第十章 双样本假设检验及区间估计_社会统计学汇总
双样本假设检验

双样本假设检验
二、两个相关样本麦克涅马尔检验
双样本假设检验
三、两个相关样本威尔科克逊检验
通过二项分布来检验两个样本所属的总体数据分布差异的显著性。属于两 个相关样本非参数检验。又称作配对符号等级检验。通过对两个相关样本变 量值配对求观测值的差,比较差的等级和,以此判定两个样本的一致性。样 本数据要求是等级数据。当数据以连续方式记分时,系统也会先求出其等级 再比较。
双样本假设检验
七、K—S双样本检验
K—S双样本检验柯尔莫戈洛夫—斯米尔诺夫单样本检验的推广,用于检验
两个独立样本是否来自同分布总体。 适合于检验比率型数据的研究样本。
八、摩西极端反应检验
用于检验两个独立样本观测值的分布范围是否存在显著性差异,通过用于 实验结果数据处理中。实验设计为实验控制组前后测模型。数据类型为连续型。 注意该检验数据结构定义方法.
参数检验:配对样本T检验(Paired-Sample T Test) 非参数检验:麦克涅马尔检验(McNemar Test) 威尔科克逊检验(Wilcoxon Test) 配对符号检验(Sign test)
变量观测值要一一对应
两个独立样本假设检验(双独立样本假设检验)
参数检验:独立样本T检验(Independent Sample T Test) 非参数检验:曼—惠特尼U检验(Mann-Whitney U Test) K-S双样本检验(Kolmgorov-Smirnov Z Test) 摩西极端反应检验(Moses Extreme Reaction Test) W-W游程检验(Wold-Wolfowitz Runs Test)
(2)如果样本采用两点记分,可以用McNemar检验
(3)如果样本采用等级记分,可以用SIGN检验 一般认为,Wilcoxon检验的精度比SIGN的精度高,对原始数据的变化
社会统计学(卢淑华),第十章

调查过程不应给被调查者带来身体或心理 上的伤害,避免涉及敏感或隐私问题。
数据处理与分析中的伦理问题
数据真实性
在处理和分析数据时,应确保数 据的真实性和完整性,避免篡改
、伪造或选择性使用数据。
数据安全性
采取必要的技术和管理措施, 确保数据的安全存储和传输, 防止数据泄露、损坏或丢失。
数据分析的客观性
报告统计结果时,应提供足够的信息 和数据支持结论,避免选择性报告或 隐瞒不利结果。
避免过度解读
在解释统计结果时,应避免过度解读 或夸大其意义,以免误导读者或产生 不必要的恐慌。
尊重被调查者的权益
在报告统计结果时,应注意保护被调 查者的隐私和权益,避免泄露个人信 息或造成不必要的伤害。
THANK YOU
社会问题调查
通过问卷调查、访谈、观察等方 法收集数据,了解社会问题的现
状、原因和影响。
社会问题分析
运用统计分析方法对调查数据进 行处理和分析,揭示社会问题的
本质和规律。
社会问题解决方案
基于分析结果,提出针对性的解 决方案和建议,为政府和社会各
界提供参考。
社会政策的制定与评估
社会政策制定
01
运用统计数据和分析结果,为政府制定社会政策提供科学依据
04
因子分析
一种通过降维技术,将多个相关变量简化为少数几个 综合变量的统计分析方法。
05
聚类分析
一种根据样本或变量之间的相似性或距离,将其分为 不同类别的统计分析方法。
02
描述性统计方法
频数分布与图形表示
频数分布表
将数据进行分类,并统计各类别出现的次数,形成 频数分布表,以直观展示数据的分布情况。
SAS是一款高级统计分析软件 ,具有强大的数据处理、分析 和可视化功能,适用于大规模 数据处理和复杂统计分析。
统计学中的假设检验与置信区间

置信区间在社会科学研究中的应用:通过计算置信区间,可以了解样本 数据的分布情况,从而对总体参数进行合理推断。
假设检验与置信区间的关系:在社会科学研究中,假设检验与置信区间是相辅 相成的,假设检验用于判断假设是否成立,而置信区间则提供了参数估计的可 靠性程度。
XX,a click to unlimited possibilities
汇报人:XX
01
02
03
04
05
06
假设检验的定义:通过样本数据对总体参数进行推断的统计方法。
假设检验的步骤:提出假设、构造检验统计量、确定显著性水平、做出决策。
假设检验的分类:单侧检验、双侧检验、独立样本检验、配对样本检验。
假设检验在金融 数据分析中的应 用:用于评估投 资策略的有效性, 通过比较实际收 益与预期收益来
检验假设。
置信区间在金融 数据分析中的应 用:用于估计投 资组合的风险和 回报,提供对未 来结果的预测区
间。
假设检验与置信 区间的关系:置 信区间提供了一 种方法来量化假 设检验中的不确 定性,帮助做出 更准确的决策。
案例选择:选择合 适的案例,确保数 据具有代表性
数据收集:收集 相关数据,确保 数据准确可靠
计算置信区间:根 据数据分布情况, 选择合适的统计方 法计算置信区间
应用分析:分析置 信区间的意义,评 估实际应用效果
案例分析能够加深对假设检验与置信区间的理解。 通过案例分析,可以更好地掌握实际应用中的统计方法。 案例分析有助于发现假设检验与置信区间中的问题,并寻找解决方案。 案例分析能够为后续的统计学习提供实践经验。
区间估计和假设检验精品PPT资料

proc print data=tval2;var lchi uchi;
run;
本章目录 21
区间估计和假设检验
1 正态总体的均值、方差的区间估计
输出结果如下:
LCHI
UCHI
70687.19 406071.51
即方差的置信区间为:[70687.19, 406071.51]
本章目录 22
区间估计和假设检验
本章目录 2
区间估计和假设检验
1 正态总体的均值、方差的区间估计
区间估计是通过构造两个统计量 , ,能以
100(1)%的置信度使总体的参数落入 [ , ]
区间中,即 P{}1。其中 称为显著性
水平或检验水平,通常取0.05或 0.01;
, 分别称为置信下限和置信上限
本章目录 3
区间估计和假设检验
;
proc means data=var22 t prt clm;
var y;
freq fx;
CLM表示要输出
run;
95%置信区间
本章目录 12
区间估计和假设检验
1 正态总体的均值、方差的区间估计
输出结果:
分析变量 : Y
T- 统计量 Prob>|T| 95.0% 置信下界 95.0% 置信上界 --------------------------------------------------------------------
注:采用PROC CHART过程对独立组样本画直方图
直方图有两种形态:垂直条形图和水平条形图,下面对例3画水
平条形图,SAS程序为:
data bodyfat;
input sex $ fatpct @;
双置信区间和假设检验

双置信区间和假设检验1. 前言在统计学中,双置信区间和假设检验是两种常用的推断方法,用于对总体参数进行估计和判断。
通过利用样本数据进行统计分析,我们可以推断总体参数的值,并对其进行假设检验。
本文将介绍双置信区间和假设检验的基本概念和应用方法。
2. 双置信区间双置信区间(Two-sided Confidence Interval)是在给定置信水平下,对总体参数的一个区间估计。
在估计总体参数时,我们通常想要找到一个区间,该区间有一定的置信度包含了总体参数的真实值。
2.1 构造方法双置信区间的构造方法主要包括以下步骤:1.选择置信水平:根据需要选择一个置信水平,常用的置信水平有95%和99%。
2.计算标准误差:根据样本数据计算总体参数的估计值和标准误差。
3.确定临界值:根据置信水平和样本量,查找相应的临界值。
可以使用标准正态分布表或统计软件进行计算。
4.构建置信区间:根据估计值、标准误差和临界值,计算出置信区间的下限和上限。
2.2 示例假设我们想要估计某个机器人的平均行走距离,并确定其95%的置信区间。
我们随机选取了20台机器人进行测试,得到样本数据为:[10.2, 9.8, 11.5, 9.9, 10.1, 10.4, 10.0, 9.7, 10.3, 9.6, 10.2, 10.2, 10.1, 10.3, 10.0, 10.3, 10.5, 10.2, 10.4, 9.9]。
首先,我们计算平均值和标准误差:平均值 = (10.2 + 9.8 + 11.5 + 9.9 + 10.1 + 10.4 + 10.0 + 9.7 + 10.3+ 9.6 + 10.2 + 10.2 + 10.1 + 10.3 + 10.0 + 10.3 + 10.5 + 10.2 + 10.4 + 9.9) / 20 = 10.1标准误差 = 样本标准差/ √样本量 = 0.26接下来,我们需要查找临界值。
由于样本量较小(n < 30),我们可以使用 t分布进行计算。
双样本置信区间和假设检验概述

打开新的工作表:
> File > New . . . > Minitab Worksheet > OK 生成10行数据。保存在c1-c8栏中。
Denom 1
2
3
4
5
6
7
8
9 10
1 161.40 199.50 215.70 224.60 230.20 234.00 236.80 238.90 240.50 241.90
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40
比较固定架7和固定架8的方差
s7 = .00149 固定架7的标准方差 s8 = .00110 固定架8的标准方差 每个样本的容量为10。
分子的自由度是多少? 分母的自由度是多少? F表格的临界值是多少?
哪个方差值更大,而应置于分子?
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79
4
7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96
5
6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74
为什么使用假设检验和 置信区间?
4. 请注意,样本平均值和方差存在着差异,即使所有 8组数据都取自同一总体也不例外。
比较方差
何时应该比较方差?
如果您对改变了工序,并想确定输出结 果中的方差是否改变,您可以将工序改变
双样本假设检验

组别 测 查 成 果
1
78
2
80
1
71
2
76
1
75
2
85
1
85
组别 测 查 成 果
1
78
1
71
2
80
2
76
1
75
1
85
2
85
组别 测 查 成 果
1
78
1
75
1
86
1
71
1
85
1
90
1
78
经过分 组变量旳设 定决定数据 在统计过程 中旳所属。
事物前后变化情况有四种
变化前
— +
变化后
— A B
A:前后不具有某种属性或不产生某种行为 + B:前具有某种属性或有某种行为但变化后没有 C C:前无某属性或无某种行为但变化后有 D D:前后都具有某种属性或者产生某种行为
结论:假如A与D旳情况诸多,阐明事前事后没有变化,所施加旳促变条件不起作用。 假如C旳情况诸多,阐明变化原因产生了明显旳增进作用。 假如B旳情况诸多,阐明变化原因产生了明显旳克制作用。
等级差 +1 +2 -2 +6 +1 -3 +2 +2 -4 -3
Frequencies
AFTER - FIRST
Negative Differencesa Positive Differencesb Tiesc
Total
a. AFTER < FIRST
b. AFTER > FIRST
c. FIRST = AFTER
区间估计和假设检验的基础知识

区间估计和假设检验的基础知识区间估计和假设检验是统计学中非常基础的一块知识,其应用范围非常广泛,涉及到生物、医学、经济、社会科学和财务等众多领域,其最大的作用就是在统计学实践中,给出一定的数据描述方法和数据分析方式,从而更好地了解数据的内在规律,并为数据的决策做出基础性的科学参考。
一、区间估计(一)定义:区间估计是通过样本数据来推断总体的一个未知参数的取值范围的一种统计方法。
比如说,在抓小麻雀活动中,如果观察员在一个固定的面积中看到了2只麻雀,那么他或者她可以通过这个样本数值,推断出小麻雀活动的总体密度范围。
而这个总体的密度范围就是区间估计。
其中,区间估计可以分为点估计和区间估计两类。
点估计只给出未知参数的一个点估计值,而区间估计则可以给出未知参数取值范围和置信水平。
(二)置信区间:置信区间是区间估计的重要组成部分,指的是通过样本原数据而得到的一个总体参数的范围,而这个总体参数就有一定的把握程度,称为“置信水平”。
比如说,如果我们从一个大家庭中随机选取了一些人群的数据,那么根据样本数据,我们可以推断出这个大家庭的总体参数的范围,比如说他们的收入水平。
置信水平一般是用1-alpha表示,其中1-alpha就是给定区间范围的置信度。
(三)步骤:区间估计的步骤可以分为以下几步:1. 确定要估计的总体参数(比如说该大家庭的收入水平);2. 收集样本数据并计算样本统计量(比如说样本平均数和标准误);3. 根据置信水平和样本数据计算出相应的置信区间(比如说该大家庭的收入水平位于哪个区间内)。
(四)应用:区间估计在实践中有着广泛的应用。
比如说在市场研究中,我们想知道某种产品的受欢迎程度,可以通过区间估计,推断出该产品的受欢迎程度的范围,还可以通过比较不同竞争对手的受欢迎程度,从而判断该产品在市场上的潜在竞争力和市场占有率。
二、假设检验(一)定义:假设检验也是一种基础的统计推断方法,主要是通过观察数据样本,在不知道总体参数方差的条件下,对总体参数进行推断和判断。
区间估计及假设检验算法实现方法详解

区间估计及假设检验算法实现方法详解随着数学、统计学等学科的发展,计算机技术在数学、统计学中扮演着越来越重要的角色。
在实际应用中,人们往往需要对各种数据进行分析处理以满足不同的需求,如何快速准确地进行数据分析,是一个非常重要的问题。
其中,区间估计和假设检验是数据分析中常用的两种方法。
本文将详细介绍这两种方法的实现方式。
一、区间估计区间估计是以样本统计量为基础,通过分析样本的信息来推断总体参数的取值范围,同时限定一定程度的误差。
通常,我们通过样本估计总体的平均数、标准差等参数,并对其进行区间估计。
常见的区间估计有置信区间、预测区间等。
1. 置信区间置信区间是指在给定的置信水平下,估计总体参数的取值范围。
在实际中,一个置信水平通常取95%或99%,即我们希望在95%或99%的数据中,总体参数的真实值可以被估计出来。
例如我们要估计一个总体的均值,使用样本均值计算出来一个估计值,并使用标准误和置信系数得到置信区间,那么这个置信区间的含义就是,我们认为有95%的置信度,总体均值在这个置信区间之内。
2. 预测区间预测区间是指在给定的置信水平下,预测一个新的数据值的取值范围。
通常,我们需要根据给定的样本数据来估计总体参数,并通过置信水平和误差限制得到一个预测区间。
例如,我们要预测未来一家公司的利润,使用以前几年公司利润值的样本数据,得到一组样本均值、标准误和置信系数等参数,根据置信系数和置信区间计算得到预测区间,那么这个预测区间的含义就是,在一定置信水平下,公司未来的利润值会在这个预测区间之内。
在实际进行区间估计的过程中,通常会使用计算机进行计算。
例如,在R语言中,我们可以使用以下代码实现置信区间的计算:```# 假设有一个样本数据data# 想要计算一个均值的置信区间result <- t.test(data, conf.level = 0.95)# 得到result$conf.int即为置信区间```我们可以看到,R语言中的t.test函数就可以方便地实现置信区间的计算,而不需要手动进行计算。
两样本定量资料假设检验PPT课件

2021/5/5
《生物医学研究中的统计方法》 第6章
2021/5/5
Ⅰ 两独立样本的比较
t检验
《生物医学研究中的统计方法》 第6章
t检验的模型假设: 两样本均来自正态总体(当n>50时,
数据的正态性可以忽略)且总体方差齐。
2021/5/5
《生物医学研究中的统计方法》 第6章
【例6.1】 为研究某种新药治疗贫血患者的疗 效,将20名贫血患者随机分成两组,一组用 新药治疗,另一组用常规药物治疗,测得血红 蛋白增加量(g/L)见表6.1。问新药与常规 药治疗贫血患者后的血红蛋白平均增加量有无 差别?
假设检验就是这样一种统计方法,根据样 本提供的信息,依据概率来判断所提出的 假设是否正确,从而作出拒绝还是不拒绝 的结论。
假设检 验实质
反证 法
• 起源于反弹琵琶,原自敦煌壁画 中的一种舞姿造型。
• 现在喻指突破常规的思维和行为, 看问题,与常规事物对着干。
反证法
小概率 原理
反证法:对于上述问题,要直接判断是否样本所来自
10
常规药物组
.176
10 .200* .935
10
*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction
Sig. .466 .482
2021/5/5
《生物医学研究中的统计方法》 第6章
加量不同,根据样本均数的信息 X 1 X 2 ,认为 1 2 , 即服用新药后血红蛋白含量平均增加量高于常规药。
2021/5/5
《生物医学研究中的统计方法》 第6章
正态性检验 • Analyze→ Descriptive Statistics→ Explore • Dependent list框→ y • Factor list框→group • Plots框→√Normality plots with tests • Continue • OK
《社会统计学》全书目录

《社会统计学》全书目录第一章导论第一节什么是社会统计学社会统计的产生与发展·社会统计学的对象与特点·社会统计的方法·社会统计工作的程序第二节社会统计学的几个基本概念总体与单位·标志与变量·指标与指标体系第二章社会统计资料的搜集第一节统计调查的方法及种类原始资料与次级资料·静态资料与静态资料·全面调查与非全面调查·一般调查与专项调查·经常性调查与一次性调查第二节统计调查的组织形式普查·重点调查·典型调查·抽样调查第三节概念的操作化与测量概念的操作化·定类尺度·定序尺度·定距尺度·定比尺度第四节统计误差登记性误差·代表性误差·抽样误差第三章社会统计资料的整理第一节统计分组的原则与标准“穷举”与“互斥”·频数(或次数)分布数列·品质数列与变量数列第二节统计表统计表的格式、内容与种类·统计表的制作规则第三节变量数列的编制对于离散变量·对于连续变量·组距和组数的确定·累计频数第四节统计图直方图·折线图·曲线图·累计顿数分布曲线·洛仑兹曲线与基尼系数第四章集中趋势测量法第一节算术平均数对于未分组资料的算术平均数计算·对于分组资料的算术平均数计算·算术平均数的性质第二节中位数对于未分组资料的中位数计算·对于分组资料的中位数计算·中位数的性质·其他分割法第三节众数对于未分组资料的众数计算·对于分组资料的众数计算·众数的性质第四节几何平均数、调和平均数及其他几何平均数·调和平均数·各种平均数的关系第五章离中趋势测量法第一节全距与四分位差全距·四分位差第二节平均差对于未分组资料A·D的计算·对于分组资料A·D的计算·平均差的性质第三节标准差对于未分组资科S的计算·对于分组资料S的计算·标准差的性质·标准分第四节相对离势变异系数·异众比率·偏态系数第六章概率与概率分布第一节概率论随机现象和随机事件·事件之间的关系·先验概率·经验概率第二节概率的数学性质概率的数学性质·排列与样本点的计数·运用概率方法进行统计推断的前提第三节概率分布、期望值与变异数离数型随机变量及其概率分布·连续型随机变量的概率分布·分布函数·数学期望·变异数第七章假设检验第一节二项分布二项分布的数学形式·二项分布的讨论第二节统计检验的基本步骤建立假设·求抽样分布·选择显著性水平和否定域·计算检验统计量·判定第三节正态分布正态分布的数学形式·标准正态分布·正态曲线下的面积·二项分布的正态近似法第四节中心极限定理抽样分布·中心极限定理第五节总体均值和成数的单样本检验σ已知,对总体均值的检验·学生t分布(小样本总体均值的检验)·关于总体成数的检验第八章常用统计分布第一节超几何分布超几何分布的数学形式·超几何分布的数学期望与方差·关于超几何分布的近似第二节泊松分布泊松分布的数学形式·泊松分布的性质·关于泊松分布的近似第三节卡方分布(2 分布)卡方分布的数学形式·卡方分布的性质·样本方差的抽样分布第四节F分布F分布数学形式·F分布的性质·关于F分布的近似第九章参数估计第一节点估计无偏性·一致性·有效性第二节区间估计精确性和可靠性·抽样平均误差与概率度·区间估计的步骤第三节其他类型的置信区间σ未知,小样本总体均值的区间估计·总体成数的估计·总体方差的区间估计第四节抽样平均误差简单随机抽祥的抽样误差·分层抽样的抽样误差·整群抽样的抽样误差·等距抽祥的抽样误差第五节样本容量的确定影响样本容量的因素·确定样本容量第十章双样本假设检验及区间估计第一节两总体大样本假设检验大样本均值差检验·大样本成数差检验第二节两总体小样本假设检验小样本均值差检验·小样本方差比检验第三节配对样本的假设检验单一实验组的假设检验·一实验组与一控制组的假设检验·对实验设计与相关检验的评论第四节双样本区间估计σ12和σ22已知,对均值差的区间估计·σ12和σ22未知,对均值差的区间估计·大样本成数区间估计·配对样本均值差的区间估计第十一章非参数检验第一节符号检验配对样本的“符号检验”·符号检验与二项检验·简便检验·“符号检验”的作用第二节配对符号秩检验配对样本的符号秩检验·配对符号秩检验的步骤·符号秩检验的效力第三节秩和检验独立样本的秩和检验·秩和·秩和检验的具体步骤·U检验第四节游程检验独立样本的游程检验·游程·游程检验的具体步骤·差符号游程检验第五节累计频数检验独立样本的累计频数检验·累计频数检验的步骤·没有预测方向和已经预测方向·经验分布与理论分布之比较第十二章相关与回归分析第一节变量之间的相互关系相关程度与方向·因果关系第二节定类变量的相关分析列联表·削减误差比例·λ系数·τ系数第三节定序变量的相关分析同序对、异序对、同分对·G amma系数·肯德尔等级相关系数·萨默斯(d系数)·斯皮尔曼等级相关系数·肯德尔和谐系数第四节定距变量的相关分析相关表和相关图·积差系数的导出和计算·积差系数的性质第五节回归分析线性回归·积差系数的PRE性质·相关指数R第六节曲线相关与回归第十三章2 检验与方差分析第一节拟合优度检验问题的导出·拟合优度检验(比率拟合检验)·正态拟合检验第二节无关联性检验独立性、理论频数及自由度·关于频数比较和连续性修正·列联表的卡方分解·关系强度的量度第三节方差分析总变差及其分解·关于自由度·关于检验统计量F o的计算·相关比率·关于方差分析的几点讨论第四节回归方程与相关系数的检验回归系数的检验·积差系数的检验·回归方程的区间估计第十四章动态分析与指数分析第一节时间数列及其指标分析时间数列的构成与分类·动态比较指标·动态平均指标第二节时间数列的趋势分析随手绘法·移动平均法·半数平均法·最小平方法第三节指数分析法动态指数及其分类·质量指标综合指数·数量指标综合指数·用与个体指数的联系来求综合指数·其他权数形式的质量和数量综合指数·指数体系和因素分析·静态指数。
社会统计学----教材

《社会统计学》全书目录第一章导论第一节什么是社会统计学社会统计的产生与发展•社会统计学的对象与特点•社会统计的方法•社会统计工作的程序第二节社会统计学的几个基本概念总体与单位•标志与变量•指标与指标体系第二章社会统计资料的搜集第一节统计调查的方法及种类原始资料与次级资料•静态资料与静态资料•全面调查与非全面调查•一般调查与专项调查•经常性调查与一次性调查第二节统计调查的组织形式普查•重点调查•典型调查•抽样调查第三节概念的操作化与测量概念的操作化•定类尺度•定序尺度•定距尺度•定比尺度第四节统计误差登记性误差•代表性误差•抽样误差第三章社会统计资料的整理第一节统计分组的原则与标准“穷举”与“互斥”•频数(或次数)分布数列•品质数列与变量数列第二节统计表统计表的格式、内容与种类•统计表的制作规则第三节变量数列的编制对于离散变量•对于连续变量•组距和组数的确定•累计频数第四节统计图直方图•折线图•曲线图•累计顿数分布曲线•洛仑兹曲线与基尼系数第四章集中趋势测量法第一节算术平均数对于未分组资料的算术平均数计算•对于分组资料的算术平均数计算•算术平均数的性质第二节中位数对于未分组资料的中位数计算•对于分组资料的中位数计算•中位数的性质•其他分割法第三节众数对于未分组资料的众数计算•对于分组资料的众数计算•众数的性质第四节几何平均数、调和平均数及其他几何平均数•调和平均数•各种平均数的关系第五章离中趋势测量法第一节全距与四分位差全距•四分位差第二节平均差对于未分组资料A•D的计算•对于分组资料A•D的计算•平均差的性质第三节标准差对于未分组资科S的计算•对于分组资料S的计算•标准差的性质•标准分第四节相对离势变异系数•异众比率•偏态系数第六章概率与概率分布第一节概率论随机现象和随机事件•事件之间的关系•先验概率•经验概率第二节概率的数学性质概率的数学性质•排列与样本点的计数•运用概率方法进行统计推断的前提第三节概率分布、期望值与变异数离数型随机变量及其概率分布•连续型随机变量的概率分布•分布函数•数学期望•变异数第七章假设检验第一节二项分布二项分布的数学形式•二项分布的讨论第二节统计检验的基本步骤建立假设•求抽样分布•选择显著性水平和否定域•计算检验统计量•判定第三节正态分布正态分布的数学形式•标准正态分布•正态曲线下的面积•二项分布的正态近似法第四节中心极限定理抽样分布•中心极限定理第五节总体均值和成数的单样本检验σ已知,对总体均值的检验•学生t分布(小样本总体均值的检验)•关于总体成数的检验第八章常用统计分布第一节超几何分布超几何分布的数学形式•超几何分布的数学期望与方差•关于超几何分布的近似第二节泊松分布泊松分布的数学形式•泊松分布的性质•关于泊松分布的近似第三节卡方分布( 分布)卡方分布的数学形式•卡方分布的性质•样本方差的抽样分布第四节F分布F分布数学形式•F分布的性质•关于F分布的近似第九章参数估计第一节点估计无偏性•一致性•有效性第二节区间估计精确性和可靠性•抽样平均误差与概率度•区间估计的步骤第三节其他类型的置信区间未知,小样本总体均值的区间估计•总体成数的估计•总体方差的区间估计第四节抽样平均误差简单随机抽祥的抽样误差•分层抽样的抽样误差•整群抽样的抽样误差•等距抽祥的抽样误差第五节样本容量的确定影响样本容量的因素•确定样本容量第十章双样本假设检验及区间估计第一节两总体大样本假设检验大样本均值差检验•大样本成数差检验第二节两总体小样本假设检验小样本均值差检验•小样本方差比检验第三节配对样本的假设检验单一实验组的假设检验•一实验组与一控制组的假设检验•对实验设计与相关检验的评论第四节双样本区间估计σ12和σ22已知,对均值差的区间估计•σ12和σ22未知,对均值差的区间估计•大样本成数区间估计•配对样本均值差的区间估计第十一章非参数检验第一节符号检验配对样本的“符号检验”•符号检验与二项检验•简便检验•“符号检验”的作用第二节配对符号秩检验配对样本的符号秩检验•配对符号秩检验的步骤•符号秩检验的效力第三节秩和检验独立样本的秩和检验•秩和•秩和检验的具体步骤•U检验第四节游程检验独立样本的游程检验•游程•游程检验的具体步骤•差符号游程检验第五节累计频数检验独立样本的累计频数检验•累计频数检验的步骤•没有预测方向和已经预测方向•经验分布与理论分布之比较第十二章相关与回归分析第一节变量之间的相互关系相关程度与方向•因果关系第二节定类变量的相关分析列联表•削减误差比例•系数•系数第三节定序变量的相关分析同序对、异序对、同分对•Gamma系数•肯德尔等级相关系数•萨默斯(d系数)•斯皮尔曼等级相关系数•肯德尔和谐系数第四节定距变量的相关分析相关表和相关图•积差系数的导出和计算•积差系数的性质第五节回归分析线性回归•积差系数的PRE性质•相关指数R第六节曲线相关与回归第十三章检验与方差分析第一节拟合优度检验问题的导出•拟合优度检验(比率拟合检验) •正态拟合检验第二节无关联性检验独立性、理论频数及自由度•关于频数比较和连续性修正•列联表的卡方分解•关系强度的量度第三节方差分析总变差及其分解•关于自由度•关于检验统计量Fo的计算•相关比率•关于方差分析的几点讨论第四节回归方程与相关系数的检验回归系数的检验•积差系数的检验•回归方程的区间估计第十四章动态分析与指数分析第一节时间数列及其指标分析时间数列的构成与分类•动态比较指标•动态平均指标第二节时间数列的趋势分析随手绘法•移动平均法•半数平均法•最小平方法第三节指数分析法动态指数及其分类•质量指标综合指数•数量指标综合指数•用与个体指数的联系来求综合指数•其他权数形式的质量和数量综合指数•指数体系和因素分析•静态指数第一章导论统计是关于数字和数据合成的学问。
区间估计与假设检验的分类总结

区间估计与假设检验的分类总结区间估计和假设检验是统计推断的两个主要方法。
它们都是根据样本数据对总体参数进行推断,但是它们的目的和原理不同。
下面我将对区间估计和假设检验进行分类总结。
一、区间估计分类总结:区间估计是根据样本数据对总体参数进行估计,并给出估计结果的一个范围。
根据不同的参数和样本情况,区间估计可以分为以下几种类型:1.均值的区间估计:a.单个总体均值的区间估计:当总体标准差已知时,使用正态分布进行估计;当总体标准差未知时,使用t分布进行估计。
b.两个总体均值之差的区间估计:根据两个总体样本的样本均值和样本方差的差异,使用正态分布或t分布进行估计。
c.大样本均值的区间估计:对于大样本,总体均值的估计可以使用正态分布进行估计。
2.方差的区间估计:a.单个总体方差的区间估计:对于正态总体,使用卡方分布进行估计。
b.两个总体方差之比的区间估计:根据两个总体样本方差的比值,使用F分布进行估计。
c.大样本方差的区间估计:对于大样本,总体方差的估计可以使用卡方分布进行估计。
3.比例的区间估计:b.两个总体比例之差的区间估计:根据两个总体样本比例的差异,使用正态分布进行估计。
二、假设检验分类总结:假设检验是根据样本数据对总体参数的一些假设进行检验,并得出是否拒绝假设的结论。
根据不同的参数和样本情况,假设检验可以分为以下几种类型:1.均值的假设检验:a.单个总体均值的假设检验:当总体标准差已知时,使用正态分布进行检验;当总体标准差未知时,使用t分布进行检验。
b.两个总体均值之差的假设检验:根据两个总体样本的样本均值和样本方差的差异,使用正态分布或t分布进行检验。
c.大样本均值的假设检验:对于大样本,总体均值的检验可以使用正态分布进行检验。
2.方差的假设检验:a.单个总体方差的假设检验:对于正态总体,使用卡方分布进行检验。
b.两个总体方差之比的假设检验:根据两个总体样本方差的比值,使用F分布进行检验。
c.大样本方差的假设检验:对于大样本,总体方差的检验可以使用卡方分布进行检验。
十章 双样本假设检验及区间估计

第十章 双样本假设检验及区间估计双样本统计,除了有大样本、小样本之分外,根据抽样之不同,还可分为独立样本与配对样本。
所谓独立样本,指双样本是在两个总体中相互独立地抽取的。
所谓配对样本,指只有一个总体,双样本是由于样本中的个体两两匹配成对而产生的。
配对样本就不是相互独立的了。
第一节 两总体大样本假设检验1. 大样本均值差检验为了把单样本检验推广到能够比较两个样本的均值的检验,必须再一次运用中心极限定理。
下面是一条由中心极限定理推广而来的重要定理:如果从N (μ1,σ12)和N (μ2,σ22)两个总体中分别抽取容量为n 1和n 2的独立随机样本,那么两个样本的均值差(1X ―2X )的抽样分布就是N (μ1―μ2,121n σ+232n σ)。
与单样本的情况相同,在大样本的情况下(两个样本的容量都超过50),这个定理可以推广应用于任何具有均值μ1和μ2 以及方差σ12和σ22的两个总体。
当n 1和n 2逐渐变大时,(1X ―2X )的抽样分布像前面那样将接近正态分布。
大样本均值差检验的步骤有:(1) 零 假 设H 0:μ1―μ2=D 0备择假设H 1:单侧 双侧H 1:μ1―μ2>D 0 H 1:μ1―μ2≠D 0 或 H 1:μ1―μ2<D 0(2)否定域:单侧Z α,双侧Z α/2。
(3)检验统计量 Z =)()(21021X X D X X ---σ=222121021n n D X X σσ+--)(如果σ12和σ22未知,可用S 12和S 22代替。
(4)判定2. 大样本成数差检验与单样本成数检验中的情况一样,两个成数的差可以被看作两个均值差的特例来处理(但它适用各种量度层次)。
于是,大样本成数检验的步骤有:(1) 零 假 设H 0:p 1―p 2=D 0备择假设H 1:单侧 双侧 H 1:p 1―p 2>D 0 H 1:p 1―p 2≠D 0 或 H 1:p 1―p 2<D 0(2)否定域:单侧Z α,双侧Z α/2。
社会统计学第十章 双样本假设检验及区间估计 共51页

(1)零假设: H0:12D0
(2)备择假设:
单侧
H1:12D0
或 H1:12D0
双侧
H1:12D0
(3)否定域:单侧 Z
双侧 Z / 2
(4)检验统计量 (5)比较判定
Z
X1
X2
D 0
12
2 2
n1 n2
30.07.2019
3
[例]为了比较已婚妇女对婚后生活的态度是否因婚
16
根据本书第八章第四节F分布中的(8.25)式有
n1S12
12
n2S22
22
/(n1 1) /(n2 1)
~
F(n1
1,n2
1)
由于 S2
n
S2 ,
n1
所以简化后,检验方差比所
S12/12
~F(n1 1,n2
1)
用统计量为
S22/22
当零假设H0: σ1=σ2时, 上式中的统计量又简化为
论是单侧检验还是双侧检验,F 的临界值都只在右侧。其原因是我
们总是把
Sˆ
2 2
和
Sˆ
2 1
中的较大者放在分子上,以便使用者掌握。因此有
F
S
2 1
≥1
或者
F
S
2 2
≥1
30.07.2019
S
2 2
S
2 1
19
[例] 为了研究男性青年和女性青年两身高总
体的方差是否相等,分别作了独立随机抽样。对
pq
n1n2 n1n2
0.660 9.33 1171 117 171117
《双样本假设检验》课件

总结词
独立双样本t检验用于比较两个独立样本的 均值是否存在显著差异。
详细描述
独立双样本t检验的前提假设是两个样本相 互独立,且总体正态分布。通过计算t统计 量和自由度,可以判断两个样本均值是否存 在显著差异。
实例二:配对样本t检验
总结词
配对样本t检验用于比较同一观察对象在不同条件下的观测值是否存在显著差异 。
它通常包括以下步骤:提出假设、选择合适的统计量、确定显著性水平、进行统计推断、得出结论。
02
双样本假设检验的步骤
确定检验假设和备择假设
检验假设(H0)
用于确定两组样本均值是否相等的假设。
备择假设(H1)
与检验假设相对立的假设,即两组样本均值存在显著差异。
确定检验统计量
• 检验统计量是用于评估样本数据 与假设之间差异的统计量,常用 的有t检验、Z检验等。
双样本假设检验的重要性
在科学实验、医学研究、社会科学调 查等领域,双样本假设检验是一种非 常重要的统计工具。
VS
它可以帮助我们判断两组数据之间的 差异是否具有实际意义,从而为我们 的决策提供依据。
双样本假设检验的基本原理
双样本假设检验基于大数定律和中心极限定理,通过比较两组数据的差异来推断总体参数。
社会科学研究
调查研究
比较不同群体在某项调查指标上的差异,如性 别、年龄、教育程度等。
政策效果评估
比较政策实施前后的效果,评估政策的有效性 。
行为研究
分析不同情境下个体行为的差异,解释行为背后的原因。
质量控制和生产过程控制
质量控制
检测产品或服务的质量是否符合标准或客户 要求。
过程能力分析
评估生产过程的能力水平,识别过程改进的 潜力。
区间估计与假设检验的分类总结

关于区间估计与假设检验以参数为分类标准的分类区间估计部分一、 关于总体均值μ的区间估计1. 小样本、2σ已知情况下,总体均值μ的区间估计X~N (μ,n2σ);nX σμ-~N (0,1)总体均值μ的区间:[X -nz σα2,X +nz σα2]2. 小样本、2σ未知情况下,总体均值μ的区间估计nS X μ-~t(n-1)总体均值μ的置信区间:[X -ns t 2α,X +ns t 2α]3.大样本情况下,总体均值μ的区间估计X ~N (μ,n2σ);在大样本情况下:nX σμ-与nS X μ-都服从N (0,1),所以可以用S 替换σ. 总体均值μ的区间:[X -nz σα2,X +nz σα2](可用样本方差S替σ)二、 关于二总体均值差21μμ-的区间估计 1. 大样本情况下,二总体均值差区间估计(21X X -)~N (21μμ-,222121n n σσ+);2221212121)()(n n X X σσμμ+---~N (0,1)均值差的置信区间为:[)(21X X --2221212n n z σσα+,)(21X X -2221212n n z σσα++]三、 关于总体成数p 的区间估计1. 大样本情况下总体成数p 的区间估计nP ini ξ∑=∧=1~N (npq p ,);npq p P -∧~N(0,1);总体p 的置信区间为[∧P -,2n pq z α∧P +npqz 2α] 四、关于二总体成数差21p p -区间估计∧∧-21P P ~N ),(22211121n q p n q p p p +-;2221111121)()(n q p n q p p p P P +---∧∧~N (0,1)二总体成数差21p p -的置信区间是: [∧∧-21P P -,2221112n q p n q p z +α∧∧-21P P +2221112n q p n q p z +α]五、 关于总体方差2σ的区间估计1. 正态总体N (μ,2σ)以下统计量满足自由度为k=n-1的2χ分布:22)1(s n σ-~2χ(n-1)总体方差的置信区间为:[222/1222/)1(,)1(s n s n ααχχ---]假设检验部分(除了二总体方差比外,均以双边检验为例) 一、关于总体均值μ的假设检验1.小样本、2σ已知情况下、单正态总体均值μ检验 0H :μ=0μ1H :≠μ0μ统计量z=nX σμ0-~N (0,1)比较z 与2αz ,做出决定2. 小样本、2σ未知情况下、单正态总体均值μ检验0H :μ=0μ1H :≠μ0μ统计量t=nSX 0μ-~t(n-1) 比较t 与2αt ,做出决定3.大样本情况下,总体均值检验0H :μ=0μ1H :≠μ0μ统计量z=nX σμ0-~N (0,1)比较z 与2αz ,做出决定4.配对样本的比较,假设先后两次观察无显著性差别,则有:),0(~21nN ndd ini σ∑==,II B A i X X d -=若2σ未知,可用2d s 代替;2ds=21)(11d d n i ni --∑=配对样本的均值满足K=n-1的t 分布:t=ns d d0-~t(n-1)0H :1μ=2μ1H :≠1μ2μ统计量t=ns d d0-=ns dd比较t 与2αt 做出二、关于二总体均值差21μμ-的检验 1.大样本情况下,二总体均值差21μμ-检验0H :1μ-2μ=01H :-1μ2μ≠0统计量:z=2221212121)()(n n X X σσμμ+---~N (0,1) 比较z 与2αz 做出决定2.小样本、2221,σσ均已知情况下,二总体均值差21μμ-检验012 1H :-1μ2μ≠0统计量:z=2221212121)()(n n X X σσμμ+---~N (0,1) 比较z 与2αz 做出决定3.小样本、2221,σσ均未、但2221σσ=知情况下,二总体均值差21μμ-检验0H :1μ-2μ=01H :-1μ2μ≠0因为2221σσ=,所以总体方差2σ=2221σσ=,可用两样本方差的加权平均值2s 来代替2σ≈2s =2)()()1()1()1()1()1()1(212212111212222121121-+-+-=-+--+-+--∑∑==n n X X X Xn n sn n n s n j in j n i统计量t=2221212121)()(n n X X σσμμ+---=22122121)()(n n X X σσμμ+---=21212111)()(n n s X X +---μμ~t()221-+n n比较t 与2αt 做出决定三、关于总体成数p 的检验 1.大样本情况下,总体成数检验00 1H :p ≠0pn P ini ξ∑=∧=1~N (npqp ,);npq p P -∧~N(0,1);统计量z=nq p p P 000-∧~N (0,1),比较z 与2αz 做出决定。
区间估计与假设检验

区间估计与假设检验在统计学中,区间估计和假设检验是两个常用的推断方法,用于对总体参数进行估计和推断。
本文将对区间估计和假设检验进行介绍,并讨论它们的应用和差异。
一、区间估计区间估计是用样本数据来推断总体参数的取值范围。
它通过计算估计值以及与之相关的置信水平,给出一个参数的范围估计。
这个范围被称为置信区间。
置信区间常用于描述一个参数的不确定性。
例如,我们要估计某种药物的平均效果。
通过对随机抽取的样本进行实验,我们可以得到样本均值和标准差。
然后,结合样本容量和置信水平,可以计算出药物平均效果的置信区间。
例如,我们可以得出一个95%置信区间为(0.2, 0.6),表示我们有95%的置信水平相信真实的平均效果在这个区间内。
二、假设检验假设检验是用于判断总体参数是否符合某种假设的统计方法。
假设检验通常分为两类:单样本假设检验和双样本假设检验。
1. 单样本假设检验单样本假设检验用于推断一个总体参数与某个特定值之间是否存在显著差异。
它包括以下步骤:(1)建立原假设(H0)和备择假设(H1),其中原假设是要进行检验的假设,备择假设是对原假设的补充或对立的假设。
(2)选择合适的显著性水平(α),表示我们接受原假设的程度。
(3)计算样本数据的检验统计量,例如t值或z值。
(4)根据显著性水平和检验统计量,判断是否拒绝原假设。
2. 双样本假设检验双样本假设检验用于比较两个总体参数之间是否存在显著差异。
常见的双样本假设检验包括独立样本t检验和配对样本t检验。
独立样本t检验用于比较两个独立样本的均值是否有差异,而配对样本t检验用于比较同一样本的两个相关变量的均值是否有差异。
三、区间估计与假设检验的差异区间估计和假设检验都是推断总体参数的方法,但它们的应用和目的略有不同。
区间估计主要关注参数的范围估计,给出了参数估计值的不确定性范围。
它强调了估计的稳定性和精确度,但不直接涉及参数的显著性判断。
因此,区间估计对于参数的精确度提供了一个相对准确的度量。
双样本假设检验及区间估计

第十章 双样本假设检验及区间估计第一节 两总体大样本假设检验两总体大样本均值差的检验·两总体大样本成数差的检验 第二节 两总体小样本假设检验两总体小样本均值差的检验·两总体小样本方差比的检验 第三节 配对样本的假设检验单一试验组的假设检验·一试验组与一控制组的假设检验·对实验设计与相关检验的评论第四节 双样本区间估计 σ12和σ22已知,对双样本均数差的区间估计·σ12和σ22未知,对对双样本均值差的区间估计·大样本成数差的区间估计·配对样本均值差的区间信计一、填空1.所谓独立样本,是指双样本是在两个总体中相互( )地抽取的。
2.如果从N (μ1,σ12)和N (μ2,σ22)两个总体中分别抽取容量为n 1和n 2的独立随机样本,那么两个样本的均值差(1X ―2X )的抽样分布就是N ( )。
3.两个成数的差可以被看作两个( )差的特例来处理。
4.配对样本,是两个样本的单位两两匹配成对,它实际上只能算作( )样本,也称关联样本。
5.配对样本均值差的区间估计实质上是( )的单样本区间估计6.当n 1和n 2逐渐变大时,(1X ―2X )的抽样分布将接近( )分布。
7.使用配对样本相当于减小了( )的样本容量。
8. 在配对过程中,最好用( )的方式决定“对”中的哪一个归入实验组,哪一个归入控制组。
9. 单一实验组实验的逻辑,是把实验对象前测后测之间的变化全部归因于( )。
10. 方差比检验,无论是单侧检验还是双侧检验,F 的临界值都只在( )侧。
二、单项选择1.抽自两个独立正态总体样本均值差(1―2)的抽样分布是( )。
A N (μ1―μ2,121n σ―222n σ) B N (μ1―μ2,121n σ+222n σ)C N (μ1+μ2,121n σ―222n σ) D N (μ1+μ2,121n σ+222n σ)2.两个大样本成数之差的分布是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无偏估计量 替代它。由于两个样
本的方差基于不同的样本容量,因而
可以用加权的方法求出σ的无偏估计
量,得
注意,上式的分母上减2,是因为
根据 和 计算S1和S2时,分别损 失了一个自由度,一共损失了两个自由
度,所以全部自由度的数目就成为
20(2n0/11+0/2n2―2)。 于是有
12
这样,对小样本正态总体,
计算检验统计量
=0.73, =0.27,n1=171 =0.58, =0.42,n2=117
确定否定域
因为α=0.01,因而有 Zα/2=Z0.005=2.58<2.66 因而否定零假设,即可以认为在0.01显著性水平上,两类学生在
性202格0/10上/2 是有差异的。
10
第二节 两总体小样本假设检验
与对单总体小样本假设检验一样,我们对两 总体小样本假设检只讨论总体满足正态分布的情 况。 1. 小样本均值差假设检验
(1) 当 和 已知时,小样本均值差 检验,与上一节所述大样本总体均值差检验完全 相同,这里不再赘述。
2020/10/2
11
(2)
和 未知,但假定它们相等时, 关键是要解决
的算式。
现又因为σ未知,所以要用它的
“不满意”组的抽样结果为: “满意”组的抽样结果为: H0:μ1―μ2=D0=0 H1: μ1―μ2 ≠0 计算检验统计量
=9.2年, S1=2.8年, n1=500; =8.5 年,S2=2.3 年, n2=600。
确定否定域, 因为α=0.05,因而有 Zα/2=1.96<4.47 因此否定零假设,即可以认为在0.05显著性水平上,婚龄对妇女婚 后生活的态度是有影响的。同时我们看到,由于样本计算值Z=4.47 远大 于单侧 Z0.05 的临界值1. 65,因此本题接受μ1―μ2 >0 的备择假设,即可 以认为妇女婚龄长容易对婚后生活产生“不满意”。
意”和“不满意”两组。从满意组中随机抽取600名妇女,
其平均婚龄为8.5年,标准差为2.3年;从不满意组抽出
500名妇女,其平均婚龄为9.2年,标准差2.8年。试问在
0.05显著性水平上两组是否存在显著性差异?
样本
人数
均值
标准差
满意组
600
8.5
2.3
不满意组
500
9.2
2.8
2020/10/2
5
[解] 据题意,
第十章 双样本假设检验及区间估计
我们在掌握了单样本检验与估计的有关方法与原理 之后,把视野投向双样本检验与估计是很自然的。双样 本统计,除了有大样本、小样本之分外,根据抽样之不 同,还可分为独立样本与配对样本。
独立样本, 指 双样本是在两个 总体中相互独立 地抽取的 。
2020/10/2
配对样本,指只有一 个总体,双样本是由于样 本中的个体两两匹配成对 而产生的。配对样本相互 之间不独立。
2020/10/2
6
2.大样本成数差检验
(1)零假设: (2)备择假设:
单侧
或 (3)否定域:单侧 (4)检验统计量
2020/10/2
双侧
双侧
其中:
为总体1的 样本成数
为总体2未知,须用样本成数 和 种情况讨论:
① 若零假设中两总体成数的关系为 P 相同的总体,它 们的点估计值为
样本 中新生有171名,四年级学生有117名。试问,在0.01水平 上,两类学生有无显著外性向差异? 内向
四年级 58%(117) 42%
一年级 73%(171) 27%
2020/10/2
9
[解] 据题意 新生组的抽样结果为:
四年级学生组的抽样结果为: H0:p1―p2=D0=0 H1:p1―p2=D0≠0
进行估算时,分以下两 ,这时两总体可看作成数
此时上式中检验 统计量 Z 可简化为
② 若零假设中两总体成数
,那么它们的点估计值有
此时上式中 检验统计量Z为
2020/10/2
(5)判定
8
[例]有一个大学生的随机样本,按照性格“外向”和 “内向”,把他们分成两类。结果发现,新生中有73%
属 于“外向”类,四年级学生中有58%属于“外向”类。
,用
估计
,于是有
[例] 用上式重新求解前例题。 [解] 用上式,检验统计量的计算为
可以看出,求算用(10.8)式和(10.10)式,得出的结果差别不大。
如果所研究的只有两个样本,也可以 用方差分析法(analysis of variance,简 称ANOVA,也称为F检验法)来检验两 个样本均值的差异,不一定要按照Z或t 检验法。
2020/10/2
4
[例]为了比较已婚妇女对婚后生活的态度是否因婚
龄而有所差别,将已婚妇女按对婚后生活的态度分为 “满
1
第一节 两总体大样本假设检验
为了把单样本检验推广到能够比较两个样本的均值的检验,必须
再一次运用中心极限定理。下面是一条由中心极限定理推广而来的重
要定理:如果从
和
两个总体中分别抽取容量为
n1和n2 的独立随机样本,那么两个样本的均值差
的抽样分
布就是
。与单样本的情况相同,在大样本的
情况下(两个样本的容量都超过50),这个定理可以推广应用于任何具
有均值μ1和μ2以及方差
和
的两个总体。当n1和n2逐渐变大
时,
的抽样分布像前面那样将接近正态分布。
2020/10/2
2
1.大样本均值差检验 (1)零假设: (2)备择假设:
单侧
双侧
或 (3)否定域:单侧 (4)检验统计量
双侧
(5)比较判定
2020/10/2
3
对均值差异进行比较,如果是大样本 就是Z检验法,小样本就是t检验法。二 者都同时要求:①样本是随机样本②每 个总体都是正态分布的③数据是定距及 以上层次的变量。
问:能否认为A民族的家庭平均人口 高于B民族的家庭平均人口( α=0.05)? (假定家庭平均人口服从正态分布,且 方差相等)t=2.97
2020/10/2
14
(3)
和 未知,但不能假定它们相等
如果不能假定σ1=σ2 ,那么就不能引进共同的σ简
化
,也不能计算σ的无偏估计量 。现在简单的做法是用
估计
其均值差的检验步骤如下: (1)零假设: (2)备择假设:
单侧
和 未知,但σ1=σ2 , 双侧
或 (3)否定域:单侧 (4)检验统计量
双侧
(5)比较判定
2020/10/2
13
[例]为研究某地民族间家庭规模是否有 所不同,各做如下独立随机抽样:
民族A:12户,平均人口6.8人,标准 差1.5人
民族B:12户,平均人口5.3人,标准 差0.9人