高中数学易错易混易忘问题集锦

合集下载

最新高中数学易错易混易忘题分类汇编

最新高中数学易错易混易忘题分类汇编

4
4
28
+
因此当 x=-1 时 x2+y2 有最小值 1,
当 x=- 8 时,x2+y2 有最大值 28
。故 x2+y2 的取值范围是[1,
28
]
3
3
3
3
【知识点归类点拔】事实上我们可以从解析几何的角度来理解条件 x 2 2 y2 1对 x、y 的限制,
4
显然方程表示以(-2,0)为中心的椭圆,则易知-3≤x≤-1, 2 y 2 。此外本题还可通过三角换元
(2)应用 f 1(b) a f (a) b 可省略求反函数的步骤,直接利用原函数求解但应注意其自变量和
函数值要互换。
【练 3】(2004 全国理)函数 f x x 1 1 x 1 的反函数是()
A、 y x2 2x 2 x 1 B、 y x2 2x 2 x 1
C、 y x2 2x x 1 D、 y x2 2x x 1
高中数学易错易混易忘题分类汇编
“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何 解决这个问题对决定学生的高考成败起着至关重要的作用。本文结合笔者的多年高三教学经验精心挑选学 生在考试中常见的 66 个易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、怪、 难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在, 另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的,助你在高考中乘风 破浪,实现自已的理想报负。 【易错点 1】忽视空集是任何非空集合的子集导致思维不全面。
【练 1】已知集合 A x | x2 4x 0 、 B x | x2 2a 1 x a2 1 0 ,若 B A,

高中高考数学易错易混易忘题分类汇总及解析(精品)

高中高考数学易错易混易忘题分类汇总及解析(精品)

高中高考数学易错易混易忘题分类汇总例1、设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =,求实数a 组成的集合的子集有多少个?【练1】已知集合{}2|40A x x x =+=、(){}22|2110B x x a x a =+++-=,若B A ⊆,则实数a 的取值范围是 。

例2、已知()22214y x ++=,求22x y +的取值范围 【练2】若动点(x,y )在曲线22214x y b+=()0b >上变化,则22x y +的最大值为() (A )()()2404424b b b b ⎧+<<⎪⎨⎪≥⎩(B )()()2402422b b b b ⎧+<<⎪⎨⎪≥⎩(C )244b +(D )2b 例3、()2112x xa f x ⋅-=+是R 上的奇函数,(1)求a 的值(2)求的反函数()1f x - 【练3】函数()()111f x x x =-≥的反函数是()A 、()2221y x x x =-+< B 、()2221y x x x =-+≥ C 、()221y x x x =-< D 、()221y x x x =-≥例4、已知函数()121x f x x-=+,函数()y g x =的图像与()11y f x -=-的图象关于直线y x =对称,则()y g x =的解析式为() A 、()32x gx x -=B 、()21x g x x -=+C 、()12x g x x -=+D 、()32g x x=+ 【练4】已知函数y=log 2x 的反函数是y=f -1(x),则函数y= f -1(1-x)的图象是()例5、 判断函数()2lg 1()22x f x x -=--的奇偶性。

【练5】判断下列函数的奇偶性:①()2244f x x x =-+-()(111xf x x x+=--()1sin cos 1sin cos x x f x x x ++=+-例6、 函数()2221211log 22x x f x x x -+⎛⎫=<-> ⎪⎝⎭或的反函数为()1f x -,证明()1f x -是奇函数且在其定义域上是增函数。

高中数学易错、易混、易忘问题备忘录(育才中学整理)

高中数学易错、易混、易忘问题备忘录(育才中学整理)

高中数学易错、易混、易忘问题备忘录(育才中学整理)一、集合、逻辑、复数、不等式1.注意元素与集合的关系、集合与集合的关系,要能准确表示这些关系.例1.若}1|{->=x x M ,则下列选项正确的是A .0⊆MB .{0}∈MC .φ∈MD .{0}⊆M 2.注意区分集合中元素的形式..:①{}x x y x -=2|,②{}x x y y -=2|,③{}x x y y x -=2|),(;④{}02=-x x ⑤{}0|2=-x x x ;例2.{|3}M x y x ==+, N ={}2|1,y y x x M =+∈,则M N = ___ 例3.{|(1,2)(3,4),}M a a R λλ==+∈ ,{|(2,3)(4,5)N a a λ==+ ,}R λ∈,则=N M _____3. 遇到B A ⊆或∅=B A 不要遗忘了∅=A 的情况。

例4.}0158|{2=+-=x x x A ,,}01|{=-=ax x B 若A B ⊆,求实数a 的值.(不要遗忘a =0的情况)例5.}012|{2=--=x ax x A ,如果φ=+R A ,求a 的取值。

4.在应用条件A ∪B =B⇔A ∩B =A⇔AB时,易忽略A是空集Φ的情况.例6、已知集合{}0232=+-=x x x A ,{}022=+-=mx x x B ,且B B A = ,实数m 的取值范围是A .{}2222<≤-m m B 。

{}2222≤≤-m m C 。

{}2222≤<-m m D 。

{}22223<<-=m m m 或5.常用数集的表示: 自然数集N ;正整数集+*N N 或;有理数集Q ;实数集R ;复数集C .⒍ 原命题: p q ⇒;逆命题: q p ⇒;否命题: p q ⌝⇒⌝;逆否命题: q p ⌝⇒⌝;互为逆否的两个命题是等价的.例7.“βαsin sin ≠”是“βα≠”的 条件。

高考数学易忘、易错、易混知识点整理

高考数学易忘、易错、易混知识点整理

2019 高考数学易忘、易错、易混知识点整理高中数学知识点有好多都是比较简单混杂的,好多考生的分数大多也丢在这些地方,为了大家此后获得更优秀的成绩,小编特地为大家整理高考取易忘、易错、易混的知识点供大家参照。

1.进行会合的交、并、补运算时,不要忘了全集和空集的特别情况,不要忘掉了借助数轴和文氏图进行求解.2.在应用条件时,易 A 忽视是空集的状况3.你会用补集的思想解决相关问题吗?4.简单命题与复合命题有什么差别 ?四种命题之间的互相关系是什么?怎样判断充足与必需条件 ?5.你知道“否命题”与“命题的否认形式”的差别 .6.求解与函数相关的问题易忽视定义域优先的原则.7.判断函数奇偶性时,易忽视查验函数定义域能否对于原点对称.8.求一个函数的分析式和一个函数的反函数时,易忽视标明该函数的定义域 .9.原函数在区间 [-a,a]上单一递加,则必定存在反函数,且反函数也单一递加 ;但一个函数存在反函数,此函数不必定单一.比如: .10.你娴熟地掌握了函数单一性的证明方法吗?定义法 (取值 ,作差 ,判正负 )和导数法11.求函数单一性时,易错误地在多个单一区间之间增添符号“∪”和“或”;单一区间不可以用会合或不等式表示.12.求函数的值域一定先求函数的定义域。

13.怎样用函数的性与奇偶性解?①比函数的大小 ;②解抽象函数不等式 ;③求参数的范 (恒建立 ).几种基本用你掌握了 ?14.解数函数,你注意到真数与底数的限制条件了?(真数大于零,底数大于零且不等于1)字母底数需15.三个二次 (哪三个二次 ?)的关系及用掌握了 ?怎样利用二次函数求最 ?16.用元法解易忽视元前后的等价性,易忽视参数的范。

17.“ 系数一元二次方程有数解” 化,你能否注意到:当,“方程有解”不可以化。

若原中没有指出是二次方程,二次函数或二次不等式,你能否考到二次系数可能的零的情况 ? 18.利用均不等式求最,你能否注意到:“一正 ;二定 ;三等”.19.不等式的解法及其几何意是什么?20.解分式不等式注意什么?用“根法”解整式 (分式 )不等式的注意事是什么 ?21.解含参数不等式的通法是“定域前提,函数的性基,分是关”,注意解完以后要写上:“ 上,原不等式的解集是⋯⋯”.22.在求不等式的解集、定域及域,其果必定要用会合或区表示 ;不可以用不等式表示 .23.两个不等式相乘 ,必注意同向同正才能相乘,即同向同正可乘 ;同时要注意“同号可倒”即 a>b>0,a<0.24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行议论了吗 ?25.在“已知,求”的问题中 ,你在利用公式时注意到了吗?(时,应有 )需要考证,有些题目通项是分段函数。

高考数学中易忘易错易混知识点梳理

高考数学中易忘易错易混知识点梳理

高考数学中易忘易错易混知识点梳理高考数学中易忘易错易混知识点梳理1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的`反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。

若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a。

高考数学易错、易混、易忘问题

高考数学易错、易混、易忘问题

高中数学易错、易混、易忘问题备忘录1.在应用条件A∪B=BA∩B=AAB时,易忽视A是空集Φ 的状况.2.求解与函数相关的问题易忽视定义域优先的原则.3.判断函数奇偶性时,易忽视查验函数定义域能否对于原点对称.4.解对数不等式时,易忽视真数大于0、底数大于0且不等于1这一条件.5.用鉴别式法求最值(或值域)时,易忽视其使用的条件,考证“三点”能否建立.6.用鉴别式判断方程解的个数(或交点的个数)时,易忽视议论二次项的系数能否为0.特别是直线与圆锥曲线订交时更易忽视.7.用均值定理求最值(或值域)时,易忽视考证“一正二定三等四同” 这一条件.8.用换元法解题时,易忽视换元前后的等价性.9.求反函数时,易忽视求反函数的定义域.10.求函数单一性时,易错误地在多个单一区间之间增添符号“∪”和“或” ;单一区间不可以用会合或不等式表示.11.用等比数列乞降公式乞降时,易忽视公比q=1的状况.12.已知求时,易忽视n=1的状况.13.用直线的点斜式、斜截式设直线的方程时,易忽视斜率不存在的状况.14.用到角公式时,易将直线l1、l2的斜率k1、k2的次序弄颠倒.15.在做应用题时 , 运算后的单位要弄准,不要忘了“答”及变量的取值范围;在填写填空题中的应用题的答案时 , 不要忘了单位.16.在分类议论时 , 分类要做到“ 不重不漏、有条有理敚崾笠淄?/FONT>进行总结.17.在解答题中,假如要应用教材中没有的重要结论,那么在解题过程中要给出简单的证明.会合或区间表示;18.在求不等式的解集、定义域及值域时,其结果必定要用不可以用不等式表示.19.两个不等式相乘时 , 一定注意同向同正时才能相乘 , 即同向同正可乘;同时要注意“ 同号可倒”即a>b>o,a<b<o.20.分组问题要注意划分是均匀分组仍是非均匀分组,均匀分红 n 组问题易忘除以 n!.同时还要注意划分是定向分组仍是非定向分组;分派问题也注意划分是均匀分派仍是非均匀分派,同时还要注意划分是定向分派仍是非定向分派.21.已知△ ABC中的两个角 A、B 的正余弦值,求第三个角 C的正余弦值,易忘第三个角 C 有解的充要条件是 cosA+cosB>0.22.假如直线与双曲线的渐近线平行时 , 直线与双曲线订交 , 只有一个交点;假如直线与抛物线的轴平行时, 直线与抛物线订交, 只有一个交点.此时两个方程联立,消元后为一次方程.23.求两条异面直线所成的角、直线与平面所成的角和二面角时,假如所求的角为 90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法.24.二项式 ( a+b ) n睁开式的通项公式中a与b的次序不变.25.使用正弦定理时易忘比值还等于2R.26.恒建立问题不要忘了主参换位以及考证等号能否建立.27.概率问题要注意变量能否听从二项散布.进而使用二项散布的希望和方差公式求希望和方差.28.根的散布问题的结论建立的前提结论是开区间,易忘对区间端点的独自议论.29.线面平行的判断定理和性质定理在应用时都是三个条件,但这三个条件易混作一谈;面面平行的判断定理易把条件错误地记为"一个平面内的两条订交直线与另一个平面内的两条订交直线分别平行"而致使证明过程跨步太大.30.函数的图象的平移、方程的平移以及点的平移公式易混:(1)函数的图象的平移为“ 左 +右 -, 上+下- ”;如函数 y= 2x+4 的图象左移 2个单位且下移 3 个单位获得的图象的分析式为 y=2(x+2)+4- 3.即 y=2x+5.(2)方程表示的图形的平移为“ 左+右-, 上 - 下 +”;如直线 2x-y+4=0 左移 2 个单位且下移 3 个单位获得的图象的分析式为 2(x +2)-(y + 3)+4=0.即 y=2x+5.(3)点的平移公式:点P(x,y)按向量=(h ,k) 平移到点 P/ (x /, y/ ) ,则 x/=x+ h ,y/=y+ k .31.椭圆、双曲线a、b、c之间的关系易记混.对于椭圆应是a2-b2=c2,对于双曲线应是a2+b2=c2.32.“属于关系” 与“包括关系” 的符号易用混,元素与会合的关系用 ?/FONT>∈敚嫌爰系墓叵涤? ?/FONT>敚纾海 ?/FONT>∈A,AB.33.“点A在直线a上”与“直线a在平面α上”的符号易用混,点A与直线a之间应用 ?/FONT>∈敚毕撸嵊肫矫姒林溆τ谩?IMG SRC="Image9.gif"WIDTH=13HEIGHT=16>”.如:A∈a,aα,ABα.34.椭圆和双曲线的焦点在x轴上与焦点在y轴上的焦半径公式易记混;椭圆和双曲线的焦半径公式易记混.它们都能够用其第二定义推导.图P 焦点在 x 轴上焦点在 y 轴上P形左焦点 F1右焦点 F2下焦点 F1上焦点 F2P在椭|PF|椭1| PF| =a-ex0圆=a+ex0圆上P在双|PF1|曲右|PF2|=ex0- a=ex0 +a线支上P在椭圆上P在上支上|PF1|=a+ey0| PF2| =a-ey 0|PF1|=ey0+a | PF2| =ey0-aP在左| PF1|=-(ex 0+a)|PF2|P在下|PF|PF2|支上=-(ex 0-a)1=-(ey0+a)=-(ey 0 -a)支上35.两个向量平行与与两条直线平行易混 , 两个向量平行 ( 也称向量共线 ) 包括两个向量重合 , 两条直线平行不包括两条直线重合.36 . 各样角的范围 : 37.二项式睁开式的通项公式、 n 次独立重复试验中事件A 发生 k 次的概率与二项散布的散布列三者易记混.(它是第r+1项而不是通项公式:第r项).事件 A 发生 k 次的概率:.散布列:此中k= 0,1,2,3,⋯,n,且0<p<1,p+q=1.38.二项式系数与睁开式某一项的系数易混,第r+1项的二项式系数为,第r+1项的系数为.39.几何均匀数与等比中项易混. 正数 a、 b 的等比中项为;正数 a、b 的几何均匀数为.40.正态整体 N(μ,σ2) 的概率密度函数与标准正态整体 N(0,1) 的概率密度函数为;.41.以下两个极限的条件易记混:建立的条件为;建立的条件为.42.以下两个对称问题易混:对于函数y=f(x) ,假如 f(x+a)=f(b-x),则函数y=f(x)对于直线对称;对于函数y=f(x),假如f(x+a)=f(b-x),则函数y=f(x+a)与y=f(b-x)对于直线对称.43.二项式系数最大项与睁开式中系数最大项易混.二项式系数最大项为中间一项或两项;睁开式中系数最大项的求法为用解不等式组来确立r44.点 P 在椭圆 ( 或双曲线 )上,椭圆中△ PF1F 2的面积 b 2 tan与双122cot易混( 此中曲线中△ PFF的面积 b点 F1\F2是焦点 ).45.等差数列{} 中的最大项求法易混.①若有最大值,此时可解不等式组来确立n;②若有最小值,此时可解不等式组来确立n.46.已知数列 {} 为等差数列,则以下公式易混 .①当n为奇数时,( 项数与中间项的积),(中间项),;②当n为偶数时,,,.47.经纬度定义易混 .经度为二面角,纬度为线面角.48.弧长公式与扇形公式易混.①若用弧度制作单位 , 则弧长公式为,扇形公式为( 0<α≤π ) .②若用角度制作单位 , 则弧长公式为,扇形公式为( 0°< n≤360° ) .49 . 截距与距离易混 . 截距能够为正数 , 能够为负数 , 也能够为 0;而距离只好为正数.50 . 假如两个复数不全部是实数 , 那么就不可以比较大小 . 假如两个复数能比较大小 , 那么这两个复数全部是实数 .角范围两条异面直线所成的角0°<α≤ 90°直线与平面所成的角0?≤α≤ 90°斜线与平面所成的角0°<α< 90 °二面角0°≤α≤ 180°两条订交直线所成的角 ( 夹角 )0°<α≤ 90°l 1到 l 2的角0°<α< 180 °倾斜角0°≤α < 180 °两个向量的夹角0°≤α≤ 180°锐角0°<α< 90 °0°~ 90°的角0°≤α < 90 °小于 90°的角α< 90 °( 含零角和负角 )第一象限的角K·360°<α< K·360°+90°。

高考数学易忘、易错、易混知识点整理

高考数学易忘、易错、易混知识点整理

高考数学易忘、易错、易混知识点整理高中数学知识点有专门多差不多上比较容易混淆的,专门多考生的分数大多也丢在这些地点,为了大伙儿以后取得更优异的成绩,小编专门为大伙儿整理高考中易忘、易错、易混的知识点供大伙儿参考。

1.进行集合的交、并、补运算时,不要忘了全集和空集的专门情形,不要不记得了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情形3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判定充分与必要条件?5.你明白“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判定函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地把握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范畴(恒成立问题).这几种差不多应用你把握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用把握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范畴。

17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。

若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a&gt;b&gt;0,a&lt;0.24.解决一些等比数列的前项和问题,你注意到要对公比及两种情形进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

高考数学易错易混易忘题分类汇总

高考数学易错易混易忘题分类汇总

高考易错易混易忘题分类汇总例1、 设{}2|8150A x x x =-+=,{}|10B xa x =-=,若A B B = ,求实数a 组成的集合的子集个数?例2、已知()22214y x ++=,求22x y +的取值范围。

例3、 ()2112x xa f x ⋅-=+是R 上的奇函数,(1)求a 的值(2)求的反函数()1f x -。

例4、已知函数()121x f x x-=+,函数()y g x =的图像与()11y f x -=-的图象关于直线y x =对称,则()y g x =的解析式为()A 、()32x g x x -=B 、()21x g x x -=+C 、()12xg x x-=+ D 、()32g x x =+例5、 判断函数()2lg 1()22x f x x -=--的奇偶性。

例6、函数()2221211l o g 22x x f x x x -+⎛⎫=<-> ⎪⎝⎭或的反函数为()1f x -,证明()1f x -是奇函数且在定义域上是增函数。

例7、试判断函数()()0,0bf x a x a b x=+>>的单调性并给出证明。

例8、已知函数()3231f x a x x x =+-+上是减函数,求a 的取值范围。

例9、 已知:a>0 , b>0 , a+b=1,求(a+a1)2+(b+b1)2的最小值。

例10、是否存在实数a 使函数()2l o g a x xaf x -=在[]2,4上是增函数?若存在求出a 的值,若不存在,说明理由。

例11、已知1sin sin 3x y +=求2s in c o s y x -的最大值。

例12、数列{}n a 前n 项和s 且1111,3n n a a s +==。

(1)求234,,a a a 的值及数列{}n a 的通项公式。

例13、等差数列{}n a 的首项10a >,前n 项和s,当lm ≠时,m l s s =。

高中数学易错、易混、易忘问题集锦

高中数学易错、易混、易忘问题集锦

高中数学易错、易混、易忘集锦 1在应用条件A ∪B =B⇔A ∩B =A⇔AB时,易忽略A是空集Φ的情况 2求解与函数有关的问题易忽略定义域优先的原则 3判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称 4求反函数时,易忽略求反函数的定义域 5函数与其反函数之间的一个有用的结论:1()()f b a f a b -=⇔= 6原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数1()y f x -=也单调递增;但一个函数存在反函数,此函数不一定单调 例如:1y x = 7根据定义证明函数的单调性时,规范格式是什么?(取值, 作差, 判正负 ) 8求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示 9用均值定理求最值(或值域)时,易忽略验证“一正二定三等”这一条件 10 你知道函数(0,0)b y ax a b x=+>>的单调区间吗?(该函数在()-∞+∞和或上单调递增;在[和(0上单调递减)这可是一个应用广泛的函数!(其在第一象限的图像就象“√”,特命名为:对勾函数)11 解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论呀 12 用换元法解题时,易忽略换元前后的等价性 13 用判别式判定方程解的个数(或交点的个数)时,易忽略讨论二次项的系数是否为0尤其是直线与圆锥曲线相交时更易忽略 14等差数列中的重要性质:若m+n=p+q ,则m n p q a a a a +=+;(反之不成立)等比数列中的重要性质:若m+n=p+q,则m n p a a a a =(反之不成立) 15 用等比数列求和公式求和时,易忽略公比q=1的情况 16已知n S 求n a 时, 易忽略n =1的情况17等差数列的一个性质:设n S 是数列{n a }的前n 项和, {n a }为等差数列的充要条件是:2n S an bn =+(a, b 为常数)其公差是2a18 你知道怎样的数列求和时要用“错位相减”法吗?(若n n n c a b =其中{n a }是等差数列,{n b }是等比数列,求{n c }的前n项的和) 19 你还记得裂项求和吗?(如111(1)1n n n n =-++) 20在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?21 你还记得三角化简的通性通法吗?(切割化弦、降幂公式、 异角化同角,异名化同名,高次化低次)22你还记得在弧度制下弧长公式和扇形面积公式吗?1(||,2l r S lr α==扇形) 23 在三角中,你知道1等于什么吗?2222(1sin cos sec tan αααα=+=-tan cot αα=tan sin cos 042ππ===这些统称为1的代换) 常数 “1”的种种代换有着广泛的应用 25 与实数0有区别,0 的模为数0,它不是没有方向,而是方向不定0 可以看成与任意向量平行,但与任意向量都不垂直 26 0a = ,则0a b ⋅= ,但0a b ⋅= 不能得到0a = 或b = a b ⊥ 有0a b ⋅=27 a b = 时,有a c b c ⋅=⋅ 反之a c b c ⋅=⋅ 不能推出a b = 28 一般地()()a b c a b c ⋅⋅≠⋅⋅29 在ABC ∆中,sin sin A B A B >⇔>30 使用正弦定理时易忘比值还等于2R ::sin :sin :sin a b c A B C = 31 在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示 32 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>o11a b ⇒<,a<b<o1a b ⇒>33 分式不等式的一般解题思路是什么?(移项通分、零点分段)34 解指对不等式应该注意什么问题?(指数函数与对数函数的单调性, 对数的真数大于零) 35 在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底或)讨论完之后,要写出:综上所述,原不等式的解是…… 36 常用放缩技巧:211111111(1)(1)1n n n n n n n n n -=<<=-++-- k k k k k k k k k +-=+-<<++=-+11121111 37 解析几何的主要思想:用代数的方法研究图形的性质 主要方法:坐标法 38 用直线的点斜式、斜截式设直线的方程时, 易忽略斜率不存在的情况 39 用到角公式时,易将直线12,l l 的斜率12,k k 的顺序弄颠倒40 直线的倾斜角、到的角、与的夹角的取值范围依次是[0,),(0,),(0,]2πππ41 函数的图象的平移、方程的平移以及点的平移公式易混:33sin sin()3x x x y x y x πππ→-=−−−−−−→=-沿轴向右平移① 22sin 2sin ,sin 2y y y y x y x y x →-=−−−−−→-==+沿轴向上平移②即 212sin sin 2x x x y x y x →=−−−−−−−→=沿轴缩短到原来的③ 1221sin sin 2x x x y x y x →=−−−−−−−→=沿轴伸长到原来的倍④ 2121sin 2sin ,sin 2y y y y x y x y x →=−−−−−−−→==沿轴缩短到原来的⑤即 1221sin sin ,2sin 2y y y y x y x y x →=→==沿轴伸长到原来的倍⑥即 ⑦点的平移公式:点P(x,y)按向量a =(h ,k)平移到点P / (x /,y /),则x /=x+ h ,y / =y+ k 42定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清) 43对不重合的两条直线,,有;(在解题时,讨论k后利用斜率k 和截距b ) 44 直线在坐标轴上的截距可正,可负,也可为0 45 处理直线与圆的位臵关系有两种方法:(1)点到直线的距离;(2)直线方程与圆的方程联立,判别式 一般来说,前者更简捷46 处理圆与圆的位臵关系,可用两圆的圆心距与半径之间的关系 47 在圆中,注意利用半径、半弦长、及弦心距组成的直角三角形 48 还记得圆锥曲线的两种定义吗?解有关题是否会联想到这两个定义? 49 还记得圆锥曲线方程中的a,b,c,p ,c a a c 2,,2b c ,2b a 的意义吗? 50 在利用圆锥曲线统一定义解题时,你是否注意到定义中的定比的分子分母的顺序? 51 离心率的大小与曲线的形状有何关系?(圆扁程度,张口大小)等轴双曲线的离心率是多少? 52 在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式的限制 (求交点,弦长,中点,斜率,对称,存在性问题都在下进行)53 椭圆中,注意焦点、中心、短轴端点所组成的直角三角形(a ,b ,c ) 54 (想一想在双曲线中的结论?) 55 你知道椭圆、双曲线标准方程中a ,b ,c 之间关系的差异吗? 56 如果直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,只有一个交点 此时两个方程联立,消元后为一次方程 57 经纬度定义易混 经度为二面角,纬度为线面角58求两条异面直线所成的角、直线与平面所成的角二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法59线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大60作出二面角的平面角主要方法是什么?(定义法、三垂线法、垂面法)三垂线法:一定平面,二作垂线,三作斜线,射影可见61求点到面的距离的常规方法是什么?(直接法、等体积法、换点法、向量法)62求多面体体积的常规方法是什么?(割补法、等积变换法)63两条异面直线所成的角的范围:0°<α≤90°直线与平面所成的角的范围:0o≤α≤90°二面角的平面角的取值范围:0°≤α≤180°64解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法或看为若干个恰好65解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合565(理科)二项式()n展开式的通项公式中a与b的顺序不变a b66二项式系数与展开式某一项的系数易混, 第r+1项的二项式系数为rCn67 二项式系数最大项与展开式中系数最大项易混 二项式系数最大项为中间一项或两项;展开式中系数最大项的求法为用解不等式组112r r r r T T T T +++≥⎧⎨≥⎩来确定r68 二项式展开式的通项公式、n 次独立重复试验中事件A 发生k 次的概率与二项分布的分布列三者易记混通项公式:1r n r r r n T C a b -+= (它是第r+1项而不是第r项) 事件A 发生k 次的概率:()(1)k k n n n P k Cp p -=-其中k=0,1,2,3,…,n,且0<p<1,p+q=170 常见函数的导数公式:0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -=x x )'(ln = x x a a l o g 1)'(log = x x e e =)'( a a a x x ln )'(= 2();u u v uv uv u v uv v v '''-⎛⎫'''=+= ⎪⎝⎭,(())u x f u x f u '''=⋅。

高中数学经典题汇编

高中数学经典题汇编

高中数学易错易混易忘题分类汇编“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何解决这个问题对决定学生的高考成败起着至关重要的作用。

本文结合笔者的多年高三教学经验精心挑选学生在考试中常见的66个易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、怪、难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在,另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的,助你在高考中乘风破浪,实现自已的理想报负。

【易错点1】忽视空集是任何非空集合的子集导致思维不全面。

例1、 设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =,求实数a 组成的集合的子集有多少个?【易错点分析】此题由条件A B B =易知B A ⊆,由于空集是任何非空集合的子集,但在解题中极易忽略这种特殊情况而造成求解满足条件的a 值产生漏解现象。

解析:集合A 化简得{}3,5A =,由A B B =知B A ⊆故(Ⅰ)当B φ=时,即方程10ax -=无解,此时a=0符合已知条件(Ⅱ)当B φ≠时,即方程10ax -=的解为3或5,代入得13a =或15。

综上满足条件的a 组成的集合为110,,35⎧⎫⎨⎬⎩⎭,故其子集共有328=个。

【知识点归类点拔】(1)在应用条件A ∪B =B⇔A ∩B =A⇔AB时,要树立起分类讨论的数学思想,将集合A是空集Φ的情况优先进行讨论.(2)在解答集合问题时,要注意集合的性质“确定性、无序性、互异性”特别是互异性对集合元素的限制。

有时需要进行检验求解的结果是满足集合中元素的这个性质,此外,解题过程中要注意集合语言(数学语言)和自然语言之间的转化如:(){}22,|4A x y x y =+=,()()(){}222,|34B x y x y r =-+-=,其中0r >,若A B φ=求r 的取值范围。

高中数学易错点总结

高中数学易错点总结
14.解对数函数问题时,你注意到真数与底数的限制条件了吗?
(真数大于零,底数大于零且不等于1)字母底数还需讨论
15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值, 作差, 判正负)和导数法
11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?
50.三种圆锥曲线的定义、图形、标准方程、几何性质,、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?
52.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?
七.立体几何
56.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。
57.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?
58.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见

高中数学易错、易混、易忘题分类汇编(相当齐全)

高中数学易错、易混、易忘题分类汇编(相当齐全)

,故其子集共有
23
8
个。
【知识点归类点拔】(1)在应用条件 A∪B=B A∩B=A A B时,要树立起分类讨论的数学思想,
将集合A是空集Φ的情况优先进行讨论. (2)在解答集合问题时,要注意集合的性质“确定性、无序性、互异性”特别是互异性对集合元素的限制。 有时需要进行检验求解的结果是满足集合中元素的这个性质,此外,解题过程中要注意集合语言(数学语
言)和自然语言之间的转化如: A x, y | x2 y2 4 ,
B x, y | x 32 y 42 r2 ,其中 r 0 ,若 A B 求 r 的取值范围。将集合所表达
的数学语言向自然语言进行转化就是:集合 A 表示以原点为圆心以 2 的半径的圆,集合 B 表示以(3,4) 为圆心,以 r 为半径的圆,当两圆无公共点即两圆相离或内含时,求半径 r 的取值范围。思维马上就可利 用两圆的位置关系来解答。此外如不等式的解集等也要注意集合语言的应用。
4
4
28
+
因此当 x=-1 时 x2+y2 有最小值 1,
当 x=- 8 时,x2+y2 有最大值 28
。故 x2+y2 的取值范围是[1,
28
]
3
3
3
3
【知识点归类点拔】事实上我们可以从解析几何的角度来理解条件 x 2 2 y2 1对 x、y 的限制,
4
显然方程表示以(-2,0)为中心的椭圆,则易知-3≤x≤-1, 2 y 2 。此外本题还可通过三角换元
高中数学易错、易混、易忘题分类汇编
“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何 解决这个问题对决定学生的高考成败起着至关重要的作用。本文结合笔者的多年高三教学经验精心挑选学 生在考试中常见的 66 个易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、怪、 难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在, 另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的,助你在高考中乘风 破浪,实现自已的理想报负。 【易错点 1】忽视空集是任何非空集合的子集导致思维不全面。

数学易错易混易忘题分类汇总及深度解析

数学易错易混易忘题分类汇总及深度解析
B=
{( x, y ) | ( x − 3)
2
+ ( y − 4) = r 2 , 其中 r > 0 ,若 A ∩ B = φ 求 r 的取值范围。
2
}
将集合所表达的数学语言向自然语言进行转化就是: 集合 A 表示以原 点为圆心以 2 的半径的圆,集合 B 表示以(3,4)为圆心,以 r 为半 径的圆, 当两圆无公共点即两圆相离或内含时, 求半径 r 的取值范围。 思维马上就可利用两圆的位置关系来解答。 此外如不等式的解集等也 要注意集合语言的应用。 【练 1】已知集合 A = { x | x 2 + 4 x = 0} 、 B = { x | x 2 + 2 ( a + 1) x + a 2 − 1 = 0} , 若 B ⊆ A, 则实数 a 的取值范围是 。 答案: a = 1 或 a ≤ −1 。
数。故 f −1 ( x ) 分别在 ( 0, +∞ ) 和 ( −∞, 0 ) 上分别为增函数。 【知识点归类点拔】对于反函数知识有如下重要结论: (1)定义域上 的单调函数必有反函数。 (2)奇函数的反函数也是奇函数且原函数和 反函数具有相同的单调性。 (3)定义域为非单元素的偶函数不存在反 函数。 (4)周期函数不存在反函数( 5)原函数的定义域和值域和反 函数的定义域和值域到换。即 f −1 (b) = a ⇔ f ( a) = b 。 【练 6】 ( 1) (99 全国高考题)已知 f ( x) = 的是() A、 f ( x ) 是奇函数且为增函数 为减函数 C、 f ( x ) 是偶函数且为增函数 为减函数 答案:A (2) (2005 天津卷)设 f −1 ( x ) 是函数 f ( x ) = 1 ( a x − a− x ) ( a > 1) 的反函数,则

(名师推荐)高中高考数学易错易混易忘题分类汇总及解析

(名师推荐)高中高考数学易错易混易忘题分类汇总及解析

高中高考数学易错易混易忘题分类汇总及解析“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何解决这个问题对决定学生的高考成败起着至关重要的作用。

本文结合笔者的多年高三教学经验精心挑选学生在考试中常见的66个易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、怪、难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在,另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的,助你在高考中乘风破浪,实现自已的理想报负。

【易错点1】忽视空集是任何非空集合的子集导致思维不全面。

例1、 设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =,求实数a 组成的集合的子集有多少个?【易错点分析】此题由条件A B B =易知B A ⊆,由于空集是任何非空集合的子集,但在解题中极易忽略这种特殊情况而造成求解满足条件的a 值产生漏解现象。

解析:集合A 化简得{}3,5A =,由A B B =知B A ⊆故(Ⅰ)当B φ=时,即方程10ax -=无解,此时a=0符合已知条件(Ⅱ)当Bφ≠时,即方程10ax -=的解为3或5,代入得13a =或15。

综上满足条件的a 组成的集合为110,,35⎧⎫⎨⎬⎩⎭,故其子集共有328=个。

【知识点归类点拔】(1)在应用条件A ∪B =B⇔A ∩B =A⇔AB时,要树立起分类讨论的数学思想,将集合A是空集Φ的情况优先进行讨论.(2)在解答集合问题时,要注意集合的性质“确定性、无序性、互异性”特别是互异性对集合元素的限制。

有时需要进行检验求解的结果是满足集合中元素的这个性质,此外,解题过程中要注意集合语言(数学语言)和自然语言之间的转化如:(){}22,|4A x y x y =+=,()()(){}222,|34B x y x y r =-+-=,其中0r >,若A B φ=求r 的取值范围。

高中数学易错题分类汇总及解析

高中数学易错题分类汇总及解析
当 x=-
≤1,∴-3≤x≤-1 从而 x +y =-3x -16x-12=
2
2
2
+
28 2 2 因此当 x=-1 时 x +y 有最小值 1, 3
8 28 28 2 2 2 2 时, x +y 有最大值 。 故 x +y 的取值范围是[1, ] 3 3 3
【知识点归类点拔】事实上我们可以从解析几何的角度来理解条件
f ( x) =
lg (1 − x 2 ) x−2 −2
的奇偶性。
【易错点分析】此题常犯的错误是不考虑定义域,而按如下步骤求解:
f (− x) =
lg (1 − x 2 ) x+2 −2
≠ f ( x) 从
3
而得出函数
f ( x ) 为非奇非偶函数的错误结论。
2 1 − x > 0 解析:由函数的解析式知 x 满足 即函数的定义域为 ( −1, 0 ) ∪ ( 0,1) 定义域关于原点对称, x − 2 ≠ ±2
2
+
y2 = 1 ,求 x 2 + y 2 的取值范围 4
【易错点分析】此题学生很容易只是利用消元的思路将问题转化为关于 x 的函数最值求解,但极易忽略 x、
y 满足
( x + 2)
2
y2 + = 1 这个条件中的两个变量的约束关系而造成定义域范围的扩大。 4
1
解析:由于
( x + 2) +
2
y2 y2 = 1 得(x+2)2=14 4
B时,要树立起分类讨论的数学思想,
【知识点归类点拔】 (1)在应用条件 A∪B=B ⇔ A∩B=A ⇔ A 将集合A是空集Φ的情况优先进行讨论.

高中数学易错点总结

高中数学易错点总结

高中数学易错点总结高中数学易错点总结高考数学易错、易混、易忘备忘录整理202204041.在应用条件A∪B=BA∩B=AAB时,易忽略A是空集Φ的情况2.求解与函数有关的问题易忽略定义域优先的原则3.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称4求反函数时,易忽略求反函数的定义域5函数与其反函数之间的一个有用的结论:f1(b)af(a)b6原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数yf1(某)也单调递增;但一个函数存在反函数,此函数不一定单调例如:y1某7根据定义证明函数的单调性时,规范格式是什么?(取值,作差,判正负) 8用均值定理求最值(或值域)时,易忽略验证“一正二定三等”这一条件bbb9你知道函数ya某(a0,b0)的单调区间吗?(该函数在(,]和[,)上某aa单调递增;在[bb,0)和(0,]上单调递减)这可是一个应用广泛的函数!(其在第aa一象限的图像就象“√”,特命名为:对勾函数)是奇函数,图像关于原点对称.b而函数ya某(a0,b0)的单调区间:在(,0)和(0,)上单调递增;是奇函数,某图像关于原点对称.10解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论呀11用判别式判定方程解的个数(或交点的个数)时,易忽略讨论二次项的系数是否为0尤其是直线与圆锥曲线相交时更易忽略12等差数列中的重要性质:若m+n=p+q,则amanapaq;(反之不成立)等比数列中的重要性质:若m+n=p+q,则amanapaq(反之不成立)13用等比数列求和公式求和时,易忽略公比q=1的情况14已知Sn求an时,易忽略n=1的情况15等差数列的一个性质:设Sn是数列{an}的前n项和,{an}为等差数列的充要条件是:Snan2bn(a,b为常数)其公差是2a16你知道怎样的数列求和时要用“错位相减”法吗?(若cnanbn其中{an}是等差数列,{bn}是等比数列,求{cn}的前n项的和)17你还记得裂项求和吗?(如111)n(n1)nn118在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?19你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角异角化同角,异名化同名,高次化低次)120你还记得在弧度制下弧长公式和扇形面积公式吗?(l||r,S扇形lr) 221在三角中,你知道1等于什么吗?(1sin2cos2sec2tan2tancottan4sin2cos0这些统称为1的代换)常数“1”的种种代换有着广泛的应用220与实数0有区别,0的模为数0,它不是没有方向,而是方向不定0可以看成与任意向量平行,但与任意向量都不垂直23a0,则ab0,但ab0不能得到a0或b0ab有ab024ab时,有acbc反之acbc不能推出ab25一般地a(bc)(ab)c26在ABC中,ABsinAsinB27使用正弦定理时易忘比值还等于2Ra:b:csinA:sinB:sinC28两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>o1111,a<b<oabab29分式不等式的一般解题思路是什么?(移项通分、零点分段)30解指对不等式应该注意什么问题?(指数函数与对数函数的单调性,对数的真数大于零)31在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底或)讨论完之后,要写出:综上所述,原不等式的解是常用放缩技巧:2nn1n(n1)nn(n1)n1nk1k1k1k12k1k1kk1k33解析几何的主要思想:用代数的方法研究图形的性质主要方法:坐标法34用直线的点斜式、斜截式设直线的方程时,易忽略斜率不存在的情况35直线的倾斜角、到的角、与的夹角的取值范围依次是[0,),(0,),(0,]236函数的图象的平移、方程的平移以及点的平移公式易混:①ysin某ysin(某)沿某轴向右平移33某某yy2②ysin某y2sin某,即ysin某2沿y轴向上平移23某2某③ysin某ysin2某1沿某轴缩短到原来的21④ysin某ysin某21某某2沿某轴伸长到原来的2倍1⑤ysin某2ysin某,即ysin某1沿y 轴缩短到原来的22y2y1⑥ysin某ysin某,即y2sin某2⑦点的平移公式:点P(某,y)按向量a=(h,k)平移到点P/(某/,y/),则某/=某+h,y/=1yy2沿y轴伸长到原来的2倍y+k37定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清)38对不重合的两条直线,,有;率k和截距b)39直线在坐标轴上的截距可正,可负,也可为0(在解题时,讨论k后利用斜40处理直线与圆的位置关系有两种方法:(1)点到直线的距离;(2)直线方程与圆的方程联立,判别式一般来说,前者更简捷41处理圆与圆的位置关系,可用两圆的圆心距与半径之间的关系42在圆中,注意利用半径、半弦长、及弦心距组成的直角三角形43还记得圆锥曲线的两种定义吗?解有关题是否会联想到这两个定义?ca2b2b244还记得圆锥曲线方程中的a,b,c,p,,,,的意义吗?acca45离心率的大小与曲线的形状有何关系?(圆扁程度,张口大小)等轴双曲线的离心率是多少?46在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式都在的限制(求交点,弦长,中点,斜率,对称,存在性问题下进行)47椭圆中,注意焦点、中心、短轴端点所组成的直角三角形(a,b,c)48通径是抛物线的所有焦点弦中最短的弦(想一想在双曲线中的结论?及长度的表示)49你知道椭圆、双曲线标准方程中a,b,c之间关系的差异吗?50如果直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,只有一个交点此时两个方程联立,消元后为一次方程51经纬度定义易混52求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法53线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大54作出二面角的平面角主要方法是什么?(定义法、三垂线法、垂面法)三垂线法:一定平面,二作垂线,三作斜线,射影可见55求点到面的距离的常规方法是什么?(直接法、等体积法、换点法、向量法)56求多面体体积的常规方法是什么?(割补法、等积变换法)57两条异面直线所成的角的范围:0°扩展阅读:高中数学知识易错点总结选校网高考频道专业大全历年分数线上万张大学图片大学视频院校库高中数学知识易错点梳理一、集合、简易逻辑、函数1.研究集合必须注意集合元素的特征即三性(确定,互异,无序);已知集合A={某,某y,lg某y},集合B={0,|某|,y},且A=B,则某+y=22.研究集合,首先必须弄清代表元素,才能理解集合的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学易错、易混、易忘集锦 1在应用条件A ∪B =B⇔A ∩B =A⇔AB时,易忽略A是空集Φ的情况 2求解与函数有关的问题易忽略定义域优先的原则 3判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称 4求反函数时,易忽略求反函数的定义域5函数与其反函数之间的一个有用的结论:1()()f b a f a b -=⇔= 6原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数1()y f x -=也单调递增;但一个函数存在反函数,此函数不一定单调 例如:y x = 7根据定义证明函数的单调性时,规范格式是什么?(取值, 作差, 判正负 ) 8求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示9用均值定理求最值(或值域)时,易忽略验证“一正二定三等”这一条件10 你知道函数(0,0)b y ax a b x =+>>的单调区间吗?(该函数在(,)b b a a -∞+∞和[或上单调递增;在[,0)]b b a a-和(0,上单调递减)这可是一个应用广泛的函数!(其在第一象限的图像就象“√”,特命名为:对勾函数)11 解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论呀 12 用换元法解题时,易忽略换元前后的等价性 13 用判别式判定方程解的个数(或交点的个数)时,易忽略讨论二次项的系数是否为0尤其是直线与圆锥曲线相交时更易忽略 14等差数列中的重要性质:若m+n=p+q ,则m n p q a a a a +=+;(反之不成立)等比数列中的重要性质:若m+n=p+q,则m n p a a a a =(反之不成立) 15 用等比数列求和公式求和时,易忽略公比q=1的情况 16已知n S 求n a 时, 易忽略n =1的情况17等差数列的一个性质:设n S 是数列{n a }的前n 项和, {n a }为等差数列的充要条件是:2n S an bn =+(a, b 为常数)其公差是2a18 你知道怎样的数列求和时要用“错位相减”法吗?(若n n n c a b =其中{n a }是等差数列,{n b }是等比数列,求{n c }的前n 项的和) 19 你还记得裂项求和吗?(如111(1)1n n n n =-++) 20在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?21 你还记得三角化简的通性通法吗?(切割化弦、降幂公式、 异角化同角,异名化同名,高次化低次) 22你还记得在弧度制下弧长公式和扇形面积公式吗?1(||,2l r S lr α==扇形) 23 在三角中,你知道1等于什么吗?2222(1sin cos sec tan αααα=+=-tan cot αα=tan sin cos042ππ===这些统称为1的代换) 常数 “1”的种种代换有着广泛的应用 25r 与实数0有区别,0r 的模为数0,它不是没有方向,而是方向不定0r 可以看成与任意向量平行,但与任意向量都不垂直 26 0a =r r ,则0a b ⋅=r r ,但0a b ⋅=r r 不能得到0a =r r 或b =r r a b ⊥r r Q 有0a b ⋅=r r27 a b =r r 时,有a c b c ⋅=⋅r r r r 反之a c b c ⋅=⋅r r r r 不能推出a b =r r 28 一般地()()a b c a b c ⋅⋅≠⋅⋅r r r r r r29 在ABC ∆中,sin sin A B A B >⇔>30 使用正弦定理时易忘比值还等于2R ::sin :sin :sin a b c A B C = 31 在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示 32 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>o11a b ⇒<,a<b<o1a b ⇒>33 分式不等式的一般解题思路是什么?(移项通分、零点分段) 34 解指对不等式应该注意什么问题?(指数函数与对数函数的单调性, 对数的真数大于零 ) 35 在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底或)讨论完之后,要写出:综上所述,原不等式的解是……36 常用放缩技巧:211111111(1)(1)1n n n n n n n n n-=<<=-++-- k k k k k k k k k +-=+-<<++=-+1112111137 解析几何的主要思想:用代数的方法研究图形的性质 主要方法:坐标法38 用直线的点斜式、斜截式设直线的方程时, 易忽略斜率不存在的情况39 用到角公式时,易将直线12,l l 的斜率12,k k 的顺序弄颠倒40 直线的倾斜角、到的角、与的夹角的取值范围依次是[0,),(0,),(0,2πππ41 函数的图象的平移、方程的平移以及点的平移公式易混: 33sin sin()3x x x y x y x πππ→-=−−−−−−→=-沿轴向右平移① 22sin 2sin ,sin 2y y y y x y x y x →-=−−−−−→-==+沿轴向上平移②即 212sin sin 2x x x y x y x →=−−−−−−−→=沿轴缩短到原来的③ 1221sin sin 2x x x y x y x →=−−−−−−−→=沿轴伸长到原来的倍④ 2121sin 2sin ,sin 2y y y y x y x y x →=−−−−−−−→==沿轴缩短到原来的⑤即 1221sin sin ,2sin 2y y y y x y x y x →=−−−−−−−→==沿轴伸长到原来的倍⑥即 ⑦点的平移公式:点P(x,y)按向量a r =(h ,k)平移到点P / (x /,y /),则x /=x+ h ,y / =y+ k42 定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清)43 对不重合的两条直线,,有;(在解题时,讨论k后利用斜率k 和截距b )44 直线在坐标轴上的截距可正,可负,也可为0 45 处理直线与圆的位置关系有两种方法:(1)点到直线的距离;(2)直线方程与圆的方程联立,判别式 一般来说,前者更简捷46 处理圆与圆的位置关系,可用两圆的圆心距与半径之间的关系47 在圆中,注意利用半径、半弦长、及弦心距组成的直角三角形48 还记得圆锥曲线的两种定义吗?解有关题是否会联想到这两个定义?49 还记得圆锥曲线方程中的a,b,c,p ,c a a c 2,,2b c ,2b a 的意义吗?50 在利用圆锥曲线统一定义解题时,你是否注意到定义中的定比的分子分母的顺序?51 离心率的大小与曲线的形状有何关系?(圆扁程度,张口大小)等轴双曲线的离心率是多少?52 在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式的限制 (求交点,弦长,中点,斜率,对称,存在性问题都在下进行)53 椭圆中,注意焦点、中心、短轴端点所组成的直角三角形(a ,b ,c )54 通径是抛物线的所有焦点弦中最短的弦 (想一想在双曲线中的结论?)55 你知道椭圆、双曲线标准方程中a ,b ,c 之间关系的差异吗?56如果直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,只有一个交点此时两个方程联立,消元后为一次方程57经纬度定义易混经度为二面角,纬度为线面角58求两条异面直线所成的角、直线与平面所成的角二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法59线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大60作出二面角的平面角主要方法是什么?(定义法、三垂线法、垂面法)三垂线法:一定平面,二作垂线,三作斜线,射影可见61求点到面的距离的常规方法是什么?(直接法、等体积法、换点法、向量法)62求多面体体积的常规方法是什么?(割补法、等积变换法)63两条异面直线所成的角的范围:0°<α≤90°直线与平面所成的角的范围:0o≤α≤90°二面角的平面角的取值范围:0°≤α≤180°64解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法或看为若干个恰好 65 解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合565(理科)二项式()n a b +展开式的通项公式中a与b的顺序不变 66二项式系数与展开式某一项的系数易混, 第r+1项的二项式系数为r n C67 二项式系数最大项与展开式中系数最大项易混 二项式系数最大项为中间一项或两项;展开式中系数最大项的求法为用解不等式组112r r r r T T T T +++≥⎧⎨≥⎩来确定r68 二项式展开式的通项公式、n 次独立重复试验中事件A 发生k 次的概率与二项分布的分布列三者易记混通项公式:1r n r r r n T C a b -+= (它是第r+1项而不是第r项) 事件A 发生k 次的概率:()(1)k k n k n n P k C p p -=-其中k=0,1,2,3,…,n,且0<p<1,p+q=170 常见函数的导数公式:0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;xx sin )'(cos -= x x )'(ln = x x a a log 1)'(log = x x e e =)'( a a a x x ln )'(=2();u u v uv uv u v uv v v '''-⎛⎫'''=+= ⎪⎝⎭,(())u x f u x f u '''=⋅。

相关文档
最新文档