平分CPD ∠,∴OE =OF ,∵OC =OD ,∴EOC FOD △≌△(HL ),∴C D ∠=∠,∴BOC BOD ∠=∠,∴BC BD =.20.如图,已知弓形的弦长AB =8,弓高CD =2(CD ⊥AB 并经过圆心O ).求弓形所在⊙O 的半径r 的长.【答案】r =5.【分析】先由垂径定理得AD =4,由于OD =r -2,则利用勾股定理得到62+(r -2)2=r 2,然后解方程即可.【解析】CD AB ⊥并经过圆心O ,∴118422AD BD AB ===⨯=,2OD OC CD r =-=-, 在Rt △OAD 中,2224(2)r r +-=,解得r =5.21.如图,正方形ABCD 内接于⊙O , AM DM =,求证:BM =CM .【答案】见解析【分析】根据圆心距、弦、弧之间的关系定理解答即可.【解析】证明:∵四边形ABCD是正方形,∴AB=CD,∴AB CD=,∵AM DM=,∴AB AM CD DM+=+,即BM CM=,∴BM=CM.22.如图,AB为圆O的直径,点C在圆O上.∥(不写作法,只保留作图痕迹);(1)尺规作图:在BC上求作一点E,使OE AC(2)探究OE与AC的数量关系.【答案】(1)见解析;(2)AC=2OE【分析】(1)过点O作OE⊥BC即可.(2)利用三角形中位线定理证明即可.【解析】(1)如图所示,点E即为所求的点.(2)结论:AC=2OE.理由:由作图得:OE⊥BC∴BE=CE,即点E为BC的中点,∴OE为△ABC的中位线,∴AC=2OC.23.如图,在⊙O中,AB、AC是互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D、E.(1)求证:四边形ADOE是正方形;(2)若AC=2cm,求⊙O的半径.【答案】(1)见解析;2cm【分析】(1)根据AC ⊥AB ,OD ⊥AB ,OE ⊥AC ,可得四边形ADOE 是矩形,由垂径定理可得AD=AE ,根据邻边相等的矩形是正方形可证;(2)连接OA ,由勾股定理可得.【解析】(1)证明:∵AC ⊥AB ,OD ⊥AB ,OE ⊥AC ,∴四边形ADOE 是矩形,12AD AB =,12AE AC =, 又∵AB=AC ,∴AD=AE ,∴四边形ADOE 是正方形.(2)解:如图,连接OA ,∵四边形ADOE 是正方形,∴112OE AE AC ===cm , 在Rt △OAE 中,由勾股定理可得:22+2OA OE AE , 即⊙O 2cm .24.如图,在扇形AOB 中,90AOB ∠=︒,C 、D 是AB 上两点,过点D 作DE OC ∥交OB 于E 点,在OD 上取点F ,使OF DE =,连接CF 并延长交OB 于G 点.(1)求证:OCF DOE ≌△△; (2)若C 、D 是AB 的三等分点,23=OA①求OGC ∠; ②请比较GE 和BE 的大小.【答案】(1)证明见解析(2)①∠OGC=90°;②BE>GE【分析】(1)先由平行线得出∠COD=∠ODE,再用SAS证△OCF≌△DOE即可;(2)①先由C、D是AB的三等分点,∠AOB=90°,求得∠AOC=∠COD=∠BOD=30°,由(1)知△OCF≌△DOE,所以∠OCF=∠DOE=30°,即可由三角形内角和求解;②由①∠OGC=90°,∠OCF=∠DOE=30°,利用直角三角形的性质和勾股定理即可求得3OG OF=2,又∠OCF=∠COF=30°,所以CF=OF,又由△OCF≌△DOE,所以OE=CF=OF=2,即可求得23GE= 232BE=,再比较即可得出结论;=OC,【解析】(1)解:∵DE AB2AC∴∠COD=∠ODE,∵OC=OD,OF=DE,∴△OCF≌△DOE(SAS);(2)解:①∵C、D是AB的三等分点,∠AOB=90°,∴∠AOC=∠COD=∠BOD=30°,∵△OCF≌△DOE,∴∠OCF=∠DOE=30°,∵∠COG=∠COD+∠DOB=60°,∴∠OGC=90°.②∵23===,OA OC OB∴3OG又∵∠DOE=30°,∴OF=2,∵∠OCF=∠COF=30°,∴CF=OF,∵△OCF≌△DOE,∴OE=CF=OF=2,∴23GE OE OG=-=232=-=,BE OB OE∵3340-,BE GE=>∴BE>GE.。
垂径定理PPT课件(人教版)
7.2m
A
C
D
B
R
O
ห้องสมุดไป่ตู้广探索 二
⊙O半径为10,弦AB=12,CD=16, 且AB∥CD.求AB与CD之间的距离.
A C
B D
.
A
B
.
C
D
课堂小结
C
O
A
A
E
B
D
A
O
D
B
D
B
O
C
A
C
CB
D
A
O
O
C
B
• 两条辅助线:
半径 弦心距
A
• 一个Rt△:半径 半弦 弦心距
r2 d 2 (a)2 2
在⊙O中,直径CD⊥弦AB
A
① AB是直径 ② CD⊥AB
C
P
┗
D
③ CP=DP
可推得
④
⌒ AC
=
⌒ AD
O
⑤
⌒⌒ BC = BD
B
垂径定理的变式图形一
在⊙O中,半径 OB⊥弦CD
C
① OB是半径 可推得 ② OB⊥CD
③CP=DP,
④ ⌒BC=⌒BD.
O P
D
B
垂径定理的变式图形二
在⊙O中,OP⊥弦CD于P点 C
O P
D
① OP过圆心 ② OP⊥CD
可推得
③CP=DP,
在下列图形中,你能否利用垂径定理找到相等的线 段或相等的圆弧
C
C
B
E
A
O
A
E
B
D C
O
A
E
B
D
A
圆的基本性质与定理
[圆的基本性质与定理]1定理: 不在同一直线上的三点确定一个圆。
(圆的确定)2圆的对称性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
3垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧推论2 圆的两条平行弦所夹的弧相等、圆是以圆心为对称中心的中心对称图形[有关圆周角和圆心角的性质和定理]1定理: 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等2圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半圆心角定理圆心角的度数等于他所对的弧的度数推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形圆内接四边形的性质与定理]1定理圆的内接四边形的对角互补2定理并且任何一个外角都等于它的内对角3圆内接四边形判定定理如果一个四边形对角互补,那么这个四边形的四个顶点共圆推论如果一个四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆[有关切线的性质和定理]1切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线2切线的性质定理:圆的切线垂直于经过切点的半径推论1:经过圆心且垂直于切线的直线必经过切点推论2 :经过切点且垂直于切线的直线必经过圆心[圆的其他性质定理]1弦切角定理弦切角等于它所夹的弧对的圆周角推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等2①直线L和⊙O相交d<r ②直线L和⊙O相切d=r ③直线L和⊙O相离d>r3圆的外切四边形的两组对边的和相等[圆与圆]1如果两个圆相切,那么切点一定在连心线上2①两圆外离d>R+r ②两圆外切d=R+r ③两圆相交R-r<d<R+r(R>r) ④两圆内切d=R-r(R>r) ⑤两圆内含d<R-r(R>r)3定理相交两圆的连心线垂直平分两圆的公共弦4定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形(有关外接圆和内切圆的性质和定理)5定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆6一个三角形有唯一确定的外接圆和内切圆。
圆的对称性、垂径定理 知识点+例题+练习(非常好 分类全面)
知识点2:圆的对称性圆是中心对称图形,对称中心是圆心;圆也是轴对称图形,对称轴是经过圆心的任意一条直线。
注意:(1)圆的对称轴有无数条。
(2)圆还具有旋转不变性,即圆绕圆心旋转任何角度后,仍与自身重合。
知识点 3:圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等例1如图,⊙O 的半径O A、OB 分别交弦C D 于点E、F,且C E=DF.试问:(1) OE 等于O F 吗?(2) AC 与 B D 有怎样的数量关系?例2如图,AB 是⊙O 的直径.(1)若 OD//AC, C D 与 B D 的大小有什么关系?为什么?(2) 把(1)中的条件和结论交换一下,还能成立吗?说明理由.知识点4:圆心角的度数与它所对的弧的度数的关系1.10的弧:将顶点在圆心的周角等分成360 份时,每一份的圆心角是10的角。
因为同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360 份,我们把10的圆心角所对的弧叫做10的弧。
2.圆心角的度数与它所对的弧的度数的关系:圆心角的度数与它所对的弧的度数相等。
注意:(1)圆心角的度数与它所对的弧的度数相等,不是指角与弧相等(角与弧是两个不同的图形)(2)度数相等的角为等角,但度数相等的弧不一定是等弧。
例1如图,在☉O 中,弦A D∥BC,DA=DC,∠AOC=1600,则∠BCO 的度数() A.200B.600 C. 400D.500例 2 如图,在△ABC 中,∠A=700,☉O 截△ABC 的三边所得的弦长相等,则∠BOC的度数为例3如图,AB,CD 是⊙O 的两条直径,过点A作A E//CD 交⊙O 于点E,连接B D,DE.求证:BD=DE.例4如图,点O在∠MPN 的平分线上,☉O 分别交P N、PM 于点A、B 和点C、D.求证:∠PCO=∠NAO.知识点5:垂径定理及垂径定理的推论1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
专题02 垂径定理及其应用(原卷版)-2021-2022学年九年级数学之专攻圆各种类型题的解法
专题02 垂径定理及其应用概念规律重在理解1.圆的对称性:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.2.垂径定理及其推论(1)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.∵ CD是直径,CD⊥AB,∴ AE=BE,温馨提示:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.(2)垂径定理的推论:1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.3.涉及垂径定理时辅助线的添加方法在圆中有关弦长a,半径r, 弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.4.弓形中重要数量关系弦a,弦心距d,弓形高h,半径r之间有以下关系:d+h=r典例解析掌握方法【例题1】(2021广西来宾)如图,⊙O的半径OB为4,OC⊥AB于点D,∠BAC=30°,则OD的长是()A. B. C. 2 D. 3【例题2】(2021湖南长沙)如图,在⊙O中,弦AB的长为4,圆心到弦AB的距离为2,则∠AOC的度数为.【例题3】如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB= cm.【例题4】如图,⊙ O的弦AB=8cm ,直径CE⊥AB于D,DC=2cm,求半径OC的长.【例题5】已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。
你认为AC和BD 有什么关系?为什么?各种题型强化训练一、选择题1.(2021四川南充)如图,AB是⊙O的直径,弦CD⊥AB于点E,CD=2OE,则∠BCD的度数为()A.15°B.22.5°C.30°D.45°2.(2021湖北鄂州)筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2.已知圆心O在水面上方,且⊙O被水面截得的弦AB长为6米,⊙O半径长为4米.若点C为运行轨道的最低点,则点C 到弦AB所在直线的距离是()A.1米B.(4﹣)米C.2米D.(4+)米3.在O中,直径AB=15,弦DE⊥AB于点C.若OC:OB=3 :5,则DE的长为()A.6 B.9 C.12 D.154.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()A.0.5 B.1 C.2 D.45.如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为()A.6.5米B.9米C.13米D.15米6.如图所示,某宾馆大厅要铺圆环形的地毯,工人师傅只测量了与小圆相切的大圆的弦AB的长,就计算出了圆环的面积,若测量得AB的长为20米,则圆环的面积为()A.10平方米B.10π平方米C.100平方米D.100π平方米7.如图,在等腰△ABC中,AB=AC=25,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于12EF的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于12AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为()A.25B.10 C.4 D.58.《九章算术》是一本中国乃至东方世界最伟大的一本综合性数学专著,标志着中国古代数学形成了完整的体系.“圆材埋壁”是《九章算术》中的一个问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”朱老师根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为()A.26寸B.25寸C.13寸D.寸9.为了测量一个铁球的直径,将该铁球放入工件槽内,测得的有关数据如图所示(单位:cm),则该铁球的直径为()A.12cm B.10cm C.8cm D.6cm10.(2020·江苏南京)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D,若⊙P的半径为5,点A的坐标是(0,8),则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)二、填空题1.(2021贵州黔东南)小明很喜欢专研问题,一次数学杨老师拿来一个残缺的圆形瓦片(如图所示)让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB,量的弧AB的中心C到AB的距离CD=1.6cm,AB=6.4cm,很快求得圆形瓦片所在圆的半径为cm.2.(2021黑牡鸡)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为.3.如图,某下水道的横截面是圆形的,水面CD 的宽度为2米,F 是线段CD 的中点,EF 经过圆心O 交⊙O 于点E ,EF =3米,则⊙O 直径的长是 米.4.现在很多家庭都使用折叠型西餐桌来节省空间,两边翻开后成圆形桌面(如图1).餐桌两边AB 和CD平行且相等(如图2),小华用皮带尺量出AC =2米,AB =1米,那么桌面翻成圆桌后,桌子面积会增加 平方米.(结果保留π)5.已知⊙O 的直径为10cm ,AB ,CD 是⊙O 的两条弦,//AB CD ,8cm AB =,6cm CD =,则AB 与CD 之间的距离为________cm .三、解答题1.一辆装满货物的卡车,高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过厂门(厂门上方为半圆形拱门)?说明你的理由.2.木工师傅可以用角尺测量并计算出圆的半径r .用角尺的较短边紧靠⊙O,角尺的顶点B (∠B=90°),并使较长边与⊙O 相切于点C .(1)如图,AB<r,较短边AB=8cm,读得BC长为12cm,则该圆的半径r为多少?(2)如果AB=8cm,假设角尺的边BC足够长,若读得BC长为acm,则用含a的代数式表示r为.。
初三数学 圆的性质定理
初三数学圆的性质定理1、圆的对称性:圆是轴对称图形,任一条直径所在的直线都是它的对称轴.2、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.3、垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.4、垂径定理的应用:①用直尺和圆规平分一条弧.作法是过圆心作弧所对弦的垂线,理由是垂径定理;②在利用垂径定理计算或证明时,我们通常将其化为一个直角三角形的边和角,这个特殊直角三角形的三边分别是半径、弦的一半和圆心到弦的垂线段.例1、如图,已知以点O为公共圆心的两个同心圆,大圆的弦AD交小圆于B、C.(1)求证:AB=CD(2)如果AD=6cm,BC=4cm,求圆环的面积.1.圆周角定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角.2.圆周角定理:同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.推论:①同圆或等圆中,相等的圆周角所对的弧一定相等.②半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径.③如果三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.4.圆的内接四边形:①定义:如果一个多边形的所有顶点都在同一圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.②圆内接四边形的性质:圆内接四边形的对角互补.例2、如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交BC于D.若BC=8,ED=2,求⊙O的半径.1、如图,已知AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP∶PB=1∶5,那么⊙O的半径是()2、圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB、CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm3、如下图所示,AB是⊙O的一条固定直径,它把⊙O分成上、下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A、B两点)移动时,点P()A.到CD的距离保持不变B.位置不变C.平分D.随点C的移动而移动4、如上中图,BD是⊙O的直径,弦AC、BD相交于点E,则下列结论不成立的是()A.∠ABD=∠ACD B.C.∠BAE=∠BDC D.∠ABD=∠BDC5、如上右图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80°B.50°C.40°D.20°6、如下图,A、B、C是⊙O上三点,∠ACB=40°,则∠ABO等于__________度.7、如上左二图,△ABC的顶点都在⊙O上,∠C=30°,AB=2cm,则⊙O的半径为__________cm.8、如上左三图,在平面直角坐标系中,P是经过O(0,0),A(0,2),B(2,0)的圆上的一个动点(P与O、A 、B不重合),则∠OAB=__________,∠OPB=__________.9、如右上图,△ABC内接于⊙O,∠B=∠OAC,OA=8cm,则AC=__________cm.10、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则BC=__________.11、如图,⊙O中的弦AB、CD互相垂直于E,AE=5cm,BE=13cm,O到AB的距离为.求⊙O的半径及O到CD的距离.12、如图,某地有一座圆弧形的拱桥,桥下水面宽为7.2m,拱顶高出水面2.4m,现有一艘宽3m,船舱顶部为正方形并高出水面2m的货船要经过这里,此时货船能顺利通过这座拱桥吗?请说明理由.13、如图,AB为⊙O的直径,BD是⊙O的弦,延长到C,使BD=DC,连接AC交⊙O于点F,点F不与点A重合.(1)AB与AC的大小有什么关系?为什么?(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.一、确定圆的条件(1)因为作圆实质上是确定圆心和半径,要经过已知点A作圆,只要圆心确定下来,半径就随之确定了下来.所以以点A以外的任意一点为圆心,以这一点与点A所连的线段为半径就可以作一个圆.由于圆心是任意的.因此这样的圆有无数个.如图(1).(2)已知点A、B都在圆上,它们到圆心的距离都等于半径.因此圆心到A、B的距离相等.根据前面提到过的线段的垂直平分线的性质可知,线段的垂直平分线上的点到线段两端点的距离相等,则圆心应在线段AB的垂直平分线上.在AB的垂直平分线上任意取一点,都能满足到A、B两点的距离相等,所以在AB的垂直平分线上任取一点都可以作为圆心,这点到A的距离即为半径,圆就确定下来了.由于线段AB的垂直平分线上有无数点,因此有无数个圆心,作出的圆有无数个.如图(2).(3)要作一个圆经过A、B、C三点,就是要确定一个点作为圆心,使它到三点的距离相等.因为到A、B两点距离相等的点的集合是线段AB的垂直平分线,到B、C两点距离相等的点的集合是线段BC的垂直平分线,这两条垂直平分线的交点满足到A、B、C三点的距离相等,就是所作圆的圆心.因为两条直线的交点只有一个,所以只有一个圆心,即只能作出一个满足条件的圆.过不在同一条直线上的三点确定一个圆2、经过三角形三个顶点的圆,叫做三角形的外接圆,外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.因为画圆的关键是确定圆心和半径,所以作三角形的外接圆时,只要找三边垂直平分线的交点,这就是圆心,以这点到三角形任一顶点间的距离为半径就可作出三角形的外接圆.3、利用尺规过不在同一条直线上的三个点作圆的方法作法图示1.连结AB、BC2.分别作AB、BC的垂直平分线DE和FG,DE和FG相交于点O3.以O为圆心,OA为半径作圆⊙O就是所要求作的圆例1、已知锐角三角形、直角三角形、钝角三角形,分别作出它们的外接圆,它们外心的位置有怎样的特点?(1)(2)(3)例3、如图,点A、B、C表示三个村庄,现要建一座深水井泵站,向三个村庄分别送水,为使三条输水管线长度相同,水泵站应建在何处?请画出图,并说明理由.1、下列关于外心的说法正确的是()A.外心是三个角的平分线的交点 B.外心是三条高的交点C.外心是三条中线的交点 D.外心是三边的垂直平分线的交点2、下列条件中不能确定一个圆的是()A.圆心和半径B.直径 C.三角形的三个顶点D.平面上的三个已知点3、三角形的外心具有的性质是()A.到三边的距离相等B.到三个顶点的距离相等 C.外心在三角形外D.外心在三角形内4、等腰三角形底边上的中线所在的直线与一腰的垂直平分线的交点是()A.重心B.垂心 C.外心D.无法确定5、如图所示,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M6、如图,是△ABC的外接圆,∠BAC=30°,BC=2 cm ,则△OBC的面积是_______.7、直角三角形的两边长分别为16和12,则此三角形的外接圆半径是_______.8、如图,有一个圆形的盖水桶的铁片,部分边沿由于水生锈残缺了一些,很不美观,为了废物利用,将铁片剪去一些使其成为圆形的,应找到圆心,并找到合理的半径,在铁片上画出圆,沿圆剪下即可,问应怎么样找到圆心和半径?。
圆的对称性
个性化辅导教案形又是轴对称图形的个数是_______.A 、1个B 、2个C 、3个D 、4个知识点二 圆心角、弧、弦之间的关系1:已知⊙O 的半径为R ,弦AB 的长也为R ,则∠AOB = .2:已知:⊙O 的半径为2cm ,弦AB 所对的劣弧为圆的31,则弦AB 的长为 cm ;圆心到弦AB 的距离为 cm . 3:在⊙O 中,圆心角∠AOB =90°,点O 到弦AB 的距离为4,则⊙O 的直径的长 .4:若一条弦把圆分成1:3两部分,则弦所对的圆心角为 .5:如图,AB 、CD 是⊙O 的两条弦,M 、N 分别为AB 、CD 的中点,且∠AMN=∠CNM ,AB=6,则CD= .6:若圆内直径AB 垂直弦CD 于点E ,且AE=5cm,BE=13cm,则圆心到弦CD 的距离为________cm .7:在半径为8cm 的圆中,垂直平分半径的弦长为( )A 、38cmB 、 34cmC 、4cmD 、8cm8:如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C ,且CD =1,则弦AB 的长是________.第8题图 第9题图 第10题图9:如右图,⊙O 的半径为5,弦AB=8,点M 是弦AB 上的动点,则OM 不可能是( )A 、2B 、3C 、4D 、510:如图,已知⊙O 的半径为5,点O 到弦AB 的距离为3,则⊙O 上到弦AB 所在直线的距离为2的点有( )A 、1个B 、2个C 、3个D 、4个11:如图,AB 是⊙O 的直径,M 、N 分别是半径AO 、BO 的中点,CM ⊥AB ,DN ⊥AB .求证:=AC BD.12:如图所示,已知AB交⊙O于C、D且AC=BD,你认为OA=OB吗?为什么?13:如图AB、CD是⊙O的两条弦,OF⊥CD,OE⊥AB且OE=OF求证:AB=CD.14:如图所示,点P为⊙O弦AB的中点,PC⊥OA,垂足为C,求证:PA•PB=AC•OA.【课堂练习】1:下列判断中,正确的是()A、平分弦的直线垂直于弦;B、平分弦的直线也平分弦所对的两条弧;C、弦的垂直平分线必平分弦所对的两条弧;D、平分一条弧的直线必平分这条弧所对的弦.2:如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A、CM=DMB、弧CB=弧DBC、∠ACD=∠ADCD、OM=MD第2题图第5题图3:已知圆的半径为5,圆心到弦的距离为4,则弦长为()A、3B、6C、4D、84:已知⊙O的半径为13 cm,弦AB∥CD,AB=24 cm,CD=10 cm,则AB、CD之间的距离为()A、17 cmB、7 cmC、12 cmD、17 cm或7 cm5:如图,在平面直角坐标系中,点P在第一象限,P与x轴相切于点Q,与y轴交于M(0,2),N (0,8)两点,则点P的坐标是()A、(5,3)B、(3,5)C、(5,4)D、(4,5)6:如图,在Rt△ABC中,∠C=90°,∠B=25°,以C为圆心,以CA的长为半径的圆交AB于点D,求AD的度数.7:如图是一个装有水的水管的截面,已知水管的直径是100cm,装有水的液面宽度为AB=60cm,则水管中水的最大深度为多少?【能力大考验】1:下列语句中,正确的有()(1)相等的圆心角所对的弧相等;(2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧;(4)经过圆心的每一条直线都是圆的对称轴;A、1个B、2个C、3个D、4个2:如图,在半径为2cm的⊙O内有长为2cm的弦AB,则此弦所对的圆心角∠AOB的度数为()A、60°B、90°C、120°D、150°第2题图第3题图3:如图,AB是⊙O的直径,若∠COA=∠DOB=60°,则与线段AO等长的线段()A、3条B、4条C、5条D、6条4:⊙O的半径为5cm,弦AB∥CD,AB=6cm,CD=8cm,求两平行弦之间的距离.5:如图,⊙O的直径AB垂直于弦CD,垂足P是OB的中点,CD=6 cm,求直径AB的长.6:如图所示,点A、B为⊙O上两点,AB=10,点P是⊙O上的动点(P与A、B不重合),连结PA、PB,过O作OE⊥AP于E,OF⊥PB于F,则EF= .7:如图,在Rt△ABC中,∠C=90°,AC=2,BC=1,若以点C为圆心,CB为半径作圆交AB于点P,求AP=_________.第6题图第7题图第8题图8:如图,⊙O过点B、C圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为.60,求CD的长.9:如图,⊙O的直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,∠DEB=10:如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为11:如图是一个地通桥,上面是半径为2m的半圆,下面是一矩形,半圆拱的圆心到地面2m,现一辆高3.3 m,宽2.8 m的卡车想从这里通过,问这辆卡车能过去吗?请说明理由.。
圆对称性1垂径定理
×
⑵平分弦所对的一条弧的直径一定平分这条 弦所对的另一条弧.( )
√
⑶经过弦的中点的直径一定垂直于弦.(
) ×
(4)弦的垂直平分线一定平分这条弦所对的 弧.( )
√
2.如图为一圆弧形拱桥,它的跨度(即弧 所对的弦长)为37.4m,拱高(即弧的中点到 弦的距离)为7.2m,求桥拱所在圆的半径。
解:连接AB,作CO⊥AB,交 AB于点C,交⌒ AB于点D. 连接OA,OB ∵OC⊥AB, ∴AD=
∟
A
M
B
O
●
AC=BC
⌒ ⌒
⌒ ⌒
D
AD=BD
垂直于弦 直径平分弦 平分弧 ∵ CD为⊙O的直径, 垂径定理的逆定理: AM=BM 平分弦(不是直径 )的直径 垂直于弦,并且平分弦所对的 ∴ CD⊥AB , ⌒ ⌒ ⌒ ⌒ 弧. AD=BD,AC=BC.
拓展: 如图,AB是⊙O的弦 ①CD是直径;② CD⊥AB ; ⌒ ⌒ ③CD平分AB; ④ AC=BC ⑤ AD=BD
∟
A
M
B
O
●
D
(1)此图是轴对称图形吗?如果是,其对 称轴是什么?
(2)你能发现图中有哪些等量关系?说一 说你的理由。
C
问题1: 如图,AB是⊙O的一条弦, CD是直径,CD⊥AB于M
AM=BM AC=BC
∟
A
M
B
O
●
⌒ ⌒
⌒ ⌒
D
AD=BD
平分弦 直径垂直于弦 垂径定理: 垂直于弦的直径平分这条 弦,并且平分弦所对的弧。 平分弧 ∵CD⊥AB,CD为 ⊙O的直径 ∴AM=BM, ⌒ ⌒ ⌒ ⌒ AD=BD,AC=BC.
圆的认识2圆的对称性垂径定理及其推论+练习课件+ 2023—2024学年华东师大版数学九年级下册
桥,桥下水面宽度AB为12 m,拱高CD为4 m.
(1)求拱桥所在圆的半径;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
解:(1)设拱桥所在圆的圆心为O,连结OB,OD,则易知
OD⊥AB,点C在OD的延长线上.∵OC⊥AB,∴D为AB
的中点.∵AB=12 m,∴BD= AB=6 m.
设OB=OC=r m,∵CD=4 m,∴OD=(r-4)m.
垂足分别是点D、E,连结DE.
(1)求线段DE的长;
解:(1)∵OD经过圆心O,OD⊥AC,
∴AD=DC.同理得CE=EB.
∴DE是△ABC的中位线.
∴DE= AB.∵AB=8,∴DE=4.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
(2)若点O到AB的距离为3,求☉O的半径.
解:(2)过点O作OH⊥AB于点H,连结OA,
(r-15)
含 r 的 代 数 式 表 示 OD , 则 OD =
cm. 在
Rt△OAD中,由勾股定理可列出关于r的方程:r2= 452+
(r-15)2 ,解得r=75.通过单位换算,得到车轮直径约
为六尺六寸,可验证此车轮为兵车之轮.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
9.已知☉O的半径为7,AB是☉O的弦,点P在弦AB上.若PA=
圆的对称性(二)垂径定理(十一大题型)( 原卷版)
2.2圆的对称性
第二课时 垂径定理
圆的轴对称性
圆是轴对称图形,圆有无数条对称轴,任何一条直径所在直线都是它的对称轴;圆又是中心对称图形,它的对称中心是圆心.
◆1、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧;垂径定理的依据是圆的轴对称的性质.
A. B. C. D.
【例题5】(2022•甘肃模拟)如图,⊙O的半径为5,弦AB=8,点M是弦AB上的动点,则( )
A.4≤OM≤5B.3≤OM<5C.3<OM≤5D.3≤OM≤5
解题技巧提炼
本题考查了垂径定理、勾股定理以及线段的最值问题来求范围,熟练掌握垂径定理和勾股定理是解题的关键.
【变式5-1】(2023•同心县校级二模)如图,⊙O的半径为10,弦AB=16,M是弦AB上的动点,则OM不可能为( )
推导格式:
◆2、垂径定理的用法:
(1)连接圆心与弦的一端,与过圆心且垂直与弦的线段和弦的一半构成直角三角形(即垂径定理三角形),利用勾股定理列式求值.
(2)如图弦长a,弦心距d,弓形高h,半径r之间有以下关系:
(3)r,a,d,h,已知其中任意两个量,即可求出另外两个量.
◆1、垂径定理的推论:平分弦(不是直径)的直径垂巧提炼
作弦的垂线并连接圆心与弦的一个端点,构造“垂径定理三角形”,利用勾股定理求解.
【变式2-1】(2023春•渝中区校级期末)如图,AB是⊙O的直径,弦CD⊥AB于E,若 ,
BE=2,则AB的长是( )
A.12B.16C. D.
【变式2-2】(2023•伊川县一模)如图,在半径为1的扇形AOB中,∠AOB=90°,点P是 上任意一点(不与点A,B重合),OC⊥AP,OD⊥BP,垂足分别为C,D,则CD的长为( )
4.1 圆的对称性 第1课时
) B
B.CE=DE CE= AOC=60° D.∠AOC=60°
4.(2010·安徽中考)如图, C.圆心 圆心O 4.(2010·安徽中考)如图,⊙O过点B 、C.圆心O在等 安徽中考 过点B 腰直角△ABC的内部, BAC= OA= BC= 腰直角△ABC的内部,∠BAC=900,OA=1,BC=6,则 的内部 ⊙O的半径为( 的半径为( )
A C D B O
变式5 OC=OD 变式5:______AC=BD.
跟踪训练
如图, 如图,P为⊙O的弦BA延长线上一点,PA=AB=2,PO=5, 的弦BA延长线上一点,PA=AB= BA延长线上一点 PO= 求⊙O的半径. 的半径. 解析:提示作OM 解析:提示作OM 垂直于 连接OA. PB ,连接OA. 答案: 答案: 17 关于弦的问题,常常需要过圆心作弦的垂线段, 关于弦的问题,常常需要过圆心作弦的垂线段,这是一 条非常重要的辅助线. 条非常重要的辅助线.
C
O
E A
D B F
随堂练 习
1.(2010·毕节中考)如图, 1.(2010·毕节中考)如图, 毕节中考 AB为 AB为⊙O的弦,⊙O的半径为5, 的弦, 的半径为5 OC⊥AB于点D OC⊥AB于点D,交⊙O于点C, 于点 于点C 且CD=l,则弦AB的长是 CD= 则弦AB的长是 AB .
【解析】如图所示,连接OB,则OB=5,OD=4,利用勾股定 解析】如图所示,连接OB, OB=5,OD=4,利用勾股定 OB 理求得BD=3,因为OC⊥AB于点D,所以AD=BD=3,所以AB=6. 理求得BD=3,因为 所以AD=BD=3,所以AB=6. BD=3, AD=BD=3,所以 答案: 答案:6
本课小 结
圆的对称性(1)垂径定理
)
)
• ⑷圆的两条弦所夹的弧相等,则这两条弦平行 . (
)
‹# ›
试一试
12
驶向胜利 的彼岸
挑战自我画一画
直径MN⊥AB,垂足为E,交弦CD于点F. 图中相等的线段有 : . 图中相等的劣弧有: .
C A
• 2.已知:如图,⊙O 中,弦AB∥CD,AB<CD,
驶向胜 利的彼 岸
以A,B两点为端点的弧.记作 ⌒ AB,读作“弧 AB”. 连接圆上任意两点间的线段叫做弦(如弦AB).
经过圆心弦叫做直径(如直径AC).
B A
●
直径将圆分成两部分 ,每一部分都叫做半 m ⌒弧ABC). 圆 (如 ⌒ 小于半圆的弧叫做劣弧,如记作 AB(用 O C 两个字母). ⌒ D 大于半圆的弧叫做优弧,如记作 AmB (用三个字母).
‹# ›
做一做
4
驶向胜利 的彼岸
垂径定理
• AB是⊙O的一条弦. 作直径CD,使CD⊥AB,垂足为M. 右图是轴对称图形吗?如果是,其对称轴是什么?
C
A
• 你能发现图中有哪些等量关系?与同伴说 说你的想法和理由.
B O
M└
●
小明发现图中有: 由 ① CD是直径 ② CD⊥AB
③AM=BM,
义务教育课程标准实验教科书数学· 九年级· 上册(泰山版)
九年级数学(上)第四章: 对圆的进一步认识
4.1圆的对称性-垂径定理
想一想
1
驶向胜利 的彼岸
圆的对称性
• 圆是轴对称图形吗? 如果是,它的对称轴是什么?你能找到多少条对称 轴? 你是用什么方法解决上述问题的? 圆是中心对称图形吗? 如果是,它的对称中心是什么? O 你能找到多少条对称轴? 你又是用什么方法解决这个 问题的?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
∴当圆沿着直径CD对折时,点A与点B ⌒ ⌒ 重合, ⌒ ⌒ AC和BC重合, AD和BD重合.
D
⌒ ⌒ ⌒ ∴AC =BC, AD =BD.
⌒
‹# ›
想一想
6
垂径定理
• 定理 垂直于弦的直径平分弦,并且平分弦所的两条弧.
C
A
M└
●
如图∵ CD是直径, CD⊥AB, B
O
∴AM=BM,
⌒ ⌒ AC =BC, ⌒ ⌒ AD=BD.
可推得
⌒ ⌒ ④AC=BC,
平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧.
‹# ›
D
⌒ ⌒ ⑤AD=BD.
想一想
8
垂径定理的逆定理
• 如图,在下列五个条件中:
⌒ ⌒ ① CD是直径, ② CD⊥AB, ③ AM=BM, ④AC=BC,
⌒ ⌒ ⑤AD=BD. 只要具备其中两个条件,就可推出其余三个结论.
●
‹# ›
想一想
2
圆的对称性
• 圆是轴对称图形. 圆的对称轴是任意一条经过圆心的直线,它有无 数条对称轴. 可利用折叠的方法即可解决上述问题. 圆也是中心对称图形.
●
O
它的对称中心就是圆心.
用旋转的方法即可解决这个 问题.
‹# ›
读一读
3
圆的相关概念
• 圆上任意两点间的部分叫做圆弧,简称弧. 以A,B两点为端点的弧.记作 ⌒ ,读作“弧 AB AB”. 连接圆上任意两点间的线段叫做弦(如弦AB).
经过圆心弦叫做直径(如直径AC).
B A
●
直径将圆分成两部分,每一部分都叫做半 m ⌒弧ABC). 圆 (如 ⌒ 小于半圆的弧叫做劣弧,如记作 AB(用 O C 两个字母). ⌒ D 大于半圆的弧叫做优弧,如记作 AmB (用三个字母).
‹# ›
做一做
4
垂径定理
• AB是⊙O的一条弦. 作直径CD,使CD⊥AB,垂足为M. 右图是轴对称图形吗?如果是,其对称轴是什么?
C A O F B M E D
N
‹# ›
试一试
13
挑战自我画一画
• 3、已知:如图,⊙O 中, AB为 弦,C 为 AB 的中点,OC交AB 于D ,AB = 6cm , CD = 1cm. 求⊙O 的半径OA.
A D O C
B
‹# ›
试一试
14
驶向胜利 的彼岸
挑战自我画一画
• 4.如图,圆O与矩形ABCD交于E、F、G、 H,EF=10,HG=6,AH=4.求BE的长.
‹# ›
D
做一做
7
垂径定理的逆定理
• AB是⊙O的一条弦,且AM=BM. 过点M作直径CD. 右图是轴对称图形吗?如果是,其对称轴是什么? • 你能发现图中有哪些等量关系?与同伴说 C 说你的想法和理由. A B 小明发现图中有: ┗M
● ●
O
由 ① CD是直径 ③ AM=BM
②CD⊥AB,
义务教育课程标准实验教科书数学· 九年级· 上册(泰山版)
九年级数学(上)第四章: 对圆的进一步认识
4.1圆的对称性-垂径定理
想一想
1
圆的对称性
• 圆是轴对称图形吗? 如果是,它的对称轴是什么?你能找到多少条对称 轴? 你是用什么方法解决上述问题的? 圆是中心对称图形吗? 如果是,它的对称中心是什么? O 你能找到多少条对称轴? 你又是用什么方法解决这个 问题的?
A H G D
B
E
· 0
F
C
‹# ›
C
• 你能发现图中有哪些等量关系?与同伴说 说你的想法和理由.
B O
A
M└
●
小明发现图中有: 由 ① CD是直径 ② CD⊥AB
③AM=BM,
可推得
⌒ ⌒ ④AC=BC, ⌒
D
⌒ ⑤AD=BD.
‹#明的理由是: • 连接OA,OB, 则OA=OB. 在Rt△OAM和Rt△OBM中, ∵OA=OB,OM=OM, ∴Rt△OAM≌Rt△OBM. C ∴AM=BM. A B ∴点A和点B关于CD对称. M└ ∵⊙O关于直径CD对称,
• ⑶经过弦的中点的直径一定垂直于弦.( • ⑸弦的垂直平分线一定平分这条弦所对的弧. (
)
)
• ⑷圆的两条弦所夹的弧相等,则这两条弦平行. (
)
‹# ›
试一试
12
挑战自我画一画
• 2.已知:如图,⊙O 中,弦AB∥CD,AB<CD, 直径MN⊥AB,垂足为E,交弦CD于点F. 图中相等的线段有 : . 图中相等的劣弧有: .
D
③⑤
④⑤
试一试
10
挑战自我 画一画
• 如图,M为⊙O内的一点,利用尺规作一条弦AB, 使AB过点M.并且AM=BM.
M ●O
●
‹# ›
试一试
11
挑战自我
• 1、判断:
填一填
驶向胜利 的彼岸
• ⑴垂直于弦的直线平分这条弦,并且平分弦所对的两 条弧. ( ) • ⑵平分弦所对的一条弧的直径一定平分这条弦所对的 另一条弧. ( )
C
A
M└
●
B O
D
‹# ›
想一想
9
A
C M └
●
B
垂径定理及逆定理
条件 ①② ①③ ①④ ①⑤ ②③ ②④ ②⑤ ③④ 结论 命题
O
③④⑤ 垂直于弦的直径平分弦,并且平分弦所的两条弧. ②④⑤ 平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧. ②③⑤ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的 ②③④ 另一条弧. ①④⑤ 弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧. ①③⑤ 垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且 ①③④ 平分弦和所对的另一条弧. ①②⑤ 平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于 ①②④ 弦,并且平分弦所对的另一条弧. ①②③ 平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.