数学专业外文翻译---幂级数的展开及其应用
mathematica技术在幂级数展开中的应用
mathematica技术在幂级数展开中的应用Mathematica是一款专业的数学软件,为科学研究者提供了广泛的应用场景。
在幂级数展开中,Mathematica以其优越的技术特征,为科学家和研究者提供了更多的便利和方便。
幂级数展开是数学中常用的一种展开方法,是由一个函数的无穷多次幂展开的术语,是用于计算函数的表达式的一种压缩形式,避免了多次重复运算。
幂级数是分析学中重要的概念,它可以帮助求解任何数量级的复杂问题。
使用Mathematica可以让科学家和研究人员更快捷地计算各种函数的幂级数展开。
Mathematica拥有丰富的算法仓库,可支持高精度运算。
它可以准确计算各种函数的展开结果,省去了复杂的算法步骤。
Mathematica 中有各种专用工具,可以快速求解多元函数的表达式。
例如,使用Sum指令可以快速的求解复杂的积分,而Series指令可以快速的求解函数的无穷展开结果,以及指定展开项的结果。
另外,Mathematica 拥有丰富的函数优化方法,可以让科学家更快捷地求解多项式函数的幂级数展开,而不必依赖抽象数学概念,大大简化了研究过程。
Mathematica拥有完善的数据结构,可以快速处理各类数据格式,支持各种类型和维度的数据处理,比如表、图、矩阵、向量等等。
使用Mathematica,科学家和研究者可以更快更准确地求解各种函数的展开结果,同时还可以方便地观察结果,便于科研推理。
此外,Mathematica还有一个高效的可视化工具,可以帮助科学家和研究者以图形的形式清晰地展示各种数据,以图示的形式展示函数的展开结果,从而更好地推理出结果。
总之,Mathematica拥有优良的技术特征,可以为科学家和研究者提供便利,能够帮助他们快速求解复杂的函数的幂级数展开,更容易推理和观察结果,是一款非常有用的数学软件。
mathematica技术在幂级数展开中的应用
mathematica技术在幂级数展开中的应用近些年来,由于进步幅度加快,计算机技术及其应用得到了前所未有的发展,它使人们能够识别数学工作中复杂、多变的模型,开展更复杂、更丰富的数学研究,从而创新计算机行业。
Mathematica,一款多义的数学软件,用有系统的模式来描述、分析数学模型,并且可以借助计算机快速计算。
在数学中,Mathematica应用较多的一个技术就是“幂级数展开”。
幂级数展开是识别函数及其参数的功能,它是在计算机中计算函数近似值和精确值的关键步骤,有助于解决像求根、积分等数学问题和编写程序,并且在许多领域都有应用,如电子计算机设计、物理建模等。
Mathematica技术利用计算机的运算精度及内存容量,利用其提供的工具箱来求解幂级数,从而为数学研究工作提供了一种新的方法。
使用Mathematica技术来求解幂级数的优势在于,Mathematica技术提供的工具可以把非常复杂的函数展开成非常简单的表达式,而不需要耗费大量的时间,而且这种表达式能够有效反映出函数的特性。
其次,Mathematica技术提供的工具可以实现自动展开,而不需要人工进行循环或者判断,大大降低了人工的工作量。
最后,Mathematica 技术还提供了用于绘制函数图像的工具,将函数的数学表达与图形表达结合起来,使得函数展开结果更清晰、更直观,便于深入理解函数的内在本质。
因此,Mathematica技术在幂级数展开中的应用及其对数学研究的影响已经成为研究者及工程师们关注的热点问题。
比如,研究人员可以设计一些具体的数学模型,利用Mathematica技术,来展开这些模型,最终获得更为精确的结果;工程师则可以利用Mathematica技术应用于电子计算机设计,并实现自动化设计流程,从而大大提升工作效率。
从以上可以看出,Mathematica技术在幂级数展开中的应用既可以帮助人们更好地理解数学模型,又能够有效提升工作效率,因此,在数学和工程领域都有很大的应用价值。
复数域内的函数幂级数展开及其应用【文献综述】
毕业论文文献综述数学与应用数学复数域内的函数幂级数展开及其应用一、前言部分早在14世纪,印度数学家马德哈瓦提出了有关函数展开成无穷级数的概念。
众多数学家,如格高利,泰勒、欧拉、高斯等均对级数理论做了重要贡献。
级数理论一经产生就不断在函数逼近论、微分方程、复变函数等理论中显现了突出的应用价值。
自18世纪初至19世纪末,幂级数展开问题成为中国数学的一个非常活跃的研究领域。
的无穷级数表达式,即圆径求周公式,是牛顿(Isaac Newton,1642-1727)1667年发现的。
正弦和正矢的幂级数展开式,即弧背求正弦和弧背求正矢公式是英国数学家格雷戈里(J.Gregory,1638-1675)发现的。
法国传教士杜德美(P.Jartoux,1668-1720)1701年来华,把这三个公式介绍给中国学者。
著名数学家梅文鼎之孙梅珏成(1681-1763)将其收入《梅氏丛书辑要》的附录《赤水遗珍》,并分别称为“求周径密率捷法”和“求弦矢捷法”,这三个公式也被称为杜氏三术[1]。
其后明安图(1692-1764)经过30余年的不懈努力,他融会贯通了中国传统数学知识与刚刚传入的西方数学知识,圆满地证明了前三个公式,同时还得到另外六个公式,即为《割圆密率捷法》中的九个公式:“圆径求周、弧背求正弦、弧背求正矢、弧背求通弦、弧背求矢、通弦求弧背、正弦求弧背、正矢求弧背、矢求弧背”。
由陈际新于1744年整理成书并于1839年出版。
牛顿在1666年通过无穷级数逐项积分的方法推导出arcsin z的幂级数展开式,而在1669年又用级数回求法给出这一公式。
日本数学家建部贤弘(Katahiro Takebe),在1722年采用与明安图不同的分析方法得到了同一公式。
1737年,欧拉(L.Euler,1707-1783)在给伯努利(J.Bernoulli,1667-1748)的一封信中提出关于反正矢平方的幂级数展开式,但直到1817年这一公式才公开发表。
幂级数的应用
二、 幂级数展开式在近似计算上的应用
(4)根据精确度的要求,适当选定n,按 计算A的近似值.这里,A与Pn(t1)相差余项
|rn+1|称为用Pn(t1)表示A的截断误差.在计算A的值时, 还有因四舍五入而产生的舍入误差.因此,求A的近似值时, 应使这两种误差之和满足精确度的要求.
二、 幂级数展开式在近似计算上的应用
这两个公式也称为欧拉公式.
二、 幂级数展开式在近似计算上的应用
如果函数f(x)有展开式
则在区间(x0-R,x0+R)上,有 f(x)≈Pn(x)=a0+a1(x-x0)+…+an(x-xo)n. 求得多项式Pn(x)的函数值,即为f(x)函数值的近似值. 我们可以采取下列步骤来计算某数A的近似值:
【例45】
二、 幂级数展开式在近似计算上的应用
【例46】
谢谢聆听
幂级数的应用
一、 欧拉公式
之前我们讨论过级数
当x为任何实数时,级数的和函数为ex,即收敛域为 ∞<x<+∞.那么当x为复
i=-1 .
一、 欧拉公式
一、 欧拉公式
因此有 eyi=cos y+isin y
这就是欧拉(Euler)公式. 同理可得
e-yi=cosy-isin y. 将两式分别相加,相减可推出
微积分中的幂级数展开
微积分中的幂级数展开幂级数展开是微积分中的重要概念之一,它是将一个函数表示成一系列幂函数的和的形式,是微积分中对函数进行近似和研究的基础。
本文将从幂级数的基本概念和定义开始,进一步探讨幂级数展开的应用和实际意义。
一、\hspace{0.5em}幂级数的基本概念和定义幂级数是指由函数$f(x)$的幂次组成的无穷级数:$$f(x)=\sum_{n=0}^{\infty}a_nx^n=a_0+a_1x+a_2x^2+...+a_nx^n +...$$其中$a_n$称为幂级数$f(x)$的系数,也就是说,幂级数展开的核心就在于求解幂级数的系数。
对于幂级数的收敛性,我们需要使用柯西收敛原理。
具体地,如果序列$\{a_n\}$满足:$$\limsup\sqrt[n]{|a_n|}<1$$则幂级数的收敛半径为$R=\dfrac{1}{\limsup\sqrt[n]{|a_n|}}$。
幂级数在其收敛半径内的收敛性由黑格尔定理(或阿贝尔定理)给出:如果幂级数$f(x)$的收敛半径$R>0$,那么$f(x)$在$(-R,R)$内一致收敛;如果幂级数$f(x)$在某个点$x_0\neq 0$处发散,那么幂级数在所有点$x$处均发散。
二、\hspace{0.5em}幂级数展开的应用幂级数展开在数学中有着广泛的应用,下面将介绍一些具体的例子。
1.泰勒级数泰勒级数是指将一个函数$f(x)$在某一点$x=a$处展开的幂级数:$$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^n$$其中$f^{(n)}(a)$表示$f(x)$在点$x=a$处的$n$阶导数。
泰勒级数可以用于求解函数的近似值,以及函数的性质和应用。
例如,我们可以通过泰勒级数在$x=0$处展开$\sin x$和$\cos x$,得到:$$\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...$$$$\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+...$$2.幂级数解微分方程通过对微分方程进行幂级数变换,我们可以得到幂级数解,并且可以在一定程度上揭示微分方程的一些性质和规律。
高等数学第五节 函数幂级数展开-PPT文档资料
f ( 0 ) 2 S (x )f( 0 )f ( 0 )x x n 1 2 ! ) f(n ( 0 ) n x. n !
那么, 级数 ③ 收敛于函数 f(x) 的条件为
lim S ( x ) f ( x ) . n 1
n
注意到麦克劳林公式 ② 与麦克劳林级数 ③ 的关为泰勒公式 .
如果令 x 0 , 就得到 0
f (0 ) 2 f (n)(0 ) n f (x ) f (0 ) f (0 )x x x 2 ! n ! r ). n(x ②
( n 1 ) f ( x )n 1 r ( x ) x ( 0 θ 1 ) . n ( n 1 )!
( 0 ) 1 , , ( 0 ) 0 ,f f( 0 )0, f( 0 ) 1 , f
n 1 ) n ( 0 ) ( 1 ) . f(2n)( 0 )0, f(2
于是可以得到幂级数
2 n 1 1 3 15 x n x x x ( 1 ) , 3 ! 5 ! ( 2 n 1 )!
称为泰勒级数 .
二、 直接展开法
利用麦克劳林公式将函数 f(x 展开成幂级数
的方法,称为直接展开法 .
例1 试将函数 f(x) = ex 展开成 x 的幂级数.
( n ) x 解 由 f ( x ) e( n 1 , 2 , 3 , ) , 可以
得到
( n ) f ( 0 ) f ( 0 ) f ( 0 ) f ( 0 ) 1 .
( θ x ) e n 1 r ( x ) x ( 0 θ 1 ) , n ( n 1 )!
且 x≤
x θx x x , 所以 e e , 因而有
《高等数学Ⅱ》课件-第7章幂级数的展开式及其应用
(3)求出 x S(t)dt 的幂级数形式,并求其收敛域. 0
解:(1)显 然 该 幂 级 数 的 收 敛 域为 ( 1,1] ;
(2)S'(x)
n1
(1)n1 n
xn
n1
(1)n1 n
xn
(1)n1 xn1, 收敛域为( 1,1);
n1
(3)
x
S(t)dt
0
x 0 n1
bn1 2 bn
an 2 an1
32
5
2
5
3
©
三、幂级数的性质
1. 代数运算性质
设 an xn和 bn xn 的收敛半径各为R1和R2 ,
n0
n0
R minR1, R2
(1) 加减法
an xn bn xn
n0
n0
x (R, R)
©
(2) 乘法 (类似于多形式的乘法)
令余项 则在收敛域上有
例如, 等比级数 它的收敛域是
有和函数
它的发散域是 ( , 1 ] 及 [1, ), 或写作 x 1.
又如, 级数
所以级数的收敛域仅为
级数发散 ;
幂级数
s( x) u1( x) u2( x) un( x) 定义域
s(x) 的定义域就是 级数的收敛域.
(函余数项,1)项一rn级般((1x数,考)的虑)s部函,(但x分数)只和1有s1ns(在nxx(时)xD),,它ln(i的m1定,s1n)义上( x域,)它是才s(是x)
x
S(t) dt
0
an
n0
x 0
tn
dt
an n0n 1
x n 1 ,
x (R, R )
数学专业外文翻译---幂级数的展开及其应用
数学专业外文翻译---幂级数的展开及其应用In the us n。
we XXX its convergence n。
a power series always converges to a n。
We can use simple power series。
as well as XXX quadrature methods。
to find this n。
However。
this n will address another issue: can an arbitrary n f(x) be expanded into a power series?XXX n will address this XXX power series can be seen as an n of reality。
so we can start to solve the problem of expanding a n f(x) into a power series by considering f(x) and polynomials。
To do this。
we will introduce the following formula without proof:Taylor'XXX that if a n f(x) has derivatives of order n+1 in a neighborhood of x=x0.then we can use the following XXX:f(x)=f(x0)+f'(x0)(x-x0)+f''(x0)(x-x0)^2+。
+f^(n)(x0)(x-x0)^n+r_n(x)Here。
r_n(x) represents the remainder term.XXX (x) is given by (x-x)n+1.This formula is of the (9-5-1) type for the Taylor series。
外文翻译---幂级数的展开及其应用
Power Series Expansion and Its Applications幂级数的展开及其应用Maclaurin (Maclaurin) formulaPolynomial power series can be seen as an extension of reality, so consider the function ()f x can expand into power series, you can from the function ()f x and polynomials start to solve this problem. To this end, to give here without proof the following formula.马克劳林(Maclaurin)公式幂级数实际上可以视为多项式的延伸,因此在考虑函数()f x 能否展开成幂级数时,可以从函数()f x 与多项式的关系入手来解决这个问题.为此,这里不加证明地给出如下的公式.Taylor (Taylor) formula, if the function ()f x at 0x x = in a neighborhood that until the derivative of order 1n +, then in the neighborhood of the following formula :20000()()()()()()n n f x f x x x x x x x r x =+-+-++-+… (9-5-1)Among 10()()n n r x x x +=-That ()n r x for the Lagrangian remainder. That (9-5-1)-type formula for the Taylor.泰勒(Taylor)公式 如果函数()f x 在0x x =的某一邻域内,有直到1n +阶的导数,则在这个邻域内有如下公式: ()20000000()()()()()()()()()2!!n n n f x f x f x f x f x x x x x x x r x n '''=+-+-++-+…,(9-5-1) 其中 (1)10()()()(1)!n n n f r x x x n ξ++=-+. 称()n r x 为拉格朗日型余项.称(9-5-1)式为泰勒公式.If so 00x =, get 2()(0)()n n f x f x x x r x =+++++…, (9-5-2)At this point, (1)(1)111()()()(1)!(1)!n n n n n f f x r x x x n n ξθ+++++==++ (01θ<<). That (9-5-2) type formula for the Maclaurin.如果令00x =,就得到 2()(0)()n n f x f x x x r x =+++++…, (9-5-2)此时, (1)(1)111()()()(1)!(1)!n n n n n f f x r x x x n n ξθ+++++==++, (01θ<<).称(9-5-2)式为马克劳林公式.Formula shows that any function ()f x as long as until the 1n +derivative, n can be equal to a polynomial and a remainder.公式说明,任一函数()f x 只要有直到1n +阶导数,就可等于某个n 次多项式与一个余项的和.We call the following power series ()2(0)(0)()(0)(0)2!!n n f f f x f f x x x n '''=+++++…… (9-5-3) For the Maclaurin series.So, is it to ()f x for the Sum functions? If the order Maclaurin series (9-5-3) the first 1n +items and for 1()n S x +, which ()21(0)(0)()(0)(0)2!!n n n f f S x f f x x x n +'''=++++… 我们称下列幂级数 ()2(0)(0)()(0)(0)2!!n n f f f x f f x x x n '''=+++++…… (9-5-3) 为马克劳林级数.那么,它是否以()f x 为和函数呢?若令马克劳林级数(9-5-3)的前1n +项和为1()n S x +,即 ()21(0)(0)()(0)(0)2!!n n n f f S x f f x x x n +'''=++++…, Then, the series (9-5-3) converges to the function ()f x the conditions 1lim ()()n n s x f x +→∞=. 那么,级数(9-5-3)收敛于函数()f x 的条件为 1lim ()()n n s x f x +→∞=. Noting Maclaurin formula (9-5-2) and the Maclaurin series (9-5-3) the relationship between the known 1()()()n n f x S x r x +=+ , Thus, when ()0n r x = , There, 1()()n f x S x+= , Vice versa. That if 1l i m ()()n n s x f x +→∞=, Units must ()0n r x =.注意到马克劳林公式(9-5-2)与马克劳林级数(9-5-3)的关系,可知 1()()()n n f x S x r x +=+. 于是,当 ()0n r x =时,有1()()n f x S x +=. 反之亦然.即若1lim ()()n n s x f x +→∞=则必有()0n r x =.This indicates that the Maclaurin series (9-5-3) to ()f x and function as the Maclaurin formula (9-5-2) of the remainder term ()0n r x → (when n →∞).In this way, we get a function ()f x the power series expansion:()()0(0)(0)()(0)(0)!!n n n n n f f f x x f f x x n n ∞='==++++∑……. (9-5-4)It is the function ()f x the power series expression, if, the function of the power series expansion is unique. In fact, assuming the function f (x ) can be expressed as power series20120()n n n n n f x a x a a x a x a x ∞===+++++∑……, (9-5-5)这表明,马克劳林级数(9-5-3)以()f x 为和函数⇔马克劳林公式(9-5-2)中的余项()0n r x → (当n →∞时).这样,我们就得到了函数()f x 的幂级数展开式: ()()20(0)(0)(0)()(0)(0)!2!!n n n n n f f f f x x f f x x x n n ∞='''==+++++∑…… (9-5-4) 它就是函数()f x 的幂级数表达式,也就是说,函数的幂级数展开式是唯一的.事实上,假设函数()f x 可以表示为幂级数 20120()n n nn n f x a x a a x a x a x ∞===+++++∑……, (9-5-5)Well, according to the convergence of power series can be itemized within the nature of derivation, and then make 0x = (power series apparently converges in the 0x = point), it is easy to get()2012(0)(0)(0),(0),,,,,2!!n n n f f a f a f x a x a x n '''====……. Substituting them into (9-5-5) type, income and ()f x the Maclaurin expansion of (9-5-4) identical.那么,根据幂级数在收敛域内可逐项求导的性质,再令0x =(幂级数显然在0x =点收敛),就容易得到 ()2012(0)(0)(0),(0),,,,,2!!n n n f f a f a f x a x a x n '''====……。
函数的幂级数展开式的应用
dx
2 (1)n π n0 n!
1 2
x
2n
dx
0
2 π
n0
(1)n n! (2n
1)
1 22n
1
2
1 2
ex2
dx
π0
1 π
1
1 22
3
2
4
1 5
2!
26
1 7
3!
欲使截断误差
rn
1 π
n!(2n
1 1)
n2
比较系数得: a0 0, 6a4 2a3 1
(n 1)(n 2)an (n 2)an1 0 (n 2, n 4)
可任意取值, 因是求特解, 故取 a1 a2 0,
从而得 当n > 4 时,
a3 0,
a4
1 6
an
n
1
1an1
(n
exi y ex (cos y i sin y) ex
z x i y r cos i sin r ei
第七节 第六节
作业 (6-11)
P289 2 (2) (4) (5); 3 (1) ; 4; 6 P298 1 (1); 2(2);3(1); 4(2); P329 10 (1) ; 11(1)
r2
1 ( π )5 5! 20
1 (0.2)5 1 105
120
3
sin π π 1 ( π )3 0.157080 0.000646 20 20 3! 20
函数的幂级数展开式的应用
x6
2 9
x6
]
22 . 45
14
三、积分的近似计算
有些初等函数的原函数不能用初等函数 表示, 故其定积分就不能用牛顿--莱布尼茨 公式计算. 但如果这些函数在积分区间上能 能展开成幂级数, 则可利用幂级数逐项积分 性质来计算这些定积分.
7
函数的幂级数展开式的应用
例 计算 1 sin x dx 的近似值, 精确到104. 0x
在一般情况下泰勒公式比用拉格朗日估计误差的精度更好20sin函数的幂级数展开式的应用有些初等函数的原函数不能用初等函数故其定积分就不能用牛顿莱布尼茨但如果这些函数在积分区间上能表示公式计算
函数的幂级数展开式的应用
一、求极限
有些未定式的极限 可以用幂级数方法求出.
这种方法的优点是: 可以将极限过程中的主要、 次要成份表示得非常清楚.
x0 3! 5!
3! 6
1
函数的幂级数展开式的应用
由此例可看出: 在求极限时,为什么加、减项 的无穷小不能用其等价无穷小代换.
这里, sinx与其等价无穷小x相差高阶无穷小 1 x3 1 x5 .这个高阶无穷小不能与分子 的
3! 5!
第一项x 抵消,它在极限中是起作用的. 但如果将 sinx用x代换,则相当于将这个起作用的高阶无穷 小也略去了, 这显然是错误的.
解 被积函数 sin x 的原函数不能用初等函数表示.
x
由于x
=
0是
sin x
x
的可去间断点,
故定义
sin x lim sin x 1,这样被积函数在[0, 1]上 x x0 x0 x
连续. 展开sin x , 得 x
1sin
第六节 Taylor级数与函数的幂级数展开PPT课件
例4 把 sin z 和cos z 展开为z 的幂级数。
解: cos z eiz eiz 2
又,
eiz (iz)n , eiz (iz)n
n0 n!
n0 n!
故
cos z
1 2
(iz)n
n0
n!
(iz)n n!
+
f (z) =
f (n)(a) (z a)n
n0 n!
证明:B(a, d )表示以a为圆心,d为半径的圆,B(a, d ) D. 对z B(a, d ),取r 使得 z - a r d,显然有, f (z)在闭圆 z - a r 内解析。
现记圆周Kr { : a r},由Cauchy积分公式,
1 关于 一致收敛
=======
n0 2 i
Kr
(
f ( )
a)n1
(z
a)n d
=
n0
1
2
i
Kr
(
f ( )
a)n1
d
( z
a)n
=
f (n)(a)(z a)n
n0 n!
证毕
上式右端的级数称为f (z)在点a 的Taylor级数,或
Taylor展开式。cn
f (n) (a) 称为Taylor系数。 n!
+
f (x) =
f (n)(a) ( x a)n
n0 n!
在这种情况下,收敛域被限制在实轴部分,称为上式
的收敛区间。
注:做实函数的幂级数展开时,要分析区间端点的敛 散情况。
几个基本的展开式:
(1) e x xn 1 x x2 x3
函数的幂级数展开及应用
f '(x0 )(x x0 )
f
(n) ( x0 n!
)
(
x
x0
)n
(点处的泰勒级数展开式
若 x0 = 0 , 则上式为
f ( x) f (0) f '(0)x f (n)(0) xn
(2)
n!
(2) 称为函数 f (x) 的麦克劳林级数展开式
常用的泰勒级数展开式 ( 取 x0 = 0 ) (1) f (x) = e x 的展开式
下面考虑
(1
x)
?
1
(
1)(
n 1)xn
,
x (1,1)
n1
n!
对于任意的 x (-1 , 1)
记
S(x)
1
(
1)(
n
1)xn
,
n1
n!
S'(x)
(
1)(
n
1)
x
n1
n1
(n 1) !
(1 x)S'( x)
(
1)(
n
1)
(1
x )x n1
n1
(n 1) !
(
1)(
n
1)
x n1
x0 )n
则有
f (x) Sn(x) Rn(x)
故知:
f (x)
n0
f (n)( x0 ) ( x n!
x0 )n
lim
n
Sn
(
x)
f (x)
lim
n
Rn
(
x
)
0
定理
在点 x 处
f (x)
n0
f
(n)( x0 ) n!
函数幂级数的展开和应用
函数幂级数的展开和应用我们称形如200102000()()()()nn nn n a x x a a x x a x x a x x ∞=-=+-+-++-+∑的级数为幂级数,它是一类最简单的函数项级数.从某种意义上说,它也可以看作是多项式函数的延伸.幂级数在理论和实际上都有很多应用,特别在应用它表示函数方面,又由于函数幂级数的逐项求导和逐项可积等好的运算性质,为函数的研究和应用提供了便利的条件.1 函数幂级数展开的条件函数()f x 可以在点0x x =作幂级数展开,是指存在0x x =,使得在(r x r x +-00,)上,00()()n n n f x a x x ∞==-∑ (1) 其中()f x 是此幂级数的和函数.根据幂级数的逐项可积性,若函数()f x 能表示成幂级数()nnn a x x ∞=-∑且其收敛半径0r >,则函数()f x 在区间(,)r r -上有任意阶导数,且1'1()()n nn f x na x x -∞==-∑,'01()f x a = ,,()()00()()!,!n n n f x fx n a n ==因此自然会提出下述问题,是否每一个在区间(,)r r -上有任意阶导数的函数()f x 一定能在区间上展成形如()nnn a x x ∞=-∑的幂级数呢?回答是不一定的.例1 在),(+∞-∞上具有任意阶导数的函数21()0x e f x -⎧⎪=⎨⎪⎩ 00x x ≠=,易验证当0x ≠时,21'32()x f x e x -= , 2211''4664()x x f x e e x x--=-+ ,一般来说,有21()1()()n x n fx P e x -= (0x ≠),其中1()n P x 是关于1x的某个多项式.令21t x =,易得21201lim lim 0mx m t x t te x e-→→+∞==.由此可知21()()0001lim ()lim ()lim ()0n n x n x x x fx f x P e x-+-→→→=== ),2,1,0( =n ,又因为()f x 在0x =处连续,所以有'(0)0f =.类似逐次可推得()(0)0n f = ),3,2( =n 所以()f x 在0x =的幂级数为200002!!nx x n +⨯+++显然它在),(+∞-∞上收敛,且其和函数()0s x =. 但是,()f x 只在0x =处为零值.0x ∀≠,都有 ()()f x s x ≠.上述例子告诉我们:具有任意阶导数的函数,其幂级数(泰勒级数)并不是都收敛于函数本身.那么具备什么条件的函数()f x ,它的幂级数(泰勒级数)才能收敛于()f x 本身呢?定理1 设()f x 在点0x x =具有任意阶导数,那么()f x 在区间00(,)x r x r -+内等于它的泰勒级数的和函数的充分必要条件是:对一切满足不等式0x x r -<的x ,都有lim ()0n n R x →∞=.这里()n R x 是()f x 在0x 的泰勒公式余项.应用定理1 判别一个函数是否可以展成泰勒级数常常是不方便的,我们有如下充分条件: 定理2 设()f x 在00(,)x r x r -+内有任意阶导数,若存在0M >,使得00(,)x x r x r ∀∈-+,及 ,2,1,0=∀n , 有 ()()n n f x M ≤ (2) 则 ()000()()()!n n n f x f x x x n ∞==-∑(3) 证明 由条件(2)得,00(,)x x r x r ∀∈-+有()0()()0!!n n n nf M r x x n n ξ-≤→ ()n →∞ 即得所证. 若()f x 在0x 这一邻域内可以展开成泰勒级数,即+-++-+-+=n n x x n x f x x x f x x x f x f x f )(!)()(!2)())(()()(00)(200''00'0(4) 则(4)的右边为()f x 在0x x =处的泰勒展开式,或称幂级数展开式.在实际应用中,主要讨论函数在00x =处的展开式,这时(4)式可以写作+++++=nn x n f x f x f f x f !)0(!2)0()0()0()()(2''',称为麦克劳林级数,简称幂级数.2 函数幂级数的展开一般说来,可以将一个函数展成幂级数的方法分为直接展开法和间接展开法,下面就这两种方法做一一介绍.2.1 直接展开法这种方法也可以称其为余项估算法.设()f x 在0x x =处任意次可导,记()000()()()()!k nk n k f x R x f x x x k ==--∑()k N +∈,若()000()()()!n n n f x f x x x n ∞==-∑,只需0()x U x ∀∈,有lim ()0n n R x →∞=.当00x =时,()n R x 的各种表达式:()()n n R x x ο= (佩亚诺型余项);(1)1()()(1)!n n n f R x x n ξ++=+,ξ在0与x 之间 (拉格朗日型余项);(1)01()()()!x n n n R x x t f t dt n +=-⎰(积分型余项); (1)1()()(1)!n n n n f x R x x n θθ++=-,01θ≤≤(柯西型余项);佩亚诺型余项只是定性的描述了余项的性态不利于具体估算误差,所以我们常用其它三种余项形式.用直接展开法可得[1](5457)P -:201111!1!2!!n xnn x e x x x n n ∞===+++++∑ ,(,)x ∈-∞+∞;213210(1)11sin (1)(21)!3!(21)!n n nn n x x x x x n n ∞++=-==-++-+++∑ ,(,)x ∈-∞+∞;2220(1)11cos 1(1)(2)!2!(2)!n n nn n x x x x n n ∞=-==-++-+∑ ,(,)x ∈-∞+∞;12311(1)111ln(1)(1)23n n n nn x x x x x x n n-∞-=-+==-+-+-+∑ ,(1,1]x ∈-;2(1)(1)(1)(1)12!!nn x x x x n ααααααα---++=+++++,(1,1)x ∈-;arctan x =3521210(1)(1)213521n n n nn x x x x x n n +∞+=-=-+-+-+++∑ ,[1,1]x ∈-;211(21)!!arcsin (2)!!21n n n x x x n n +∞=-=++∑ ,[1,1]x ∈-;例2 求函数23()3247f x x x x =+-+在1x =处的幂级数展开式.解 由于'21(1)8,(1)(2821)15,x f f x x ===-+=''1(1)(842)34x f x ==-+=,'''()(1)42,,(1)0n f f ==,(3n >),从而总有 lim ()0n n R x →∞=(其中(1)1()(),(1)!n n n f R x x n ξ++=+ξ在0与x 之间),所以23233442()815(1)(1)(1)815(1)17(1)7(1)2!3!f x x x x x x x =+-+-+-=+-+-+- 例3 求2()sin f x x =的幂级数展式.解 由于'''00(0)0,(0)(sin 2)0,(0)(2cos 2)2,x x f f x f x ======='''(4)00(0)(4sin 2)0,()(8cos 2)8x x f x f x x ===-==-=-,,(21)(2)121(0)0,(0)(1)2,n n n n f f ---==- ,因此2122412282sin (1)(,)2!4!(2)!n n nx x x x n --=-++-+-∞+∞;x ∀,级数的拉格朗日余项2212()(21)!n n n R x x n +≤+,显然有lim ()0n n R x →∞=. 所以上述展式成立.2.2 间接展开法上面讨论的几个函数展开都是采用直接展开法.一般说来,求函数的各阶导数比较麻烦,尤其要检验余项是否趋向于零,往往不是一件容易的事.因此,在可能的情况下,我们总是尽可能不用直接方法,而采用间接方法把已给函数展成幂级数,所谓间接展开法指的是,利用已知的函数展开式作为出发点,把给定函数展开成幂级数.由于函数展成幂级数的唯一性,用这种方法展开的结果应与直接方法展开的结果完全一致.在实际的练习中,将初等函数展开为幂级数,要用到多种方法,现将其常用的方法归结如下: 2.2.1通过变形,利用已知的展开式例4 将下列函数展成x 的幂级数.1)241()(1)(1)(1)f x x x x =+++ 解 241()(1)(1)(1)f x x x x =+++811x x -==- 8898810(1)1n n n n x x x x x x x ∞+=-=-+-++-+∑ ,(11)x -<<.2)3()sin x x ϕ=解 2121300313(1)1(1)(3)sin sin sin 3444(21)!4(21)!n n n n n n x x x x x n n ++∞∞==--=-=-++∑∑34=2210(1)(13)(21)!nn n n x n ∞+=--+∑ , (,)x ∈-∞+∞. 例5 设0x >,求证:㏑x =2[ ++-++-++-53)11(51)11(3111x x x x x x ] 证明 令11x t x -=+即11tx t+=-,从而 121111ln ln ln(1)ln(1)(1)(1)1n n n n n n t t t x t t t n n ∞∞--==+==+--=----∑∑ 1211211111[(1)(1)][(1)(1)]()1nn n n n n n n t x n n x ∞∞----==-=---=---+∑∑ 35111112[()()]13151x x x x x x ---=++++++例6 求函数2()(1)(1)xf x x x =--的麦克劳林展式. 解 设222(1)(1)(1)(1)11(1)x x A B C x x x x x x x ==++--+-+--得111,,,442A B C =-=-=又221(1)(1)(1)n n x n x x ∞-==-=+-∑,01(1)1n n n x x ∞==-+∑,011nn x x ∞==-∑ (11x -<<) 所以20011(1)11(1)((1))()(1)(1)2222n n n nn n x n x n x x x ∞∞==+---=+-=+--∑∑,(11x -<<) 2.2.2 利用逐项积分或逐项微分法 例7 求2()xt F x e dt -=⎰的幂级数展开式.解 将2x -代替xe 展式中的x ,得+-+++-=-nn x x n x x e242!)1(!21!1112,()x -∞<<+∞.再逐项求积分就得到()F x 在(,-∞+∞)展开式2357210111(1)()1!32!53!7!21n n xt x x x x F x e dt x n n +--==-+-++++⎰ .例8 试求22()arctan2xf x x =-的幂级数展开式. 解 2''22000221()()(arctan )(1)221()2xxx t t f x f x dt dt dt t t ===+-+⎰⎰⎰ =2400(1)(1)()24nxn n t t dt ∞=+-∑⎰ (t < 2222222234500[1()()()()](1)()222222n xx nn t t t t tt dt dt ⎡⎤∞⎢⎥⎣⎦==+--++-=-∑⎰⎰2120(1)2(21)n n n n x n⎡⎤+∞⎢⎥⎣⎦==-+∑,(t <当x =2122011111(1)(1))2(21)21357911n n nnn n n n ⎡⎤⎡⎤+∞∞⎢⎥⎢⎥⎣⎦⎣⎦==-=-=+--++-++∑∑001111111(1)()()2((1)(1))3579114143n nn n n n ∞∞==⎤=+-+++-=-+-⎥++⎦∑∑可见x=x =22()arctan2xf x x=-在x =所以上面展式在⎡⎣上成立.2.2.3 利用待定系数法 例9 求2sin 12cos x x xαα-+ (1)x <的幂级数展式. 解 设2sin 12cos n n n x a x x x αα∞==-+∑,则20sin (12cos )nn n x x x a x αα∞==-+∑232323012301201(2cos )(2cos )(2cos )a a x a x a x a x a x a x a x a x ααα=++++---++++比较等式两边同次幂的系数,得0120,sin ,sin 2,,sin n a a a a n ααα====,这里用到三角恒等式sin(1)2sin cos sin(1)n n n αααα+=⋅-- (2,3,)n =,所以 原式= ++++nx n x x αααsin 2sin sin 22.2.4 利用级数的运算(加,减,乘,复合) 例10 求2()ln (1)f x x =-的幂级数展开式.解 由于10ln(1)1n n x x n +∞=-=-+∑在[1,1)-上内闭一致收敛,故[1,1)-上可用级数乘法2321111111111()()23121321n n x x f x x x n n n n ∞+=⎡⎤=----=++++⎢⎥--⎣⎦∑ =()()111111111()()(1)11nn n n n k n k k n k x x k n k n k n k ∞∞++====++-⎡⎤⎣⎦=+-++-∑∑∑∑ 111111111112111n n n n n k n k x x n n k k n k ∞∞++====⎡⎤⎛⎫⎛⎫=+= ⎪ ⎪⎢⎥++-+⎝⎭⎝⎭⎣⎦∑∑∑∑ 1111121231n n x n n +∞=⎛⎫=++++ ⎪+⎝⎭∑ 上面的展式在[1,1)-内成立.例11 求()()111x f x x e =+按x 的幂的展开式至三次项.解 ()()111x f x x e=+()()111111ln 11nn n x x x nxee∞-=--+-∑== (1)x <= +-+-43232x x x e23232323111()()()23422346234x x x x x x x x x =+-+-++-+-++-+-+)11(,167241121132<<-+-+-=x x x x 2.2.5 其它方法举例例 12 求函数()sin xf x e x =的麦克劳林级数的前四项. 解23521111111sin (1)((1))1!2!!3!5!(21)!x nnn e x x x x x x x x n n +=+++++-+++-++233441111()()3!2!3!3!x x x x x x =++-++-++ 2313x x x =+++3 幂级数的应用3.1 计算积分 例13 计算积分120ln 1xdx x -⎰ 解 11112222220000ln 1ln ln ln 111x x x x dx xdx xdx xdx x x x -+==+---⎰⎰⎰⎰ 因为10ln 1xdx =-⎰,及2221ln ln 1nn x x x x x ∞==-∑,故 原式=12101ln n n x xdx ∞=-+∑⎰. 又知级数21ln nn xx ∞=∑虽然在(0,1]上不一致收敛,但仍可在(0,1]上逐项积分①,因此原式12011ln nn x xdx ∞==-+∑⎰()()2211112121n n n n ∞∞===--=-++∑∑()()22220111111()2212n n n n n n ∞∞∞====-+++∑∑∑2222221111126248n n nnπππ∞∞===-+=-+=-∑∑ 例14 计算22cos(sin )x x d πθπ⎰解 因()()21(sin )cos sin 11(2)!k kk x x k θθ∞==+-∑ ()()221sin 112!k k kk x k θ∞==+-∑ , (,)x ∈-∞+∞故2222222001122(1)(1)cos(sin )sin 12(2)!(!)2k k k k kk k k xx x d d k k πππθθθθππ∞∞==⎡⎤--=+=+⎢⎥⎣⎦∑∑⎰⎰ 3.2 证明不等式幂级数是表达函数的重要工具,因此也可应用于证明函数不等式. 例15 证明不等式222,(,)x x x e e e x -+≤∈-∞+∞ 证明 因2022(2)!n xxn x e echx n ∞-=+==∑,222022(2)!!x nn x e n ∞==∑,而22(2)!(2)!!n n x x n n ≤,故222,xx xe e e -+≤ 例16 确定λ的值,使得22,(,)x x x e e e x λ-+≤∈-∞+∞解1)若上述不等式成立,则有222220001110()()2!2!2!2!x x n n n n n x n nn n n n n n n e e x x x x e n n n n λλλλ-∞∞∞∞====+≤-=-=-=-∑∑∑∑ 两端除以2x ,再令0x =,可得12λ≥.2)若12λ≥ ,则有22222002(2)!2!x x x n nx n n n e e x x e e n n λ-∞∞==+===≤∑∑3.3 近似计算幂级数常常用于近似计算. 例17 求下列各值的近似值: (1)e ,使误差小于0.001;解 在xe 的展开式中令1x =,得111112!3!!e n =++++++ 若取上述级数的前(1)n +项作为e 的近似值,即设111112!3!!e n ≈+++++则误差11(1)!(2)!n R n n =++++ 111[1](1)!2(2)(3)n n n n =+++++++2111111[1]1(1)!1(1)(1)!!11n n n n n nn <+++==++++-+ 所以要使0.001n R <,只要!1000n n >,可算出当6n =时就满足要求.因而可取前七位即可,即11111 2.7182!3!6!e ≈+++++= (2)6π,使误差小于0.001;解 在arcsin x 的展开式中令12x =,得3521111131(21)!!1622322452(2)!!(21)2n n n n π+⨯-≈+++++⨯⨯⨯+若取前(1)n +项作为6π的近似值,误差2325(21)!!1(23)!!1(22)!!(23)2(24)!!(25)2n n n n n R n n n n ++++=++++++2324(21)!!111(1)(22)!!(23)222n n n n ++<+++++234(21)!!13(22)!!(23)2n n n n ++=++要使0.001n R <,只要使上式右端小于0.001即可,不难算出当2n =时即满足要求,因而取前三项即可,即45111310.52362322452π⨯≈++=⨯⨯⨯ 3.4 应用幂级数性质求下列级数的和 例18()11!n nn ∞=+∑ 分析 ()11!n n n ∞=+∑是幂级数()111!n n nx n ∞+=+∑的和函数在1x =处的值.解 设()()111!n n nf x x n ∞+==+∑ ()x -∞<<+∞, 则()1110'()1!(1)!!n n nx n n n x x x f x x x xe n n n -∞∞∞=======--∑∑∑ ()x -∞<<+∞,所以0()(0)'()1xxtxxf x f f t dt te dt xe e =+==-+⎰⎰,从而()1(1)11!n nf n ∞===+∑.3.5 利用函数的幂级数展开式求下列不定式极限 例19 21lim ln 1x x x x →∞⎡⎤⎛⎫-+⎪⎢⎥⎝⎭⎣⎦解 因为23311111ln 123o x x x x x ⎛⎫⎛⎫+=-++ ⎪ ⎪⎝⎭⎝⎭,所以 原式223311111111lim lim 23232x x x x x x x x x x x x οο→∞→∞⎧⎫⎡⎤⎡⎤⎛⎫⎛⎫=--++=-+-+=⎨⎬ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦⎩⎭ 例20 3arcsin limsin x x x x→∞-解 因为()()331arcsin ,sin 6x x x o x x x o x =++=+,所以原式=()()()()()333333311166lim lim 6x x x x x o x x o x x o x x o x →∞→∞⎛⎫-++-+ ⎪⎝⎭==-++ 3.6 求幂级数的和函数例21 +++++++12531253n x x x x n 解 设2121n n x n μ+=+,因21lim n x nu x u +→∞=,故原级数的收敛半径1R =,又当1x =±时,原级数可化为0121n n ∞=⎛⎫± ⎪+⎝⎭∑发散,从而得收敛域为(1,1)-. 设()()21021n n x S x n +∞==+∑ ()()1,1x ∈-,在()1,1x ∈-内逐项求导,得()2201'1nn S x x x ∞===-∑, 故和函数()()()2011'0ln 121xxdt xS x S t dt S t x +==+=--⎰⎰ ()1,1x ∈-. 例22 求幂级数()()211nn n x n n ∞=--∑的和函数. 解 易知原级数的收敛域为[1,1]-.记()()21()1nn n F x x n n ∞=-=-∑,则()()()()()1222111'()()'()'111nnnn nn n n n F x x x x n n n n n ∞∞∞-===---===---∑∑∑,()()()()21122222111''()()'()'1111nnn n n n n n n n F x xxnxx n n x ∞∞∞∞----====--===-==--+∑∑∑∑故()001'()''()ln 11xxF x F t dt dt x t ===++⎰⎰, ()()()0()'()ln 11ln 1xxF x F t dt t dt x x x ==+=++-⎰⎰,所以()()()()211ln 11n n x x x x n n ∞=-=++--∑ ,(1,1)-.注释: ① 求证级数21ln nn xx ∞=∑虽然在(0,1]上不一致收敛,但仍可以在(0,1]上逐项积分证 1当1x =时级数通项()211ln |0nn x u x x ===.当01x <<,21nn xlnx ∞=∑为等比级数,所以和22ln ()10x x S x x⎧⎪=-⎨⎪⎩, 011x x <<= 时,可见211(10)lim ln(1(1))(1).(1)(1)2x x S x S x x -→-=--=≠+- 故 该级数非一致收敛(根据和函数连续定理).2(证明能逐项积分)因22222221ln ()ln ln ,11n kn n k n x x x R x x x x x x x +∞=+===⋅--∑其中220ln lim 1x x xx +→-及221ln lim 1x x x x -→-都有有限极限,且22ln 1x x x -在(0,1)内连续,所以22ln 1x x x -在(0,1)内有界,即0M ∃>,使得22ln ||1x xM x ≤-,故 2|()|n n R x M x ≤⋅, 11120|()||()|0().21n n n MR x dx R x dx M x dx n n ≤≤=→→∞+⎰⎰⎰ 此即表明1lim ()0.n n R x dx →∞=⎰级数可以逐项取积分.。
解析函数的幂级数展开与Laurent级数
解析函数的幂级数展开与Laurent级数函数的幂级数展开与Laurent级数是数学中重要的概念和工具,被广泛应用于各个领域的研究和应用中。
本文将对这两个概念进行解析和探讨。
首先,我们来了解一下函数的幂级数展开。
幂级数展开是将一个函数表示为一系列幂函数的和的形式。
通常,我们将函数在某个点附近进行幂级数展开。
这个点被称为展开点,通常选取函数在该点附近的某个区间内进行展开。
幂级数展开的形式可以写作:f(x) = a0 + a1(x - x0) + a2(x - x0)^2 + a3(x - x0)^3 + ...其中,a0、a1、a2等为常数系数,x0为展开点。
通过幂级数展开,我们可以将一个复杂的函数表达式简化为一系列幂函数的和,从而更方便地进行计算和分析。
接下来,我们来探讨Laurent级数。
Laurent级数是幂级数展开的一种扩展形式,适用于函数在某个点附近存在奇点或者在无穷远点处的展开。
与幂级数展开不同的是,Laurent级数包含正幂项和负幂项。
其一般形式可以写作:f(z) = ∑(n = -∞ to ∞) cn(z - z0)^n其中,cn为常数系数,z0为展开点。
Laurent级数展开的形式更加一般化,可以适用于更多的函数情况。
通过Laurent级数展开,我们可以研究和分析函数在奇点附近或者无穷远点处的性质和行为。
幂级数展开和Laurent级数在数学分析、物理学、工程学等领域中具有广泛的应用。
它们可以用于计算函数的近似值,研究函数的性质和行为,解决微分方程和积分方程等数学问题。
特别是在物理学中,幂级数展开和Laurent级数常常用于描述物理现象和建立物理模型。
例如,在量子力学中,我们经常需要求解薛定谔方程,得到粒子的波函数。
通过将波函数进行幂级数展开,我们可以得到波函数的能级和态函数形式,从而研究粒子的能谱和量子态。
在电路分析中,我们经常需要求解电路中的电流和电压。
通过将电路中的电流和电压进行幂级数展开,我们可以得到电路的频率响应和传输特性,从而分析电路的稳定性和性能。
幂级数在高等数学中的应用
高等函授学报 ( 自然科学版) Vol . 19 No . 4 Journal of Higher Correspondence Education ( Nat ural Sciences) August 2006
文章编号 :1006 - 7353 ( 2006) 04 - 0024 ( 07) - 03
理,
x
n- k
2n - 2k
n- k
=
2 ( n - k)
n- k
n
是
1 ( 1 - 4 x)
1 2
展开式
于是
an =
1
r2 - r1
的系 数 。 故
1 2
k = 0
∑k
2k
2n - 2k
n- k
n
是
1 ( 1 - 4 x) 1
r2
n+1
1
-
r1
n+1 n+1
1
1 2
= =
1
( r1 r2 )
r1
n+1
, 再由 ②知
X 1 + X 2 仍服从负二项分布 NB ( r1 + r2 , p) .
4. 定义矩阵指数函数
在常微分方程中 , 我们可利用矩阵指数函数 求得常系数齐次方程组的基解矩阵 , 从而得到它 的通解 , 而矩阵指数函数则正是通过幂级数来定 义的 。 例 6 在自变量 x 的任意有限区间上 , 易知 矩阵指数函数
m m+1 f ( z ) = cm ( z - a) + cm+1 ( z - a) + …=
因 而 X 1 + X 2 的 概 率 母 函 数 为 S ( x)
幂级数及其应用
1 . L ak +1x k +1 ak x k
(2)当 L = 0 时,对于任何 x ≠ 0 ,都有
k →∞
∞
lim
= L x = 0⋅ x = 0 < 1,
于是,幂级数 ∑ ak x 对于任何 x 都收敛.所以,其收敛半径 R = +∞ .
k =0
k
(3)当 L = +∞ 时,对于任何 x ≠ 0 ,都有
∑x
k =0
∞
k
= 1 + x + x2 + L + xn + L
(13.1.3)
它的部分和函数列为
S n ( x) = ∑ x k =
k =0
n
1 − x n +1 , n = 0,1, 2,L 1− x
容易知道,当且仅当 −1 < x < 1 时,部分和函数列 {S n ( x)} 收敛,极限值为 S ( x) =
k =0
特别令 x0 = 0 , (13.1.1)式变为
k 2 k ∑ ak x = a0 + a1 x +a2 x + L + ak x + L ∞
k =0
(13.1.2)
…,ak , …都是实常数, 称之为幂级数的系数. 通过简单的变换 x − x0 = t , 其中 a0 ,a1 ,a2 , 可以将幂级数的一般形式 (13.1.1) 化为形如 (13.1.2) 的幂级数. 因此, 下面只就形式 (13.1.2) 的幂级数进行讨论. 例 1 在(13.1.2)中,如果令所有系数都为 1,则得到下面的几何级数(等比级数)
-|b|
-R - |a|
浅析幂级数展开式的应用
浅析幂级数展开式的应用摘要:函数展成幂级数能解决许多疑难问题。
本文讨论了幂级数展开式在解决数学问题中的应用。
关键词:函数;幂级数;展开式Analyses the Application of the Power Series ExpansionsAbstract:Function generative power series can solve a lot of difficulty .This paper discussed the power series expansions of the application in solving math problems.Key words:function,power series,expansion目录0 引言 (1)1 幂级数的展开 (1)1.1 直接展开法 (1)1.2 间接展开法 (1)2 幂级数展开式的应用 (2)2.1 利用幂级数求极限 (2)2.2 幂级数在不等式证明中的应用 (2)2.3 幂级数在组合恒等式中的应用 (3)2.4 应用幂级数求高阶导数 (4)2.5 应用幂级数展开式推导欧拉公式 (5)2.6 求非初等函数的原函数 (5)2.7 利用幂级数求数项级数的和 (6)2.8 幂级数在微分方程中的应用 (7)2.9 幂级数应用于近似计算 (8)3 结束语 (11)参考文献 (11)致谢 (12)浅析幂级数展开式的应用0 引言形如2001020()()()n n n a x x a a x x a x x ∞=-=+-+-+∑⋅⋅⋅0()n n a x x +-+⋅⋅⋅的函数项级数称为幂级数,巧妙地利用函数幂级数展开式及幂级数的性质,常能将问题化难为易,简化计算.1 幂级数的展开函数展开成幂级数主要有直接展开和间接展开两种方法.1.1 直接展开法直接展开法是比较麻烦的.首先,函数()f x 的各阶导数不一定容易求得,其次,要证明余项110()()()0(1)!n n n fR x x x n ξ++=-→+ ()n →∞,即使在初等函数中也是比较困难的.1.2 间接展开法间接展开法是根据函数()f x 的幂级数展开式的唯一性,选择与待展函数有关的已知函数展开式对其进行必要的运算,一般用的方法有:(1)应用基本展开式,通过变量替换或恒等变形转化为可应用基本展式; (2)应用逐项求导或逐项积分法;(3)应用级数的用算,如加、减、乘、除等; (4)用待定系数法.这样简化计算过程,就可以避免余项极限的研究.间接展开法是最常用的将函数展成幂级数的方法.2 幂级数展开式的应用幂级数是一类简单的函数项级数,通过幂级数的展开式来表示函数常能解决许多疑难问题,它在求极限、不等式的证明、组合分析、欧拉公式的推导、近似计算等方面有很重要的作用.2.1[1] 利用幂级数求极限例1[1] 求极限201lim ln 1x x x x →⎡⎤⎛⎫-+⎪⎢⎥⎝⎭⎣⎦. 解 因为()23111111111ln 1123nn x x x x n x -⎛⎫⎛⎫⎛⎫⎛⎫+=-⋅+⋅-⋅⋅⋅+-⋅⋅+⋅⋅⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()1,2,n =⋅⋅⋅所以我们可以得到()2312211111111ln 1123nn x x x x x x x x n x -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+=--⋅+⋅-⋅⋅⋅+-⋅⋅+⋅⋅⋅ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()2111111123n n x nx --⎛⎫=-⋅+⋅⋅⋅-⋅⋅+⋅⋅⋅ ⎪⎝⎭又因为()2111lim 10n n x n x --→⎛⎫-⋅⋅= ⎪⎝⎭所以2011lim ln 12x x x x →⎡⎤⎛⎫-+= ⎪⎢⎥⎝⎭⎣⎦2.2[2] 幂级数在不等式证明中的应用例2 证明不等式222xx xe e e-+≤ (),x ∈-∞+∞. 证明 因为!n xn xe n ∞==∑()1!nnxn xen ∞-==-∑ (),x ∈-∞+∞而()2022!n x xn xe en ∞-=+=∑()222222!!xnn xen ∞==∑由于()()222!2!!nnxxn n ≤所以就可以得到222xx xe ee-+≤2.3[3] 幂级数在组合恒等式中的应用例3 证明02224nnk k n k k n k =-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭∑ ()0,1,2k n =⋅⋅⋅.证明 由于()()121211414x x -=--()0111112224!k k k k x k ≥⎛⎫⎛⎫⎛⎫---⋅⋅⋅--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-∑()0135212!kk k k xk ≥⋅⋅⋅⋅⋅⋅⋅-⎡⎤⎣⎦=∑()()135212!!!kkk k k x k k ≥⋅⋅⋅⋅⋅⋅⋅-⎡⎤⎣⎦=∑()02!!!kk k x k k ≥=∑02k k kx k ≥⎛⎫=⎪⎝⎭∑ 所以2k k ⎛⎫ ⎪⎝⎭是()12114x -展开式k x 的系数,同理可得()222n k n k n k n k -⎛-⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭是()12114x -展开式n kx -的系数 从而得到 0222nk k n k k n k =-⎛⎫⎛⎫ ⎪ ⎪-⎝⎭⎝⎭∑是()()1122111141414x x x ⋅=---展开式n x 的系数又114414nnx x x=++⋅⋅⋅+⋅⋅⋅-所以02224nn k k n k k n k =-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭∑2.4 应用幂级数求高阶导数例4 设()()2ln 2f x x x =-,求()1nf.解 由题目知()()()22ln 2ln 11f x x xx ⎡⎤=-=--⎣⎦令1t x =-,则上式就为 ()221l n 1nn ttn∞=-=-∑()11t -<≤()2111nn x n∞==--∑由此可以得到()()212!12!nn fn nn=-⋅=-()2110n f-=2.5[4] 应用幂级数展开式推导欧拉公式例5 试用幂级数展开式推导欧拉公式:sin 2ixixe e x i--=c o s2i x i xe ex -+=.解 当x 为实数时,由指数函数的幂级数展开式知!nxn xe n ∞==∑(),x ∈-∞+∞用纯虚数ix 代替变量x ,有()()()()()234511111!2!3!4!5!nixn ix e ix ix ix ix ix n ∞===++++++⋅⋅⋅∑由于i =,()41n i i +=,()421n i +=-,()43n ii +=-,()441n i+=,0,1,2,n =⋅⋅⋅从而得到243512!4!3!5!ixx x x x e i x ⎛⎫⎛⎫=-++⋅⋅⋅+-++⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭cos sin x i x=+即cos sin ixe x i x =+ ()1在()1式中以x -替换x 可得cos sin ixex i x -=- ()2由()1()2两式可得s i n 2i xi xe e x i--=c o s 2i x i xe ex -+=2.6[5] 求非初等函数的原函数例6 求连续函数2x e -的原函数()F x . 解 由积分知识我们可知2x e -的原函数为 2xted t -⎰x R ∈因为!nxn xe n ∞==∑x R ∈令2x t =-,从而得到()2201!nnt n te n ∞-=-=∑()2462112!3!!nntttt n -=-+-+⋅⋅⋅++⋅⋅⋅对幂级数在收敛区间内逐项求积分得()2xtF x edt-=⎰()3572111132!53!7!!21nn xxxxx n n +-=-+⋅-⋅+⋅⋅⋅+⋅+⋅⋅⋅+2.7 利用幂级数求数项级数的和例7 计算数项级数1112nn nn ∞=⋅+∑的和.解 首先构造一个辅助幂级数使其符合下面条件:(1) 使1112nn nn ∞=⋅+∑为幂级数当x 取特定值时的结果(2) 辅助幂级数容易求和本题取辅助级数()1nn s x x n =+,此时其收敛域为()1,1-,然后求辅助幂级数的和函数()1nn s x x n =+1111n n x n ∞=⎛⎫=- ⎪+⎝⎭∑1111nnn n x x n ∞∞===-+∑∑111111n n x x xx n ∞+==--+∑ () 0 , 1x x ≠<记 ()11111n n S x xn ∞+==+∑ () 1x < ()11'1nn x S x x x∞===-∑从而得到()100'1xx t S t dt dt t=-⎰⎰()()()110101ln 11x S x S dt x x t ⎛⎫-=-=---⎪-⎝⎭⎰所以()()l n 111x x S x xx-=++-111112ln 122nn nx S n ∞=⎛⎫⎛⎫==++ ⎪ ⎪+⎝⎭⎝⎭∑()21l n 2=-2.8[6] 幂级数在微分方程中的应用例8 求方程0y xy ''-=满足初始条件()00y =,()01y '=的特解. 解 设2012n n y a a x a x a x =+++⋅⋅⋅++⋅⋅⋅是0y xy ''-=的特解 则1122n n y a a x na x-'=++⋅⋅⋅++⋅⋅⋅()2221n n y a n n a x-''=+⋅⋅⋅+-+⋅⋅⋅由()00y =,()01y '=得00a =,11a = 将y 与y ''代入0y xy ''-=中得()()2230323210n n n a a a x n n a a x--+⋅-+⋅⋅⋅+⋅--+⋅⋅⋅=⎡⎤⎣⎦由于左边恒等于零,则各项系数必为零,即 220a = 3060a a -=⋅⋅⋅⋅⋅⋅()310n n n n a a -⋅--=由此可以得到20a =和递推公式()31n n a a n n -=-由00a =得03032a a ==⋅,进而得到69,a a ⋅⋅⋅皆为0;由20a =得25054a a ==⋅,进而得到811,a a ⋅⋅⋅皆为0;由11a =得1414343a a ==⋅⋅,471767643a a ==⋅⋅⋅⋅.故所求特解为:47437643xxy x =+++⋅⋅⋅⋅⋅⋅()x -∞<<+∞2.9[7] 幂级数应用于近似计算()1 函数值的计算例9计算的近似值,使之绝对误差不超过410-. 解 因为3==⨯由 ()()()()2111112 !!nn x x x x n ααααααα--⋅⋅⋅-++=++++⋅⋅⋅++⋅⋅⋅ (1)x <令 512 , 53x α==得255111122553 1532 !3⎡⎤⎛⎫- ⎪⎢⎥⎛⎫⎛⎫⎝⎭⎢⎥=+++⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦252512423 1532 !53⎡⎤⎛⎫⎛⎫=+-+⋅⋅⋅⎢⎥ ⎪ ⎪⨯⎝⎭⎝⎭⎢⎥⎣⎦由于5291244310.0000253253⎛⎫⎛⎫+<⋅< ⎪ ⎪⨯⎝⎭⎝⎭ 所以51231 3.004953⎛⎫⎛⎫≈+= ⎪ ⎪⎝⎭⎝⎭例10 计算arcsin 0.2 ,绝对误差不超过410-. 解 设()arcsin f x x =,则()1221'()1f x x-==-()21111112221!nnnxn∞=⎛⎫⎛⎫⎛⎫---⋅⋅⋅--+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=+-∑()1x<()()()21121!!112!nn nnnnxn∞=--=+-∑()()2121!!12!!nnnxn∞=-=+∑两边积分得()()()()()21121!!2!!2n1nnnf x f x xn∞+=--=++∑()1x<()()()21121!!arcsin2!!2n1nnnx x xn∞+=-=++∑()1x<令0.2x=得()()()()()21121!!arcsin0.20.20.22!!2k1kkkk∞+=-=++∑()()()()2122121!!0.22!!2k1knk nkrk∞++=+-=+∑()21110.22 1kk nk∞+=+<+∑()()()23240.21(0.20.2)23nn+≤+++⋅⋅⋅+()()230.20.9623nn+=+当1n=时()540.20.0000660.00010.965r≤=<⨯所以()()31a r c s i n0.20.20.20.201323≈+≈⨯()2 积分的近似值计算例11 计算210x e dx -⎰的近似值,使之绝对误差不超过410-.解 因为!nxn xe n ∞==∑() , x ∈-∞+∞所以就可以得到 ()2462211, 2!3!!n n xx x x exx R n-=-+-+⋅⋅⋅+-+⋅⋅⋅∈()()210111111 3104221!nxedx n n -=-+-+⋅⋅⋅+-+⋅⋅⋅+⎰这是一个交错级数,由于 ()4711102717!75600a -==<⨯+⨯于是有21401111111103104221613209360xed x --⎛⎫--+-+-+< ⎪⎝⎭⎰所以积分的符合精度要求的近似值为21011111113104221613209360xed x -≈-+-+-+⎰0.7468≈3 结束语幂级数展开式在有些数学计算中提供了捷径,它有许多方便的运算性质,在研究函数方面成为一个很有力的工具.参考文献[1] 王金城.浅析幂级数展开式的应用[J].科技信息.2004年24期:425~427.[2] 刘玉琏.傅沛仁编; 数学分析讲义[M]. 高等教育出版社, 1992:61.[3] 张淑辉.幂级数的应用[J]. 太原教育学院学报. 2005年S1期:95.[4] 钟玉泉.复变函数论[M].北京:高等教育出版社,2003:164~165.[5] 华东师范大学数学系.数学分析(下册)[M].北京:高等教育出版社,2001:52~60.[6] 王高雄.常微分方程[M].北京:高等教育出版社,2007:173~174.[7] 吉米多维奇.数学分析习题解(四)[M].山东:山东科技出版社,1999:637~674.致谢本文是在张老师精心指导和大力支持下完成的。
函数幂级数的展开与应用文献综述
---------------------------------------------------------------范文最新推荐------------------------------------------------------ 函数幂级数的展开与应用+文献综述摘要:函数幂级数的展开与应用能解决许多疑难问题.首先本介绍了函数幂级数的一些基本知识,如函数幂级数收敛半径的确定的、幂级数的性质等等.其次,介绍了函数能展成幂级数的条件及几种不同的方法及展开形式.最后探究函数幂级数在近似计算、计算定积分、三角级数的求和、和线性递归数列等数学问题中的应用关键词:幂级数;收敛半径;近似计算;线性递归数列11057Analyses the Application of the Power Series ExpansionsAbstract:Expand the function and application of power series can solve many difficult problems.Firstly, we introduce some basic knowledge of the power series of1 / 6unctions,such as determining the function of the radius of convergence of power series,the nature of power series, etc.Secondly, it introduces function can be developed into a power series of conditions and in several different ways, and expanded form.Finally,explore the functions iin power series approximation to calculate the definite integral,summation of trigonometric series math problems,and linear recursive sequences, such as the application.Key words:Power Series;Convergence Radius;Approximate Calculation ;Linear Recurrent Sequence目录摘要1引言2---------------------------------------------------------------范文最新推荐------------------------------------------------------ 1.准备知识31.1幂级数的基本知识31.2幂级数的性质42函数幂级数展开42.1函数幂级数的展开方法53函数幂级数的应用103.1近似计算103.2计算定积分113.3求数项级数的和12本文主要从函数幂级数基本知识着手,首先介绍函3 / 6数幂级数展开的基本知识,如函数幂级数收敛半径的确定的、幂级数的性质等等.其次,介绍了函数能展成幂级数的条件及几种不同的方法及展开形式.最后探究函数幂级数在近似计算、计算定积分、三角级数的求和、和线性递归数列等数学问题中的应用.1准备知识1.1幂级数的基本知识定义1.1.1(1)的函数项级数称为实系数幂级数。
幂级数展开的应用
幂级数展开的应用幂级数展开在数学中具有广泛的应用。
它通过将函数表示为无限项的和的形式,可以用来近似计算复杂的函数,求解微分方程,以及在其他领域中进行数值计算。
本文将介绍幂级数展开的基本概念和一些常见的应用。
首先,我们来回顾一下幂级数的定义。
对于给定的函数f(x),它的幂级数展开形式为:f(x) = a0 + a1(x - c) + a2(x - c)^2 + a3(x - c)^3 + ...这里的a0, a1, a2等是幂级数的系数,c是展开点(也称为幂级数的中心点)。
幂级数可以表示为无穷级数的形式,其中每一项都是基于前一项的。
幂级数的应用之一是在函数逼近和近似计算中。
对于某些复杂的函数,我们可能很难求解其精确值。
但是,通过使用幂级数展开,我们可以将函数表示为一个无限项的和,并通过截断无穷级数来得到近似值。
使用所有项计算将得到函数的精确值,但通常我们只需要前几项来获得一个足够准确的结果。
举个例子,考虑近似计算sin(x)的值。
我们可以使用泰勒级数展开sin(x):sin(x) = x - (x^3)/3! + (x^5)/5! - (x^7)/7! + ...在展开点c=0附近,我们只需要前几项就可以得到较为准确的结果。
例如,使用前5项展开,我们可以得到:sin(x) ≈ x - (x^3)/3! + (x^5)/5!这种近似方法在许多实际问题中非常有用,特别是在涉及复杂函数的计算时。
通过选择合适的展开点和适当的项数,我们可以根据需要平衡计算的准确性和效率。
幂级数展开还可以用于求解微分方程。
微分方程描述了自然界中许多现象的变化规律。
然而,解析求解微分方程可能非常困难,甚至不可能得到精确解。
在这种情况下,我们可以使用幂级数展开来近似求解微分方程。
考虑一个简单的一阶线性常微分方程:dy/dx + p(x)y = q(x)其中p(x)和q(x)是已知的函数。
我们可以将未知函数y(x)表示为幂级数展开的形式:y(x) = a0 + a1(x - c) + a2(x - c)^2 + a3(x - c)^3 + ...将幂级数展开代入微分方程中,并比较等次项的系数,我们可以计算出展开点c附近的系数a0, a1, a2等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Power Series Expansion and Its ApplicationsIn the previous section, we discuss the convergence of power series, in its convergence region, the power series always converges to a function. For the simple power series, but also with itemized derivative, or quadrature methods, find this and function. This section will discuss another issue, for an arbitrary function ()f x , can be expanded in a power series, and launched into.Whether the power series ()f x as and function? The following discussion will address this issue. 1 Maclaurin (Maclaurin) formulaPolynomial power series can be seen as an extension of reality, so consider the function ()f x can expand into power series, you can from the function ()f x and polynomials start to solve this problem. To this end, to give here without proof the following formula.Taylor (Taylor) formula, if the function ()f x at 0x x = in a neighborhood that until the derivative of order 1n +, then in the neighborhood of the following formula :20000()()()()()()n n f x f x x x x x x x r x =+-+-++-+… (9-5-1)Among10()()n n r x x x +=-That ()n r x for the Lagrangian remainder. That (9-5-1)-type formula for the Taylor.If so 00x =, get2()(0)()n n f x f x x x r x=+++++…, (9-5-2) At this point,(1)(1)111()()()(1)!(1)!n n n n n f f x r x x x n n ξθ+++++==++ (01θ<<).That (9-5-2) type formula for the Maclaurin.Formula shows that any function ()f x as long as until the 1n +derivative, n can be equal to a polynomial and a remainder.We call the following power series()2(0)(0)()(0)(0)2!!n nf f f x f f x x x n '''=+++++…… (9-5-3) For the Maclaurin series.So, is it to ()f x for the Sum functions? If the order Maclaurin series (9-5-3) the first 1n + itemsand for 1()n S x +, which()21(0)(0)()(0)(0)2!!n nn f f S x f f x x x n +'''=++++…Then, the series (9-5-3) converges to the function ()f x the conditions1lim ()()n n s x f x +→∞=.Noting Maclaurin formula (9-5-2) and the Maclaurin series (9-5-3) the relationship between theknown1()()()n n f x S x r x +=+Thus, when()0n r x =There,1()()n f x S x +=Vice versa. That if1lim ()()n n s x f x +→∞=,Units must()0n r x =.This indicates that the Maclaurin series (9-5-3) to ()f x and function as the Maclaurin formula (9-5-2) of the remainder term ()0n r x → (when n →∞).In this way, we get a function ()f x the power series expansion:()()0(0)(0)()(0)(0)!!n n n nn f f f x x f f x x n n ∞='==++++∑……. (9-5-4) It is the function ()f x the power series expression, if, the function of the power series expansion is unique. In fact, assuming the function f (x ) can be expressed as power series20120()n n n n n f x a x a a x a x a x ∞===+++++∑……, (9-5-5)Well, according to the convergence of power series can be itemized within the nature of derivation,and then make 0x = (power series apparently converges in the 0x = point), it is easy to get()2012(0)(0)(0),(0),,,,,2!!n nn f f a f a f x a x a x n '''====…….Substituting them into (9-5-5) type, income and ()f x the Maclaurin expansion of (9-5-4) identical. In summary, if the function f (x ) contains zero in a range of arbitrary order derivative, and in this range of Maclaurin formula in the remain der to zero as the limit (when n → ∞,), then , the function f (x ) can start forming as (9-5-4) type of power series.Power Series()20000000()()()()()()()()1!2!!n n f x f x f x f x f x x x x x x x n '''=+-+-++-……,Known as the Taylor series.Second, primary function of power series expansionMaclaurin formula using the function ()f x expanded in power series method, called the direct expansion method.Example 1Test the function ()x f x e =expanded in power series of x . Solution because()()n x f x e =,(1,2,3,)n =…Therefore()(0)(0)(0)(0)1n f f f f '''====…,So we get the power series21112!!n x x x n +++++……, (9-5-6) Obviously, (9-5-6)type convergence interval (,)-∞+∞, As (9-5-6)whether type ()x f x e = is Sum function, that is, whether it converges to ()xf x e = , but also examine remainder ()n r x . Because1e ()(1)!xn n r x x n θ+=+ (01θ<<),且x x x θθ≤≤,Therefore11e e ()(1)!(1)!xx n n n r x x x n n θ++=<++,Noting the value of any set x ,xe is a fixed constant, while the series (9-5-6) is absolutely convergent, so the general when the item when n →∞, 10(1)!n xn +→+ , so when n → ∞,there10(1)!n xxen +→+,From thislim ()0n n r x →∞=This indicates that the series (9-5-6) does converge to ()x f x e =, therefore21112!!x n e x x x n =+++++…… (x -∞<<+∞). Such use of Maclaurin formula are expanded in power series method, although the procedure is clear,but operators are often too Cumbersome, so it is generally more convenient to use the following power series expansion method.Prior to this, we have been a functionx-11, xe and sin x power series expansion, the use of these known expansion by power series of operations, we can achieve many functions of power series expansion. This demand function of power series expansion method is called indirect expansion .Example 2Find the function ()cos f x x =,0x =,Department in the power series expansion. Solution because(sin )cos x x '=,And3521111sin (1)3!5!(21)!n n x x x x x n +=-+-+-++……,(x -∞<<+∞)Therefore, the power series can be itemized according to the rules of derivation can be342111cos 1(1)2!4!(2)!n nx x x x n =-+-+-+……,(x -∞<<+∞) Third, the function power series expansion of the application exampleThe application of power series expansion is extensive, for example, can use it to set some numerical or other approximate calculation of integral value.Example 3 Using the expansion to estimate arctan x the value of π.Solution because πarctan14= Because of357arctan 357x x x x x =-+-+…, (11x -≤≤),So there1114arctan14(1)357π==-+-+…Available right end of the first n items of the series and as an approximation of π. However, the convergence is very slow progression to get enough items to get more accurate estimates of πvalue.此外文文献选自于:Walter.Rudin.数学分析原理(英文版)[M].北京:机械工业出版社.幂级数的展开及其应用在上一节中,我们讨论了幂级数的收敛性,在其收敛域内,幂级数总是收敛于一个和函数.对于一些简单的幂级数,还可以借助逐项求导或求积分的方法,求出这个和函数.本节将要讨论另外一个问题,对于任意一个函数()f x ,能否将其展开成一个幂级数,以及展开成的幂级数是否以()f x 为和函数?下面的讨论将解决这一问题.一、 马克劳林(Maclaurin)公式幂级数实际上可以视为多项式的延伸,因此在考虑函数()f x 能否展开成幂级数时,可以从函数()f x 与多项式的关系入手来解决这个问题.为此,这里不加证明地给出如下的公式.泰勒(Taylor)公式 如果函数()f x 在0x x =的某一邻域内,有直到1n +阶的导数,则在这个邻域内有如下公式:()20000000()()()()()()()()()2!!n n n f x f x f x f x f x x x x x x x r x n '''=+-+-++-+…,(9-5-1)其中(1)10()()()(1)!n n n f r x x x n ξ++=-+.称()n r x 为拉格朗日型余项.称(9-5-1)式为泰勒公式. 如果令00x =,就得到2()(0)()n n f x f x x x r x =+++++…, (9-5-2)此时,(1)(1)111()()()(1)!(1)!n n n n n f f x r x x x n n ξθ+++++==++, (01θ<<).称(9-5-2)式为马克劳林公式.公式说明,任一函数()f x 只要有直到1n +阶导数,就可等于某个n 次多项式与一个余项的和. 我们称下列幂级数()2(0)(0)()(0)(0)2!!n nf f f x f f x x x n '''=+++++…… (9-5-3)为马克劳林级数.那么,它是否以()f x 为和函数呢?若令马克劳林级数(9-5-3)的前1n +项和为1()n S x +,即()21(0)(0)()(0)(0)2!!n nn f f S x f f x x x n +'''=++++…,那么,级数(9-5-3)收敛于函数()f x 的条件为1lim ()()n n s x f x +→∞=.注意到马克劳林公式(9-5-2)与马克劳林级数(9-5-3)的关系,可知1()()()n n f x S x r x +=+.于是,当()0n r x =时,有1()()n f x S x +=.反之亦然.即若1lim ()()n n s x f x +→∞=则必有()0n r x =.这表明,马克劳林级数(9-5-3)以()f x 为和函数⇔马克劳林公式(9-5-2)中的余项()0n r x → (当n →∞时).这样,我们就得到了函数()f x 的幂级数展开式:()()20(0)(0)(0)()(0)(0)!2!!n n n nn f f f f x x f f x x x n n ∞='''==+++++∑……(9-5-4) 它就是函数()f x 的幂级数表达式,也就是说,函数的幂级数展开式是唯一的.事实上,假设函数()f x 可以表示为幂级数20120()n n n n n f x a x a a x a x a x ∞===+++++∑……, (9-5-5)那么,根据幂级数在收敛域内可逐项求导的性质,再令0x =(幂级数显然在0x =点收敛),就容易得到()2012(0)(0)(0),(0),,,,,2!!n nn f f a f a f x a x a x n '''====…….将它们代入(9-5-5)式,所得与()f x 的马克劳林展开式(9-5-4)完全相同.综上所述,如果函数()f x 在包含零的某区间内有任意阶导数,且在此区间内的马克劳林公式中的余项以零为极限(当n →∞时),那么,函数()f x 就可展开成形如(9-5-4)式的幂级数.幂级数()00000()()()()()()1!!n n f x f x f x f x x x x x n '=+-++-……,称为泰勒级数.二、 初等函数的幂级数展开式利用马克劳林公式将函数()f x 展开成幂级数的方法,称为直接展开法. 例1 试将函数()x f x e =展开成x 的幂级数. 解 因为()()n x f x e =, (1,2,3,)n =…所以()(0)(0)(0)(0)1n f f f f '''====…,于是我们得到幂级数21112!!n x x x n +++++……, (9-5-6) 显然,(9-5-6)式的收敛区间为(,)-∞+∞,至于(9-5-6)式是否以()x f x e =为和函数,即它是否收敛于()xf x e =,还要考察余项()n r x .因为1e ()(1)!xn n r x x n θ+=+ (01θ<<), 且x x x θθ≤≤,所以11e e ()(1)!(1)!xx n n n r x x x n n θ++=<++.注意到对任一确定的x 值,xe 是一个确定的常数,而级数(9-5-6)是绝对收敛的,因此其一般项当n →∞时,10(1)!n xn +→+,所以当n →∞时,有 10(1)!n xxen +→+,由此可知lim ()0n n r x →∞=.这表明级数(9-5-6)确实收敛于()x f x e =,因此有21112!!x n e x x x n =+++++…… (x -∞<<+∞). 这种运用马克劳林公式将函数展开成幂级数的方法,虽然程序明确,但是运算往往过于繁琐,因此人们普遍采用下面的比较简便的幂级数展开法.在此之前,我们已经得到了函数x-11,xe 及sin x 的幂级数展开式,运用这几个已知的展开式,通过幂级数的运算,可以求得许多函数的幂级数展开式.这种求函数的幂级数展开式的方法称为间接展开法.例2 试求函数()cos f x x =在0x =处的幂级数展开式. 解 因为(sin )cos x x '=,而3521111sin (1)3!5!(21)!n n x x x x x n +=-+-+-++……,(x -∞<<+∞), 所以根据幂级数可逐项求导的法则,可得342111cos 1(1)2!4!(2)!n nx x x x n =-+-+-+……,(x -∞<<+∞). 三、 函数幂级数展开的应用举例幂级数展开式的应用很广泛,例如可利用它来对某些数值或定积分值等进行近似计算. 例3 利用arctan x 的展开式估计π的值. 解 由于πarctan14=,又因357arctan 357x x x x x =-+-+…, (11x -≤≤),所以有1114arctan14(1)357π==-+-+….可用右端级数的前n 项之和作为π的近似值.但由于级数收敛的速度非常慢,要取足够多的项才能得到π的较精确的估计值.此外文文献选自于:Walter.Rudin.数学分析原理(英文版)[M].北京:机械工业出版社.。