高分子老化之橡胶的热氧化
高分子材料的老化
高分子材料的老化
高分子材料是一类具有长链结构的材料,具有良好的韧性和耐磨性,被广泛应
用于工程材料、日常用品和医疗器械等领域。
然而,随着时间的推移,高分子材料会发生老化现象,导致其性能下降甚至失效。
本文将就高分子材料老化的原因、表现以及防止措施进行探讨。
首先,高分子材料老化的原因主要包括热氧老化、光氧老化、臭氧老化和机械
应力老化。
热氧老化是指高分子材料在高温和氧气的环境下,发生氧化反应导致材料性能下降;光氧老化是指高分子材料在紫外光和氧气的作用下,发生氧化反应导致材料变黄、变脆;臭氧老化是指高分子材料在臭氧的作用下,发生裂解反应导致材料龟裂、变形;机械应力老化是指高分子材料在受到机械应力作用下,发生分子链断裂导致材料强度下降。
其次,高分子材料老化的表现主要包括外观变化、力学性能下降和化学性能变化。
外观变化包括变色、变黄、变脆、龟裂等现象;力学性能下降包括强度、韧性、硬度等性能下降;化学性能变化包括化学稳定性、耐磨性、耐腐蚀性等性能变差。
最后,为了延缓高分子材料的老化,可以采取一些防止措施。
首先是选择合适
的防老化剂,如抗氧化剂、紫外吸收剂、臭氧抑制剂等,以提高高分子材料的抗老化能力;其次是改进材料配方和生产工艺,以提高高分子材料的稳定性和耐久性;最后是加强材料的保养和维护,如定期清洁、防晒、防腐蚀等,以延长高分子材料的使用寿命。
综上所述,高分子材料的老化是一个不可避免的过程,但可以通过科学的方法
和有效的措施来延缓老化过程,提高材料的使用寿命,从而更好地满足人们的需求。
希望本文对高分子材料老化问题有所帮助,谢谢阅读。
高分子材料老化机理及防治方法探讨
高分子材料老化机理及防治方法探讨高分子材料是一种具有重要应用价值的材料,它具有良好的工程性能和广泛的用途。
随着使用时间的增加,高分子材料可能会发生老化现象,导致材料性能下降甚至失效,从而影响产品的使用寿命和安全性。
本文将重点探讨高分子材料老化的机理及防治方法。
一、高分子材料老化的机理高分子材料老化是由于材料内部结构的改变和分子链的断裂所致。
主要包括热老化、光老化、氧化老化、湿热老化等几种类型。
1. 热老化高温对高分子材料的影响主要表现为分子链振动增加,分子间相互作用减弱,导致材料的强度和韧性下降。
高温还会促进氧化反应的进行,导致材料发生氧化老化。
高分子材料在阳光照射下容易发生光老化,主要表现为材料表面发生变色、发黄、龟裂等现象。
这是因为紫外光和可见光能够引发高分子材料的自由基反应,导致分子链断裂和交联反应,从而使材料性能下降。
氧气是高分子材料的一种主要老化因素,它能够与材料中的双键结构发生氧化反应,导致材料发生老化。
氧气还能够引发自由基反应,响应材料的老化过程。
高分子材料在潮湿环境下容易发生湿热老化,导致材料失去原有的强度和硬度。
湿热老化的主要机理包括水分分解、水解裂解、水解引起的氢键断裂等。
针对高分子材料老化的机理,可以采取一些防治措施,延缓材料老化的发生,提高材料的使用寿命和安全性。
1. 添加抗氧化剂向高分子材料中添加抗氧化剂是一种常见的防治方法,抗氧化剂能够有效地阻止或减缓氧化反应的进行,延缓材料老化的发生。
常用的抗氧化剂有羟基类、磷酸酯类、硫醇类等。
2. 添加紫外吸收剂对于易于发生光老化的高分子材料,可以向材料中添加紫外吸收剂,能够有效地吸收紫外光,阻止或减缓光老化的进行,延缓材料的老化。
3. 添加热稳定剂4. 降低材料暴露于老化环境中的时间和强度在实际使用中,可以通过避免或减少高分子材料暴露于老化环境中的时间和强度,延缓材料的老化。
在室外环境下使用的高分子材料制品,可以通过采取罩棚、遮阳等措施,减少材料的暴露时间和强度。
橡胶材料老化机理与寿命预测研究
橡胶材料老化机理与寿命预测研究橡胶材料是我们日常生活中广泛应用的材料,如轮胎、密封制品、管道等等,但是随着时间的推移,橡胶材料会出现老化现象,导致其性能下降,失去原有的功能。
了解橡胶材料老化机理和寿命预测研究对于橡胶材料的使用和生产具有重要意义。
一、橡胶材料老化机理橡胶材料在使用过程中会遭受各种外界因素的影响,导致其材料性能发生变化,出现老化现象。
橡胶材料老化机理可以从以下几个方面进行分析。
1. 氧化老化氧化是导致橡胶老化的主要因素之一。
在空气中含氧量高的环境中,橡胶材料很容易出现氧化现象。
氧化过程中,橡胶分子的长链高分子结构会断裂,并形成一些小分子氧化产物。
2. 光老化使用橡胶材料的环境中可能会有紫外线、紫外线辐射等光源,这些光源能穿透橡胶材料并与其分子发生相互作用。
这些相互作用会导致橡胶材料的分子链结构断裂,从而形成一些小分子氧化产物。
3. 热老化常温下,橡胶材料的长链高分子结构相对稳定,但是当橡胶材料受热作用时,其分子结构会发生变化。
热老化的原因在于分子对热的敏感性,高温会引起橡胶分子的活化,从而使得其细胞结构发生变化。
4. 化学老化在使用橡胶材料过程中,橡胶材料会遭受各种化学因素的影响。
这些化学因素可能是有害物质、油性物质、水、酸、碱等,导致橡胶分子链变化并产生氧化物。
二、橡胶材料寿命预测研究针对橡胶材料的老化现象,科研工作者通过研究橡胶材料寿命预测,找出了一些影响橡胶材料寿命的因素。
1. 贮存条件橡胶材料贮存条件越好,其寿命相对越长。
橡胶材料的贮存温度和湿度对其寿命有很大的影响。
一般而言,橡胶材料要存储在干燥、避光、低温、低湿的环境中。
2. 使用环境橡胶材料在不同的使用环境下有不同的寿命。
在各种外部因素影响下,橡胶材料的寿命也会受到影响。
例如,橡胶管道在被暴露在紫外线和氧化剂等环境中,寿命会比暴露在其他环境下的橡胶管道寿命要短。
3. 橡胶材料类型不同类型的橡胶材料具有不同的寿命。
例如,氟橡胶的耐化学质量很高,该材料能够抵抗多数化学药品的腐蚀,寿命较长。
高分子材料废物处理-循环原理
(4)聚对苯二甲酸乙二醇酯
分解产物:二氧化碳、一氧化碳、乙醛、对苯二甲酸、 水。
无规裂解历程,裂解发生在酯键,氧会加速降解,故 也存在自由基机理。
(3)PVC 升温160℃脱去氯化氢,形成不饱和双键或
热老化
一、热老化过程 热老化在高分子材料加工和使用过程中都会遇到。热
老化通常分为三个过程:热降解、热氧化降解和水解; 热降解过程也有自由基产生、增长和结合过程。
交联是热降解中出现的一个明显过程,可以在聚 合物结构中引入微凝胶。
热氧化降解
热降解类似,主要在降解过程中有氧的存在。 氧的存在往往影响降解过程,降解产物往往是氧化物,
二、高分子材料的循环利用原理
途径1——物理循环
材料循环(Material recycling ),又称物理循环(Physical recycling):废旧材料的再加工。
途径2—化学循环(CHEMICAL RECYCLING)。
化学循环——高分子材料可通过高分子解聚反应、高分 子裂解反应、高分子加氢裂解、高分子汽化等方法加以 利用。高分子经解聚可获得单体及低聚物。可用于高分 子材料的再生产。
发生交联。 双键存在使材料变色。
(5)PC
广泛交联,形成碳化物。 反应初期:存在酯交换,水解,脱羧反应。 反应后期:分子结构重排后,形成芳香醚结构或
交联。 对水非常敏感,加热就水解。
4.2.1.2 大气老化或降解 (1)、高分子材料的风蚀及影响因素 不同的聚合物具有不同的最大损坏波长(最大活化波
如醉、醛、酸等物质。 高分子在氧存在下会发生氧化反应,同时容易产生自
由基,然后进行自由基的增长和终止反应,最重要的 特点是在此过程,有含氧自由基的参与。
高分子材料的老化
高分子材料的老化高分子材料是一类重要的工程材料,它们具有轻质、耐腐蚀、耐磨损等优异的性能,在工业生产和日常生活中得到了广泛应用。
然而,随着时间的推移,高分子材料会发生老化现象,降低其性能和使用寿命。
因此,了解高分子材料的老化规律,采取有效的防护措施,对延长材料的使用寿命和保障工程安全具有重要意义。
高分子材料的老化主要表现为物理性能和化学性能的变化。
在物理性能方面,老化会导致材料的强度、韧性和硬度下降,同时还会出现裂纹、变形和脆化等现象。
而在化学性能方面,老化会引起材料的化学结构发生变化,例如氧化、分解和交联等反应,从而影响材料的稳定性和耐久性。
高分子材料老化的原因主要包括光照、热氧化、湿热、紫外线、臭氧、化学介质等外界环境因素,以及内部结构的缺陷和应力的作用。
光照和紫外线会引起高分子材料的光氧化反应,导致材料表面出现氧化皮并逐渐脆化;热氧化则是高温环境下氧气与材料发生反应,加速材料老化;湿热环境会引起水解、水解裂解和水解交联等反应,使材料失去原有的性能。
为了延缓高分子材料的老化速度,可以采取一些有效的防护措施。
首先,选择合适的材料配方和生产工艺,以提高材料的抗老化性能;其次,采用添加剂和稳定剂,如抗氧化剂、紫外吸收剂、光稳定剂等,来提高材料的耐候性;此外,对于特定工程环境,还可以采用表面涂层、包覆层等方法,来保护材料免受外界环境的侵蚀。
总的来说,高分子材料的老化是一个复杂的过程,受到多种因素的影响。
通过深入了解材料老化的机理和规律,采取科学有效的防护措施,可以有效延缓材料老化的速度,提高材料的使用寿命,为工程安全和可持续发展提供保障。
因此,对高分子材料老化问题的研究具有重要的理论和实际意义。
包材知识丨高分子材料的老化性能
包材知识丨高分子材料的老化性能导读高分子材料事实上已经成为现代生活每个方面中的必需品,其在生产及加工中取得的最新进展进一步拓宽了塑料的应用范围。
老化在高分子材料的合成、贮存及加工和最终应用的各个阶段均可能发生,会导致材料使用寿命终结而大量废弃,造成资源的极大浪费和严重的环境污染。
本文浅述高分子材料的老化性能,内容供优品包材系统的采供朋友们参考:一、概述1、定义老化:高分子材料在加工、储存和使用过程中,由于受热、光照、氧、高能辐射、化学介质、微生物、潮湿等环境因素影响,逐步发生物理化学性质变化,使性能下降,以致最后丧失使用价值的过程。
2、变化1)外观变化:发黏、变硬、脆裂、变形、变色和起泡2)物理性质变化:溶解、溶胀、流变性、透气透水性能3)力学性能变化:拉伸强度、弯曲强度、硬度和弹性4)电性能变化:绝缘电阻、电击穿强度3、类型化学老化:一种不可逆的化学反应,是高分子材料分子结构变化的结果,如塑料的脆化、橡皮的龟裂。
特点:不可逆、不能恢复物理老化:玻璃态高分子材料通过小区域链段的布朗运动使其凝聚态结构从非平衡态向平衡态过渡。
从而使得材料的物理、力学性能发生变化的现象。
二、化学老化1、概述一种不可逆的化学反应,是高分子材料分子结构变化的结果,如塑料的脆化、橡皮的龟裂。
2、机理按自由基反应机理进行,最初的反应产物主要是氢过氧化物(ROOH),然后在光、热或剪切力作用下产生自由基,引发自动催化的链式反应:降解高分子化学键受到光、热、机械作用力等影响,分子链发生断裂从而引发自由基连锁反应的结果影响:相对分子质量下降;变软发粘;拉伸强度和模量下降交联断裂的自由基再相互作用产生交联结构的结果影响:变硬、变脆、断裂伸长率降低3、类型1)热氧化老化热作用产生自由基R·,聚合物自由基R·与氧结合形成过氧自由基ROO·,ROO·与聚合物RH作用形成ROOH和另一R·2)光氧化老化太阳光中的紫外线(280~400nm)是引起高分子材料老化的主要原因,聚合物吸收紫外线后,分子或原子跃迁到激发态,导致光化学反应。
橡胶的老化与防护体系(原理)
橡胶的老化与防护体系橡胶老化是指橡胶分子在受到氧、臭氧、酸、碱、及水等物质的作用或在热、紫外线、放射线、机械力等物理、生物因素作用下,结构发生了复杂的物理化学变化。
使橡胶的使用物性出现逐渐降低的现象。
橡胶老化的因素众多,有热氧老化、重金属催化老化、紫外线催化裂解、臭氧老化及动态疲劳老化。
热氧老化是橡胶老化最重要的氧化作用,由于橡胶制品是在空气中贮存或使用。
所以氧化是最基本、最普遍的一种老化因素。
温度对氧化有很大的影响,提高温度会加快橡胶氧化反应。
橡胶制品在高温动态下使用时,生热提高,加快了橡胶的老化速度。
在众多的橡胶制品中,链烯烃类橡胶因它们的分子结构中的不饱和键所决定,在光热等因素条件下极易发生氧化反应,使大分子产生交联或裂解,发生老化现象。
链烯烃类橡胶的热氧化过程表现出自动催化性质,氧化反应是一个不等速的吸氧过程,吸氧过程表现出由慢到快尔后又转慢。
吸氧初期有一定的诱导期,继尔进入吸氧期,后期进入缓慢的吸氧期。
橡胶的吸氧速度与氢过氧化物的积累过程有着密切的关系。
它的氧化反应过程有二个明显的反应阶段组成,即氢过氧化物生成的连锁反应,和氢过氧化物分解所引起的大分子链裂解反应。
吸氧化速度决定于体系中的氢过氧化物的积累及其活性。
在氧化反应过程中,氢过氧化物积累的同时也陆续分解出自由基RO或OH是第二阶段反应的活性中心,使大分子发生断裂、交联、支化等反应,同时生成一些低分子化合物,如醇、酮、醛和水等。
实验表明,氧化温度低于70度,大分子间有交联趋向,橡胶强度有所增加这是链终止的结果,氧化温度高于70度时,大分子易发生裂解,橡胶表面发粘。
低于70度的老化橡胶的定伸强度有加强的趋势,高于70度的老化橡胶定伸强度有下降的趣势。
此外在热氧化时易产生凝胶,实际也是产生交联的结果,在链烯烃类橡胶中,抗老化性能较差的天然胶、顺丁胶最易白炭黑凝胶。
它们在热氧化过程中表现出自动催化氧化的特性,链增长速度远低于链终止速度,聚丁二烯与聚异戊二烯生成的大分子自由基更不稳定,热氧化结果使橡胶不保和度显著下降。
三元乙丙橡胶耐热氧老化性能的研究
三元乙丙橡胶耐热氧老化性能的研究三元乙丙橡胶(EPDM)是一种优良的高分子材料,具有耐热、耐氧和耐老化等优异性能,广泛应用于汽车、电子、建筑、化工等领域。
在实际应用中,EPDM材料常常需要长时间暴露在高温和氧气环境中,因此其耐热氧老化性能的研究具有重要的意义。
本文将从研究目的、实验设计、结果分析和结论等方面进行论述。
首先,本研究的目的是通过系统地探讨EPDM材料的耐热氧老化性能,为其实际应用提供科学的依据。
本文采用实验方法,通过对EPDM材料在不同温度和氧气浓度条件下的老化试验,分析材料性能的变化规律,并寻求改善方法。
其次,实验设计方面,本研究将EPDM材料分别暴露在不同的温度和氧气浓度条件下,进行老化试验,并根据老化时间的不同,设置多个试验时间段。
随后,通过对老化后的材料进行物理性能测试,包括拉伸强度、断裂伸长率、硬度等指标的测试,以及表面形貌和化学结构的分析,如扫描电子显微镜(SEM)和傅里叶变换红外光谱(FT-IR)等。
结果分析方面,根据实验数据,可以得出以下结论。
首先,随着温度和氧气浓度的增加,EPDM材料的老化程度加剧,物理性能下降。
其次,老化过程中,材料表面出现龟裂、氧化等现象,影响其性能。
进一步分析表明,老化后的EPDM材料的化学结构发生变化,主要表现为氧化、断裂和交联等反应。
最后,根据实验结果,提出改善EPDM材料耐热氧老化性能的建议。
首先,可以通过增加材料的抗氧化剂和防老化剂的含量,减缓老化过程。
其次,可以改变材料的分子结构和组分配比,提高其耐老化性能。
此外,还可以采用表面处理的方法,增强材料的耐老化性能。
综上所述,本文通过对EPDM材料的耐热氧老化性能进行研究,得出了相关结论并提出了改善建议。
这些结果对于提高EPDM材料的实际应用价值具有重要的指导意义,也为其他类似材料的研究提供了参考。
然而,需要注意的是,本研究仍然存在一些不足之处,例如在实验设计和样本选择方面仍然有待进一步改善。
高分子材料的老化及防老化研究
高分子材料的老化及防老化研究高分子材料是一种重要的材料之一,因其具有低密度、高强度、良好的耐化学性和可塑性等优点,被广泛地应用于汽车、建筑、医疗、电子等领域。
但是,随着时间的推移,高分子材料容易受到外界环境的影响,产生老化现象,导致质量下降、性能降低、寿命缩短。
因此,研究高分子材料的老化及其防老化是一项十分重要的课题。
高分子材料的老化是因为它们的结构中存在或引入了稳定性差的成分,当它们暴露于外界环境中时,这些成分会随着时间的推移发生反应,导致高分子材料的化学结构发生变化,并引起性能的降低。
高分子材料的老化机理可以分为内部老化和外部老化两种。
内部老化指的是材料分子结构内部的化学反应,包括高分子材料分子的链断裂、交联、氧化、降解等。
外部老化则是由于材料与外界环境中物质的接触导致的化学反应,如紫外线辐射、热氧化、湿热、化学腐蚀等。
其中,紫外线辐射是高分子材料常见的老化方式之一。
紫外线能量可以分解高分子材料中的化学键,使它们变得更加活泼,从而导致链断裂和降解。
而热氧化则是高分子材料在高温和氧气的作用下进行的化学反应,它会引起过氧化物的形成,从而使高分子材料的结构发生变化。
为了延长高分子材料的使用寿命,必须采取相应的防老化措施。
根据高分子材料老化的机理,可以采取以下措施:1.选择合适的材料选择分子量合适、稳定性好的材料可以延长高分子材料的使用寿命。
同时,还可以选择加入稳定剂,如光稳定剂、热稳定剂、氧化稳定剂等,从而增强材料的抗老化性能。
2.控制材料的加工条件材料的加工条件对于材料的老化性能有重要的影响。
在加工过程中,应注意控制加工温度、速度和压力,避免产生过高的温度、压力和剪切力等因素,导致材料分解和降解。
3.改变材料的环境通过改变材料所处的环境条件来改善材料的老化状况。
例如,采用遮光材料或者涂覆光稳定剂来减少紫外线辐射对材料的影响;加热或干燥材料来除去材料中的水分,减少材料的湿热老化。
4.加入抗氧化剂抗氧化剂可以在材料中引入自由基,从而抑制自由基的反应和材料的氧化反应。
顺丁橡胶的热氧老化及其机理
Bruker公 司 ;红 外 光 谱 仪 :NicoletiS10,美 国 尼 高 力 仪 器公司;紫外-可见分光 光 度 计:UV-2550,日 本 岛 津 公 司。 1.3 试样制备及老化试验
试样制备:取3g顺丁 橡 胶 溶 于 盛 有 30g环 己 烷 的三颈烧瓶 中,通 过 80 ℃ 加 热 搅 拌 2h 使 其 充 分 溶 解 ,冷 却 至 室 温 ,定 量 滴 在 玻 片 上 制 成 薄 膜 。 放 在 通 风 橱中,待试剂全部挥发备用,膜厚度约0.0热 氧 老 化 ;老 化 机 理 ;红 外 光 谱 ;核 磁 氢 谱 ;紫 外-可 见 吸 收 光 谱
中 图 分 类 号 :TQ333.2
文 献 标 识 码 :A
文 章 编 号 :1000-7555(2019)02-0107-05
顺 丁 橡 胶 (又 称 聚 丁 二 烯 橡 胶)具 有 弹 性 高、耐 寒、耐磨、耐曲挠 和 动 态 性 能 好 等 优 点[1],目 前 主 要 应 用于轮 胎、制 鞋、高 抗 冲 聚 苯 乙 烯 及 ABS 树 脂 的 改 性 等领域 。 [2] 顺丁橡 胶 的 结 构 中 存 在 着 不 饱 和 键,在 热 氧 或 紫 外 光 条 件 下 ,容 易 受 到 氧 自 由 基 的 攻 击 ,导 致 其 组成和结构被破坏,从而使其性能大幅降低 。 [3,4]
doi:10.16865/ki.1000-7555.2019.0048 收 稿 日 期 :2018-01-12 通讯联系人:邹友思,主要从事高分子合成、表征及应用研究,E-mail:yszou@
108
高分子材料科学与工程
2019 年
1.5 反应率的计算
热 氧 老 化 过 程 中 官 能 团 反 应 率 (ω)的 计 算 :
(橡胶)高分子老化测试的7种方法和老化测试标准
(橡胶)高分子老化测试的7种方法和老化测试标准什么是老化试验?老化试验主要是指针对橡胶、塑料产品、电器绝缘材料及其他材料进行的热氧老化试验;或者针对电子零配件、塑化产品的换气老化试验。
老化试验又分为温度老化、阳光辐照老化、加载老化等等高温老化一般分几个等级进行,工业的一般用70度,4个小时,15度一个等级,一般有40度、55度、70度、85度几个等级,时间一般都是4个小时。
根据老化试验产品的多少分为2种方法测试1、老化箱主要针对塑胶产品,而且数量和体积不很大的产品比较实用。
2、老化柜或是老化房主要针对高性能电子产品(如:计算机整机,显示器,终端机,车用电子产品,电源供应器,主机板、监视器、交换式充电器等)仿真出一种高温、恶劣环境测试的设备,是提高产品稳定性、可靠性的重要实验设备、是各生产企业提高产品质量和竞争性的重要生产流程,该设备广泛应用于电源电子、电脑、通讯、生物制药等领域。
七大老化试验方法目前,研究高分子材料的老化试验方法有很多,主要包括气候老化试验,紫外老化试验,臭氧老化试验,热空气老化试验,高低温交变老化试验,湿热老化试验,介质老化试验,盐雾老化试验等。
1、气候老化试验所谓气候老化试验就是将高分子材料试验样品暴露于大气环境条件下,从而获得材料样品在大气环境暴露下的老化规律,对高分子材料的性能进行分析,并预测其使用寿命的一种研究方法。
气候老化试验又可以分为两种:其中一种便是自然暴露试验,即将高分子材料试验样品暴露于真实的大气环境下,以获得材料在真实环境下的老化行为,这种老化试验方法所获得的老化信息最为准确,是获得高分子材料老化行为的最为有效的方法,但是这种试验方法周期时间太长,费时费力。
在美国的佛罗里达州、中国的万宁、漠河以及武汉等地都有人进行过为期超过一年的大气暴露试验。
另外一种便是人工气候老化试验,人工气候老化试验即是指人通过在室内对真实大气环境条件进行模拟或者是加强某一环境因素以在短时间内获得材料老化行为的老化试验方法,这又被称为人工模拟老化或者人工加速老化。
橡胶的耐黄变定义、产生原因、配方设计注意事项(全)
橡胶的耐黄变定义、产生原因、配方设计注意事项(全)一、黄变是什么意思?百度定义高分子材料在老化过程中变黄的现象。
黄变是指物品暴露在自然光、紫外线、热、氧、应力、化学浸蚀、水分等等环境下及不正当生产工艺等状况下颜色发黄的现象,这就是黄变的基本定义。
二、产生黄变的主要原因:耐黄变的过程非常复杂,牵涉到许多方面,只是某一点的预防是无法达到标准的。
黄变主要是老化形成的。
控制黄变就是控制老化的过程。
那么老化又分为热老化,氧老化,臭氧,(静电属于臭氧类,因为静电产生臭氧)。
气体腐蚀老化,重金属氧化老化。
反应老化。
紫外线老化等等。
另外又分为材料老化,反应老化,酸碱度失调。
断链过硫等等。
1、聚合物结构本身的影响,聚合物大分子链键之间存在键能,当提供的能量大于键能时,则分子链容易产生活性集中,会使聚合物在使用和贮存的过程中产生逐步的降解导致黄变。
2、光线的影响,当应用材料吸收光能后,在吸收部位上的分子链就会产生碳碳键或是碳氢键的裂解。
产生黄变现象。
3、热量、氧分子的影响,应用材料会随着时间的长久发生氧化反应,热量会加速材料的氧化过程。
形成过氧化结构后,容易形成游离基,导致透明、浅色、白色材料变色。
氧对不饱和的二烯烃材料破坏作用最为显著,热的作用,除了能活化氧化外,还能导致—C—C—键的断裂和双键的破裂导致材料黄变。
4、其它因素的影响,变黄还与应用材料中添加的助剂、存在的水分、杂质以及加工生产工艺有关。
混入各种化学或机械杂质的原材料都会降低聚合物的稳定性。
原因比较复杂,需要针对性进行分析排查。
三、常规的解决方法:1、根据聚合物的各种特性,在产品配方中考虑使用紫外线吸收剂、抗氧剂、稳定剂等助剂。
2、严格控制原材料质量,各项技术指标必须达到制定要求。
3、聚合物材料在加工前应进行严格干燥处理。
4、生产环节的环境控制在合理的温湿度范围。
橡胶配方设计重新整理以下几点:1、原材料的本身耐黄变性,比如,NR的耐老化性就比SBR和BR差等,乙丙橡胶第三弹体低,高乙烯含量或茂金属乙丙橡胶、丁基橡胶耐黄变佳。
高分子材料的老化机制与防护
高分子材料的老化机制与防护在我们的日常生活和工业生产中,高分子材料无处不在,从塑料制品到橡胶制品,从纤维材料到涂料,它们都发挥着重要的作用。
然而,随着时间的推移,这些高分子材料往往会出现性能下降、外观变差等老化现象,这不仅影响了它们的使用效果,还可能带来安全隐患和经济损失。
因此,了解高分子材料的老化机制并采取有效的防护措施具有重要的意义。
高分子材料老化的原因是多方面的,主要包括物理因素、化学因素和生物因素。
物理因素中,最常见的是热和光的作用。
高温会加速高分子材料的分子运动,导致分子链的断裂和重组,从而使材料的性能发生改变。
例如,塑料在高温环境下容易变形、变脆,失去原有的强度和韧性。
而光,尤其是紫外线,能够破坏高分子材料中的化学键,引发光氧化反应。
长期暴露在阳光下的塑料制品,如户外的塑料椅子、塑料管道等,会出现褪色、龟裂等现象,这就是光老化的结果。
化学因素也是导致高分子材料老化的重要原因。
氧气、水分、酸碱物质等都可能与高分子材料发生化学反应。
例如,氧气会与高分子材料中的不饱和键发生氧化反应,生成过氧化物和自由基,进一步引发连锁反应,导致材料的老化。
水分则可能导致高分子材料的水解,使分子链断裂。
在一些工业环境中,酸碱物质的存在会腐蚀高分子材料,加速其老化进程。
生物因素对高分子材料的老化也不容忽视。
微生物、真菌等在一定的条件下可以在高分子材料表面生长和繁殖,它们产生的酶和代谢产物会对材料造成破坏。
例如,木材中的纤维素在真菌的作用下会发生降解,导致木材腐朽。
高分子材料的老化是一个复杂的过程,往往是多种因素共同作用的结果。
而且,不同类型的高分子材料,其老化机制也可能有所不同。
为了延缓高分子材料的老化,人们采取了多种防护措施。
在材料的选择上,应根据使用环境和要求,选择具有良好耐老化性能的高分子材料。
例如,对于户外使用的材料,应选择具有抗紫外线性能的塑料或添加了光稳定剂的涂料。
添加稳定剂是一种常见的防护方法。
高分子材料的老化及防老化研究
高分子材料的老化及防老化研究高分子材料是一类具有广泛应用前景的材料,包括塑料、橡胶、纤维等,它们具有质轻、耐腐蚀、可塑性强等特点,因此在工程、医疗、日常生活等领域都得到了大量应用。
随着时间的推移,高分子材料会逐渐经历老化过程,使得其性能、外观等发生变化,甚至失去原有的功能和价值。
研究高分子材料的老化及防老化是一个具有重要意义的课题。
一、高分子材料老化的原因1. 光照老化光照老化是高分子材料老化的主要原因之一。
太阳光中的紫外线能够引发高分子材料中的化学反应,导致其分子链断裂、氧化降解等现象,使得材料的性能遭到破坏。
2. 氧化老化高分子材料在长期暴露在空气中,也会发生氧化老化。
氧气能与高分子材料发生反应,导致其分子链断裂、氧化降解,使得材料变脆、变色、失去弹性等。
3. 热老化高分子材料在高温环境下会发生热老化,由于高温会加速分子间的运动,使得分子链断裂、交联破坏等现象加剧,导致材料性能下降。
4. 组分迁移部分高分子材料中存在着添加剂、填料等,当这些物质与基体材料发生组分迁移时,也会引发材料的老化。
5. 微生物侵蚀高分子材料在潮湿、温暖的环境中容易遭受微生物的侵蚀,导致其发生微生物降解,使得材料发生劣化。
二、高分子材料老化的表现1. 力学性能下降老化的高分子材料在力学性能上会出现下降,如强度、韧性、硬度等会减弱,导致材料易断裂、易变形等。
2. 外观变化老化的高分子材料在外观上会出现变化,如变色、开裂、表面粗糙、失光等,使得材料的美观度受损,不再适用于美观要求较高的场景。
3. 功能丧失一些高分子材料在老化后会丧失原有的功能,比如防腐蚀性能、耐磨性能、绝缘性能等都会受到损害,导致材料无法满足使用要求。
4. 性能不稳定老化的高分子材料在使用过程中会出现性能不稳定的现象,如温度敏感性增加、弹性模量变化、形变率增加等,使得材料难以长期稳定使用。
三、高分子材料的防老化研究为了延长高分子材料的使用寿命,科研人员们进行了大量的防老化研究,主要包括以下几个方面:1. 添加抗氧化剂抗氧化剂的加入能够有效地抑制高分子材料的氧化老化过程,延缓材料的老化速度,提高其使用寿命。
高分子材料老化机理及防治方法探讨
高分子材料老化机理及防治方法探讨高分子材料在工程领域有着广泛的应用,比如塑料制品、橡胶制品、合成纤维、涂料和粘合剂等。
随着使用时间的增加,这些高分子材料会发生老化现象,导致其性能下降,甚至失去使用价值。
探讨高分子材料的老化机理以及防治方法对于提高材料的使用寿命和性能具有重要意义。
一、高分子材料的老化机理1. 光照老化光照是导致高分子材料老化的主要因素之一,特别是在户外使用的材料。
紫外线和可见光会引起高分子材料中的化学反应,导致链断裂、交联、氧化等现象。
这些变化会导致材料的物理性能和外观发生变化,比如强度下降、变色、龟裂等。
2. 热氧老化高分子材料在高温和氧气环境下会发生氧化反应,导致材料的老化。
氧气和热量会导致高分子链的断裂,同时还会引起分子内部的交联反应,使得材料变得脆化和劣化。
3. 湿热老化在潮湿和高温的环境中,高分子材料容易发生水解、水解、分解等反应,导致材料老化。
湿热老化是导致高分子材料在环境中失效的重要因素,特别是对于一些塑料制品来说。
4. 机械应力老化高分子材料在受到外力作用时,会导致分子链的屈服和断裂,从而降低材料的强度和韧性。
这种老化方式通常在材料受到拉伸、压缩或弯曲等应力时发生。
以上几种老化机理常常会同时作用于高分子材料,相互影响,加速材料的老化过程。
了解高分子材料的老化机理对于制定有效的防治措施具有重要意义。
二、高分子材料的防治方法1. 添加抗氧化剂抗氧化剂是一种在高分子材料中加入的化学物质,它能够吸收和中和氧气、光照或热氧等因素产生的自由基,防止高分子链的氧化断裂和分子链的交联反应。
常见的抗氧化剂有苯酚类、偶酮类、磷酸酯类等。
通过添加适量的抗氧化剂可以延缓高分子材料的老化速度,提高其使用寿命。
2. 加入紫外线吸收剂紫外线吸收剂是一种能够吸收和转换紫外线能量的化学物质,它能够减少光照引起的高分子材料的老化。
当紫外线吸收剂吸收紫外线能量后,会发生光化学反应,使得紫外线能量被转换为次级能量,从而减少对高分子材料的损害。
第章高分子材料的老化性能
第章高分子材料的老化性能高分子材料的老化性能是指在长时间的使用过程中,由于环境、化学物质、温度等外界因素的影响,材料的性能发生改变的现象。
这些改变可能会导致材料的机械性能下降、颜色变化、降解等,甚至使材料失去原有的功能。
高分子材料主要有塑料、橡胶和纤维等,这些材料在使用过程中容易受到光、热、湿等外界因素的影响,从而发生老化现象。
老化的形式可以分为物理老化和化学老化两种。
物理老化主要是由于材料受到外界因素引起的结构疲劳和结构破坏。
光老化是最常见的物理老化形式之一,主要是由于材料长时间暴露在阳光下,紫外线会分解材料的分子链,导致材料强度下降、变脆,甚至出现龟裂和脆性断裂。
热老化是指材料长时间受高温的影响,分子链会发生断裂、结晶度增加,导致材料失去弹性和韧性。
湿气和化学物质的作用也会导致材料的老化,水分会引起材料的吸水膨胀,化学物质会引起材料的腐蚀和溶解。
化学老化主要是由于材料与外界化学物质发生作用,造成材料结构的改变。
氧化老化是最常见的化学老化形式之一,主要是由材料接触到氧气,与之发生氧化反应,导致材料的强度和韧性下降。
酸碱老化是材料与酸碱物质发生反应,使得材料的分子链断裂和交联程度变化,从而导致材料性能的改变。
还有一些材料会在特定环境下发生引发老化反应,例如光氧老化、光致老化等。
为了减缓高分子材料的老化速度和延长其寿命,需要进行老化性能测试和防老化处理。
老化性能测试可以通过暴露试验、加速老化试验和退火试验等方法,对材料的老化行为进行评估和分析。
防老化处理主要是采取添加防老化剂、改变材料结构和添加抗氧剂等方法,来提高材料的老化抵抗能力。
总之,高分子材料的老化性能是一个重要的研究方向,对于材料的设计和应用具有重要意义。
通过深入研究材料的老化机制和开发防老化技术,可以有效延长材料的使用寿命,提高材料的可靠性和安全性。
橡胶老化的原因
橡胶老化的原因橡胶是一种常见的高分子材料,广泛应用于各个领域。
然而,随着时间的推移,橡胶制品会逐渐变得老化,失去其原有的性能和功能。
那么,究竟是什么原因导致了橡胶老化呢?本文将从以下几个方面进行探讨。
1. 氧化老化氧化老化是橡胶老化的主要原因之一。
橡胶中的双键结构容易与空气中的氧气发生反应,形成过氧化物。
这些过氧化物会引发链的断裂和交联结构的破坏,导致橡胶的硬化和脆化。
氧化老化一般发生在橡胶制品的表面,形成氧化皮层,使橡胶失去光泽和柔软性。
2. 热老化热老化是指橡胶在高温环境下长时间暴露导致老化。
高温会加速橡胶分子链的运动,使橡胶的结构发生改变。
这种改变包括链的断裂、交联结构的破坏和分子量的降低。
热老化会使橡胶变硬、变脆,并失去原有的弹性和拉伸性能。
3. 光照老化光照老化是指橡胶在紫外线的照射下发生的老化现象。
紫外线能够引发橡胶分子链的断裂和交联结构的破坏,导致橡胶的老化。
光照老化主要发生在橡胶制品的表面,使橡胶变黄、变硬,并失去原有的弹性和机械性能。
4. 化学老化化学老化是指橡胶与化学物质发生反应导致的老化现象。
化学物质可以是橡胶制品在使用过程中接触到的物质,如酸、碱、盐等,也可以是橡胶本身的成分,如添加剂、填充剂等。
这些化学物质与橡胶发生反应,改变橡胶的结构和性能,导致橡胶老化。
5. 力学应力和变形橡胶在受到力学应力和变形时,其分子链会发生拉伸和扭曲,导致链的断裂和交联结构的破坏。
这种力学应力和变形会加速橡胶的老化过程。
特别是当橡胶在高温和湿度条件下受到力学应力时,老化速度更快。
橡胶老化的原因主要包括氧化老化、热老化、光照老化、化学老化以及力学应力和变形。
这些因素相互作用,导致橡胶失去其原有的性能和功能。
为了延缓橡胶的老化,可以采取一些措施,如添加抗氧化剂、使用防紫外线剂、控制温度和湿度等。
只有正确处理和保护橡胶制品,才能延长其使用寿命,提高其性能和可靠性。
高分子材料的老化及防老化研究
高分子材料的老化及防老化研究1. 引言1.1 高分子材料的老化问题高分子材料的老化问题是指高分子材料在长时间使用过程中所面临的性能衰减、物理结构变化和化学组成变化现象。
高分子材料在实际应用中往往会受到光、热、氧、湿等环境因素的影响,导致其老化加剧。
聚乙烯材料在阳光照射下会发生裂解和氧化反应,导致材料表面变得粗糙、发黄甚至开裂;聚氯乙烯材料在长时间加热作用下会发生塑化剥离、变脆等现象。
高分子材料的老化问题不仅会降低材料的性能和寿命,还会影响产品的安全性和稳定性。
针对高分子材料的老化问题,科研人员们开展了大量的研究工作,希望找到有效的方法延缓材料的老化进程,提高材料的稳定性和耐用性。
对高分子材料的老化机理进行深入研究,并寻找有效的防老化技术成为了当下研究的热点之一。
随着科学技术的不断发展,高分子材料的老化问题必将得到更好的解决,为各行各业提供更加稳定、可靠的材料。
1.2 研究背景高分子材料的研究背景十分重要,随着高分子材料在各行各业的广泛应用,其老化问题也日益凸显出来。
高分子材料的老化是指材料在长期使用过程中受到外界环境和内部因素影响,导致结构和性能发生不可逆转的变化。
这种变化可能表现为颜色变浅、机械性能降低、表面开裂或龟裂等现象,严重影响材料的使用寿命和性能。
研究高分子材料的老化问题具有十分重要的意义。
随着科技的不断进步和人们对材料性能要求的提高,高分子材料的老化问题已成为当前研究的重点之一。
在实际生产和应用中,高分子材料的老化问题给企业带来了经济损失,也给消费者带来了安全隐患,因此探讨高分子材料老化机理,并寻找有效的防老化技术具有重要的现实意义。
研究高分子材料老化问题的背景是十分重要的,只有深入了解老化机理、分析老化影响因素并探讨防老化技术,才能为延长材料寿命、提高材料性能提供科学依据。
1.3 研究意义高分子材料的老化问题一直是材料科学领域的重要研究方向。
随着高分子材料在各个领域的广泛应用,其老化问题日益凸显。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CH2 CH CH CH2
CH2 CH CH O2 CH2 CH CH CH
夺取H
~ CH2
CH
CH CH~ OOH
光,O2 or热O2
OO
~ CH2 CH CH CH + OH O
O H2O ~ CH2 CH CH C~ + H
O ~ CH2 CH CH + H C
O ~CH2 CH CH C H+R
交联为主: ~CH2 CH CH CH~ ~CH2 CH CH CH2~
~ CH2 CH CH CH ~ ~ CH2 CH CH CH2~
(n 1)~CH2 CH CH CH2~ ~CH2 CH CH CH~
CH ~
CH3 ~ CH2 C CH
CH2
CH2
CH3 C CH
CH ~
O2
CH3 ~ CH2 C CH
CH2
CH2
CH3 C CH
CH ~
O
O
OO O
O
RH
~ CH2 C CH3 + CH
CH2
CH2
CH3 C+
氧化裂解 ~ CH2 CH2 O + HOOC ~
CH3 C CH OO
CH2
CH3 CH2 C CH
它除了具有链反应特征的裂解交联等一般规律外,还具有其他类型的反应。它的氧化反 应温度比一般橡胶要高得多,在 280℃以上开始有低分子挥发物产生,裂解产物经分析证明 是一氧化碳、甲醛、甲醇等。
聚有机硅氧烷热氧化反应机理表述如下:
(ⅰ)氧与接在硅原子上的甲基作用生成过氧化物
CH3 ~ O Si O~ + O2
C 阶段:自加速阶段(自催化反应阶段),该阶段吸氧速度激烈增加,比诱导期大几个 数量级,如用模拟化合物氧化时,因为氢过氧化物大量分解产生的自动催化过程完全相同, 此时橡胶已深度氧化变质,丧失使用价值。
氢过氧化物量多,发生双分子分解反应。
2 ROOH
RO ROO H2O
D 阶段:吸氧速度变慢,最后处于稳定期,橡胶反应的活性点没有了,也就是说橡胶深 度老化。
O
CH ~
O
O
O
CH3COOH + CO2
HCOOH
由此可以看出,此过程为一链断裂过程。
b.以丁二烯均聚物或其他共聚的橡胶如:SBR、NBR 一般认为在热氧化过程中,分子链 的降解与交联两种反应同时存在,无论哪一种含有丁二烯链节的聚合物或共混物,对氧化降 解都是敏感的,这是因为各种丁二烯链节结构中都有不饱和键的存在。老化的初期降解占优 势,到达反应后期,交联反应占优势。
~(CH2 CH CH CH2~)n 1 ~CH2 CH CH CH2~
1,2 结构氧化降解机理不同
OO (~CH2 CH)~ O2 (~CH2 C ) 夺H
CH
CH
CH2
CH2
OOH ~( CH2 C )
CH
CH2
其中烷氧基可以以下列方式断裂:
O
H2 O
~( CH2 C ) + OH
CH
CH2
OH ~(CH2 C )
进行,但这时产生的氢化过氧化物很快分解,不能发挥催化氧化作用)
b. 常常分子量下降,但由于化学结构不同,也常产生其他的异构化反应,或生成低分 子挥发物(如:乙丙橡胶氧化后产生羟基,羧基或酮基基团)
②杂链橡胶的氧化特征
杂链橡胶的热氧化反应较慢,并且研究也较少,但其热氧化过程仍具有链反应的特征, 且自催化作用也很不明显。
3. 不饱和橡胶烃的热氧化特征 橡胶的自加速作用是不饱和橡胶氧化的特征之一,为了全面把握橡胶的氧化特征,我们
首先讨论不饱和橡胶的氧化特征。
①所有的不饱和橡胶在热氧化过程中,因为橡胶品种的不同,都不同程度的产生自催化 氧化作用。
②这一特征可分为两类来讨论。
a.以 NR、IR 为主的橡胶在热氧化过程中,分子链降解,分子量下降,并产生含有醛酮 以及水等的低分子化合物;氧化的橡胶表面发粘、变软,氧可继续扩散氧化。
由吸氧曲线可见,吸氧的过程是时间的函数,且呈现出自动催化反应的 S 型曲线特征。
所以说元素氧对橡胶等高聚物的氧化,称为自动氧化。它是一个自动催化过程。在其中作为 主要反应产物的氢过氧化物分解,产生了游离基而开始了游离基链式反应,因此反应开始缓 慢,当产生的氢过氧化物分解引起引发作用时,速度不断增加,直到最大值。然后当橡胶等 被深度氧化而变性时,氧化速度缓慢下来。
CH3
O
O
~ O Si OH + HO Si O~
CH3
CH3
O ~ O Si O
CH3
O Si O~ + H2O CH3
ROO RO
ROOR
RO R
ROR
2. 吸氧曲线与自催化氧化
橡胶等高聚物的物理性能的下降,与吸氧量有密切的关系,所以常通过测定橡胶等的 吸氧量与时间的关系来判断橡胶老化的程度。
通过吸氧量的测定,了解到高聚物的氧化反应一般有三个明显的阶段。如图中的 B、 C、D 阶段。个别情况下,如含有填充剂的某些橡胶的吸氧曲线,还会出现 A 阶段。
CH
CH2
O ~( CH2 C ~)
CH
CH2
O ~( CH2 C CH CH2) + R
O ~( CH2 C CH CH2) + R CH2
O ~( CH2 C ) + CH2 CH
4. 饱和碳链橡胶和杂链橡胶的热氧老化特征 ①饱和碳链橡胶 因吸氧速度慢,有较好的耐氧化作用。其特征如下 a. 没有明显自催化作用(原因:饱和碳链橡胶的热氧化反应必须在较高的温度下才能
一.橡胶的热氧化
1. 热氧化机理 研究发现,橡胶热氧老化是一种链式的自由基反应。自由基链式反应过程如下:
Байду номын сангаас
引发
RH RH O2 ROOH 2 ROOH
RH R HOO
RO OH ROO RO H2O
增长
R O2 ROO RH RO RH
ROO ROOH R ROH R
终止
RR
RR
ROO ROO
非自由基稳定产物
CH3
CH2OOH ~ O Si O ~
CH3
(ii)过氧化物迅速裂解生成甲醛和.OH 基
CH2OOH ~ O Si O ~
CH3
~ O Si O ~ + HCHO + OH CH3
(iii).OH 基与大分子链上具有子电荷的硅原子结合,进而产生交联
~ O Si O ~ + OH CH3
OH ~ O Si O ~
A 阶段开始时吸氧速度很高,但很快降到一个非常小的恒定值而进入 B 阶段,A 阶段 的影响因素很复杂,其吸氧量与全过程的吸氧量相比很小,对橡胶性质的变化来说影响也 不大。
B 阶段为恒速阶段,A-B 可合称为诱导期,以比较小的恒定速度吸收氧化。
RH ROOH
RH RO OH
在此期间橡胶的性能虽有所下降,但不显著,是橡胶的使用期。
NR 的氧化过程如下:
CH3
CH3
~ CH2 C CH CH2 CH2 C CH CH2 ~
CH3
CH3
~ CH2 C CH CH2 CH2 C CH CH ~ H
结构重排
CH3 ~ CH2 C CH CH2 CH2
CH3 C CH OO
CH ~
CH3 O2 ~ CH2 C CH CH2
CH3 CH2 C CH