七年级数学下册多边形和多边形的对角线同步跟踪测试题(含答案与解析)
难点解析华东师大版七年级数学下册第9章多边形专题测评试卷(精选含详解)
七年级数学下册第9章多边形专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC∆的()∆中,若点D使得BD DC=,则AD是ABCA.高B.中线C.角平分线D.中垂线2、已知三角形的两边长分别为2cm和3cm,则第三边长可能是()A.6cm B.5cm C.3cm D.1cm3、如图,一扇窗户打开后,用窗钩AB可将其固定()A.三角形的稳定性B.两点之间线段最短C.四边形的不稳定性D.三角形两边之和大于第三边4、如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,∠EAB=72°,以下四个说法:①∠CDF=30°;②∠ADB=50°;③∠ABD=22°;④∠CBN=108°其中正确说法的个数是()A.1个B.2个C.3个D.4个5、如图,直线l1∥l2,被直线l3、l4所截,并且l3⊥l4,∠1=46°,则∠2等于()A .56°B .34°C .44°D .46°6、如图,四边形ABCD 是梯形,AD BC ∥,DAB ∠与ABC ∠的角平分线交于点E ,CDA ∠与BCD ∠的角平分线交于点F ,则1∠与2∠的大小关系为( )A .12∠>∠B .12∠=∠C .12∠∠<D .无法确定7、已知一个多边形的内角和与外角和的和为2160°,这个多边形的边数为( )A .9B .10C .11D .128、如图,在Rt△ABC 中,∠ACB =90°,∠BAC =40°,直线a ∥b ,若BC 在直线b 上,则∠1的度数为( )A.40°B.45°C.50°D.60°9、在△ABC中,∠A=∠B=14∠C,则∠C=()A.70°B.80°C.100°D.120°10、如图,CM是ABC的中线,4cmAM ,则BM的长为()A.3cm B.4cm C.5cm D.6cm第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC中,点D为BC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.2、若一个多边形的内角和是外角和的2倍,则它的边数是_______.3、一个三角形的两边长分别为2和5,则第三边的长度可取的整数值为_________(写出一个即可).4、如图,已知△ABC,通过测量、计算得△ABC的面积约为________cm2(结果保留一位小数).5、已知一个多边形内角和1800度,则这个多边形的边数_____.三、解答题(5小题,每小题10分,共计50分)1、(1)如图1,在△ABC中,BE平分∠ABC,CE平分∠ACD,试说明:∠E12=∠A;【拓展应用】(2)如图2,在四边形ABDC中,对角线AD平分∠BAC.①若∠ACD=130°,∠BCD=50°,∠CBA=40°,求∠CDA的度数;②若∠ABD+∠CBD=180°,∠ACB=82°,写出∠CBD与∠CAD之间的数量关系.2、如图所示,AD,CE是△ABC的两条高,AB=6cm,BC=12cm,CE=9cm.(1)求△ABC的面积;(2)求AD的长.3、如图,在ABC中,CD为ABC的高,AE为ABC的角平分线,CD交AE于点G,50BCD∠=︒,110∠=︒,求ACD∠的大小.BEA4、如图,在△ABC中,∠ABC=30°,∠C=80°,AD是△ABC的角平分线,BE是△ABD中AD边上的高,求∠ABE的度数.5、已知:如图,△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠AEC的度数.-参考答案-一、单选题1、B【解析】【分析】根据三角形的中线定义即可作答.解:∵BD=DC,∴AD是△ABC的中线,故选:B.【点睛】本题考查了三角形的中线概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.2、C【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:设第三边长为x cm,根据三角形的三边关系可得:3-2<x<3+2,解得:1<x<5,只有C选项在范围内.故选:C.【点睛】本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.3、A【解析】【分析】由三角形的稳定性即可得出答案.一扇窗户打开后,用窗钩AB可将其固定,故选:A.【点睛】本题考查了三角形的稳定性,加上窗钩AB构成了△AOB,而三角形具有稳定性是解题的关键.4、D【解析】【分析】根据AD∥BC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.【详解】解:∵AD∥BC,∠C=30°,∴∠FDC=∠C=30°,故①正确;∴∠ADC=180°-∠FDC=180°-30°=150°,∵∠ADB:∠BDC=1:2,∴∠BDC=2∠ADB,∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,解得∠ADB=50°,故②正确∵∠EAB=72°,∴∠DAN=180°-∠EAB=180°-72°=108°,∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确∴∠CBN=∠DAN=108°,故④正确其中正确说法的个数是4个.故选择D.【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.5、C【解析】【分析】依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.【详解】解:如图:∵l1∥l2,∠1=46°,∴∠3=∠1=46°,又∵l3⊥l4,∴∠2=90°﹣46°=44°,故选:C.【点睛】本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.6、B【解析】【分析】由AD∥BC可得∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,由角平分线的性质可得∠AEB=90°,∠DFC=90°,由三角形内角和定理可得到∠1=∠2=90°.【详解】解:∵AD∥BC,∴∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,∵∠DAB与∠ABC的角平分线交于点E,∠CDA与∠BCD的角平分线交于点F,∴∠BAE=12∠BAD,∠ABE=12∠ABC,∠CDF=12∠ADC,∠DCF=12∠BCD,∴∠BAE+∠ABE=12(∠BAD+∠ABC)=90°,∠CDF+∠DCF=12(∠ADC+∠BCD) =90°,∴∠1=180°-(∠BAE+∠ABE)= 90°,∠2=∠CDF+∠DCF= 90°,∴∠1=∠2=90°,故选:B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形内角和定理,灵活运用这些性质进行推理是本题的关键.7、D【解析】【分析】依题意,多边形的外角和为360°,该多边形的内角和与外角和的总和为2160°,故内角和为1800°.根据多边形的内角和公式易求解.【详解】解:该多边形的外角和为360°,故内角和为2160°-360°=1800°,故(n -2)•180°=1800°,解得n =12.故选:D .【点睛】本题考查的是多边形内角与外角的相关知识,掌握多边形的内角和公式是解题的关键.8、C【解析】【分析】根据三角形内角和定理确定50ABC ∠=︒,然后利用平行线的性质求解即可.【详解】解:∵40BAC ∠=︒,90ACB ∠=︒,∴50ABC ∠=︒,∵a b ∥,∴150ABC ∠=∠=︒,故选:C .【点睛】题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.9、D【解析】【分析】根据三角形的内角和,180A B C ∠+∠+∠=︒①,进而根据已知条件,将,A B ∠∠代入①即可求得C ∠【详解】解:∵在△ABC 中,180A B C ∠+∠+∠=︒,∠A =∠B =14∠C , ∴1118044C C C ∠+∠+∠=︒解得120C ∠=︒故选D【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.10、B【解析】【分析】直接根据三角形中线定义解答即可.【详解】解:∵CM 是ABC 的中线,4cm AM =,∴BM = 4cm AM =,故选:B .【点睛】本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.二、填空题1、30°##30度【解析】【分析】根据三角形的外角的性质,即可求解.【详解】解:∵ACD A B ∠=∠+∠ ,∴B ACD A ∠=∠-∠ ,∵∠ACD =75°,∠A =45°,∴30B ∠=︒ .故答案为:30°【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.2、6【解析】【分析】根据多边形的内角和公式(n −2)•180°以及外角和定理列出方程,然后求解即可.【详解】解:设这个多边形的边数是n ,根据题意得,(n −2)•180°=2×360°,解得n =6.答:这个多边形的边数是6.故答案为:6.【点睛】本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.3、4,5,6(写出一个即可)【解析】【分析】由构成三角形三边成立的条件可得第三条边的取值范围.【详解】设第三条长为x∵2+5=7,5-2=3∴3<x<7.故第三条边的整数值有4、5、6.故答案为:4,5,6(写出一个即可)【点睛】本题考查了构成三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边,关键为“任意”两边均满足此关系.4、3.9【解析】【分析】过点A作AD⊥BC的延长线于点D,测量出BC,AD的长,再利用三角形的面积公式即可求出△ABC的面积.【详解】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,BC=2.2cm,AD=3.5cm,∴S△ABC=12AB•CD=12×2.2×3.5=3.85≈3.9(cm2).故答案为:3.9.【点睛】本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.5、12【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到()21801800n-⨯︒=︒,然后解方程即可.【详解】解:设这个多边形的边数是n,依题意得()21801800n-⨯︒=︒,∴210n-=,∴12n=.故答案为:12.【点睛】考查了多边形的内角和定理,关键是根据n 边形的内角和为()2180n -⨯︒解答.三、解答题1、(1)见解析;(2)①∠CDA =20°;②∠CAD +41°=∠CBD .【解析】【分析】(1)由三角形外角的性质可得∠ACD =∠A +∠ABC ,∠ECD =∠E +∠EBC ;由角平分线的性质可得1()2ECD A ABC =∠+∠∠,12EBC ABC ∠=∠,利用等量代换,即可求得∠A 与∠E 的关系; (2)①根据三角形的内角和定理和角平分线的定义即可解答;②设∠CBD =a ,根据已知条件得到∠ABC =180°-2a ,根据三角形的内角和定理和角平分线的定义即可解答.【详解】(1)证明:∵∠ACD 是△ABC 的外角∴∠ACD =∠A +∠ABC∵CE 平分∠ACD ∴1()2∠=∠+∠ECD A ABC又∵∠ECD =∠E +∠EBC ∴1()2ECD EBC A ABC ∠+∠=∠+∠∵BE 平分∠ABC ∴12EBC ABC ∠=∠ ∴11()22∠+∠=∠+∠ABC E A ABC ∴12∠=∠E A ;(2)①∵∠ACD=130°,∠BCD=50°∴∠ACB=∠ACD﹣∠BCD=130°﹣50°=80°∵∠CBA=40°∴∠BAC=180°﹣∠ACB﹣∠ABC=180°﹣80°﹣40°=60°∵AD平分∠BAC∴1302CAD CAB︒∠=∠=∴∠CDA=180°﹣∠CAD﹣∠ACD=20°;②∠CAD+41°=∠CBD设∠CBD=α∵∠ABD+∠CBD=180°∴∠ABC=180°﹣2α∵∠ACB=82°∴∠CAB=180°﹣∠ABC﹣∠ACB=180°﹣(180°﹣2α)﹣82°=2α﹣82°∵AD平分∠BAC∴∠CAD=12∠CAB=α﹣41°∴∠CAD+41°=∠CBD.【点睛】本题主要考查了多边形的内角与外角、三角形内角和定理、角平分线等知识点,掌握三角形内角和是180°是解答本题的关键.2、(1)27;(2)4.5【解析】【分析】(1)根据三角形面积公式进行求解即可;(2)利用面积法进行求解即可.【详解】解:(1)由题意得:2116927cm 22ABCS A CE B ==⨯⨯=⋅. (2)∵12ABC AD S BC ⋅=, ∴127122AD =⨯⋅. 解得 4.5cm AD =.【点睛】本题主要考查了与三角形高有关的面积求解,解题的关键在于能够熟练掌握三角形面积公式. 3、30ACD ︒∠=.【解析】【分析】先由直角三角形两锐角互余得到∠B =40°,在三角形△ABC 中,由内角和定理求得∠BAE =30°,由角平分线定义得出 ∠BAC =60°,即可求得∠ACD .【详解】解:CD 为ABC ∆的高,90BDC ADC ︒∴∠=∠=.90905040B BCD ︒︒∴∠=-∠=︒-︒=.在ABC ∆中,1801804011030BAE B BEA ︒︒︒︒︒∠=-∠-∠=--=.AE ∵为ABC ∆的角平分线,260BAC BAE ︒∴∠=∠=.9030ACD BAC ︒︒∴∠=-∠=.【点睛】此题考查三角形内角和定理、角平分线定义和直角三角形两锐角互余等,掌握定义和定理是解答此题的关键.4、55°【解析】【分析】先根据三角形内角和定理及角平分线的性质求出∠BAD 度数,由AE ⊥BE 可求出∠AEB =90°,再由三角形的内角和定理即可解答.【详解】解:∵∠ABC =30°,∠C =80°,∴∠BAC =180°-30°-80°=70°,∵AD 是∠BAC 的平分线,∴∠BAD =12×70°=35°,∵AE ⊥BE ,∴∠AEB =90°,∴∠ABE =180°-∠AEB -∠BAE =180°-90°-35°=55°.【点睛】本题考查的是角平分线的定义,高的定义及三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.5、∠AEC=115°【解析】【分析】利用三角形的内角和定理求解40,ACB ∠=︒ 再利用三角形的高的含义求解50,CAD 再结合角平分线的定义求解25,CAE 再利用三角形的内角和定理可得答案.【详解】 解: ∠BAC =80°,∠B =60°,180806040,ACBAD ⊥BC ,90,904050,ADC CADAE 平分∠DAC , 125,2CAE DAC 1802540115.AEC 【点睛】本题考查的是三角形的高,角平分线的含义,三角形的内角和定理的应用,熟练的运用三角形的高与角平分线的定义结合三角形的内角和定理得到角与角之间的关系是解本题的关键.。
苏科新版七年级下册《7.5多边形的内角和与外角和》2024年同步练习卷(2)+答案解析
苏科新版七年级下册《7.5多边形的内角和与外角和》2024年同步练习卷(2)一、选择题:本题共7小题,每小题3分,共21分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.一个10边形的内角和等于()A. B. C. D.2.一个多边形的内角和为,则这个多边形的边数为()A.10B.11C.12D.133.用一条直线将一个菱形分割成两个多边形,若这两个多边形的内角和分别为M和N,则的值不可能是()A. B. C. D.4.若一个多边形的内角和为,则该多边形的边数为()A.3B.4C.5D.65.若正多边形的一个内角是,则该正多边形的边数是()A.6B.12C.16D.186.一个多边形切去一个角后,形成的另一个多边形的内角和为,那么原多边形的边数为()A.8B.7或8C.6或7或8D.7或8或97.在四边形ABCD中,,点E在边AB上,,则一定有()A. B.C. D.二、填空题:本题共8小题,每小题3分,共24分。
8.n边形的内角和比边形的内角和小______为整数,且9.如图,在四边形ABCD中,,,它的一个外角则的度数为______.10.四边形的四个内角中,直角最多有______个,钝角最多有______个,锐角最多有______个.11.如图,在四边形ABCD中,,直线l与边AB、AD分别相交于点M、N,则______.12.如图,求的度数为______.13.一个五边形,其中四个内角的度数之比为1:2:3:4,第五个内角比最小内角大,则此五边形五个内角的度数分别为______、______、______、______、______.14.如图,一束太阳光线平行照射在放置于地面的六边形上,若六边形的每个内角都相等,且,则______.15.通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题,如果从某个多边形的一个顶点出发的对角线共有9条,那么该多边形的内角和是______度.三、解答题:本题共4小题,共32分。
2022年最新精品解析华东师大版七年级数学下册第9章多边形专项测试试卷(含答案解析)
七年级数学下册第9章多边形专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一把直尺和一块三角板ABC (含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D 、点E ,另一边与三角板的两直角边分别交于点F 、点A ,且45CDE ∠=︒,那么BAF ∠的大小为( )A .35°B .20°C .15°D .10°2、在△ABC 中,∠A =∠B =14∠C ,则∠C =( ) A .70° B .80° C .100° D .120°3、已知三角形的两边长分别为4cm 和10cm ,则下列长度的四条线段中能作为第三边的是( )A .15cmB .6cmC .7cmD .5cm4、已知ABC 的三边长分别为a ,b ,c ,则a ,b ,c 的值可能分别是( )A .1,2,3B .3,4,7C .2,3,4D .4,5,105、如图,CM 是ABC 的中线,4cm AM =,则BM 的长为( )A .3cmB .4cmC .5cmD .6cm6、如图,在ABC 中,D 是BC 延长线上一点,50B ∠=︒,80A ∠=︒,则ACD ∠的度数为()A .140︒B .130︒C .120︒D .110︒7、下列各组线段中,能构成三角形的是( )A .2、4、7B .4、5、9C .5、8、10D .1、3、68、如图,∠A +∠B +∠C +∠D +∠E +∠F 的度数为( )A .180°B .360°C .540°D .不能确定9、如图,在ABC 中,点D 、E 分别是AC ,AB 的中点,且=12ABC S △,则=BDE S △( )A.12 B.6 C.3 D.210、如图,一扇窗户打开后,用窗钩AB可将其固定()A.三角形的稳定性B.两点之间线段最短C.四边形的不稳定性D.三角形两边之和大于第三边第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知BE、CD分别是△ABC的内角平分线,BE和CD相交于点O,且∠A=40°,则∠DOE=____________2、如图,AD ⊥BC ,∠1=∠B ,∠C=65°,∠BAC =__________3、若正多边形的一个外角为40°,则这个正多边形是_____边形.4、如图,△ABC 中,∠B =20°,D 是BC 延长线上一点,且∠ACD =60°,则∠A 的度数是____________ 度.5、在Rt ABC 中,锐角50A ∠=︒,则另一个锐角B ∠=_______.三、解答题(5小题,每小题10分,共计50分)1、求下列图中的x 的值(1)(2)2、如图,已知△ABC的高AD和角平分线AE,∠B=26°,∠ACD=56°,求(1)∠CAD的度数;(2)∠AED的度数.3、如图,在六边形ABCDEF中,从顶点A出发,可以画几条对角线?它们将六边形ABCDEF分成哪几个三角形?4、已知:直线AB、CR被直线UV所截,直线UV交直线AB于点B,交直线CR于点D,∠ABU+∠CDV=180°.(1)如图1,求证:AB∥CD;(2)如图2,BE∥DF,∠MEB=∠ABE+5°,∠FDR=35°,求∠MEB的度数;(3)如图3,在(2)的条件下,点N在直线AB上,分别连接EN、ED,MG∥EN,连接ME,∠GME=∠GEM,∠EBD=2∠NEG,EB平分∠DEN,MH⊥UV于点H,若∠EDC=17∠CDB,求∠GMH的度数.5、已知直线MN∥PQ,点A是直线MN上一个定点,点B在直线PQ上运动.点H为平面上一点,且满足∠AHB=90°.设∠HBQ=α.(1)如图1,当α=70°时,∠HAN=.(2)过点H作直线l平分∠AHB,直线l交直线MN于点C.①如图2,当α=60°时,求∠ACH的度数;②当∠ACH=30°时,直接写出α的值.-参考答案-一、单选题1、C【解析】【分析】先根据直角三角形两锐角互余求出45DEC ∠=︒ ,由DE ∥AF 即可得到∠CAF =45°,最后根据∠BAC =60°,即可得出∠BAF 的大小.【详解】解:∵45CDE ∠=︒,90C ∠=︒,∴45CED ∠=︒,∵DE ∥AF ,∴∠CAF =∠CED =45°,∵∠BAC =60°,∴∠BAF =60°-45°=15°,故选:C【点睛】本题主要考查了平行线的性质以及直角三角形的性质的运用,解题解题的关键是掌握平行线的性质:两直线平行,同位角相等.2、D【解析】【分析】根据三角形的内角和,180A B C ∠+∠+∠=︒①,进而根据已知条件,将,A B ∠∠代入①即可求得C ∠【详解】解:∵在△ABC 中,180A B C ∠+∠+∠=︒,∠A =∠B =14∠C ,∴1118044C C C ∠+∠+∠=︒解得120C ∠=︒故选D【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.3、C【解析】【分析】根据三角形的三边关系可得104104x -<<+,再解不等式可得答案.【详解】解:设三角形的第三边为xcm ,由题意可得: 104104x -<<+,即614x <<,故选:C .【点睛】本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.4、C【解析】【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.5、B【解析】【分析】直接根据三角形中线定义解答即可.【详解】解:∵CM是ABC的中线,4cmAM=,∴BM= 4cmAM=,故选:B.【点睛】本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.6、B【解析】【分析】根据三角形外角的性质可直接进行求解.【详解】解:∵50B ∠=︒,80A ∠=︒,∴130ACD A B ∠=∠+∠=︒;故选B .【点睛】本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.7、C【解析】【分析】根据三角形的三边关系定理逐项判断即可得.【详解】解:三角形的三边关系定理:任意两边之和大于第三边.A 、247+<,不能构成三角形,此项不符题意;B 、459+=,不能构成三角形,此项不符题意;C 、5810+>,能构成三角形,此项符合题意;D 、136+<,不能构成三角形,此项不符题意;故选:C .【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.8、B【解析】【分析】设BE 与DF 交于点M ,BE 与AC 交于点N ,根据三角形的外角性质,可得,BMD B F CNE A E ∠=∠+∠∠=∠+∠ ,再根据四边形的内角和等于360°,即可求解.【详解】解:设BE 与DF 交于点M ,BE 与AC 交于点N ,∵,BMD B F CNE A E ∠=∠+∠∠=∠+∠ ,∴A B C D E F BMD CNE C D ∠+∠+∠+∠+∠+∠=∠+∠+∠+∠ ,∵360BMD CNE C D ∠+∠+∠+∠=︒,∴360A B C D E F ∠+∠+∠+∠+∠+∠=︒ .故选:B【点睛】本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键.9、C【解析】【分析】由于三角形的中线将三角形分成面积相等的两部分,则S △ABD =12S △ABC =6,然后利用S △BDE =12S △ABD 求解.【详解】解:∵点D 为AC 的中点,∴S △ABD =12S △ABC =12×12=6,∵点E 为AB 的中点,∴S△BDE=12S△ABD=12×6=3.故选:C.【点睛】本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键.三角形的中线把三角形分成面积相同的两部分.10、A【解析】【分析】由三角形的稳定性即可得出答案.【详解】一扇窗户打开后,用窗钩AB可将其固定,故选:A.【点睛】本题考查了三角形的稳定性,加上窗钩AB构成了△AOB,而三角形具有稳定性是解题的关键.二、填空题1、110°##110度【解析】【分析】根据∠A=40°求出∠ABC+∠ACB=140°,根据角平分线的定义求出∠EBC+∠BCD=70°,进而求出∠BOC=110°,最后根据对顶角相等即可求解.【详解】解:如图,∵∠A=40°,∴∠ABC+∠ACB=180°-∠A=140°,∵BE、CD分别是△ABC的内角平分线,∴∠EBC=12∠ABC,∠BCD==12∠ACB,∴∠EBC+∠BCD=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=70°,∴∠BOC=180°-(∠EBC+∠BCD)=110°,∴∠DOE=∠BOC=110°.故答案为:110°【点睛】本题考查了三角形内角和定理,角平分线的定义,对顶角相等等知识,熟知相关知识,运用整体思想求出∠EBC+∠BCD=70°是解题关键.2、70°【解析】【分析】先根据AD⊥BC可知∠ADB=∠ADC=90°,再根据直角三角形的性质求出∠1与∠DAC的度数,由∠BAC=∠1+∠DAC即可得出结论.【详解】∵AD⊥BC,∴∠ADB=∠ADC=90°,∴∠DAC=90°﹣65°=25°,∠1=∠B=45°,∴∠BAC=∠1+∠DAC=45°+25°=70°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.3、九【解析】【分析】利用任意凸多边形的外角和均为360︒,正多边形的每个外角相等即可求出答案.【详解】解:多边形的每个外角相等,且其和为360︒,据此可得36040n=,解得9n=.故答案为:九.【点睛】本题主要考查了正多边形外角和的知识,解题的关键是掌握正多边形的每个外角相等,且其和为360︒,比较简单.4、40【解析】【分析】直接根据三角形外角的性质可得结果.【详解】解:∵∠B=20°,∠ACD=60°,∠ACD是△ABC的外角,∴∠ACD =∠B +∠A ,∴602040A ACD B ∠=∠-∠=︒-︒=︒,故答案为:40.【点睛】本题考查了三角形外角的性质,熟知三角形的一个外角等于与它不相邻的两个内角的和是解本题的关键5、40︒【解析】【分析】根据直角三角形两锐角互余,即可求解.【详解】解:在Rt ABC 中,∵锐角50A ∠=︒,∴另一个锐角90905040B A ∠=︒-∠=︒-︒=︒ .故答案为:40︒【点睛】本题主要考查了直角三角形的性质,熟练掌握直角三角形两锐角互余是解题的关键.三、解答题1、(1)65;(2)60.【解析】【分析】(1)根据四边形内角和等于360°,列方程即可求出x 的值;(2)根据五边形内角和等于(5-2)⨯180°,列方程即可求出x 的值.【详解】解:(1)∵四边形内角和等于360°,∴x+x+140+90=360,解得:x=65;(2)∵五边形内角和等于(5-2)⨯180°=540°,∴x+2x+150+120+90=540,解得:x=60.【点睛】本题考查了四边形和五边形的内角和,熟练掌握n边形的内角和等于(n-2)⨯180°是解题的关键.①几何计算题中,如果依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程的思想;②求角的度数常常要用到“n边形的内角和等于(n-2)⨯180°”这一隐含的条件.2、(1)34°(2)41°【解析】【分析】(1)根据三角形内角和可得CAD∠的度数;(2)先根据三角形外角性质计算出30BAC∠=︒,再根据角平分线定义得到1122BAE BAC∠∠==︒,接着再利用三角形外角性质得到AED∠.(1)解:在Rt ACD△中,90D∠=︒,56ACD∠=︒,180905634CAD∴∠=︒-︒-︒=︒;(2)解:在ABC∆中,ACD B BAC∠=∠+∠,562630BAC ∴∠=︒-︒=︒,AE ∵平分BAC ∠,1152BAE BAC ∴∠=∠=︒, 261541AED B BAE ∴∠=∠+∠=︒+︒=︒.【点睛】本题考查角形内角和定理,解题的关键是掌握三角形内角和是180︒,合理使用三角形外角性质计算角度.3、三条,分成的三角形分别是:△ABC 、△ACD 、△ADE 、△AEF【解析】【分析】从一个n 边形一个顶点出发,可以连的对角线的条数是n −3,分成的三角形数是n −2.【详解】解:如图,P 从顶点A 出发,可以画三条对角线,它们将六边形ABCDEF 分成的三角形分别是:△ABC 、△ACD 、△ADE 、△AEF .【点睛】本题考查多边形的对角线及分割成三角形个数的问题,解答此类题目可以直接记忆:一个n 边形一个顶点出发,可以连的对角线的条数是n −3,分成的三角形数是n −2.4、(1)见详解;(2)∠MEB =40°,(3)∠GMH =80°【解析】【分析】(1)根据等角的补角性质得出∠ABD =∠CDV ,根据同位角相等两直线平行可得AB ∥CD ;(2)根据AB ∥CD ;利用内错角相等得出∠ABD =∠RDB ,根据BE ∥DF ,得出∠EBD =∠FDB ,利用等量减等量差相等得出∠ABE =∠FDR ,根据∠FDR =35°,可得∠ABE =∠FDR =35°即可;(3)设ME 交AB 于S ,根据MG ∥EN ,得出∠NES =∠GMS =∠GES ,设∠NES =y °,可得∠NEG =∠NES +∠GES=2∠NES =2y °,根据∠EBD =2∠NEG ,得出∠EBD =4∠NES =4y °,根据∠EDC =17∠CDB ,设∠EDC =x °,得出∠CDB =7x °,根据AB ∥CD ,得出∠GBE +∠EBD +∠CDB =180°,可得35+4y +7x =180根据三角形内角和∠BDE =∠BDC -∠EDC =7x -x =6x ,∠BED =180°-∠EBD -∠EDB =180°-4y °-6x °,利用EB 平分∠DEN ,得出y °+40°=180°-4y °-6x °,解方程组7414565140x y x y +=⎧⎨+=⎩,解得1510x y =⎧⎨=⎩,可证ME ∥UV ,根据MH ⊥UV ,可求∠SMH =90°,∠SMG =∠NES =10°即可. 【详解】(1)证明:∵∠ABU +∠ABD =180°,∠ABU +∠CDV =180°.∴∠ABU =180°-∠ABD ,∠CDV =180°-∠ABU ,∴∠ABD =∠CDV ,∴AB ∥CD ;(2)解:∵AB ∥CD ;∴∠ABD =∠RDB ,∴∠ABE +∠EBD =∠FDB +∠FDR ,∵BE ∥DF ,∴∠EBD =∠FDB ,∴∠ABE =∠FDR ,∵∠FDR=35°,∴∠ABE=∠FDR=35°,∴∠MEB=∠ABE+5°=35°+5°=40°,(3)解:设ME交AB于S,∵MG∥EN,∴∠NES=∠GMS=∠GES,设∠NES=y°,∵∠EBD=2∠NEG∴∠NEG=∠NES+∠GES=2∠NES=2y°,∴∠EBD=4∠NES=4y°,∵∠EDC=17∠CDB,设∠EDC=x°∴∠CDB=7x°,∵AB∥CD,∴∠ABD+∠CDB=180°,即∠GBE+∠EBD+∠CDB=180°,∴35+4y+7x=180,∵∠BDE=∠BDC-∠EDC=7x-x=6x,∴∠BED=180°-∠EBD-∠EDB=180°-4y°-6x°,∵EB平分∠DEN,∴∠NEB=∠BED,∵∠NEB=∠NES+∠SEB=y°+40°,∴y°+40°=180°-4y°-6x°,∴74145 65140x yx y+=⎧⎨+=⎩,解得1510xy=⎧⎨=⎩,∴∠EBD=4y°=40°=∠MEB,∴ME∥UV,∵MH⊥UV,∴MH⊥ME,∴∠SMH=90°,,∵∠SMG=∠NES=10°,∴∠GMH=90°-∠SMG=90°-10°=80°.【点睛】本题考查平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组,掌握平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组是解题关键.5、(1)20°(2)①∠ACH=15°;②α=75°【解析】【分析】(1)延长BH与MN相交于点D,根据平行线的性质可得∠ADH=∠HBQ=70°,再根据三角形外角定理可得AHB=∠HAN+∠ADH,代入计算即可得出答案;(2)①延长CH与PQ相交于点E,如图4,根据角平分线的性质可得出∠BHE的度数,再根据三角形外角定理可得∠HBQ=∠HEB+∠BHE,即可得出∠HEB的度数,再根据平行线的性质即可得出答案;②根据平行线的性质可得∠HEB的度数,再根据三角形外角和∠HBQ=∠HEB+∠BHE,即可得出答案.【小题1】解:延长BH与MN相交于点D,如图3,∵MN∥PQ,∴∠ADH=∠HBQ=70°,∵∠AHB=90°,∴∠AHB=∠HAN+∠ADH,∴∠HAN=90°-70°=20°.【小题2】①延长CH与PQ相交于点E,如图4,∵∠AHB=90°,CH平分∠AHB,∴∠BHE=1∠AHB=45°,2∵∠HBQ=∠HEB+∠BHE,∴∠HEB=60°-45°=15°,∵MN∥PQ,∴∠ACH=∠HEB=15°;②α=75°.如图4,∵∠ACH=30°,∴∠HEB=30°,∵∠AHB=90°,CH平分∠AHB,∠AHB=45°,∴∠BHE=12∴∠HBQ=∠HEB+∠BHE=30°+45°=75°,∴α=75°.【点睛】本题主要考查了平行线的性质,熟练应用平行线的性质进行计算是解决本题的关键.。
2022年最新华东师大版七年级数学下册第9章多边形定向测试试卷(精选含答案)
七年级数学下册第9章多边形定向测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、七边形的内角和为()A.720°B.900°C.1080°D.1440°2、下列叙述正确的是()A.三角形的外角大于它的内角B.三角形的外角都比锐角大C.三角形的内角没有小于60°的D.三角形中可以有三个内角都是锐角3、已知长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF 上的点B′处,得折痕EM,将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,则图中与∠B′ME互余的角有()A.2个B.3个C.4个D.5个∠+∠+∠+∠+∠=()4、如图,12345A .180°B .360°C .270°D .300°5、有下列长度的三条线段,其中能组成三角形的是( )A .4,5,9B .2.5,6.5,10C .3,4,5D .5,12,176、正八边形每个内角度数为( )A .120°B .135°C .150°D .160°7、如图,BD 是ABC 的角平分线,∥DE BC ,交AB 于点E .若30A ∠=︒,50BDC ∠=︒,则BDE ∠的度数是( )A .10°B .20°C .30°D .50°8、已知,在直角△ABC 中,∠C 为直角,∠B 是∠A 的2倍,则∠A 的度数是( )A .30B .50︒C .70︒D .90︒9、如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=46°,则∠2等于( )A .56°B .34°C .44°D .46°10、如图,点D 、E 分别在∠ABC 的边BA 、BC 上,DE ⊥AB ,过BA 上的点F (位于点D 上方)作FG ∥BC ,若∠AFG =42°,则∠DEB 的度数为( )A .42°B .48°C .52°D .58°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一个n 边形的每个外角都是45°,那么这个n 边形的内角和是 _________°.2、一个多边形的每个内角都为144︒,那么该正多边形的边数为________.3、如图,在ABC ∆中,已知点D ,E ,F 分别为BC ,AD ,CE 的中点,且4ABC S ∆=2cm ,则阴影部分的面积BEF S ∆=______.4、已知一个多边形的内角和与外角和的比是2:1,则它的边数为 _____.5、如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n =____三、解答题(5小题,每小题10分,共计50分)1、已知直线AB ∥CD ,EF 是截线,点M 在直线AB 、CD 之间.(1)如图1,连接GM ,HM .求证:M AGM CHM ∠=∠+∠;(2)如图2,在GHC ∠的角平分线上取两点M 、Q ,使得AGM HGQ ∠=∠.请直接写出M ∠与GQH ∠之间的数量关系;(3)如图3,若射线GH 平分BGM ∠,点N 在MH 的延长线上,连接GN ,若AGM N ∠=∠,12M N HGN ∠=∠+∠,求MHG ∠的度数. 2、如图,∠MON =90°,点A ,B 分别在OM ,ON 上,AE 平分∠MAB ,BE 平分∠NBA .当点A ,B 在OM ,ON 上的位置变化时,∠E 的大小是否变化?若∠E 的大小保持不变,请说明理由;若∠E 的大小变化,求出变化范围.3、如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如下图所示就是一组正多边形.(1)观察上面每个正多边形中的∠a ,填写下表:(2)是否存在正n 边形使得∠a =12°?若存在,请求出n 的值;若不存在,请说明理由.4、若AE 是ABC 边BC 上的高,AD 是EAC ∠的平分线且交BC 于点D .若40ACB ∠=︒,65B ∠=︒,分别求BAD ∠和DAE ∠的度数.5、(1)如图1,∠ADC =120°,∠BCD =140°,∠DAB 和∠CBE 的平分线交于点F ,则∠AFB 的度数是 ;(2)如图2,若∠ADC =α,∠BCD =β,且180αβ+>︒,∠DAB 和∠CBE 的平分线交于点F ,则∠AFB = (用含α,β的代数式表示);(3)如图3,∠ADC =α,∠BCD =β,当∠DAB 和∠CBE 的平分线AG ,BH 平行时,α,β应该满足怎样的数量关系?请说明理由;(4)如果将(2)中的条件180αβ+>︒改为180αβ+<︒,再分别作∠DAB 和∠CBE 的平分线,∠AFB 与α,β满足怎样的数量关系?请画出图形并直接写出结论.-参考答案-一、单选题1、B【解析】【分析】根据多边形内角和公式即可求解.【详解】解:七边形的内角和为:(7-2)×180°=900°,故选:B.【点睛】此题考查了多边形的内角和,熟记多边形的内角和公式是解题的关键.2、D【解析】【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;三角形的内角可以小于60°,一个三角形的三个角可以为:20,70,90,故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.3、C【解析】【分析】先由翻折的性质得到∠AEN=∠A′EN,∠BEM=∠B′EM,从而可知∠NEM=12×180°=90°,然后根据余角的定义找出∠B′ME的余角即可.【详解】解:由翻折的性质可知:∠AEN=∠A′EN,∠BEM=∠B′EM.∠NEM=∠A′EN+∠B′EM=12∠AEA′+12∠B′EB=12×180°=90°.由翻折的性质可知:∠MB′E=∠B=90°.由直角三角形两锐角互余可知:∠B′ME的一个余角是∠B′EM.∵∠BEM=∠B′EM,∴∠BEM也是∠B′ME的一个余角.∵∠NBF+∠B′EM=90°,∴∠NEF=∠B′ME.∴∠ANE、∠A′NE是∠B′ME的余角.综上所述,∠B′ME的余角有∠ANE、∠A′NE、∠B′EM、∠BEM.故选:C.【点睛】本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键.4、A【解析】【分析】利用三角形外角定理及三角形内角和公式求解即可.【详解】解:∵∠7=∠4+∠2,∠6=∠1+∠3,∴∠6+∠7=∠1+∠2+∠3+∠4,∵∠5+∠6+∠7=180°,∴∠1+∠2+∠3+∠4+∠5=180°.故选:A.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.5、C【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.【详解】解:根据三角形的三边关系,得,+=,不能够组成三角形,不符合题意;A、459+=<,不能够组成三角形,不符合题意;B、2.5 6.5910C、3475,4315+=>-=<,能够组成三角形,符合题意;+=,不能组成三角形,不符合题意;D、51217故选:C.【点睛】此题主要考查了三角形三边关系,解题的关键是掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.6、B【解析】【分析】根据正多边形的每一个内角相等,则对应的外角也相等,根据多边形的外角和为360°,进而求得一个外角的度数,即可求得正八边形每个内角度数.【详解】解:∵正多边形的每一个内角相等,则对应的外角也相等,÷=︒一个外角等于:360845∴内角为18045135︒-︒=︒故选B【点睛】本题考查了正多边形的内角与外角的关系,利用外角求内角是解题的关键.7、B【解析】【分析】由外角的性质可得∠ABD =20°,由角平分线的性质可得∠DBC =20°,由平行线的性质即可求解.【详解】解:(1)∵∠A =30°,∠BDC =50°,∠BDC =∠A +∠ABD ,∴∠ABD =∠BDC −∠A =50°−30°=20°,∵BD 是△ABC 的角平分线,∴∠DBC =∠ABD =20°,∵DE ∥BC ,∴∠EDB =∠DBC =20°,故选:B .【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.8、A【解析】【分析】根据直角三角形的两个锐角互余即可得.【详解】解:设A x ∠=,则22B A x ∠=∠=,由题意得:90A B ∠+∠=︒,即290x x +=︒,解得30x =︒,即30A ∠=︒,故选:A .【点睛】本题考查了直角三角形的两个锐角互余,熟练掌握直角三角形的两个锐角互余是解题关键.9、C【解析】【分析】依据l 1∥l 2,即可得到∠3=∠1=46°,再根据l 3⊥l 4,可得∠2=90°﹣46°=44°.【详解】解:如图:∵l 1∥l 2,∠1=46°,∴∠3=∠1=46°,又∵l 3⊥l 4,∴∠2=90°﹣46°=44°,故选:C .【点睛】本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.10、B【解析】【分析】根据两直线平行,同位角相等可得42B AFG ∠=∠=︒,再由垂直的性质及三角形内角和定理即可得.【详解】解:∵FG BC ∥,∴42B AFG ∠=∠=︒,∵DE AB ⊥,∴90BDE ∠=︒,∴18048DEB BDE B ∠=︒-∠-∠=︒,故选:B .【点睛】题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.二、填空题1、1080【解析】【分析】根据多边形的外角和是360度,每个外角都相等,即可求得外角和中外角的个数,即多边形的边数,根据内角和定理即可求得内角和.【详解】解:多边形的边数是:360÷45=8,则多边形的内角和是:(8-2)×180=1080°.故答案为:1080.【点睛】本题主要考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化,因而把求多边形内角的计算转化为外角的计算,可以使计算简便.2、10【解析】【分析】先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.【详解】 解:正多边形的一个内角是144︒,∴该正多边形的一个外角为36︒,多边形的外角之和为360︒,∴边数3601036︒==︒, ∴这个正多边形的边数是10.故答案为:10.【点睛】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.3、21cm【解析】【分析】根据三角形中线性质,平分三角形面积,先利用AD 为△ABC 中线可得S △ABD =S △ACD ,根据E 为AD 中点,12BEC ABC S S ∆∆=,根据BF 为△BEC 中线,1124BEF BEF ABC S S S ∆∆∆==即可.【详解】解:∵AD 为△ABC 中线∴S △ABD =S △ACD ,又∵E 为AD 中点,故1122ABE DBE ABD ACE DCE ACD S S S S S S ∆∆∆∆∆∆====,, ∴111222BEC BDE DCE ABD ACD ABC S S S S S S ∆∆∆∆∆∆=+=+=,∵BF 为△BEC 中线, ∴ΔΔΔ11141244BEF BEC ABC S S S ===⨯=cm 2.故答案为:1cm 2.【点拨】本题考查了三角形中线的性质,牢固掌握并会运用是解题关键.4、6【解析】【分析】根据多边形内角和公式及多边形外角和可直接进行求解.【详解】解:由题意得:()18022360n ︒⨯-=⨯︒,解得:6n =,∴该多边形的边数为6;故答案为6.【点睛】本题主要考查多边形的内角和及外角和,熟练掌握多边形内角和及外角和是解题的关键. 5、6【解析】【分析】根据多边形内角和公式(n -2)×180°及多边形外角和始终为360°可列出方程求解问题.【详解】解:由题意得:(n -2)×180°=360°×2,解得:n =6;故答案为6.【点睛】本题主要考查多边形内角和及外角和,熟练掌握多边形的内角和公式及外角和是解题的关键.三、解答题1、 (1)见解析(2)∠GQH +∠GMH =180°,理由见解析(3)60°【解析】【分析】(1)过点M 作MI ∥AB 交EF 于点I ,可得∠AGM =∠GMI ,再由AB ∥CD ,可得MI ∥CD ,从而得到∠CHM =∠HMI ,即可求证;(2)过点M 作MP ∥AB 交EF 于点P ,同(1)可得到∠PMH =∠CHM ,∠GMP =∠AGM ,再由MH 平分∠GHC ,可得∠PHM =∠CHM ,从而得到∠PHM =∠PMH ,再由AGM HGQ ∠=∠,可得∠HGQ =∠GMP ,从而得到∠GMH =∠HGQ +∠PHM ,然后根据三角形的内角和定理,即可求解;(3)过点M 作MK ∥AB 交EF 于点K ,设,AGM N CHM αβ∠=∠=∠= ,可得902MGH α∠=︒-,同(1),可得∠GMH =∠GMK +HMK =αβ+ ,再由12M N HGN ∠=∠+∠,可得2HGN β∠=,然后根据三角形的内角和定理,可得302αβ+=︒ ,再由AB ∥CD ,可得∠AGH +∠CHG =180°,即可求解.(1)证明:如图,过点M作MI∥AB交EF于点I,∵MI∥AB,∴∠AGM=∠GMI,∵AB∥CD,∴MI∥CD,∴∠CHM=∠HMI,∴∠GMH=∠HMI+∠GMI= ∠AGM+∠CHM;(2)解:∠GQH+∠GMH=180°,理由如下:如图,过点M作MP∥AB交EF于点P,∵MP∥AB,∴∠GMP=∠AGM,∵AB∥CD,∴MP∥CD,∴∠PMH=∠CHM,∵MH平分∠GHC,∴∠PHM=∠CHM,∴∠PHM=∠PMH,∠=∠,∵AGM HGQ∴∠HGQ=∠GMP,∵∠GMH=∠GMP+∠PMH,∴∠GMH=∠HGQ+∠PHM,∵∠GQH+∠HGQ+∠PHM=180°,∴∠GQH+∠GMH=180°(3)解:如图,过点M作MK∥AB交EF于点K,设,AGM N CHM αβ∠=∠=∠= ,∵GH 平分∠BGM , ∴()1118090222MGH BGM AGM α∠=∠=︒-∠=︒-, ∵MK ∥AB ,∴GMK AGM N α∠=∠=∠= ,∵AB ∥CD ,∴MK ∥CD ,∴∠HMK =∠CHM ,∴∠GMH =∠GMK +HMK =αβ+ , ∵12M N HGN ∠=∠+∠, ∴12HGN αβαβ∠=+-=,即2HGN β∠=,∵∠GMH +∠N +∠MGN =180°, ∴9021802ααβαβ+++︒-+=︒ , 解得:302αβ+=︒ ,∵AB ∥CD ,∴∠AGH +∠CHG =180°, 即901802MHG αβα+∠+︒-+=︒ , ∴902MHG αβ++∠=︒ ,∴∠MHG =60°.【点睛】本题主要考查了平行的判定和性质,三角形的内角和定理,角平分线的定义,做适当辅助线,构造平行线,并熟练掌握平行的判定和性质定理,三角形的内角和定理,角平分线的定义是解题的关键.2、∠E 的大小保持不变,等于45°【解析】【分析】根据∠MON =90°,可得∠OAB +∠EBA =90°,再由∠OAB +∠MAB =180°,∠OBA +∠ABN =180°,可得∠MAB +∠ABN =270°,从而得到∠EAB +∠EBA =135°,即可求解.【详解】解:∠E 的大小保持不变,等于45°,理由如下:∵∠MON =90°,∴∠OAB +∠OBA =90°,∵∠OAB +∠MAB =180°,∠OBA +∠ABN =180°,∴∠MAB +∠ABN =270°,∵AE 、EB 分别平分∠MAB 和∠NBA ,∴∠EAB =12∠MAB ,∠EBA =12∠ABN ,∴∠EAB +∠EBA =135°,∴∠E =45°,∴∠E 的大小保持不变,等于45°.【点睛】本题主要考查了直角三角形的两锐角关系,角平分线的定义,三角形的内角和定理,补角的性质,熟练掌握直角三角形的两锐角互余,角平分线的定义,三角形的内角和定理,补角的性质是解题的关键.3、(1)18045,3630,(),n︒︒︒︒;(2)存在,15 【解析】【分析】(1)根据正多边形的外角和,求得内角的度数,根据等腰三角形性质和三角形内角和定理即可求得α∠的度数;(2)根据(1)的结论,将12α∠=︒代入求得n 的值即可【详解】解:(1)正多边形的每一个外角都相等,且等于360n ︒ 则正多边形的每个内角为360180n︒︒-, 根据题意,正多边形的每一条边都相等,则α∠所在的等腰三角形的顶角为:360180n ︒︒-,另一个底角为α∠,1360180=1801802n n α⎡︒⎤⎛⎫⎛⎫∴∠︒-︒-=︒ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦当4n =时,45α∠=︒当5n =时,α∠=36︒当6n =时,α∠=30故答案为:18045,3630,(),n︒︒︒︒ (2)存在.设存在正n 边形使得12a ∠=︒, ∴180()12n︒=︒,解得15n =. 【点睛】本题考查了正多边形的外角和与内角的关系,等腰三角形的性质和三角形内角和定理,根据正多边形的外角与内角互补求得内角是解题的关键.4、25DAE ∠=︒;50BAD ∠=︒【解析】【分析】根据△AEC 的内角和定理可得:18050EAC AEC ACB ∠=︒-∠-∠=︒,根据角平分线的性质可得11502522DAE EAC ∠=∠=⨯︒=︒,根据△ABC 的内角和定理可得∠BAC ,又因为BAE BAC EAC ∠=∠-∠,BAD BAE DAE ∠∠∠=+,即可得解.【详解】解:∵AE 是ABC 边BC 上的高∴90AEC ∠=︒∴在EAC 中,有180EAC AEC ACB ∠+∠+∠=︒又∵40ACB ∠=︒∴180EAC AEC ACB ∠=︒-∠-∠1809040=︒-︒-︒50=︒∵AD 是EAC ∠的平分线 ∴11502522DAE EAC ∠=∠=⨯︒=︒∵在ABC 中,有180BAC B BAC ∠+∠+∠=︒已知40ACB ∠=︒,65B ∠=︒∴180BAC ACB B ∠=︒-∠-∠1804065=︒-︒-︒75=︒∴755025BAE BAC EAC ∠∠∠=-=︒-︒=︒∴525205BAD BAE DAE ∠∠∠=+=︒=+︒︒【点睛】本题考查了三角形内角和定理及角平分线的性质,熟悉这些知识点,灵活应用等量代换是解决本题的关键.5、(1)40°;(2)119022αβ+-︒;(3)若AG ∥BH ,则α+β=180°,理由见解析;(4)121902αβ︒--,图见解析. 【解析】【分析】(1)利用四边形内角和定理得到∠DAB +∠ABC =360°-120°-140°=100°.再利用三角形的外角性质得到∠F =∠FBE -∠FAB ,通过计算即可求解;(2)同(1),通过计算即可求解;(3)由AG ∥BH ,推出∠GAB =∠HBE .再推出AD ∥BC ,再利用平行线的性质即可得到答案;(4)利用四边形内角和定理得到∠DAB +∠ABC =360°-∠D -BCD =360°-α-β.再利用三角形的外角性质得到∠F =∠MAB -∠ABF ,通过计算即可求解.【详解】解:(1)∵BF 平分∠CBE ,AF 平分∠DAB ,∴∠FBE=12∠CBE,∠FAB=12∠DAB.∵∠D+∠DCB+∠DAB+∠ABC=360°,∴∠DAB+∠ABC=360°-∠D-∠DCB =360°-120°-140°=100°.又∵∠F+∠FAB=∠FBE,∴∠F=∠FBE-∠FAB=12∠CBE−12∠DAB=12(∠CBE−∠DAB)=12(180°−∠ABC−∠DAB)=12×(180°−100°)=40°.故答案为:40°;(2)由(1)得:∠AFB=12(180°−∠ABC−∠DAB),∠DAB+∠ABC=360°-∠D-∠DCB.∴∠AFB=12(180°−360°+∠D+∠DCB)=12∠D+12∠DCB−90°=12α+12β−90°.故答案为:119022αβ+-︒;(3)若AG∥BH,则α+β=180°.理由如下:若AG∥BH,则∠GAB=∠HBE.∵AG平分∠DAB,BH平分∠CBE,∴∠DAB=2∠GAB,∠CBE=2∠HBE,∴∠DAB=∠CBE,∴AD∥BC,∴∠DAB+∠DCB=α+β=180°;(4)如图:∵AM平分∠DAB,BN平分∠CBE,∴∠BAM=12∠DAB,∠NBE=12∠CBE,∵∠D+∠DAB+∠ABC+∠BCD=360°,∴∠DAB+∠ABC=360°-∠D-BCD=360°-α-β,∴∠DAB+180°-∠CBE=360°-α-β,∴∠DAB-∠CBE=180°-α-β,∵∠ABF与∠NBE是对顶角,∴∠ABF=∠NBE,又∵∠F+∠ABF=∠MAB,∴∠F=∠MAB-∠ABF,∴∠F=12∠DAB−∠NBE=12∠DAB−12∠CBE=12(∠DAB−∠CBE)=12(180°−α−β)=90°-12α−12β.【点睛】本题主要考查了三角形的外角性质、四边形内角和定理、平行线的性质、角平分线的定义.借助转化的数学思想,将未知条件转化为已知条件解题.。
七年级下7.5多边形的内角和与外角和同步练习含详细答案
七年级下7.5多边形的内角和与外角和同步练习含详细答案7.5多边形的内角和与外角和一.选择题(共15小题)1.在Z\ABC 中,若ZA=95°, ZB=40°,则ZC 的度数为()A. 35°B. 40°C. 45°D. 50°2•如图,CE是AABC的外角ZACD的平分线,若ZB=35°, ZACE=60\则ZA二A. 35°B. 95° C・85° D・75°3.若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形4.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中Zl、Z2、Z3、Z4的外角的角度和为220。
,则ZBOD的度数为何?()A. 40°B. 45°C. 50° D・60°5.若一个正n边形的每个内角为144%则这个正n边形的所有对角线的条数是()A. 7B. 10C. 35D. 706.如图所示,小华从A点出发,沿直线前进10米后左转24。
,再沿直线前进10米,乂向左转24。
,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()七年级下7.5多边形的内角和与外角和同步练习含详细答案A. 140 米B. 150 米C. 160 米D. 240 米7.一个正多边形的内角和为540。
,则这个正多边形的每一个外角等于()A. 108°B. 90°C. 72°D. 60°&正多边形的一个内角是150。
,则这个正多边形的边数为()A. 10B. 11C. 12 D・ 139.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A. a>bB. a=bC. a<b D・b=a+180°10.六边形的内角和是()A. 540°B. 720°C. 900°D. 360°11.已知一个正多边形的一个外角为36。
华东师大版七年级下册 第9章多边形(9.2-9.3)同步测试(含解析)
多边形(9.2-9.3)同步测试一、选择(每小题3分,共24分)1.四边形没有稳定性,当四边形形状改变时,发生变化的是()A.四边形的边长B.四边形的周长C.四边形内角的大小D.四边形的内角和分析:四边形具有不稳定性,形状改变时,变的是内角的度数,边长不发生变化.故选:C.2.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形B.正四边形C.正六边形D.正八边形分析:平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.正八边形每个内角是135º,360°÷135º不能得到整数,故选D.3.若一个多边形的每一个外角都是40°,则这个多边形是()A.六边形B.八边形C.九边形D.十边形分析:因为任意多边形的外角和为360º,360º÷40º=9,即这个多边形的边数是9,故选C.4.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6 B.7 C.8 D.9分析:设这个多边形是n边形,依题意,得n﹣3=5,解得n=8.故这个多边形的边数是8.故选C.5.已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A.3 B.4 C.5 D.6分析:设多边形的边数为n,根据题意,得(n﹣2)•180°=360°,n﹣2=2,n=4.故选B.6.若一个多边形有14条对角线,则这个多边形的边数为()A.4 B.5 C.6 D.7分析:n边形共有条对角线.当n=4时,=2;当n=5时,=5;当n=6时,=9;当n=7时,=14. 故选:D.7.用边长相等的下列两种正多边形,不能进行平面镶嵌的是()A.等边三角形和正六边形B.正方形和正八边形C.正五边形和正十边形D.正六边形和正十二边形分析:A、正三角形的每个内角是60°,正六边形的每个内角是120°,∵2×60°+2×120°=360°,能密铺;B、正八边形的每个内角是135°,正方形的每个内角是90°,∵2×135°+90°=360°,能密铺,;C、正五形的每个内角是108°,正十边形的每个内角是144°,∵2×108°+144°=360°,能密铺,;D、正六边形的每个内角是120°和正十二边形的每个内角是150°,120m+150n=360°,m=3﹣n,显然n取任何正整数时,m不能得正整数,故不能铺满.故选:D.8.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 两内角平分线的交点,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36°B.42°C.45°D.48°分析:∵∠OBC=30º,正五边形的每一个内角=(5﹣2)•180°÷5=108°,∴图3中的五角星的五个锐角均为:108°﹣60°=48°.故选:D.二、填空(每小题4分,共24分)9.一个n边形的内角和是1800°,则n=.分析:根据题意得180·(n﹣2)=1800,解得:n=12.故答案是:12.10.如图,某文化广场的地面是由正五边形与图形密铺而成,图中图形的尖角∠ABC的度数为.分析:∵正五边形每个内角是180°﹣360°÷5=108°,∴∠ABC=(360°﹣3×108°)÷2=36°÷2=18°.故答案为:18°.11.将一个正六边形纸片对折,并完全重合,那么得到的图形是边形.分析:如图,①折痕是对角线所在的直线时,得到的图形是四边形,②折痕是对边中点所在的直线时,得到的图形是五边形,所以,得到的图形是四边形或五边形.故答案为:四边形或五.12.若一个多边形的内角和等于720°,则从这个多边形的一个顶点引出对角线条.分析:设多边形的边数是n,则(n﹣2)•180°=720°,解得n=6,∴从这个多边形的一个顶点引出对角线是:6﹣3=3(条),故答案为:3.13.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是.分析:如图,根据多边形外角和定理得到:∠1+∠2+∠3+∠4+∠5=360°,∴∠5=360﹣4×70=80°,∴∠AED=180﹣∠5=180﹣80=100°.14.用三种不同的正多边形地砖铺满地面,若其中有正三角形,正八边形,则另一个为正边形.分析:∵正三角形的内角是60°,正八边形的内角是135°,∴另一个正多边形的内角是165°,∴另一个正多边形是24边形;故答案为:24.三、解答(5个小题,共52分)15.若一个多边形的内角和等于外角和的3倍,求这个多边形的边数.分析:根据多边形的外角和与内角和公式,可得一个关于边数的方程,解方程即可.解:设这个多边形是n边形,由题意得:(n﹣2)×180°=360°×3,解得:n=8.答:这个多边形的边数是8.16.如图所示,正多边形A,B,C密铺地面,其中A为正六边形,C为正方形,请通过计算求出正多边形B的边数.分析:周角为360°,只有B的内角的度数是未知的,可构建方程求解.解:设正多边形B一个内角为x,则有120°+90°+x=360°,∴x=150°,∴n=360÷(180﹣150)=12.17.某校研究性学习小组研究平面密铺的问题,其中在探究用两种边长相等的正多边形做平面密铺的情形时用了以下方法:用2个正三角形和2个正六边形或4个正三角形和1个正六边形可以拼成一个无缝隙、不重叠的平面图形,如图(1)、(2)(3).请你仿照此方法解决下面问题:(1)研究用边长相等的x个正三角形和y个正方形进行平面密铺的情形,求出x和y的值(2)按图(4)中给出两个边长相等的正方形和正三角形画出一个密铺后图形的示意图.分析:(1)正三角形的每个内角是60°,正方形的每个内角是90°,能进行密铺,说明一个顶点处的各内角之和为360°,依此列出方程求出x和y的值;(2)作出3个正三角形和2个正方形进行平面密铺的图形.解:(1)依题意,可有60·x+90•y=360,化简得2x+3y=12,∵x、y为正整数,∴x=3,y=2;(2)如图.18.如图,小明从点O出发,前进5m后向右转15°,再前进5m后又向右转15°,…这样一直下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?分析:第一次回到出发点A时,所经过的路线正好构成一个外角是15度的正多边形,求得边数,即可求解.解:(1)∵所经过的路线正好构成一个外角是15度的正多边形,∴360÷15=24,24×5=120m答:小明一共走了120米;(2)(24﹣2)×180°=3960°,答:这个多边形的内角和是3960度.19.(1)已知:如图1,P为△ADC内一点,DP、CP分别平分DP、CP分别平公∠ADC和∠ACD,如果∠A=90°,那么∠P=°;如果∠A=x°,则∠P=°;(答案直接填在题中横线上)(2)如图2,P为四边形ABCD内一点,DP、CP分别平分∠ADC和∠BCD,试探究∠P 与∠A+∠B的数量关系,并写出你的探索过程;(3)如图3,P为五边形ABCDE内一点,DP、CP分别平分DP、CP分别平公∠ADC和∠ACD,请直接写出∠P与∠A+∠B+∠E的数量关系:;(4)若P为n边形A1A2A3…A n内一点,PA1平分∠A n A1A2,PA2平分∠A1A2A3,请直接写出∠P与∠A3+A4+A5+…∠A n的数量关系:.(用含n的代数式表示)分析:(1)根据角平分线的定义和三角形内角和定理,列式整理解答;(2)根据角平分线的定义和四边形的内角和,列式整理解答;(3)根据角平分线的定义和五边形的内角和,列式整理解答;(4)根据角平分线的定义和n边形的内角和公式,列式整理解答;解:(1)∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠ACD=180°﹣(∠ADC+∠ACD)=180°﹣(180°﹣∠A)=90°+∠A,∴如果∠A=90°,那么∠P=135°;如果∠A=x°,则∠P=(90+)°;(2)∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠DPC=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠BCD=180°﹣(∠ADC+∠BCD)=180°﹣(360°﹣∠A﹣∠B)=(∠A+∠B);(3)五边形ABCDEF的内角和为:(5﹣2)•180°=540°,∵DP、CP分别平分∠EDC和∠BCD,∴∠P=∠EDC,∠PCD=∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠EDC﹣∠BCD=180°﹣(∠EDC+∠BCD)=180°﹣(540°﹣∠A﹣∠B﹣∠E)=(∠A+∠B+∠E)﹣90°,即∠P=(∠A+∠B+∠E)﹣90°;(4)同(1)可得,∠P=(∠A3+∠A4+∠A5+…∠A n)﹣(n﹣4)×90°.附加题:20.如图,四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F.(1)若∠F=80º,则∠ABC+∠BCD=;∠E=;(2)探索∠E与∠F有怎样的数量关系,并说明理由;(3)给四边形ABCD添加一个条件,使得∠E=∠F所添加的条件为.分析:(1)根据三角形内角和定理求出∠FBC+∠BCF的度数,再由角平分线定义得出∠∠ABC+∠BCD的度数;由四边形ABCD的内角和为360°,得出∠BAD+∠CDA的度数.由角平分线定义得出∠DAE+∠ADE的度数,然后根据三角形内角和定理求出∠E的度数;(2)由四边形ABCD的内角和为360°和角平分线定义得出∠DAE+∠ADE+∠FBC+∠BCF 的度数,又根据三角形内角和定理可得∠E+∠F的度数;(3)由(2)可知∠E+∠F=180°,如果∠E=∠F,那么可以求出∠E=∠F=90°,根据三角形内角和定理求出∠DAE+∠ADE=90°,再利用角平分线定义得到∠BAD+∠CDA=180°,于是AB∥CD.解:(1)∵∠F=80º,∴∠FBC+∠BCF=180°﹣∠F=100°.∵∠ABC、∠BCD的角平分线交于点F,∴∠ABC=2∠FBC,∠BCD=2∠BCF,∴∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=200°;∵四边形ABCD的内角和为360°,∴∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=160°.∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∴∠DAE=∠BAD,∠ADE=∠CDA,∴∠DAE+∠ADE=∠BAD+∠CDA=(∠BAD+∠CDA)=80°,∴∠E=180°﹣(∠DAE+∠ADE)=100°;(2)∠E+∠F=180°.理由如下:∵∠BAD+∠CDA+∠ABC+∠BCD=360°,∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F,∴∠DAE+∠ADE+∠FBC+∠BCF=180°,∵∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,∴∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,∴∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)AB∥CD.。
精品试题华东师大版七年级数学下册第9章多边形达标测试试题(含答案解析)
七年级数学下册第9章多边形达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB DF ∥,AC CE ⊥于点C ,BC 与DF 交于点E ,若20A ∠=︒,则CED ∠等于( )A .20°B .50°C .70°D .110°2、如图,点B 、G 、C 在直线FE 上,点D 在线段AC 上,下列是△ADB 的外角的是( )A .∠FBAB .∠DBC C .∠CDBD .∠BDG3、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是( )A .7B .8C .9D .104、下列叙述正确的是()A.三角形的外角大于它的内角B.三角形的外角都比锐角大C.三角形的内角没有小于60°的D.三角形中可以有三个内角都是锐角5、一副三角板如图放置,点A在DF的延长线上,∠D=∠BAC=90°,∠E=30°,∠C=45°,若BC//DA,则∠ABF的度数为()A.15°B.20°C.25°D.30°6、如图,在ABC中,AD、AE分别是边BC上的中线与高,4AE ,CD的长为5,则ABC的面积为()A.8 B.10 C.20 D.407、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A .180°B .360°C .540°D .不能确定8、已知ABC 的三边长分别为a ,b ,c ,则a ,b ,c 的值可能分别是( )A .1,2,3B .3,4,7C .2,3,4D .4,5,109、已知三条线段的长分别是4,4,m ,若它们能构成三角形,则整数m 的最大值是( )A .10B .8C .7D .410、一把直尺和一块三角板ABC (含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D 、点E ,另一边与三角板的两直角边分别交于点F 、点A ,且45CDE ∠=︒,那么BAF ∠的大小为( )A .35°B .20°C .15°D .10°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知ABC 中,AB =5,AC =7,BC =a ,则a 的取值范围是 ___.2、边长为1的小正方形组成如图所示的6×6网格,点A ,B ,C ,D ,E ,F ,G ,H 都在格点上.其中到四边形ABCD 四个顶点距离之和最小的点是_________.3、如图,BE ,CD 是△ABC 的高,BE ,CD 相交于点O ,若BAC α∠=,则BOC ∠=_________.(用含α的式子表示)4、如果三角形的三条边长分别为26x 、、,那么x 的取值范围是______. 5、一个三角形的两边长分别为2和5,则第三边的长度可取的整数值为_________(写出一个即可).三、解答题(5小题,每小题10分,共计50分)1、求下列图中的x 的值(1)(2)2、如图,在△ABC中,CE平分∠ACB交AB于点E,AD是△ABC边BC上的高,AD与CE相交于点F,且∠ACB=80°,求∠AFE的度数.3、(1)在图1中,已知△ABC中,∠B>∠C,AD⊥BC于D,AE平分∠BAC,∠B=70°,∠C=40°,求∠DAE的度数.(2)在图2中,∠B=x,∠C=y,其他条件不变,若把AD⊥BC于D改为F是AE上一点,FD⊥BC于D,试用x、y表示∠DFE=:(3)在图3中,当点F是AE延长线上一点,其余条件不变,则(2)中的结论还成立吗?若成立,请说明为什么;若不成立,请写出成立的结论,并说明为什么.(4)在图3中,分别作出∠BAE和∠EDF的角平分线,交于点P,如图4.试用x、y表示∠P=.4、如图,点E为直线AB上一点,∠CAE=2∠B,BC平分∠ACD,求证:AB∥CD.5、概念学习 :已知△ABC ,点P 为其内部一点,连接PA 、PB 、PC ,在△PAB 、△PBC 和△PAC 中,如果存在一个三角形,其内角与△ABC 的三个内角分别相等,那么就称点P 为△ABC 的等角点. 理解应用(1)判断以下两个命题是否为真命题,若为真命题,则在相应横线内写:“真命题”;反之,则写“假命题”①内角分别为30°、60°、90°的三角形存在等角点;②任意的三角形都存在等角点.(2)如图①中,点P 是锐角三角形△ABC 的等角点,若∠BAC =∠PBC ,探究图中么∠BPC 、∠ABC 、∠ACP 之间的数量关系,并说明理由.-参考答案-一、单选题1、C【解析】【分析】由AC CE ⊥与20A ∠=︒,即可求得ABC ∠的度数,又由AB DF ∥,根据两直线平行,同位角相等,即可求得CED ∠的度数.【详解】解:∵AC CE ⊥,∴90C ∠=︒,∵20A ∠=︒,∴70ABC ∠=︒,∵AB DF ∥,∴70CED ABC ∠=∠=︒.故选:C .【点睛】题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键.2、C【解析】【分析】根据三角形的外角的概念解答即可.【详解】解:A.∠FBA 是△ABC 的外角,故不符合题意;B. ∠DBC 不是任何三角形的外角,故不符合题意;C.∠CDB 是∠ADB 的外角,符合题意;D. ∠BDG 不是任何三角形的外角,故不符合题意;故选:C .【点睛】本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.3、D【解析】根据多边形外角和定理求出正多边形的边数.【详解】∵正多边形的每一个外角都等于36°,∴正多边形的边数=36036=10.故选:D.【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.4、D【解析】【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;三角形的内角可以小于60°,一个三角形的三个角可以为:20,70,90,故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.5、A【分析】先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.【详解】解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,∴∠EFD=60°,∠ABC=45°,∵BC∥AD,∴∠EFD=∠FBC=60°,∴∠ABF=∠FBC-∠ABC=15°,故选A.【点睛】本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.6、C【解析】【分析】根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.【详解】解:∵AD 是边BC 上的中线,CD 的长为5,∴CB =2CD =10, ABC 的面积为111042022BC AE ⨯=⨯⨯=, 故选:C .【点睛】本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.7、B【解析】【分析】设BE 与DF 交于点M ,BE 与AC 交于点N ,根据三角形的外角性质,可得,BMD B F CNE A E ∠=∠+∠∠=∠+∠ ,再根据四边形的内角和等于360°,即可求解.【详解】解:设BE 与DF 交于点M ,BE 与AC 交于点N ,∵,BMD B F CNE A E ∠=∠+∠∠=∠+∠ ,∴A B C D E F BMD CNE C D ∠+∠+∠+∠+∠+∠=∠+∠+∠+∠ ,∵360BMD CNE C D ∠+∠+∠+∠=︒,∴360A B C D E F ∠+∠+∠+∠+∠+∠=︒ .故选:B【点睛】本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键.8、C【解析】【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.9、C【解析】【分析】根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.【详解】解:条线段的长分别是4,4,m,若它们能构成三角形,则<<m4444-<<+,即08m又m为整数,则整数m的最大值是7故选C本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键. 10、C 【解析】 【分析】先根据直角三角形两锐角互余求出45DEC ∠=︒ ,由DE ∥AF 即可得到∠CAF =45°,最后根据∠BAC =60°,即可得出∠BAF 的大小. 【详解】解:∵45CDE ∠=︒,90C ∠=︒, ∴45CED ∠=︒, ∵DE ∥AF ,∴∠CAF =∠CED =45°, ∵∠BAC =60°,∴∠BAF =60°-45°=15°, 故选:C 【点睛】本题主要考查了平行线的性质以及直角三角形的性质的运用,解题解题的关键是掌握平行线的性质:两直线平行,同位角相等. 二、填空题 1、2<a <12 【解析】 【分析】直接利用三角形三边关系得出a 的取值范围.解:∵△ABC 中,AB =5,AC =7,BC =a , ∴7﹣5<a <7+5, 即2<a <12. 故答案为:2<a <12. 【点睛】本题考查了三角形的三边关系,做题的关键是掌握三角形中任意两边之和大于第三边,两边之差小于第三边. 2、E 【解析】 【分析】到四边形ABCD 四个顶点距离之和最小的点是对角线的交点,连接对角线,直接判断即可. 【详解】如图所示,连接BD 、AC 、GA 、GB 、GC 、GD , ∵GD GB BD +>,GA GC AC +>,∴到四边形ABCD 四个顶点距离之和最小是AC BD +,该点为对角线的交点, 根据图形可知,对角线交点为E , 故答案为:E .【点睛】本题考查了三角形三边关系,解题关键是通过连接辅助线,运用三角形三边关系判断点的位置.3、180°-α【解析】【分析】根据三角形的高的定义可得∠AEO=∠ADO=90°,再根据四边形在内角和为360°解答即可.【详解】解:∵BE,CD是△ABC的高,∠=,∴∠AEO=∠ADO=90°,又BACα∴∠BOC=∠DOE=360°-90°-90°-α=180°-α,故答案为:180°-α.【点睛】本题考查三角形的高、四边形的内角和、对顶角相等,熟知四边形在内角和为360°是解答的关键.x4、48【解析】【分析】根据三角形的三边关系列出不等式组,解不等式组即可求解 【详解】解:根据题意得:6262x -<<+, 即48x.故答案为:48x.【点睛】考查了三角形三边关系,本题需要理解的是如何根据已知的两条边求第三边的范围. 5、4,5,6(写出一个即可) 【解析】 【分析】由构成三角形三边成立的条件可得第三条边的取值范围. 【详解】 设第三条长为x ∵2+5=7,5-2=3 ∴3<x <7.故第三条边的整数值有4、5、6. 故答案为:4,5,6(写出一个即可) 【点睛】本题考查了构成三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边,关键为“任意”两边均满足此关系. 三、解答题1、(1)65;(2)60. 【解析】【分析】(1)根据四边形内角和等于360°,列方程即可求出x的值;(2)根据五边形内角和等于(5-2)⨯180°,列方程即可求出x的值.【详解】解:(1)∵四边形内角和等于360°,∴x+x+140+90=360,解得:x=65;(2)∵五边形内角和等于(5-2)⨯180°=540°,∴x+2x+150+120+90=540,解得:x=60.【点睛】本题考查了四边形和五边形的内角和,熟练掌握n边形的内角和等于(n-2)⨯180°是解题的关键.①几何计算题中,如果依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程的思想;②求角的度数常常要用到“n边形的内角和等于(n-2)⨯180°”这一隐含的条件.2、∠AFE=50°.【解析】【分析】根据CE平分∠ACB,∠ACB=80°,得出∠ECB=11804022ACB∠=⨯︒=︒,根据高线性质得出∠ADC=90°,根据三角形内角和得出∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,利用对顶角性质得出∠AFE=∠DFC=50°即可.【详解】解:∵CE平分∠ACB,∠ACB=80°,∴∠ECB=11804022ACB∠=⨯︒=︒,∵AD 是△ABC 边BC 上的高,AD ⊥BC , ∴∠ADC =90°,∴∠DFC =180°-∠ADC -∠ECB =180°-90°-40°=50°, ∴∠AFE =∠DFC =50°. 【点睛】本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键. 3、(1)15°;(2)1122x y -;(3)结论应成立.1122x y -(4)3144x y -. 【解析】 【分析】(1)根据三角形内角和公式得出∠BAC =180°-∠B -∠C =180°-70°-40°=70°,根据AE 平分∠BAC ,得出∠BAE =11703522BAC ∠=⨯︒=︒,利用AD ⊥BC ,得出∠BAD =90°-∠B =90°-70°=20°,然后用角的差计算即可;(2)根据三角形内角和得出∠BAC =180°-∠B -∠C =180°- x -y ,根据AE 平分∠BAC ,得出∠EAC =()1111180902222BAC x y x y ∠=⨯︒--=︒--,利用FD ⊥BC ,可得∠DFE +∠FED =90°,根据∠FED 是△AEC 的外角,可求∠FED =∠C +∠EAC =111190902222y x y x y +︒--=︒-+,利用余角求解即可; (3)结论应成立.过点A 作AG ⊥BC 于G ,根据三角形内角和得出∠BAC =180°-∠B -∠C =180°- x -y ,根据AE 平分∠BAC ,得出∠BAE =()1111180902222BAC x y x y ∠=⨯︒--=︒--,根据AG ⊥BC ,得出∠BAG =90°-∠B =90°-x ,可求∠GAE =∠BAE -∠BAG =()11909022x y x ︒---︒-=1122x y -,根据FD ⊥BC ,AG ⊥BC ,可证AG∥FD ,利用平行线性质即可求解;(4)设AF 与PD 交于H ,根据FD ⊥BC ,PD 平分∠EDF ,得出∠HDF =11904522EDF ∠=⨯︒=︒,根据PA 平分∠BAE ,∠BAE =()1111180902222BAC x y x y ∠=⨯︒--=︒--,得出∠PAE =1111119045222244BAE x y x y ⎛⎫∠=︒--=︒-- ⎪⎝⎭,根据对顶角性质∠AHP =∠FHD ,结合三角形内角和得出∠P +∠PAE =∠HDF +∠EFD ,即∠P +114544x y ︒--=45°+1122x y -,求出∠P 即可. 【详解】解:(1)∵∠B =70°,∠C =40°,∴∠BAC =180°-∠B -∠C =180°-70°-40°=70°, ∵AE 平分∠BAC ,∴∠BAE =11703522BAC ∠=⨯︒=︒, ∵AD ⊥BC , ∴∠BDA =90°, ∴∠B +∠BAD =90°,∴∠BAD =90°-∠B =90°-70°=20°, ∴∠DAE =∠BAE -∠BAD =35°-20°=15°; (2)∵∠B =x ,∠C =y ,∴∠BAC =180°-∠B -∠C =180°- x -y , ∵AE 平分∠BAC ,∴∠EAC =()1111180902222BAC x y x y ∠=⨯︒--=︒--, ∵FD ⊥BC , ∴∠EDE =90°, ∴∠DFE +∠FED =90°, ∵∠FED 是△AEC 的外角,∴∠FED =∠C +∠EAC =111190902222y x y x y +︒--=︒-+,∴∠DFE =90°-∠FED =1122x y -, 故答案为:1122x y -; (3)结论应成立. 过点A 作AG ⊥BC 于G , ∵∠B =x ,∠C =y ,∴∠BAC =180°-∠B -∠C =180°- x -y , ∵AE 平分∠BAC ,∴∠BAE =()1111180902222BAC x y x y ∠=⨯︒--=︒--, ∵AG ⊥BC , ∴∠AGB =90°, ∴∠B +∠BAG =90°, ∴∠BAG =90°-∠B =90°-x , ∴∠GAE =∠BAE -∠BAG =()11909022x y x ︒---︒-=1122x y -, ∵FD ⊥BC ,AG ⊥BC , ∴AG∥FD , ∴∠EFD =∠GAE =1122x y -(4)设AF 与PD 交于H , ∵FD ⊥BC ,PD 平分∠EDF , ∴∠HDF =11904522EDF ∠=⨯︒=︒,∵PA 平分∠BAE ,∠BAE =()1111180902222BAC x y x y ∠=⨯︒--=︒--, ∴∠PAE =1111119045222244BAE x y x y ⎛⎫∠=︒--=︒-- ⎪⎝⎭,∵∠AHP =∠FHD ,∠EFD =1122x y -∴∠P +∠PAE =∠HDF +∠EFD ,即∠P +114544x y ︒--=45°+1122x y -, ∴∠P =1111314545224444x y x y x y ⎛⎫︒+--︒--=- ⎪⎝⎭,故答案为:3144x y -.【点睛】本题考查三角形内角和,角平分线定义,直角三角形两锐角互余,三角形外角性质,对顶角性质,平行线的判定与性质,掌握三角形内角和,角平分线定义,直角三角形两锐角互余,三角形外角性质,对顶角性质,平行线的判定与性质是解题关键. 4、见解析 【解析】 【分析】根据三角形外角的性质,可得∠B=∠ACB,再由BC平分∠ACD,可得∠B=∠DCB,即可求证.【详解】证明:∵∠CAE=∠ACB+∠B,∠CAE=2∠B,∴∠B=∠ACB,又∵BC平分∠ACD,∴∠ACB=∠DCB,∴∠B=∠DCB,∴AB∥CD(内错角相等,两直线平行).【点睛】本题主要考查了平行线的判定,三角形外角的性质,角平分线的定义,熟练掌握平行线的判定定理,三角形外角的性质定理是解题的关键.5、(1)①真命题;②假命题;(2)∠BPC=∠ABC+∠ACP【解析】【分析】(1)①根据等角点的定义,可知内角分别为30°、60°、90°的三角形存在等角点,从而可作出判断;②等边三角形不存在等角点,故可作出判断;(2)根据∠BPC=∠ABP+∠BAC+∠ACP以及∠BAC=∠PBC,即可得出三个角间的数量关系.【详解】(1)①作内角分别为30°、60°、90°的三角形斜边的中线,取中线的中点,则此点就是此直角三角形的等角点,故为真命题;故答案为:真命题;②任意三角形都存在等角点是假命题,如等边三角形不存在等角点,故为假命题;故答案为:假命题;(2)∠BPC=∠ABC+∠ACP理由如下:∵∠ABP+∠BAP=180°−∠BPA,∠ACP+∠CAP=180°−∠CPA∴∠ABP+∠BAP+∠ACP+∠CAP=180°−∠BPA+180°−∠CPA=360°−(∠BPA+∠CPA)即∠ABP+∠BAC+∠ACP=360°−(∠BPA+∠CPA)∴∠BPC=360°−(∠BPA+∠CPA)= ∠ABP+∠BAC+∠ACP∵∠BAC=∠PBC∴∠BPC=∠ABP+∠BAC+∠ACP=∠ABP+∠PBC+∠ACP=∠ABC+∠ACP∴∠BPC=∠ABC+∠ACP【点睛】本题主要考查三角形内角和定理的应用,解决问题的关键是理解等角的定义,根据等角的定义及三角形的内角和得出角的关系.。
2021-2022学年最新华东师大版七年级数学下册第9章多边形定向练习试题(含详细解析)
七年级数学下册第9章多边形定向练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,BD 是ABC 的角平分线,∥DE BC ,交AB 于点E .若30A ∠=︒,50BDC ∠=︒,则BDE ∠的度数是( )A .10°B .20°C .30°D .50°2、已知ABC 的三边长分别为a ,b ,c ,则a ,b ,c 的值可能分别是( )A .1,2,3B .3,4,7C .2,3,4D .4,5,103、在一个直角三角形中,一个锐角等于52°,则另一个锐角的度数是( )A .28°B .38°C .45°D .58°4、BP 是∠ABC 的平分线,CP 是∠ACB 的邻补角的平分线,∠ABP =20°,∠ACP =50°,则∠P =( )A .30°B .40°C .50°D .60°5、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是( )A .7B .8C .9D .106、下列长度的三条线段能组成三角形的是( )A .2,3,6B .2,4,7C .3,3,5D .3,3,77、如图,将一副三角板平放在一平面上(点D 在BC 上),则1∠的度数为( )A .60︒B .75︒C .90︒D .105︒8、当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为60°,那么这个“特征三角形”的最大内角的度数是( )A .80°B .90°C .100°D .120°9、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD 是△ABC 的外角.求证:∠ACD =∠A +∠B .下列说法正确的是( )A .证法1用特殊到一般法证明了该定理B .证法1只要测量够100个三角形进行验证,就能证明该定理C .证法2还需证明其他形状的三角形,该定理的证明才完整D .证法2用严谨的推理证明了该定理10、如图,在△ABC 中,AD 是△ABC 的中线,△ABD 的面积为3,则△ABC 的面积为()A .8B .7C .6D .5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在ABC 中,39AB AC ==,,则BC 的取值范围是_______.2、一个三角形的三个内角之比为1:2:3,这个三角形最小的内角的度数是 _____.3、已知ABC 的三个内角的度数之比A ∠:<B :1C ∠=:3:5,则B ∠= ______ 度,C ∠= ______ 度.4、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _____.5、不等边三角形的最长边是9,最短边是4,第三边的边长是奇数,则第三边的长度是___.三、解答题(5小题,每小题10分,共计50分)1、阅读填空,将三角尺(△MPN ,∠MPN =90°)放置在△ABC 上(点P 在△ABC 内),如图①所示,三角尺的两边PM 、PN 恰好经过点B 和点C ,我们来研究∠ABP 与∠ACP 是否存在某种数量关系.(1)特例探索:若∠A =50°,则∠PBC +∠PCB = 度,∠ABP +∠ACP = 度.(2)类比探索:∠ABP、∠ACP、∠A 的关系是 .(3)变式探索:如图②所示,改变三角尺的位置,使点P 在△ABC 外,三角尺的两边PM 、PN 仍恰好经过点B 和点C ,则∠ABP、∠ACP、∠A 的关系是 .2、如图,在△ABC 中,∠BAC =90°,AB =AC ,射线AE 交BC 于点P ,∠BAE =15°;过点C 作CD ⊥AE 于点D ,连接BE ,过点E 作EF ∥BC 交DC 的延长线于点F .(1)求∠F 的度数;(2)若∠ABE=75°,求证:BE∥CF.3、如图,在ABC中(AB BC>),2AC BC=,BC边上的中线AD把ABC的周长分成60和40两部分,求AC和AB的长.4、如图,FA⊥EC,垂足为E,∠F=40°,∠C=20°,求∠FBC的度数.5、如图,点C,B分别在直线MN,PQ上,点A在直线MN,PQ之间,MN∥PQ.(1)如图1,求证:∠A=∠MCA+∠PBA;(2)如图2,过点C作CD∥AB,点E在PQ上,∠ECM=∠ACD,求证:∠A=∠ECN;(3)在(2)的条件下,如图3,过点B作PQ的垂线交CE于点F,∠ABF的平分线交AC于点G,若∠DCE=∠ACE,∠CFB=32∠CGB,求∠A的度数.-参考答案-一、单选题1、B【解析】【分析】由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.【详解】解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,∴∠ABD=∠BDC−∠A=50°−30°=20°,∵BD是△ABC的角平分线,∴∠DBC=∠ABD=20°,∵DE∥BC,∴∠EDB=∠DBC=20°,故选:B.【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.2、C【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.3、B【解析】【分析】利用直角三角形的两锐角互余直接计算即可.【详解】解:一个锐角等于52°,则另一个锐角的度数是905238,故选B【点睛】本题考查的是直角三角形的两锐角互余,掌握“直角三角形的角的性质”是解本题的关键.4、A【解析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.【详解】∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM−∠CBP=50°−20°=30°,故选:A.【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.5、D【解析】【分析】根据多边形外角和定理求出正多边形的边数.【详解】∵正多边形的每一个外角都等于36°,∴正多边形的边数=36036=10.故选:D.【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.6、C【分析】根据三角形的三边关系,逐项判断即可求解.【详解】解:A 、因为2356+=< ,所以不能组成三角形,故本选项不符合题意;B 、因为2467+=< ,所以不能组成三角形,故本选项不符合题意;C 、因为3365+=> ,所以能组成三角形,故本选项符合题意;D 、因为3367+=< ,所以不能组成三角形,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.7、B【解析】【分析】根据三角尺可得45,30EDB ABC ∠=︒∠=︒,根据三角形的外角性质即可求得1∠【详解】 解:45,30EDB ABC ∠=︒∠=︒175EDB ABC ∴∠=∠+∠=︒故选B【点睛】本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.8、B【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最大内角即可.【详解】解:由题意得:α=2β,α=60°,则β=30°,180°-60°-30°=90°,故选B.【点睛】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.9、D【解析】【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.【解析】【分析】根据三角形的中线将三角形的面积分成相等的两部分即可求解.【详解】解:∵△ABC 中,AD 是BC 边上的中线,△ABD 的面积为3,∴△ABC 的面积=3×2=6.故选:C .【点睛】考查了三角形的面积,关键是熟悉三角形的中线将三角形的面积分成相等的两部分的知识点.二、填空题1、612BC <<【解析】【分析】由构成三角形的条件计算即可.【详解】∵ABC 中39AB AC ==,∴AC AB BC AC AB -<<+∴612BC <<.故答案为:612BC <<.【点睛】本题考查了由构成三角形的条件判断第三条边的取值范围,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.【解析】【分析】设三角形的三个内角分别为x ,2x ,3x ,再根据三角形内角和定理求出x 的值,进而可得出结论.【详解】解:∵三角形三个内角的比为1:2:3,∴设三角形的三个内角分别为x ,2x ,3x ,∴x +2x +3x =180°,解得x =30°.∴这个三角形最小的内角的度数是30°.故答案为:30°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.3、60 100【解析】【分析】设一份为k ︒,则三个内角的度数分别为k ︒,3k ︒,5k ︒,再利用内角和定理列方程,再解方程可得答案.【详解】解:设一份为k ︒,则三个内角的度数分别为k ︒,3k ︒,5k ︒.则35180k k k ︒+︒+︒=︒,解得20k =.所以360k ︒=︒,5100k ︒=︒,即60B ∠=︒,100C ∠=︒.故答案为:60,100本题考查的是三角形的内角和定理的应用,利用三角形的内角和定理构建方程是解本题的关键. 4、720°##720度【解析】【分析】根据多边形内角和可直接进行求解.【详解】解:由题意得:该正六边形的内角和为()()180218062720n ︒⨯-=︒⨯-=︒;故答案为720°.【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.5、7【解析】【分析】由题意根据三角形的三边关系即可求得第三边的范围,从而由不等边三角形和奇数的定义确定第三边的长度.【详解】解:设第三边长是c ,则9﹣4<c <9+4,即5<c <13,又∵第三边的长是奇数,不等边三角形的最长边为9,最短边为4,∴c =7.故答案为:7.本题考查三角形的三边关系,注意掌握已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.三、解答题1、(1)90,40 ;(2)∠ABP+∠ACP+∠A=90°;(3)∠A+∠ACP-∠ABP=90°.【解析】【分析】(1)由三角形内角和为180°计算BPC△和ABC中的角的关系即可.(2)由(1)所得即可得出∠ABP、∠ACP、∠A的关系为∠ABP+∠ACP+∠A=90°.(3)由三角形外角的性质即可推出∠A+∠ACP-∠ABP=90°.【详解】(1)在BPC△中∵∠MPN=90°∴∠PBC+∠PCB=180°-∠MPN=180°-90°=90°在ABC中∵∠A+∠ABC+∠ACB=180°又∵∠ABC=∠PBC+∠ABP,∠ACB=∠ACP+∠BCP∴∠A+∠PBC+∠ABP +∠ACP+∠BCP=180°∵∠PBC+∠PCB=90°,∠A=50°∴∠ABP +∠ACP=180°-90°-50°=40°(2)由(1)问可知∠A+∠PBC+∠ABP +∠ACP+∠BCP=180°又∵∠PBC+∠PCB=90°∴∠A+∠ABP +∠ACP=180°-(∠PBC+∠PCB)=180°-90°=90°(3)如图所示,设PN与AB交于点H∵∠A+∠ACP=∠AHP又∵∠ABP+∠MPN=∠AHP∴∠A+∠ACP=∠ABP+∠MPN又∵∠MPN=90°∴∠A+∠ACP=90°+∠ABP∴∠A+∠ACP-∠ABP=90°.【点睛】本题考查了三角形的性质以及三角尺的角度计算问题,三角板的角度分别为90°,45°,45°;90°,60°,30°两种直角三角尺,三角形内角和是180°,三角形的一个外角等于与它不相邻的两个内角的和.2、(1)30∠=︒;(2)证明见详解.F.【解析】【分析】(1)根据三角形内角和及等腰三角形的性质可得75∠=∠=︒,由各角之间的ABC ACBPAC∠=︒,45关系及三角形内角和定理可得30PDC∠=︒,最后由平行线的性质即可得出;∠=︒,60PCD(2)由题意及各角之间的关系可得30∠=︒,得出DCB CBECBE∠=∠,利用平行线的判定定理即可证明.【详解】解:(1)∵90BAC∠=︒,15=,BAE∠=︒,AB AC∴75PAC ∠=︒,45ABC ACB ∠=∠=︒,∵CD AE ⊥,∴90ADC ∠=︒,18015ACD ADC DAC ∠=︒-∠-∠=︒,∴451530PCD PCA ACD ∠=∠-∠=︒-︒=︒,∴180903060PDC ∠=︒-︒-︒=︒,∵EF BC ∥,∴60DPC PEF ∠=∠=︒,30F DCP ∠=∠=︒,∴30F ∠=︒;(2)∵75ABE ∠=︒,45ABC ∠=︒,∴754530CBE ∠=︒-︒=︒,由(1)可得30DCP ∠=︒,∴DCB CBE ∠=∠,∴BE CF ∥(内错角相等,两直线平行).【点睛】题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.3、48AC =,28AB =【解析】【分析】由题意可得60AC CD +=,40AB BD +=,由中线的性质得244AC BC CD BD ===,故可求得48AC =,即可求得28AB =.【详解】由题意知100AC CD BD AB +++=,60AC CD +=,40AB BD +=∵2AC BC=,D为BC中点∴244AC BC CD BD===∴156044AC CD AC AC AC +=+==即460485AC=⨯=则BC=24,CD=BD=12则40401228AB BD=-=-=且28>24符合题意.【点睛】本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段.4、110°【解析】【分析】根据三角形的内角和可得∠A的度数,再利用外角的性质可得∠FBC的度数.【详解】解:在△AEC中,FA⊥EC,∴∠AEC=90°,∴∠A=90°-∠C=70°.∵∠FBC是△ABF的一个外角,∴∠FBC=∠A+∠F=70°+40°=110°.【点睛】本题考查三角形的内角和与外角的性质,求出∠A的度数是解题关键.5、(1)见解析;(2)见解析;(3)72°.【解析】【分析】(1)过点A作平行线,证出三条直线互相平行,由平行得出与∠ACM和∠ABP相等的角即可得出结论;(2)由CD∥AB,可得同旁内角互补,再结合∠ECM与∠ECN的邻补角关系,可得结论;(3)延长CA交PQ于点H,先证明∠MCA=∠ACE=∠ECD,∠ABP=∠NCD,再设∠MCA=∠ACE=∠ECD=x,由(1)可知∠CFB=∠FCN+∠FBQ,从而∠CFB=270-2x,列出方程解得x值,则不难求得答案.【详解】解:(1)证明:过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠A=∠MCA+∠PBA;(2)∵CD∥AB,∴∠A+∠ACD=180°,∵∠ECM+∠ECN=180°,又∠ECM=∠ACD,∴∠A=∠ECN;(3)如图,延长CA 交PQ 于点H ,∵∠ECM =∠ACD ,∠DCE =∠ACE ,∴∠MCA =∠ACE =∠ECD ,∵MN ∥PQ ,∴∠MCA =∠AHB ,∵∠CAB =∠AHB +∠PBA ,且由(2)知∠CAB =∠ECN ,∴∠ABP =∠NCD ,设∠MCA =∠ACE =∠ECD =x ,由(1)可知∠CFB =∠FCN +∠FBQ ,∴∠CFB =270-2x ,由(1)可知∠CGB =∠MCG +∠GBP ,∴∠CGB =135°−12x ,∴270°−2x =32 (135°−12x ) ,解得:x=54°,∴∠AHB=54°,∴∠ABP=∠NCD=180°-54°×3=18°,∴∠CAB=54°+18°=72°.【点睛】本题考查了平行线的性质及一元一次方程在计算问题中的应用,三角形的内角和定理以及三角形的外角性质,理清题中的数量关系并正确列式是解题的关键.。
达标测试华东师大版七年级数学下册第9章多边形定向测试试卷(精选含答案)
七年级数学下册第9章多边形定向测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将△ABC沿着DE减去一个角后得到四边形BCED,若∠BDE和∠DEC的平分线交于点F,∠DFE=α,则∠A的度数是()A.180°﹣αB.180°﹣2αC.360°﹣αD.360°﹣2α2、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外面时,此时测得∠1=112°,∠A=40°,则∠2的度数为()A.32°B.33°C.34°D.38°3、将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=45°,那么∠BAF 的大小为( )A .15°B .10°C .20°D .25°4、如图,已知ACD ∠为ABC 的外角,60ACD ∠=︒,20B ∠=︒,那么A ∠的度数是()A .30°B .40°C .50°D .60°5、已知ABC 的三边长分别为a ,b ,c ,则a ,b ,c 的值可能分别是( )A .1,2,3B .3,4,7C .2,3,4D .4,5,106、如图,123456∠+∠+∠+∠+∠+∠=( )度.A .180B .270C .360D .5407、如图,AD ∥BC ,∠C =30°,∠ADB :∠BDC =1:2,∠EAB =72°,以下四个说法:①∠CDF =30°;②∠ADB =50°;③∠ABD =22°;④∠CBN =108°其中正确说法的个数是( )A.1个B.2个C.3个D.4个8、如图,在△ABC中,∠C=50°,∠BAC=60°,AD⊥BC于D,AE平分∠BAC,∠DAE=()A.10°B.15°C.20°D.25°9、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是()A.两点确定一条直线B.两点之间,线段最短C.三角形具有稳定性D.三角形的任意两边之和大于第三边10、如图,一扇窗户打开后,用窗钩AB可将其固定()A .三角形的稳定性B .两点之间线段最短C .四边形的不稳定性D .三角形两边之和大于第三边第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC 中,AB AC =,40A ∠=︒,E 为BC 延长线上一点,ABC ∠与ACE ∠的平分线相交于点D ,则∠D 的度数为______.2、如图,在面积为48的等腰ABC 中,10AB AC ==,12BC =,P 是BC 边上的动点,点P 关于直线AB 、AC 的对称点外别为M 、N ,则线段MN 的最大值为______.3、如图,小华从点A 出发向前走10m ,向右转15°,然后继续向前走10m ,再向右转15°,他以同样的方法继续走下去,当他第一次回到点A 时共走了___________m .4、正五边形的一个内角与一个外角的比______.5、已知一个多边形的内角和与外角和的比是2:1,则它的边数为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC 中,CE 平分∠ACB 交AB 于点E ,AD 是△ABC 边BC 上的高,AD 与CE 相交于点F ,且∠ACB =80°,求∠AFE 的度数.2、若AE 是ABC 边BC 上的高,AD 是EAC ∠的平分线且交BC 于点D .若40ACB ∠=︒,65B ∠=︒,分别求BAD ∠和DAE ∠的度数.3、已知一个多边形的内角和是外角和的2倍,求这个多边形的边数.4、如图,ABC 中,BE 为AC 边上的高,CD 平分ACB ∠,CD 、BE 相交于点F .若70A ∠=︒,60ABC ∠=︒,求BFC ∠的度数.5、如图所示,四边形ABCD 中,∠ADC 的角平分线DE 与∠BCD 的角平分线CA 相交于E 点,已知:∠ACB =32°,∠CDE =58°.(1)求∠DEC 的度数;(2)试说明直线AD BC ∥-参考答案-一、单选题1、B【解析】【分析】根据∠DFE =α得到∠FDE +∠FED ,再根据角平分线的性质求出∠BDE +∠CED =360°-2α,利用外角的性质得到∠ADE +∠AED =2α,最后根据三角形内角和求出结果.【详解】解:∵∠DFE =α,∴∠FDE +∠FED =180°-α,由角平分线的定义可知:∠BDF =∠FDE ,∠CEF =∠FED ,∴∠BDE +∠CED =2∠FDE +2∠FED =360°-2α,∴∠ADE +∠AED =180°-∠BDE +180°-∠CED =2α,∴∠A =180°-(∠ADE +∠AED )=180°-2α,故选B .【点睛】本题考查了角平分线的定义,三角形内角和,三角形外角的性质,解题的关键是利用角平分线得到相等的角,根据内角和进行计算.2、A【解析】【分析】由折叠的性质可知40A A '∠=∠=︒,再由三角形外角的性质即可求出DFA ∠的大小,再次利用三角形外角的性质即可求出2∠的大小.【详解】如图,设线段AC 和线段A D '交于点F .由折叠的性质可知40A A '∠=∠=︒.∵1A DFA ∠=∠+∠,即11240DFA ︒=︒+∠,∴72DFA ∠=︒.∵2DFA A '∠=∠+∠,即72240︒=∠+︒,∴232∠=︒.故选A .【点睛】本题考查折叠的性质,三角形外角的性质.利用数形结合的思想是解答本题的关键.3、A【解析】【分析】利用DE ∥AF ,得∠CDE =∠CFA =45°,结合∠CFA =∠B +∠BAF 计算即可.【详解】∵DE ∥AF ,∴∠CDE =∠CFA =45°,∵∠CFA =∠B +∠BAF ,∠B =30°,∴∠BAF =15°,故选A .【点睛】本题考查了平行线的性质,三角形外角的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.4、B【解析】【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.5、C【解析】【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.6、C【解析】【分析】∠=∠+∠∠=∠+∠,再由四边形的内角和等于360°,即可求根据三角形外角的性质,可得946,1015解.【详解】解:如图,∠=∠+∠∠=∠+∠,根据题意得:946,1015∠+∠+∠+∠=︒,∵23910360∴123456360∠+∠+∠+∠+∠+∠=︒.故选:C【点睛】本题主要考查了三角形外角的性质,多边形的内角和,熟练掌握三角形外角的一个外角等于与它不相邻的两个内角的和,四边形的内角和等于360°是解题的关键.7、D【解析】【分析】根据AD∥BC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.【详解】解:∵AD∥BC,∠C=30°,∴∠FDC=∠C=30°,故①正确;∴∠ADC=180°-∠FDC=180°-30°=150°,∵∠ADB:∠BDC=1:2,∴∠BDC=2∠ADB,∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,解得∠ADB=50°,故②正确∵∠EAB=72°,∴∠DAN=180°-∠EAB=180°-72°=108°,∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确∵AD∥BC,∴∠CBN=∠DAN=108°,故④正确其中正确说法的个数是4个.故选择D.【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.8、A【解析】先由∠BAC和∠C求出∠B,然后由AE平分∠BAC求∠BAE,再结合AD⊥BC求∠BAD,最后求得∠EAD.【详解】解答:解:∵∠C=50°,∠BAC=60°,∴∠B=180°﹣∠BAC﹣∠C=70°.∵AE平分∠BAC,∠BAC=60°,∴∠BAE=12∠BAC=160=302⨯︒︒,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣∠B=20°,∴∠EAD=∠BAE﹣∠BAD=30°﹣20°=10°.故选:A.【点睛】本题考查了三角形的内角和、角平分线的定义和高线的定义,通过角平分线和高线的定义求得∠BAE 和∠BAD的度数是解题的关键.9、C【解析】【分析】根据三角形具有稳定性进行求解即可.【详解】解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,【点睛】本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.10、A【解析】【分析】由三角形的稳定性即可得出答案.【详解】一扇窗户打开后,用窗钩AB 可将其固定,故选:A .【点睛】本题考查了三角形的稳定性,加上窗钩AB 构成了△AOB ,而三角形具有稳定性是解题的关键.二、填空题1、20°##20度【解析】【分析】 根据角平分线的性质得到1,122DBC ABC DCE ACE ∠=∠∠=∠,再利用三角形外角的性质计算. 【详解】解:∵ABC ∠与ACE ∠的平分线相交于点D , ∴1,122DBC ABC DCE ACE ∠=∠∠=∠, ∵∠ACE=∠A+∠ABC ,∠DCE=∠D +∠DBC ,∴∠D=∠DCE-∠DBC=11()2022ACE ABC A∠-∠=∠=︒,故答案为:20°.【点睛】此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.2、19.2【解析】【分析】点P关于直线AB、AC的对称点分别为M、N,根据三角形三边关系可得PM PN MN+>,当点P与点B或点C重合时,P、M、N三点共线,MN最长,由轴对称可得BF AC⊥,BF FN=,再由三角形等面积法即可确定MN长度.【详解】解:如图所示:点P关于直线AB、AC的对称点分别为M、N,由图可得:PM PN MN+>,当点P与点B或点C重合时,如图所示,MN交AC于点F,此时P、M、N三点共线,MN最长,∴BF AC ⊥,BF FN =,∵等腰ABC 面积为48,10AB AC ==, ∴1·482AC BF =, 9.6BF =,∴219.2MN BF ==,故答案为:19.2.【点睛】题目主要考查对称点的性质及三角形三边关系,三角形等面积法等,理解题意,根据图形得出三点共线时线段最长是解题关键.3、240【解析】【分析】他要想回到原点需要走成正多边形,根据多边形的外角和定理求出多边形的边数,从而求出路程.【详解】解:∵正多边形外角和是360°,∴360°÷15°=24,∴他需要转24次才会回到起点,∴它需要经过10×24=240(m)才能回到原地,故答案为:240.【点睛】本题考查了多边形的外角和定理的应用,熟练掌握任何一个多边形的外角和都是360°是解题的关键.4、3 2【解析】【分析】根据公式分别求出一个内角与一个外角的度数,即可得到答案.【详解】解:正五边形的一个内角的度数为(52)1801085-⨯︒=︒,正五边形的一个外角的度数为360725︒=︒,∴正五边形的一个内角与一个外角的比为1083 722︒=︒,故答案为:32.【点睛】此题考查了正五边形的内角度数及外角度数,熟记多边形的内角和与外角和公式是解题的关键.5、6【解析】【分析】根据多边形内角和公式及多边形外角和可直接进行求解.【详解】解:由题意得:()18022360n ︒⨯-=⨯︒,解得:6n =,∴该多边形的边数为6;故答案为6.【点睛】本题主要考查多边形的内角和及外角和,熟练掌握多边形内角和及外角和是解题的关键.三、解答题1、∠AFE =50°.【解析】【分析】根据CE 平分∠ACB ,∠ACB =80°,得出∠ECB =11804022ACB ∠=⨯︒=︒,根据高线性质得出∠ADC =90°,根据三角形内角和得出∠DFC =180°-∠ADC -∠ECB =180°-90°-40°=50°,利用对顶角性质得出∠AFE =∠DFC =50°即可.【详解】解:∵CE 平分∠ACB ,∠ACB =80°,∴∠ECB =11804022ACB ∠=⨯︒=︒,∵AD 是△ABC 边BC 上的高,AD ⊥BC ,∴∠ADC =90°,∴∠DFC =180°-∠ADC -∠ECB =180°-90°-40°=50°,∴∠AFE =∠DFC =50°.【点睛】本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键.2、25DAE ∠=︒;50BAD ∠=︒【解析】【分析】根据△AEC 的内角和定理可得:18050EAC AEC ACB ∠=︒-∠-∠=︒,根据角平分线的性质可得11502522DAE EAC ∠=∠=⨯︒=︒,根据△ABC 的内角和定理可得∠BAC ,又因为BAE BAC EAC ∠=∠-∠,BAD BAE DAE ∠∠∠=+,即可得解.【详解】解:∵AE 是ABC 边BC 上的高∴90AEC ∠=︒∴在EAC 中,有180EAC AEC ACB ∠+∠+∠=︒又∵40ACB ∠=︒∴180EAC AEC ACB ∠=︒-∠-∠1809040=︒-︒-︒50=︒∵AD 是EAC ∠的平分线 ∴11502522DAE EAC ∠=∠=⨯︒=︒∵在ABC 中,有180BAC B BAC ∠+∠+∠=︒ 已知40ACB ∠=︒,65B ∠=︒∴180BAC ACB B ∠=︒-∠-∠1804065=︒-︒-︒75=︒∴755025BAE BAC EAC ∠∠∠=-=︒-︒=︒∴525205BAD BAE DAE ∠∠∠=+=︒=+︒︒【点睛】本题考查了三角形内角和定理及角平分线的性质,熟悉这些知识点,灵活应用等量代换是解决本题的关键.3、这个多边形的边数是6【解析】【分析】多边形的外角和是360°,内角和是它的外角和的2倍,则内角和为2×360=720度.n 边形的内角和可以表示成(n -2)•180°,设这个多边形的边数是n ,即可得到方程,从而求出边数.【详解】解:设这个多边形的边数为n ,由题意得:(n -2)×180°=2×360°,解得n =6,∴这个多边形的边数是6.【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n -2)•180°,外角和为360°.4、115︒.【解析】【分析】先根据三角形的内角和定理可得50∠=°ACB ,再根据角平分线的定义可得25ECF ∠=︒,然后根据垂直的定义可得90CEF ∠=︒,最后根据三角形的外角性质即可得.【详解】 解:在ABC 中,70A ∠=︒,60ABC ∠=︒,18050AB B C AC A ∴∠=︒-∠=∠-︒, CD 平分ACB ∠,1252ECF ACB ∠=∠=∴︒, BE 为AC 边上的高,90CEF ∴∠=︒,9025115BFC CEF ECF ∴∠=∠+∠=︒+︒=︒.【点睛】本题考查了三角形的内角和定理、角平分线的定义、三角形的外角性质等知识点,熟练掌握三角形的内角和定理是解题关键.5、(1)90°;(2)见解析【解析】【分析】(1)根据三角形内角和定理即可求解;(2)首先求得∠ADC 的度数和∠DCB 的度数,根据同旁内角互补,两直线平行即可证得.【详解】解:(1)∵AC 是∠BCD 的平分线∴32ACD ACB ∠=∠=︒∵180,58CDE DEC DCE CDE ∠+∠+∠=︒∠=︒∴∠DEC =180°-∠ACD -∠CDE =180°-32°-58°=90°;(2)∵DE 平分∠ADC ,CA 平分∠BCD∴∠ADC=2∠CDE=116°,∠BCD=2∠ACD=64°∵∠ADC+∠BCD=116°+64°=180°∴AD BC∥【点睛】本题主要考查了角平分线,平行线的判定以及三角形内角和定理,熟练掌握相关性质和定理是解答本题的关键.。
初中数学苏科版数学七年级下册7.5多边形的内角和与外角和同步练习含详细答案.docx
xx 学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°试题2:在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35° B.40° C.45° D.50°试题3:阅读材料:多边形上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形.图1给出了四边形的具体分割方法,分别将四边形分割成了2个,3个,4个小三角形.请你按照上述方法将图2中的六边形进行分割,并写出得到的小三角形的个数.试把这一结论推广至n边形.评卷人得分试题4:平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.试题5:认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:.试题6:已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.试题7:如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A= °.若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值= °.试题8:.如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= .试题9:若多边形的每一个内角均为135°,则这个多边形的边数为.试题10:如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为°.试题11:如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10= .试题12:如图,AC是正五边形ABCDE的一条对角线,则∠ACB= .试题13:若n边形内角和为900°,则边数n= .若一个正多边形的一个外角等于18°,则这个正多边形的边数是.试题15:一个多边形的每个外角都是60°,则这个多边形边数为.试题16:一个多边形的内角和是外角和的2倍,则这个多边形的边数为.试题17:如图,在△ABC中,∠A=40°,D点是∠ABC和∠ACB角平分线的交点,则∠BDC= .试题18:一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9试题19:将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360° B.540° C.720° D.900°试题20:内角和为540°的多边形是()A. B. C.D.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.6 B.7 C.8 D.9试题22:已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.11试题23:六边形的内角和是()A.540° B.720° C.900° D.360°试题24:设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A.a>b B.a=b C.a<b D.b=a+180°试题25:正多边形的一个内角是150°,则这个正多边形的边数为()A.10 B.11 C.12 D.13试题26:一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108° B.90° C.72° D.60°试题27:如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米 B.150米 C.160米 D.240米若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D.70试题29:如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD 的度数为何?()A.40° B.45° C.50° D.60°试题30:若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形 B.四边形 C.五边形 D.六边形试题1答案:C【分析】根据三角形角平分线的性质求出∠ACD,根据三角形外角性质求出∠A即可.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.【点评】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.试题2答案:C.【点评】本题考查了三角形内角和定理,利用三角形内角和定理:三角形内角和是180°是解答此题的关键.试题3答案:【分析】图(一)中,(1)是作一个顶点出发的所有对角线对其进行分割;(2)是连接多边形的其中一边上的一个点和各个顶点,对其进行分割;(3)是连接多边形内部的任意一点和多边形的各个顶点,对其进行分割.根据上述方法分别进行分割,可以发现所分割成的三角形的个数分别是4个,5个,6个.根据这样的两个特殊图形,不难发现:第一种分割法,分割成的三角形的个数比边数少2,第二种分割法分割成的三角形的个数比边数少1,第三种分割法分割成的三角形的个数等于多边形的边数.【解答】解:如图所示:试题4答案:【分析】(1)延长BP交CD于E,根据两直线平行,内错角相等,求出∠PED=∠B,再利用三角形的一个外角等于和它不相邻的两个内角的和即可说明不成立,应为∠BPD=∠B+∠D;(2)作射线QP,根据三角形的外角性质可得;(3)根据三角形的外角性质,把角转化到四边形中再求解.【解答】解:(1)不成立.结论是∠BPD=∠B+∠D延长BP交CD于点E,∵AB∥CD∴∠B=∠BED又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.(3)连接EG并延长,根据三角形的外角性质,∠AGB=∠A+∠B+∠E,又∵∠AGB=∠CGF,在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点评】本题是信息给予题,利用平行线的性质和三角形的一个外角等于和它不相邻的两个内角的和解答.试题5答案:【分析】(1)根据提供的信息,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC与∠A的关系;(2)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠OBC与∠OCB,然后再根据三角形的内角和定理列式整理即可得解.【解答】解:(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.【点评】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键,读懂题目提供的信息,然后利用提供信息的思路也很重要.试题6答案:【分析】(1)根据多边形内角和公式可得n边形的内角和是180°的倍数,依此即可判断,再根据多边形内角和公式即可求出边数n;(2)根据等量关系:若n边形变为(n+x)边形,内角和增加了360°,依此列出方程,解方程即可确定x.【解答】解:(1)∵360°÷180°=2,630°÷180°=3…90°,∴甲的说法对,乙的说法不对,360°÷180°+2=2+2=4.答:甲同学说的边数n是4;(2)依题意有(n+x﹣2)×180°﹣(n﹣2)×180°=360°,解得x=2.故x的值是2.【点评】考查了多边形内角与外角,此题需要结合多边形的内角和公式来寻求等量关系,构建方程即可求解.试题7答案:= 76 °.…6 °.【分析】根据入射角等于反射角得出∠1=∠2=90°﹣7°=83°,再由∠1是△AA1O的外角即可得∠A度数;如图,当MN⊥OA时,光线沿原路返回,分别根据入射角等于反射角和外角性质求出∠5、∠9的度数,从而得出与∠A具有相同位置的角的度数变化规律,即可解决问题.【解答】解:∵A1A2⊥AO,∠AOB=7°,∴∠1=∠2=90°﹣7°=83°,∴∠A=∠1﹣∠AOB=76°,如图:当MN⊥OA时,光线沿原路返回,∴∠4=∠3=90°﹣7°=83°,∴∠6=∠5=∠4﹣∠AOB=83°﹣7°=76°=90°﹣14°,∴∠8=∠7=∠6﹣∠AOB=76°﹣7°=69°,∴∠9=∠8﹣∠AOB=69°﹣7°=62°=90°﹣2×14°,由以上规律可知,∠A=90°﹣n•14°,当n=6时,∠A取得最小值,最下度数为6°,故答案为:76,6.【点评】本题主要考查直角三角形的性质和三角形的外角性质及入射角等于反射角,根据三角形的外角性质及入射角等于反射角得出与∠A具有相同位置的角的度数变化规律是解题的关键.试题8答案:70°.【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2);最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=110°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=70°.故答案为:70°.【点评】此题主要考查了三角形内角和定理以及角平分线的性质,熟练应用角平分线的性质是解题关键.试题9答案:8 .【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.【点评】本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.试题10答案:108 °.【分析】所求角即为正五边形的内角,利用多边形的内角和定理求出即可.【解答】解:∵正五边形的内角和为(5﹣2)×180°=540°,∴∠1=540°÷5=108°,故答案为:108【点评】此题考查了多边形的内角和外角,熟练掌握多边形的内角和定理是解本题的关键.试题11答案:75°.【分析】如图,作辅助线,首先证得=⊙O的周长,进而求得∠A3OA10= =150°,运用圆周角定理问题即可解决.【解答】解:设该正十二边形的中心为O,如图,连接A10O和A3O,由题意知,=⊙O的周长,∴∠A3OA10==150°,∴∠A3A7A10=75°,故答案为:75°.【点评】此题主要考查了正多边形及其外接圆的性质及圆周角定理,作出恰当的辅助线,灵活运用有关定理来分析是解答此题的关键.试题12答案:36°.【分析】由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.【解答】解:∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案为:36°.【点评】本题考查了正五边形的性质、等腰三角形的性质、三角形内角和定理;熟练掌握正五边形的性质,由等腰三角形的性质和三角形内角和定理求出∠ACB是解决问题的关键.试题13答案:7 .【分析】由n边形的内角和为:180°(n﹣2),即可得方程180(n﹣2)=900,解此方程即可求得答案.【解答】解:根据题意得:180(n﹣2)=900,解得:n=7.故答案为:7.【点评】此题考查了多边形内角和公式.此题比较简单,注意方程思想的应用是解此题的关键.试题14答案:20 .【分析】根据正多边形的外角和以及一个外角的度数,求得边数.【解答】解:正多边形的一个外角等于18°,且外角和为360°,∴这个正多边形的边数是:360°÷18°=20.故答案为:20.【点评】本题主要考查了多边形的外角和定理,解决问题的关键是掌握多边形的外角和等于360度.试题15答案:6 .【分析】利用外角和除以外角的度数即可得到边数.【解答】解:360÷60=6.故这个多边形边数为6.故答案为:6.【点评】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都360°.试题16答案:6 .【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.【点评】本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.试题17答案:110°.【分析】由D点是∠ABC和∠ACB角平分线的交点可推出∠DBC+∠DCB=70°,再利用三角形内角和定理即可求出∠BDC的度数.【解答】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=∠ABC,∠BCD=∠ACD=∠ACB,∴∠ABC+∠ACB=180°﹣40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°﹣70°=110°,故答案为:110°.【点评】此题主要考查学生对角平分线性质,三角形内角和定理,熟记三角形内角和定理是解决问题的关键.试题18答案:D【分析】首先求得内角和为1080°的多边形的边数,即可确定原多边形的边数.【解答】解:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选:D.【点评】本题考查了多边形的内角和定理,一个多边形截去一个角后它的边数可能增加1,可能减少1,或不变.试题19答案:D【分析】根据题意列出可能情况,再分别根据多边形的内角和定理进行解答即可.【解答】解:①将矩形沿对角线剪开,得到两个三角形,两个多边形的内角和为:180°+180°=360°;②将矩形从一顶点剪向对边,得到一个三角形和一个四边形,两个多边形的内角和为:180°+360°=540°;③将矩形沿一组对边剪开,得到两个四边形,两个多边形的内角和为:360°+360°=720°,④将矩形沿一组邻边剪开,得到一个三角形和一个五边形,其内角和为:180°+540°=720°;故选:D.【点评】本题考查了多边形的内角与外角,能够得出一个矩形截一刀后得到的图形有三种情形,是解决本题的关键.试题20答案:C【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:C.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.试题21答案:D【分析】首先根据一个正多边形的内角是140°,求出每个外角的度数是多少;然后根据外角和定理,求出这个正多边形的边数是多少即可.【解答】解:360°÷(180°﹣140°)=360°÷40°=9.答:这个正多边形的边数是9.故选:D.【点评】此题主要考查了多边形的内角与外角,要熟练掌握,解答此题的关键是要明确多边形的外角和定理.试题22答案:C【分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【解答】解:360°÷36°=10,所以这个正多边形是正十边形.故选C.【点评】本题主要考查了多边形的外角和定理.是需要识记的内容.试题23答案:B【分析】利用多边形的内角和定理计算即可得到结果.【解答】解:根据题意得:(6﹣2)×180°=720°,故选B.【点评】此题考查了多边形内角与外角,熟练掌握多边形内角和定理是解本题的关键.试题24答案:B【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【解答】解:∵四边形的内角和等于a,∴a=(4﹣2)•180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选B.【点评】本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.试题25答案:C【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角是:180°﹣150°=30°,360°÷30°=12.则这个正多边形是正十二边形.故选:C.【点评】考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数是解题关键.试题26答案:C【分析】首先设此多边形为n边形,根据题意得:180(n﹣2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,故这个正多边形的每一个外角等于:=72°.故选C.【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.试题27答案:B【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走了:15×10=150米.故选B.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.试题28答案:C【分析】由正n边形的每个内角为144°结合多边形内角和公式,即可得出关于n的一元一次方程,解方程即可求出n 的值,将其代入中即可得出结论.【解答】解:∵一个正n边形的每个内角为144°,∴144n=180×(n﹣2),解得:n=10.这个正n边形的所有对角线的条数是:==35.故选C.【点评】本题考查了多边形的内角以及多边形的对角线,解题的关键是求出正n边形的边数.本题属于基础题,难度不大,解决该题型题目时,根据多边形的内角和公式求出多边形边的条数是关键.试题29答案:A【分析】延长BC交OD与点M,根据多边形的外角和为360°可得出∠OBC+∠MCD+∠CDM=140°,再根据四边形的内角和为360°即可得出结论.【解答】解:延长BC交OD与点M,如图所示.∵多边形的外角和为360°,∴∠OBC+∠MCD+∠CDM=360°﹣220°=140°.∵四边形的内角和为360°,∴∠BOD+∠OBC+180°+∠MCD+∠CDM=360°,∴∠BOD=40°.故选A.【点评】本题考查了多边形的内角与外角以及角的计算,解题的关键是能够熟练的运用多边形的外角和为360°来解决问题.本题属于基础题,难度不大,解决该题型题目时,利用多边形的外角和与内角和定理,通过角的计算求出角的角度即可.试题30答案:B【分析】根据多边形的内角和公式(n﹣2)•180°与多边形的外角和定理列式进行计算即可得解.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.。
2021-2022学年度强化训练华东师大版七年级数学下册第9章多边形同步测评试题(含详细解析)
七年级数学下册第9章多边形同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知三角形的两边长分别为2cm和3cm,则第三边长可能是()A.6cm B.5cm C.3cm D.1cm2、有下列长度的三条线段,其中能组成三角形的是()A.4,5,9 B.2.5,6.5,10 C.3,4,5 D.5,12,173、若一个三角形的三个外角之比为3:4:5,则该三角形为()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形4、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB=10米,A、B间的距离不可能是()A.5米B.10米C.15米D.20米5、如图,已知AD AB =,C E ∠=∠,55CDE ∠=︒,则ABE ∠的度数为( )A .155°B .125°C .135°D .145°6、三根小木棒摆成一个三角形,其中两根木棒的长度分别是8cm 和5cm ,那么第三根小木棒的长度不可能是( )A .5cmB .8cmC .10cmD .13cm7、如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外面时,此时测得∠1=112°,∠A =40°,则∠2的度数为( )A .32°B .33°C .34°D .38°8、下列长度的三条线段与长度为4的线段首尾依次相连能组成四边形的是( ).A .1,1,2, B .1,1,1 C .1,2,2 D .1,1,69、如图,将ABC 的BC 边对折,使点B 与点C 重合,DE 为折痕,若65A ∠=︒,25ACD ∠=︒,则B ∠=( ).A .45°B .60°C .35°D .40°10、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为()A.40°B.45°C.50°D.60°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在△ABC中,D、E分别是BC、AD的中点,S△ABC=4cm2,则S△ABE=_____.2、如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=56°,∠2=29°,则∠A的度数为______度.3、一个三角形的其中两个内角为88︒,32︒,则这个第三个内角的度数为______.4、如图,把ABC 纸片沿DE 折叠,使点A 落在图中的A '处,若29A ∠=︒,90BDA ∠'=︒,则A EC ∠'的大小为______.5、如图,直线ED 把ABC 分成一个AED 和四边形BDEC ,ABC 的周长一定大于四边形BDEC 的周长,依据的原理是____________________________________.三、解答题(5小题,每小题10分,共计50分)1、两个直角三角板如图摆放,其中∠BAC =∠EDF =90°,∠E =45°,∠C =30°,AB 与DF 交于点M ,BC ∥EF ,求∠BMD 的度数.2、如图,在ABC 中,AD 是角平分线,54B ∠=︒,76C ∠=︒.(1)求BAD ∠的度数;(2)若DE AC⊥,求EDC∠的度数.3、如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G,完成下面的证明:∵MG平分∠BMN,∴∠GMN=1∠BMN(),2∠DNM.同理∠GNM=12∵AB∥CD∴∠BMN+∠DNM=________().∴∠GMN+∠GNM=________.∵∠GMN+∠GNM+∠G=________,∴∠G=________.4、如图,在△ABC中,∠BAC=90°,AB=AC,射线AE交BC于点P,∠BAE=15°;过点C作CD⊥AE于点D,连接BE,过点E作EF∥BC交DC的延长线于点F.(1)求∠F的度数;(2)若∠ABE=75°,求证:BE∥CF.5、阅读材料,回答下列问题:【材料提出】“八字型”是数学几何的常用模型,通常由一组对顶角所在的两个三角形构成.【探索研究】探索一:如图1,在八字形中,探索∠A、∠B、∠C、∠D之间的数量关系为;探索二:如图2,若∠B=36°,∠D=14°,求∠P的度数为;探索三:如图3,CP、AG分别平分∠BCE、∠FAD,AG反向延长线交CP于点P,则∠P、∠B、∠D之间的数量关系为.【模型应用】应用一:如图4,在四边形MNCB中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD的角平分线BP,CP相交于点P.则∠A=(用含有α和β的代数式表示),∠P =.(用含有α和β的代数式表示)应用二:如图5,在四边形MNCB中,设∠M=α,∠N=β,α+β<180°,四边形的内角∠MBC与外角∠NCD的角平分线所在的直线相交于点P,∠P=.(用含有α和β的代数式表示)【拓展延伸】拓展一:如图6,若设∠C=x,∠B=y,∠CAP=13∠CAB,∠CDP=13∠CDB,试问∠P与∠C、∠B之间的数量关系为.(用x、y表示∠P)拓展二:如图7,AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论.-参考答案-一、单选题1、C【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:设第三边长为x cm,根据三角形的三边关系可得:3-2<x<3+2,解得:1<x<5,只有C选项在范围内.故选:C.【点睛】本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.2、C【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.【详解】解:根据三角形的三边关系,得,+=,不能够组成三角形,不符合题意;A、459+=<,不能够组成三角形,不符合题意;B、2.5 6.5910C、3475,4315+=>-=<,能够组成三角形,符合题意;+=,不能组成三角形,不符合题意;D、51217故选:C.【点睛】此题主要考查了三角形三边关系,解题的关键是掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3、A【解析】【分析】根据三角形外角和为360°计算,求出内角的度数,判断即可.【详解】解:设三角形的三个外角的度数分别为3x、4x、5x,则3x+4x+5x=360°,解得,x=30°,∴三角形的三个外角的度数分别为90°、120°、150°,对应的三个内角的度数分别为90°、60°、30°,∴此三角形为直角三角形,故选:A.【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.4、A【解析】【分析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A 、B 间的距离在5和25之间,∴A 、B 间的距离不可能是5米;故选:A .【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.5、B【解析】【分析】根据三角形外角的性质得出55CBE A E A C ∠=∠+∠=∠+∠=︒,再求ABE ∠即可.【详解】解:∵55CDE ∠=︒,∴55A C ∠+∠=︒,∵C E ∠=∠,∴55CBE A E ∠=∠+∠=︒,∴180125ABE CBE ∠=︒-∠=︒;故选:B .【点睛】本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.6、D【解析】【分析】设第三根木棒长为x 厘米,根据三角形的三边关系可得8﹣5<x <8+5,确定x 的范围即可得到答案.【详解】解:设第三根木棒长为x 厘米,由题意得:8﹣5<x <8+5,即3<x <13,故选:D .【点睛】此题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.7、A【解析】【分析】由折叠的性质可知40A A '∠=∠=︒,再由三角形外角的性质即可求出DFA ∠的大小,再次利用三角形外角的性质即可求出2∠的大小.【详解】如图,设线段AC 和线段A D '交于点F .由折叠的性质可知40A A '∠=∠=︒.∵1A DFA ∠=∠+∠,即11240DFA ︒=︒+∠,∴72DFA ∠=︒.∵2DFA A '∠=∠+∠,即72240︒=∠+︒,∴232∠=︒.故选A.【点睛】本题考查折叠的性质,三角形外角的性质.利用数形结合的思想是解答本题的关键.8、C【解析】【分析】将每个选项中的四条线段进行比较,任意三条线段的和都需大于另一条线段的长度,由此可组成四边形,据此解答.【详解】解:A、因为1+1+2=4,所以不能构成四边形,故该项不符合题意;B、因为1+1+1<4,所以不能构成四边形,故该项不符合题意;C、因为1+2+2>4,所以能构成四边形,故该项符合题意;D、因为1+1+4=6,所以不能构成四边形,故该项不符合题意;故选:C.【点睛】此题考查了多边形的构成特点:任意几条边的和大于另一条边长,正确理解多边形的构成特点是解题的关键.9、A【解析】【分析】由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.【详解】解:由折叠得∠B=∠BCD,∵∠A +∠B +∠ACB =180°,65A ∠=︒,25ACD ∠=︒,∴65°+2∠B +25°=180°,∴∠B =45°,故选:A .【点睛】此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.10、C【解析】【分析】根据三角形内角和定理确定50ABC ∠=︒,然后利用平行线的性质求解即可.【详解】解:∵40BAC ∠=︒,90ACB ∠=︒,∴50ABC ∠=︒,∵a b ∥,∴150ABC ∠=∠=︒,故选:C .【点睛】题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.二、填空题1、1cm 2【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形的性质分析,即可得到答案.【详解】∵D是BC的中点,S△ABC=4cm2∴S△ABD=12S△ABC=12×4=2cm2∵E是AD的中点,∴S△ABE=12S△ABD=12×2=1cm2故答案为:1cm2.【点睛】本题考查了三角形中线的知识;解题的关键是熟练掌握三角形中线的性质,从而完成求解.2、27【解析】【分析】如图,∠3=∠1,由∠3=∠2+∠A计算求解即可.【详解】解:如图∵a∥b,∠1=56°∴∠3=∠1=56°∵∠3=∠2+∠A,∠2=29°∴∠A =∠3﹣∠2=56°﹣29°=27°故答案为:27.【点睛】本题考查了平行线性质中的同位角,三角形的外角等知识.解题的关键在于正确的表示角的数量关系.3、60°##60度【解析】【分析】依题意,利用三角形内角和为:180︒,即可;【详解】由题得:一个三角形的内角和为:180︒;又已知两个其中的内角为:88︒,32︒;∴ 第三个角为:180883260︒-︒-︒=︒;故填:60︒【点睛】本题主要考查三角形的内角和,关键在于熟练并运用基本的计算;4、32︒##32度【解析】【分析】利用折叠性质得'45ADE A DE ∠=∠=︒,'AED A ED ∠=∠,再根据三角形外角性质得74CED ∠=︒,利用邻补角得到106AED ∠=︒,则'106A ED ∠=︒,然后利用''A EC A ED CED ∠=∠-∠进行计算即可.【详解】解:∵'90BDA ∠=︒,∴'90ADA ∠=︒,∵ABC 纸片沿DE 折叠,使点A 落在图中的A'处,∴'45ADE A DE ∠=∠=︒,'AED A ED ∠=∠,∵294574CED A ADE ∠=∠+∠=︒+︒=︒,∴106AED ∠=︒,∴'106A ED ∠=︒,∴''1067432A EC A ED CED ∠=∠-∠=︒-︒=︒.故答案为:32︒.【点睛】本题考查了折叠的性质,三角形外角的性质,三角形内角和定理等,理解题意,熟练掌握综合运用各个知识点是解题关键.5、三角形两边之和大于第三边【解析】【分析】表示出ABC 和四边形BDEC 的周长,再结合ADE 中的三边关系比较即可.【详解】解:ABC 的周长=AC AB BC AE AD CE CB BD ++=++++四边形BDEC 的周长=DE CE CB BD +++∵在ADE 中AE AD DE +>∴AE AD CE CB BD ++++>DE CE CB BD +++即ABC 的周长一定大于四边形BDEC 的周长,∴依据是:三角形两边之和大于第三边;故答案为三角形两边之和大于第三边【点睛】本题考查了三角形三边关系定理,关键是熟悉三角形两边之和大于第三边的知识点.三、解答题1、75°【解析】【分析】首先根据直角三角形两锐角互余可算出∠F和∠B的度数,再由“两直线平行,内错角相等”,可求出∠MDB的度数,在△BMD中,利用三角形内角和可求出∠BMD的度数.【详解】解:如图,在△ABC和△DEF中,∠BAC=∠EDF=90°,∠E=45°,∠C=30°,∴∠B=90°−∠C=60°,∠F=90°−∠E=45°,∵BC∥EF,∴∠MDB=∠F=45°,在△BMD中,∠BMD=180°−∠B−∠MDB=75°.【点睛】本题主要考查三角形内角和,平行线的性质等内容,根据图形,结合定理求出每个角的度数是解题关键.2、 (1)25∠=︒;BAD(2)14EDC∠=︒.【解析】【分析】(1)根据三角形内角和定理可求出50∠=︒,然后利用角平分线进行计算即可得;BAC(2)根据垂直得出90AED∠=︒,然后根据三角形内角和定理即可得.(1)解:∵54B∠︒=,76C∠︒=,∴180180547650BAC B C∠=︒-∠-∠=︒-︒-︒=︒,∵AD是角平分线,∴1252BAD BAC∠=∠=︒,∴25BAD∠=︒;(2)∵DE AC⊥,∴90AED∠=︒,∴180180907614EDC AED C∠=︒-∠-∠=︒-︒-︒=︒,∴14EDC∠=︒.【点睛】题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.3、角分线的定义;180°;两直线平行,同旁内角互补;90°;180°;90°【解析】【分析】根据角平分线的定义,可得∠GMN=12∠BMN,∠GNM=12∠DNM.再由AB∥CD,可得∠BMN+∠DNM=180°,从而得到∠GMN+∠GNM=90°.然后根据三角形的内角和定理,即可求解.【详解】证明:∵MG平分∠BMN,∴∠GMN=1∠BMN(角分线的定义),2∠DNM.同理∠GNM=12∵AB∥CD,∴∠BMN+∠DNM=180°(两直线平行,同旁内角互补).∴∠GMN+∠GNM=90°.∵∠GMN+∠GNM+∠G=180°,∴∠G=90°.【点睛】本题主要考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟练掌握相关知识点是解题的关键.4、(1)30∠=︒;(2)证明见详解.F.【解析】【分析】(1)根据三角形内角和及等腰三角形的性质可得75PACABC ACB∠=∠=︒,由各角之间的∠=︒,45关系及三角形内角和定理可得30∠=︒,最后由平行线的性质即可得出;PDCPCD∠=︒,60(2)由题意及各角之间的关系可得30∠=︒,得出DCB CBECBE∠=∠,利用平行线的判定定理即可证明.【详解】解:(1)∵90∠=︒,15=,BACBAE∠=︒,AB AC∴75ABC ACB∠=∠=︒,∠=︒,45PAC∵CD AE⊥,∴90∠=︒-∠-∠=︒,ACD ADC DAC∠=︒,18015ADC∴451530PCD PCA ACD ∠=∠-∠=︒-︒=︒,∴180903060PDC ∠=︒-︒-︒=︒,∵EF BC ∥,∴60DPC PEF ∠=∠=︒,30F DCP ∠=∠=︒,∴30F ∠=︒;(2)∵75ABE ∠=︒,45ABC ∠=︒,∴754530CBE ∠=︒-︒=︒,由(1)可得30DCP ∠=︒,∴DCB CBE ∠=∠,∴BE CF ∥(内错角相等,两直线平行).【点睛】题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.5、∠A +∠B =∠C +∠D ; 25°;∠P =2B D ∠+∠;α+β﹣180°,∠P =1802a β︒+-; 1802a β︒--;∠P =23x y +;2∠P ﹣∠B ﹣∠D =180°. 【解析】【分析】探索一:根据三角形的内角和定理,结合对顶角的性质可求解;探索二:根据角平分线的定义可得∠BAP =∠DAP ,∠BCP =∠DCP ,结合(1)的结论可得2∠P =∠B +∠D ,再代入计算可求解;探索三:运用探索一和探索二的结论即可求得答案;应用一:如图4,延长BM 、CN ,交于点A ,利用三角形内角和定理可得∠A =α+β﹣180°,再运用角平分线定义及三角形外角性质即可求得答案;应用二:如图5,延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,利用应用一的结论即可求得答案;拓展一:运用探索一的结论可得:∠P+∠PAB=∠B+∠PDB,∠P+∠CDP=∠C+∠CAP,∠B+∠CDB=∠C+∠CAB,再结合已知条件即可求得答案;拓展二:运用探索一的结论及角平分线定义即可求得答案.【详解】解:探索一:如图1,∵∠AOB+∠A+∠B=∠COD+∠C+∠D=180°,∠AOB=∠COD,∴∠A+∠B=∠C+∠D,故答案为∠A+∠B=∠C+∠D;探索二:如图2,∵AP、CP分别平分∠BAD、∠BCD,∴∠1=∠2,∠3=∠4,由(1)可得:∠1+∠B=∠3+∠P,∠2+∠P=∠4+∠D,∴∠B﹣∠P=∠P﹣∠D,即2∠P =∠B +∠D ,∵∠B =36°,∠D =14°,∴∠P =25°,故答案为25°;探索三:由①∠D +2∠1=∠B +2∠3,由②2∠B +2∠3=2∠P +2∠1,①+②得:∠D +2∠B +2∠1+2∠3=∠B +2∠3+2∠P +2∠1∠D +2∠B =2∠P +∠B .∴∠P =2B D ∠+∠. 故答案为:∠P =2B D ∠+∠. 应用一:如图4,延长BM 、CN ,交于点A ,∵∠M =α,∠N =β,α+β>180°,∴∠AMN =180°﹣α,∠ANM =180°﹣β,∴∠A=180°﹣(∠AMN+∠ANM)=180°﹣(180°﹣α+180°﹣β)=α+β﹣180°;∵BP、CP分别平分∠ABC、∠ACB,∴∠PBC=12∠ABC,∠PCD=12∠ACD,∵∠PCD=∠P+∠PBC,∴∠P=∠PCD﹣∠PBC=12(∠ACD﹣∠ABC)=12∠A=1802αβ+-︒,故答案为:α+β﹣180°,1802αβ+-︒;应用二:如图5,延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,∵∠M=α,∠N=β,α+β<180°,∴∠A=180°﹣α﹣β,∵BP平分∠MBC,CP平分∠NCR,∴BP平分∠ABT,CP平分∠ACB,由应用一得:∠P=12∠A=1802αβ︒--,故答案为:1802αβ︒--;拓展一:如图6,由探索一可得:∠P+∠PAB=∠B+∠PDB,∠P+∠CDP=∠C+∠CAP,∠B+∠CDB=∠C+∠CAB,∵∠C=x,∠B=y,∠CAP=13∠CAB,∠CDP=13∠CDB,∴∠CDB﹣∠CAB=∠C﹣∠B=x﹣y,∠PAB=23∠CAB,∠PDB=23∠CDB,∴∠P+23∠CAB=∠B+23∠CDB,∠P+13∠CDB=∠C+13∠CAB,∴2∠P=∠C+∠B+13(∠CDB﹣∠CAB)=x+y+13(x﹣y)=423x y+,∴∠P=23x y+,故答案为:∠P=23x y+;拓展二:如图7,∵AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,∴∠PAD=12∠BAD,∠PCD=90°+12∠BCD,由探索一得:①∠B+∠BAD=∠D+∠BCD,②∠P+∠PAD=∠D+∠PCD,②×2,得:③2∠P+∠BAD=2∠D+180°+∠BCD,③﹣①,得:2∠P﹣∠B=∠D+180°,∴2∠P﹣∠B﹣∠D=180°,故答案为:2∠P﹣∠B﹣∠D=180°.【点睛】本题是探究性题目,考查了三角形的相关计算、三角形内角和定理、角平分线性质、三角形外角的性质等,此类题目遵循题目顺序,结合相关性质和定理,逐步证明求解即可.。
2022年必考点解析华东师大版七年级数学下册第9章多边形专题测评试卷(含答案详解)
七年级数学下册第9章多边形专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,不具有稳定性的是( )A .等腰三角形B .平行四边形C .锐角三角形D .等边三角形2、已知三角形的两边长分别为2cm 和3cm ,则第三边长可能是( )A .6cmB .5cmC .3cmD .1cm3、如图,四边形ABCD 是梯形,AD BC ∥,DAB ∠与ABC ∠的角平分线交于点E ,CDA ∠与BCD ∠的角平分线交于点F ,则1∠与2∠的大小关系为( )A .12∠>∠B .12∠=∠C .12∠∠<D .无法确定4、下列长度的三条线段能组成三角形的是( )A .3 4 8B .4 4 10C .5 6 10D .5 6 115、三角形的外角和是( )A.60°B.90°C.180°D.360°6、如图,在△ABC中,AD是△ABC的中线,△ABD的面积为3,则△ABC的面积为()A.8 B.7 C.6 D.57、如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=1∠CGE.其中正确的结论是2()A.只有①③B.只有②④C.只有①③④D.①②③④8、在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,则∠BOC等于()A.65°B.80°C.115°D.50°9、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是()A.两点确定一条直线B.两点之间,线段最短C.三角形具有稳定性D.三角形的任意两边之和大于第三边10、下图中能体现∠1一定大于∠2的是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是 _____.2、将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于______.3、一个等腰三角形的一边长为2,另一边长为9,则它的周长是________________.4、若等腰三角形两底角平分线相交所形成的钝角是128°,则这个等腰三角形的顶角的度数是_____.5、已知ABC 的三个内角的度数之比A ∠:<B :1C ∠=:3:5,则B ∠= ______ 度,C ∠= ______ 度.三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC 中(AB BC >),2AC BC =,BC 边上的中线AD 把ABC 的周长分成60和40两部分,求AC 和AB 的长.2、如图,点C ,B 分别在直线MN ,PQ 上,点A 在直线MN ,PQ 之间,MN ∥PQ .(1)如图1,求证:∠A =∠MCA +∠PBA ;(2)如图2,过点C 作CD ∥AB ,点E 在PQ 上,∠ECM =∠ACD ,求证:∠A =∠ECN ;(3)在(2)的条件下,如图3,过点B 作PQ 的垂线交CE 于点F ,∠ABF 的平分线交AC 于点G ,若∠DCE =∠ACE ,∠CFB =32∠CGB ,求∠A 的度数.3、如图,在△ABC 中,AD ⊥BC 于D ,AE 平分∠DAC ,∠BAC =80°,∠B =60°;求∠AEC 的度数.4、如图,在ABC 中,90BAC ∠=︒,AD BC ⊥于点D ,点E 是AD 上一点,连接BE .求证:BED C ∠>∠.5、如图,Rt△ABC中,90∠=︒,D、E分别是AB、AC上的点,且12C∠=∠.求证:ED⊥AB-参考答案-一、单选题1、B【解析】【分析】根据三角形具有稳定性,四边形不具有稳定性即可作出选择.【详解】解:平行四边形属于四边形,不具有稳定性,而三角形具有稳定性,故A符合题意;故选:B.【点睛】本题考查了多边形和三角形的性质,解题的关键是记住三角形具有稳定性,四边形不具有稳定性.2、C【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:设第三边长为x cm,根据三角形的三边关系可得:3-2<x<3+2,解得:1<x<5,只有C选项在范围内.故选:C.【点睛】本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.3、B【解析】【分析】由AD∥BC可得∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,由角平分线的性质可得∠AEB=90°,∠DFC=90°,由三角形内角和定理可得到∠1=∠2=90°.【详解】解:∵AD∥BC,∴∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,∵∠DAB与∠ABC的角平分线交于点E,∠CDA与∠BCD的角平分线交于点F,∴∠BAE=12∠BAD,∠ABE=12∠ABC,∠CDF=12∠ADC,∠DCF=12∠BCD,∴∠BAE+∠ABE=12(∠BAD+∠ABC)=90°,∠CDF+∠DCF=12(∠ADC+∠BCD) =90°,∴∠1=180°-(∠BAE+∠ABE)= 90°,∠2=∠CDF+∠DCF= 90°,∴∠1=∠2=90°,故选:B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形内角和定理,灵活运用这些性质进行推理是本题的关键.4、C【解析】【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A.∵3+4<8,∴不能组成三角形,故本选项不符合题意;B.∵4+4<10,∴不能组成三角形,故本选项不符合题意;C.∵5+6>10,∴能组成三角形,故本选项符合题意;D.∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C.本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.5、D【解析】【分析】根据三角形的内角和定理、邻补角的性质即可得.【详解】∠+∠=∠+∠=∠+∠=︒,解:如图,142536180∴∠+∠+∠+∠+∠+∠=︒,142536540又123180∠+∠+∠=︒,∴∠+∠+∠=︒-︒=︒,456540180360即三角形的外角和是360︒,故选:D.【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.6、C【解析】【分析】根据三角形的中线将三角形的面积分成相等的两部分即可求解.解:∵△ABC中,AD是BC边上的中线,△ABD的面积为3,∴△ABC的面积=3×2=6.故选:C.【点睛】考查了三角形的面积,关键是熟悉三角形的中线将三角形的面积分成相等的两部分的知识点.7、C【解析】【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】解:①∵EG//BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故本选项正确;②无法证明CA平分∠BCG,故本选项错误;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故本选项正确;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°﹣135°﹣90°=135°,∴∠DFB=45°=12∠CGE,故本选项正确.故正确的是①③④故选:C.【点睛】本题考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.8、C【解析】【分析】根据题意画出图形,求出∠ABC+∠ACB=130°,根据角平分线的定义得到∠CBD=12∠ABC,∠ECB=12∠ACB,再根据三角形内角和定理和角的代换即可求解.【详解】解:如图,∵∠A=50°,∴∠ABC+∠ACB=180°-∠A=130°,∵BD、CE分别是∠ABC、∠ACB的平分线,∴∠CBD=12∠ABC,∠ECB=12∠ACB,∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- 12(∠ABC+∠ACB)=180°- 12×130°=115°.故选:C【点睛】本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.9、C【解析】【分析】根据三角形具有稳定性进行求解即可.【详解】解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,故选C.【点睛】本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.10、C【解析】【分析】由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.【详解】解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;∠=∠B、如图,13,∠∠若两线平行,则∠3=∠2,则1=2,若两线不平行,则2,3∠∠大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C.【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.二、填空题1、在三角形中,两边之和大于第三边【解析】【分析】根据三角形两边之和大于第三边进行求解即可.【详解】解:∵点A 、B 在直线l 上,点C 是直线l 外一点,∴A、B 、C 可以构成三角形,∴由三角形三边的关系:在三角形中,两边之和大于第三边可以得到:CA +CB >AB ,故答案为:在三角形中,两边之和大于第三边.【点睛】本题主要考查了三角形三边的关系,熟知三角形中两边之和大于第三边是解题的关键.2、15︒【解析】【分析】利用三角形的内角和定理以及折叠的性质,求出130CDE CED ∠+∠=︒,''130A B ∠+∠=︒,利用四边形内角和为360︒,即可求出∠2.【详解】解:在ABC ∆中,180130A B C ∠+∠=︒-∠=︒,在CDE ∆中,180130CDE CED C ∠+∠=-∠=︒,由折叠性质可知:''130A B A B ∠+∠=∠+∠=︒ ,四边形''DEB A 的内角和为360︒,''''360A B ADE B ED ∴∠+∠+∠+∠=︒,1A DE CDE ∠=∠+∠','2B ED CED ∠=∠+∠,''12()360CDE CED A B ∴∠+∠+∠+∠+∠+∠=︒,130CDE CED ∠+∠=︒,''130A B ∠+∠=︒,且∠1=85°,215∴∠=︒,故答案为:15︒.【点睛】本题主要是考查了三角形和四边形的内角和定理,熟练利用三角形内角和定理,求出两角之和,最后利用四边形的内角和求得某角的度数,这是解决该题的关键.3、20【解析】【分析】题目给出等腰三角形有两条边长为2和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为2时,2+2<9,所以不能构成三角形;当腰为9时,2+9>9,所以能构成三角形,周长是:2+9+9=20.故答案为:20.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.4、76 ##76度【解析】【分析】先根据角平分线的定义、三角形的内角和定理求出等腰三角形两底角的度数和,再根据三角形内角和求出顶角的度数即可.【详解】解:∵∠BOC =128°,∴∠OBC +∠OCB =180°﹣∠BOC =180°﹣128°=52°,∵BO 平分∠ABC ,CO 平分∠ACB ,∴∠ABC +∠ACB =2(∠OBC +∠OCB )=104°,∴∠A =180°﹣(∠ABC +∠ACB )=180°﹣104°=76°.故答案为:76°.【点睛】本题主要考查角平分线的定义和三角形内角和定理,牢记角平分线分得的两个角相等,三角形内角和是180︒是解决本题的关键.5、60 100【解析】【分析】设一份为k ︒,则三个内角的度数分别为k ︒,3k ︒,5k ︒,再利用内角和定理列方程,再解方程可得答案.【详解】解:设一份为k ︒,则三个内角的度数分别为k ︒,3k ︒,5k ︒.则35180k k k ︒+︒+︒=︒,解得20k =.所以360k ︒=︒,5100k ︒=︒,即60B ∠=︒,100C ∠=︒.故答案为:60,100【点睛】本题考查的是三角形的内角和定理的应用,利用三角形的内角和定理构建方程是解本题的关键.三、解答题1、48AC =,28AB =【解析】【分析】由题意可得60AC CD +=,40AB BD +=,由中线的性质得244AC BC CD BD ===,故可求得48AC =,即可求得28AB =.【详解】由题意知100AC CD BD AB +++=,60AC CD +=,40AB BD +=∵2AC BC =,D 为BC 中点∴244AC BC CD BD === ∴156044AC CD AC AC AC +=+== 即460485AC =⨯=则BC =24,CD =BD =12则40401228AB BD =-=-=且28>24符合题意.【点睛】本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段.2、(1)见解析;(2)见解析;(3)72°.【解析】【分析】(1)过点A作平行线,证出三条直线互相平行,由平行得出与∠ACM和∠ABP相等的角即可得出结论;(2)由CD∥AB,可得同旁内角互补,再结合∠ECM与∠ECN的邻补角关系,可得结论;(3)延长CA交PQ于点H,先证明∠MCA=∠ACE=∠ECD,∠ABP=∠NCD,再设∠MCA=∠ACE=∠ECD=x,由(1)可知∠CFB=∠FCN+∠FBQ,从而∠CFB=270-2x,列出方程解得x值,则不难求得答案.【详解】解:(1)证明:过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠A=∠MCA+∠PBA;(2)∵CD∥AB,∴∠A+∠ACD=180°,∵∠ECM+∠ECN=180°,又∠ECM=∠ACD,∴∠A=∠ECN;(3)如图,延长CA 交PQ 于点H ,∵∠ECM =∠ACD ,∠DCE =∠ACE ,∴∠MCA =∠ACE =∠ECD ,∵MN ∥PQ ,∴∠MCA =∠AHB ,∵∠CAB =∠AHB +∠PBA ,且由(2)知∠CAB =∠ECN ,∴∠ABP =∠NCD ,设∠MCA =∠ACE =∠ECD =x ,由(1)可知∠CFB =∠FCN +∠FBQ ,∴∠CFB =270-2x ,由(1)可知∠CGB =∠MCG +∠GBP ,∴∠CGB =135°−12x ,∴270°−2x =32 (135°−12x ) ,解得:x=54°,∴∠AHB=54°,∴∠ABP=∠NCD=180°-54°×3=18°,∴∠CAB=54°+18°=72°.【点睛】本题考查了平行线的性质及一元一次方程在计算问题中的应用,三角形的内角和定理以及三角形的外角性质,理清题中的数量关系并正确列式是解题的关键.3、∠AEC=115º.【解析】【分析】根据三角形内角和定理求出∠C的度数,根据直角三角形两锐角互余求出∠DAC的度数,然后根据角平分线的定义求出∠DAE的度数,再根据三角形的外角的性质即可求出∠AEC的度数.【详解】解:∵∠BAC=80º,∠B=60º,∴∠C=180º-∠BAC-∠B=180º-80º-60º=40º,∵AD⊥BC,∴∠DAC=90º-∠C=90º-40º=50º ,∵AE平分∠DAC,∴∠DAE=12∠DAC=12×50º=25º ,∴∠AEC=∠DAE+∠ADE=25º+90º=115º.【点睛】本题考查了三角形内角和定理,直角三角形的性质,角平分线的定义,三角形的外角的性质.熟练掌握各个知识点是解题的关键.4、见详解【解析】【分析】根据等角的余角性质得出∠BAD =∠C ,再根据∠BED 是△ABE 的外角,得出∠BED >∠BAD =∠C 即可.【详解】证明:∵90BAC ∠=︒,∴∠BAD +∠DAC =90°,∵AD BC ⊥,∴∠DAC +∠C =90°,∴∠BAD =∠C ,∵∠BED 是△ABE 的外角,∴∠BED >∠BAD =∠C ,∴∠BED >∠C .【点睛】本题考查直角三角形两锐角互余,等角的余角性质,三角形外角性质,掌握直角三角形两锐角互余,等角的余角性质,三角形外角性质,在证明不等关系中经常利用等量转化方法是解题关键.5、见解析【解析】【分析】根据三角形内角和定理可得90ADE C ∠=∠=︒,从而可得结论.【详解】解:在ABC ∆中,2180A C ∠+∠+∠=︒,在ADE ∆中,1180A ADE ∠+∠+∠=︒∵,12A A ∠=∠∠=∠∴90ADE C ∠=∠=︒∴ED ⊥AB【点睛】本题主要考查了垂直的判定,证明90ADE C ∠=∠=︒是解答本题的关键.。
难点详解华东师大版七年级数学下册第9章多边形定向测试试卷(含答案解析)
七年级数学下册第9章多边形定向测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一个多边形的内角和与外角和的和为2160°,这个多边形的边数为( )A .9B .10C .11D .122、如图,将一副三角板平放在一平面上(点D 在BC 上),则1∠的度数为( )A .60︒B .75︒C .90︒D .105︒3、如图,AB 和CD 相交于点O ,则下列结论不正确的是( )A .12∠=∠B .1B ∠=∠C .2D ∠>∠ D .A D B C ∠+∠=∠+∠4、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是()A.5或6 B.6或7 C.5或6或7 D.6或7或85、如图,直线l1、l2分别与△ABC的两边AB、BC相交,且l1∥l2,若∠B=35°,∠1=105°,则∠2的度数为()A.45°B.50°C.40°D.60°6、三根小木棒摆成一个三角形,其中两根木棒的长度分别是8cm和5cm,那么第三根小木棒的长度不可能是()A.5cm B.8cm C.10cm D.13cm7、三角形的外角和是()A.60°B.90°C.180°D.360°8、下图中能体现∠1一定大于∠2的是()A.B.C.D.9、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有()A.1个B.2个C.3个D.4个10、如图,∠A +∠B +∠C +∠D +∠E +∠F 的度数为( )A .180°B .360°C .540°D .不能确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、定义:当三角形中一个内角α是另一个内角的两倍时,我们称此三角形为“倍角三角形”,其中α称为“倍角”,如果一个“倍角三角形”的一个内角为99°,那么倍角α的度数是_____.2、等腰三角形的一条边长为4cm ,另一条边长为6cm ,则它的周长是________.3、如图,从A 处观测C 处的仰角是36∠=︒CAD ,从B 处观测C 处的仰角74CBD ∠=︒,则从C 处观测A ,B 两处的视角BCA ∠的度数是__________.4、过多边形的一个顶点作对角线,可将多边形分成5个三角形,则多边形的边数是______.5、如图,在△ABC 中,点D 为BC 边延长线上一点,若∠ACD =75°,∠A =45°,则∠B 的度数为__________.三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,90∠=︒,AD BCBAC⊥于点D,点E是AD上一点,连接BE.求证:∠>∠.BED C2、如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2520°的新多边形,求原多边形的边数.3、如图,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.4、在小学,我们曾经通过动手操作,利用拼图的方法研究了三角形三个内角的数量关系.如图,把三角形ABC分成三部分,然后以某一顶点(如点B)为集中点,把三个角拼在一起,观察发现恰好构成了平角,从而得到了“三角形三个内角的和是180°”的结论.但是,通过本学期的学习我们知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.小聪认真研究了拼图的操作方法,形成了证明命题“三角形三个内角的和是180°”的思路: ①画出命题对应的几何图形;②写出已知,求证;③受拼接方法的启发画出辅助线;④写出证明过程.请你参考小聪解决问题的思路,写出证明该命题的完整过程.5、如图,ABC 中,BE 为AC 边上的高,CD 平分ACB ∠,CD 、BE 相交于点F .若70A ∠=︒,60ABC ∠=︒,求BFC ∠的度数.-参考答案-一、单选题1、D【解析】依题意,多边形的外角和为360°,该多边形的内角和与外角和的总和为2160°,故内角和为1800°.根据多边形的内角和公式易求解.【详解】解:该多边形的外角和为360°,故内角和为2160°-360°=1800°,故(n -2)•180°=1800°,解得n =12.故选:D .【点睛】本题考查的是多边形内角与外角的相关知识,掌握多边形的内角和公式是解题的关键.2、B【解析】【分析】根据三角尺可得45,30EDB ABC ∠=︒∠=︒,根据三角形的外角性质即可求得1∠【详解】 解:45,30EDB ABC ∠=︒∠=︒175EDB ABC ∴∠=∠+∠=︒故选B【点睛】本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.3、B【解析】根据两直线相交对顶角相等、三角形角的外角性质即可确定答案.【详解】解:选项A、∵∠1与∠2互为对顶角,∴∠1=∠2,故选项A不符合题意;选项B、∵∠1=∠B+∠C,∴∠1>∠B,故选项B符合题意;选项C、∵∠2=∠D+∠A,∴∠2>∠D,故选项C不符合题意;∠+∠=∠+∠,故选项D不符合题意;选项D、∵1∠+∠=∠,1A DB C∠+∠=∠,∴A D B C故选:B.【点睛】本题主要考查了对顶角的性质、平行线的性质和三角形内角和、外角的性质,能熟记对顶角的性质是解此题的关键.4、C【解析】【分析】实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.【详解】解:如图,原来多边形的边数可能是5,6,7.故选C【点睛】本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.5、C【解析】【分析】根据三角形内角和定理球场∠3的度数,利用平行线的性质求出答案.【详解】解:∵∠B=35°,∠1=105°,∴∠3=180-∠1-∠B=40︒,∵l1∥l2,∴∠2=∠3=40︒,故选:C..【点睛】此题考查三角形内角和定理,两直线平行内错角相等的性质,熟记三角形内角和等于180度及平行线的性质并熟练解决问题是解题的关键.6、D【解析】【分析】设第三根木棒长为x厘米,根据三角形的三边关系可得8﹣5<x<8+5,确定x的范围即可得到答案.【详解】解:设第三根木棒长为x厘米,由题意得:8﹣5<x<8+5,即3<x<13,故选:D.【点睛】此题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.7、D【解析】【分析】根据三角形的内角和定理、邻补角的性质即可得.【详解】∠+∠=∠+∠=∠+∠=︒,解:如图,142536180∴∠+∠+∠+∠+∠+∠=︒,142536540又123180∠+∠+∠=︒,∴∠+∠+∠=︒-︒=︒,456540180360即三角形的外角和是360︒,故选:D.【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.8、C【解析】【分析】由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.【详解】解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;∠=∠B、如图,13,∠∠若两线平行,则∠3=∠2,则1=2,若两线不平行,则2,3∠∠大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C.【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.9、C【解析】【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c 的范围是:5﹣3<c <5+3,即2<c <8.∵c 是奇数,∴c =3或5或7,有3个值.则对应的三角形有3个.故选:C .【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.10、B【解析】【分析】设BE 与DF 交于点M ,BE 与AC 交于点N ,根据三角形的外角性质,可得,BMD B F CNE A E ∠=∠+∠∠=∠+∠ ,再根据四边形的内角和等于360°,即可求解.【详解】解:设BE 与DF 交于点M ,BE 与AC 交于点N ,∵,BMD B F CNE A E ∠=∠+∠∠=∠+∠ ,∴A B C D E F BMD CNE C D ∠+∠+∠+∠+∠+∠=∠+∠+∠+∠ ,∵360BMD CNE C D ∠+∠+∠+∠=︒,∴360A B C D E F ∠+∠+∠+∠+∠+∠=︒ .故选:B【点睛】本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键.二、填空题1、54︒或99︒【解析】【分析】根据新定义分三种情况:①当99°的内角是另一个角的两倍时,直接可得α的度数;②当一个内角α是99︒的两倍时,不符合三角形的内角和关系,舍去;③当三角形中另两个角是“倍角”关系时,列方程得到199=1802αα++︒︒,求解即可.【详解】解:分三种情况:①当99°的内角是另一个角的两倍时,倍角α的度数是99︒;②当一个内角α是99︒的两倍时,则=299=198α⨯︒︒,不符合三角形的内角和关系,故舍去; ③当三角形中另两个角是“倍角”关系时,得到199=1802αα++︒︒,得α=54︒,故答案为:54︒或99︒.【点睛】此题考查了三角形的内角和定理,新定义计算,一元一次方程,正确理解新定义并列式计算是解题的关键.2、16cm 或14cm##14cm 或16cm【解析】根据题意分腰为6cm 和底为6cm 两种情况,分别求出即可.【详解】解:①当腰为6cm 时,它的周长为6+6+4=16(cm );②当底为6cm 时,它的周长为6+4+4=14(cm );故答案为:16cm 或14cm .【点睛】本题考查了等腰三角形的性质的应用,注意:等腰三角形的两腰相等,注意分类讨论.3、38︒【解析】【分析】根据三角形外角的性质求解即可.【详解】解:由题意可得36∠=︒CAD ,74CBD ∠=︒,∴743638BCA DBC CAD ∠=∠-∠=︒-︒=︒,故答案为:38︒【点睛】此题考查了三角形外角的性质,解题的关键是掌握三角形外角的有关性质.4、7【解析】【分析】根据n 边形从一个顶点出发可引出(n ﹣3)条对角线,可组成(n ﹣2)个三角形,依此可得n 的值.解:设多边形的边数为n ,由题意得,n ﹣2=5,解得:n =7,即这个多边形是七边形.故答案为:7.【点睛】本题考查了多边形的对角线,求对角线条数时,直接代入边数n 的值计算,而计算边数时,需利用方程思想,解方程求n .5、30°##30度【解析】【分析】根据三角形的外角的性质,即可求解.【详解】解:∵ACD A B ∠=∠+∠ ,∴B ACD A ∠=∠-∠ ,∵∠ACD =75°,∠A =45°,∴30B ∠=︒ .故答案为:30°【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.三、解答题【解析】【分析】根据等角的余角性质得出∠BAD =∠C ,再根据∠BED 是△ABE 的外角,得出∠BED >∠BAD =∠C 即可.【详解】证明:∵90BAC ∠=︒,∴∠BAD +∠DAC =90°,∵AD BC ⊥,∴∠DAC +∠C =90°,∴∠BAD =∠C ,∵∠BED 是△ABE 的外角,∴∠BED >∠BAD =∠C ,∴∠BED >∠C .【点睛】本题考查直角三角形两锐角互余,等角的余角性质,三角形外角性质,掌握直角三角形两锐角互余,等角的余角性质,三角形外角性质,在证明不等关系中经常利用等量转化方法是解题关键. 2、15【解析】【分析】根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.【详解】设新多边形是n 边形,由多边形内角和公式得:180(2)2520n ︒⨯-=︒,解得:16n =,则原多边形的边数是:16115-=.∴原多边形的边数是15.【点睛】本题主要考查了多边形内角与外角,解决本题的关键是要熟练掌握多边形的内角和公式.3、∠AFB =40°.【解析】【分析】由题意易得∠ADC =90°,∠ACB =80°,然后可得11,22MAE MAC ABF ABC ∠=∠∠=∠,进而根据三角形外角的性质可求解.【详解】解:∵AD ⊥BE ,∴∠ADC =90°,∵∠DAC =10°,∴∠ACB =90°﹣∠DAC =90°﹣10°=80°,∵AE 是∠MAC 的平分线,BF 平分∠ABC , ∴11,22MAE MAC ABF ABC ∠=∠∠=∠,又∵∠MAE =∠ABF +∠AFB ,∠MAC =∠ABC +∠ACB ,∴∠AFB =∠MAE ﹣∠ABF =()11111804022222MAC ABC MAC ABC ACB ∠-∠=∠-∠=∠=⨯︒=︒.【点睛】本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.4、见解析【解析】【分析】根据要求画出△ABC,写出已知,求证.构造平行线,利用平行线的性质解决问题即可.【详解】解:已知:△AB C.求证:∠A+∠B+∠C=180°.证明:如图,延长CB到F,过点B作BE∥A C.∵BE∥AC,∴∠1=∠4,∠5=∠3,∵∠2+∠4+∠5=180°,∴∠1+∠2+∠3=180°,即∠A+∠ABC+∠C=180°.【点睛】本题考查三角形内角和定理的证明,平行线的性质,平角的定义等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题.5、115 .【解析】【分析】先根据三角形的内角和定理可得50∠=°ACB ,再根据角平分线的定义可得25ECF ∠=︒,然后根据垂直的定义可得90CEF ∠=︒,最后根据三角形的外角性质即可得.【详解】 解:在ABC 中,70A ∠=︒,60ABC ∠=︒,18050AB B C AC A ∴∠=︒-∠=∠-︒, CD 平分ACB ∠,1252ECF ACB ∠=∠=∴︒, BE 为AC 边上的高,90CEF ∴∠=︒,9025115BFC CEF ECF ∴∠=∠+∠=︒+︒=︒.【点睛】本题考查了三角形的内角和定理、角平分线的定义、三角形的外角性质等知识点,熟练掌握三角形的内角和定理是解题关键.。
2022年最新强化训练华东师大版七年级数学下册第9章多边形同步训练试卷(精选含答案)
七年级数学下册第9章多边形同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根2、下列长度的三条线段能组成三角形的是()A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,73、下图中能体现∠1一定大于∠2的是()A.B.C.D.4、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外面时,此时测得∠1=112°,∠A=40°,则∠2的度数为()A.32°B.33°C.34°D.38°5、一个多边形的每个内角均为150°,则这个多边形是()A.九边形B.十边形C.十一边形D.十二边形6、利用直角三角板,作ABC的高,下列作法正确的是()A.B.C.D.7、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为()A.40°B.45°C.50°D.60°8、如图,在△ABC中,AD是△ABC的中线,△ABD的面积为3,则△ABC的面积为()A.8 B.7 C.6 D.59、下列长度的三条线段能组成三角形的是()A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,710、一副三角板如图放置,点A在DF的延长线上,∠D=∠BAC=90°,∠E=30°,∠C=45°,若BC//DA,则∠ABF的度数为()A .15°B .20°C .25°D .30°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个正多边形的每一个内角比每一个外角的5倍还小60°,则这个正多边形的边数为__________.2、如图,已知点A 是射线BE 上一点,过A 作CA BE ⊥交射线BF 于点C ,AD BF ⊥交射线BF 于点D ,给出下列结论:①1∠是B 的余角;②图中互余的角共有3对;③1∠的补角只有ACF ∠;④与ADB ∠互补的角共有3个,其中正确结论有______(把你认为正确的结论的序号都填上).3、已知一个多边形的每个外角都是30°,那么这个多边形的边数是__________.4、在Rt ABC 中,锐角50A ∠=︒,则另一个锐角B ∠=_______.5、若一个n 边形的每个内角都等于135°,则该n 边形的边数是____________.三、解答题(5小题,每小题10分,共计50分)1、如图,BD 是△ABC 的角平分线,DE ∥BC ,交AB 于点E ,∠A =45°,∠BDC =60°,求∠BED 的度数.2、如图,每个小正方形的边长均为1(1)图中阴影部分的面积是多少?边长是多少?(2)若(1)中边长的整数部分为a,小数部分为b,求a﹣b的值.3、如图,点E为直线AB上一点,∠CAE=2∠B,BC平分∠ACD,求证:AB∥CD.4、【教材重现】如图是数学教材第135页的部分截图.在多边形中,三角形是最基本的图形.如图4.4.5所示,每一个多边形都可以分割成若干个三角形.数一数每个多边形中三角形的个数,你能发现什么规律?在多边形中,连接不相邻的两个顶点,所得到的线段称为多边形的对角线.【问题思考】结合如图思考,从多边形的一个顶点出发,可以得到的对角线的数量,并填写表:【问题探究】n边形有n个顶点,每个顶点分别连接对角线后,每条对角线重复连接了一次,由此可推导出,n边形共有对角线(用含有n的代数式表示).【问题拓展】(1)已知平面上4个点,任意三点不在同一直线上,一共可以连接条线段.(2)已知平面上共有15个点,任意三点不在同一直线上,一共可以连接条线段.(3)已知平面上共有x个点,任意三点不在同一直线上,一共可以连接条线段(用含有x 的代数式表示,不必化简).5、三角形中任意两边之差与第三边有怎样的关系?-参考答案-一、单选题1、B【解析】【分析】根据三角形的稳定性即可得.【详解】解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:或故选:B.【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.2、C【解析】【分析】根据组成三角形的三边关系依次判断即可.【详解】A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.故选:C.【点睛】本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.3、C【解析】【分析】由对顶角的性质可判断A ,由平行线的性质可判断B ,由三角形的外角的性质可判断C ,由直角三角形中同角的余角相等可判断D ,从而可得答案.【详解】解:A 、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;B 、如图,13,∠=∠若两线平行,则∠3=∠2,则1=2,∠∠若两线不平行,则2,3∠∠大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C 、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D 、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C .【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.4、A【解析】【分析】由折叠的性质可知40A A '∠=∠=︒,再由三角形外角的性质即可求出DFA ∠的大小,再次利用三角形外角的性质即可求出2∠的大小.【详解】如图,设线段AC 和线段A D '交于点F .由折叠的性质可知40A A '∠=∠=︒.∵1A DFA ∠=∠+∠,即11240DFA ︒=︒+∠,∴72DFA ∠=︒.∵2DFA A '∠=∠+∠,即72240︒=∠+︒,∴232∠=︒.故选A .【点睛】本题考查折叠的性质,三角形外角的性质.利用数形结合的思想是解答本题的关键.5、D【解析】【分析】先求出多边形的外角度数,然后即可求出边数.【详解】解:∵多边形的每个内角都等于150°,∴多边形的每个外角都等于180°-150°=30°,∴边数n =360°÷30°=12,故选:D .【点睛】本题考查多边形的内角和、外角来求多边形的边数,属于基础题,熟练掌握多边形中内角和定理公式是解决本类题的关键.6、D【解析】【分析】由题意直接根据高线的定义进行分析判断即可得出结论.【详解】解:A 、B 、C 均不是高线.故选:D .【点睛】本题考查的是作图-基本作图,熟练掌握三角形高线的定义即过一个顶点作垂直于它对边所在直线的线段,叫三角形的高线是解答此题的关键.7、C【解析】【分析】根据三角形内角和定理确定50ABC ∠=︒,然后利用平行线的性质求解即可.【详解】解:∵40BAC ∠=︒,90ACB ∠=︒,∴50ABC ∠=︒,∵a b ∥,∴150ABC ∠=∠=︒,故选:C .【点睛】题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.8、C【解析】【分析】根据三角形的中线将三角形的面积分成相等的两部分即可求解.【详解】解:∵△ABC中,AD是BC边上的中线,△ABD的面积为3,∴△ABC的面积=3×2=6.故选:C.【点睛】考查了三角形的面积,关键是熟悉三角形的中线将三角形的面积分成相等的两部分的知识点.9、C【解析】【分析】根据三角形的三边关系,逐项判断即可求解.【详解】+=<,所以不能组成三角形,故本选项不符合题意;解:A、因为2356B、因为2467+=<,所以不能组成三角形,故本选项不符合题意;+=>,所以能组成三角形,故本选项符合题意;C、因为3365+=<,所以不能组成三角形,故本选项不符合题意;D、因为3367故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.10、A【解析】【分析】先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.【详解】解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,∴∠EFD=60°,∠ABC=45°,∵BC∥AD,∴∠EFD=∠FBC=60°,∴∠ABF=∠FBC-∠ABC=15°,故选A.【点睛】本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.二、填空题1、9【解析】【分析】设正多边形的外角为x 度,则可用代数式表示出内角,再由内角与外角互补的关系得到方程,解方程即可求得每一个外角,再根据多边形的外角和为360度即可求得正多边形的边数.【详解】设正多边形的外角为x 度,则内角为(5x −60)度由题意得:560180x x +-=解得:40x =则正多边形的边数为:360÷40=9即这个正多边形的边数为9故答案为:9【点睛】本题考查了正多边形的内角与外角,关键是运用方程求得正多边形的外角.2、①④##④①【解析】【分析】根据垂直定义可得∠BAC =90°,∠ADC =∠ADB =∠CAE =90°,结合三角形的内角和,然后再根据余角定义和补角定义逐一进行分析即可.3、12【解析】【分析】利用任何多边形的外角和是360°除以外角度数即可求出答案.【详解】解:多边形的外角的个数是360÷30=12,所以多边形的边数是12.故答案为:12.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.4、40︒【解析】【分析】根据直角三角形两锐角互余,即可求解.【详解】解:在Rt ABC 中,∵锐角50A ∠=︒,∴另一个锐角90905040B A ∠=︒-∠=︒-︒=︒ .故答案为:40︒【点睛】本题主要考查了直角三角形的性质,熟练掌握直角三角形两锐角互余是解题的关键.5、8【解析】【分析】根据题意求得多边形的外角,根据360度除以多边形的外角即可求得n 边形的边数【详解】解:∵一个n 边形的每个内角都等于135°,∴则这个n 边形的每个外角等于18013545︒-︒=︒÷=360458∴该n边形的边数是8故答案为:8【点睛】本题考查了多边形的内角与外角的关系,求得多边形的外角是解题的关键.三、解答题1、150°【解析】【分析】求∠BED的度数,应先求出∠ABC的度数,根据三角形的外角的性质可得,∠ABD=∠BDC﹣∠A=60°﹣45°=15°.再根据角平分线的定义可得,∠ABC=2∠ABD=2×15°=30°,根据两直线平行,同旁内角互补得∠BED的度数.【详解】解:∵∠BDC是△ABD的外角,∴∠ABD=∠BDC﹣∠A=60°﹣45°=15°.∵BD是△ABC的角平分线,∴∠DBC=∠ABD=15°,∴∠ABC=30°,∵DE∥BC,∴∠BED=180°﹣∠ABC=180°﹣30°=150°.【点睛】本题考查三角形外角的性质及角平分线的定义和平行线的性质,解答的关键是沟通外角和内角的关系.2、 (1)面积17(2)8【解析】【分析】(1)利用大正方形面积-4个小三角形面积可求阴影部分的面积是17,则其边长是面积的算术平方根(2)通过估算45,可求得a=4,b4,a﹣b=8.(1)解:大正方形面积为5×5=25,每个小三角形是直角三角形,两直角边长为1与4,每个小三角形面积为:11422⨯⨯=,四个小三角形面积为4×2=8,图中阴影部分的面积为25-8=17,(2)解:∵42<17<52,∴45,a=4,小数部分b﹣4,∴a﹣b=4﹣4),=4,=8【点睛】本题考查实数的有关计算,正方形面积,三角形面积,算术平方根,估值,掌握实数的有关计算,正方形面积,三角形面积,算术平方根,估值,代数式的值,会表示整数部分与小数部分是解题关键.3、见解析【解析】【分析】根据三角形外角的性质,可得∠B =∠ACB ,再由BC 平分∠ACD ,可得∠B =∠DCB ,即可求证.【详解】证明:∵∠CAE =∠ACB +∠B ,∠CAE =2∠B ,∴∠B =∠ACB ,又∵BC 平分∠ACD ,∴∠ACB =∠DCB ,∴∠B =∠DCB ,∴AB ∥CD (内错角相等,两直线平行).【点睛】本题主要考查了平行线的判定,三角形外角的性质,角平分线的定义,熟练掌握平行线的判定定理,三角形外角的性质定理是解题的关键.4、规律为:多边形的边数减去2,就是多边形中的三角形的个数; 2条,3条,9条,3n -条;(3)2n n -条;(1)6;(2)105;(3)()12x x - 【解析】【分析】通过观察多边形边数与其分割的三角形个数,即可发现规律利用规律,多边形的边数3-=一个顶点出发的对角线数,直接填写表格即可先求出所有顶点得到的对角线之和,最后除以2即可得到n 边形的对角线条数(1)根据题意,四边形一个顶点可以得到一条,四个点共4条,再去除一半,加上四个点单独连接的4条线段,即可得到答案.(2)根据规律可以发现:十五边形的每个点可以得到12条,15点有180条,去掉一半,加上15个点组成的十五边形的的15条边,即可得到答案.(3)通过上述两小题,即可以找到对应的规律,利用规律进行求解即可.【详解】由图可以直接发现:多边形的边数与其分割的三角形个数相差2,故规律为:多边形的边数减去2,就是多边形中的三角形的个数.利用上图规律,便可以知道从五边形的一个顶点出发,得到2条对角线;六边形的一个顶点出发,得到3条对角线;十二边形的一个顶点出发,得到9条对角线;n边形的一个顶点出发,得到3n-条对角线.n边形的一个顶点可以得到3n-条对角线,故n个顶点共有(3)n n-,由于每条对角线重复连接了一次,故n边形共有(3)2n n-条对角线(1)解:有四个点可以组成四边形,每个点可以得到1条对角线,四个点共4条,每条对角线重复连接了一次,∴对角线条数为2,四边形的边数为4,∴一共可以连接2+4=6条线段.(2)解:有15个点可以组成十五边形,每个点可以得到12条对角线,四个点共180条,每条对角线重复连接了一次,∴对角线条数为90,四边形的边数为15,∴一共可以连接90+15=105条线段.(3)解:由前面题的规律可知:有x个点可以组成x边形,每个点可以得到3x-条对角线,四个点共(3)x x-条,每条对角线重复连接了一次,∴对角线条数为(3)2x x -, 四边形的边数为x ,∴一共可以连接()()3122x x x x x --+=条线段.【点睛】本题主要是考察了图形类的规律问题以及列代数式,根据题意,找到对角线与多边形的边数关系是解决本题的关键,另外,注意本题是问的点与点之间可连接的线段数,不要只算对角线的条数.5、三角形任意两边的差小于第三边.【解析】【分析】由三角形的任意两边之和大于第三边可得,,a b c b c a c a b +>+>+>,再移项即可得到答案.【详解】解:如图,设,,a b c 为任意一个三角形的三条边,则:,,a b c b c a c a b +>+>+>移项可得:,,a c b b a c c b a >->->-即:三角形两边的差小于第三边.【点睛】本题考查的是三角形的三边关系,熟练的利用三角形的任意两边之和大于第三边得到任意两边之差小于第三边是解本题的关键.。
七年级数学下册多边形的外角和同步跟踪检测卷(含答案与解析)
七年级数学下册多边形的外角和检测一.选择题(共8小题)1.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形2.五边形的内角和是()A.180°B.360°C.540°D.600°3.如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形4.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形5.若一个多边形的内角和是900°,则这个多边形的边数是()A. 5 B.6 C.7 D.86.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣α B.90°+αC.D.360°﹣α7.若一个正n边形的每个内角为156°,则这个正n边形的边数是()A. 13 B.14 C.15 D.168.一个多边形的内角和是900°,这个多边形的边数是()A. 10 B.9 C.8 D.7二.填空题(共6小题)9.五边形的内角和为_________ .10.若一个正多边形的一个内角等于135°,那么这个多边形是正_________ 边形.11.正多边形的一个外角等于20°,则这个正多边形的边数是_________ .12.一个多边形的内角和比外角和的3倍多180°,则它的边数是_________ .13.一个正多边形的一个外角等于30°,则这个正多边形的边数为_________ .14.内角和与外角和相等的多边形的边数为_________ .三.解答题(共7小题)15.若∠A与∠B的两边分别垂直,请判断这两个角的等量关系.(1)如图1,∠A与∠B的等量关系是_________ ;如图2,∠A与∠B的等量关系是_________ ;对于上面两种情况,请用文字语言叙述:_________ .(2)请选择图1或图2其中的一种进行证明.16.一个正多边形的一个内角的度数比相邻外角的6倍还多12°,求这个正多边形的内角和.17.在缙云广场上,有一种多边形地砖的内角和为540°,请你求出这种多边形地砖的边数.18.在凸多边形中,四边形的内角和为360°,五边形的内角和为540°,六边形的内角和为720°,经过观察、探索、归纳,你认为凸九边形的内角和为多少?简单扼要地写出你的思考过程.19.在四边形ABCD中,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,∠C的大小.20.一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的,求这个多边形的边数及内角和.21.一个正多边形的每一个内角都比其外角多100°,求该正多边形的边数.参考答案与试题解析一.选择题(共8小题)1一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形考点:多边形内角与外角.分析:此题可以利用多边形的外角和和内角和定理求解.解答:解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.点评:本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,多边形的内角和为(n﹣2)•180°.2.五边形的内角和是()A.180°B.360°C.540°D.600°考点:多边形内角与外角.专题:常规题型.分析:直接利用多边形的内角和公式进行计算即可.解答:解:(5﹣2)•180°=540°.故选:C.点评:本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.3.如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形考点:多边形内角与外角.分析:n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.解答:解:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=6.则这个正多边形的边数是6.故选:C.点评:考查了多边形内角和定理,此题比较简单,只要结合多边形的内角和公式,寻求等量关系,构建方程求解.4.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形分析:首先求得外角的度数,然后利用360除以外角的度数即可求解.解答:解:外角的度数是:180﹣108=72°,则这个多边形的边数是:360÷72=5.故选C.点评:本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理5.若一个多边形的内角和是900°,则这个多边形的边数是()A. 5 B.6 C.7 D.8考点:多边形内角与外角.分析:根据多边形的内角和公式(n﹣2)•180°,列式求解即可.解答:解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:C.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.6.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α考点:多边形内角与外角;三角形内角和定理.专题:几何图形问题.分析:先求出∠ABC+∠BCD的度数,然后根据角平分线的性质以及三角形的内角和定理求解∠P 的度数.解答:解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:C.点评:本题考查了多边形的内角和外角以及三角形的内角和定理,属于基础题.7.若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.16专题:常规题型.分析:由一个正多边形的每个内角都为156°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.解答:解:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°﹣156°=24°,∴这个多边形的边数为:360°÷24°=15,故选:C.点评:此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握多边形的外角和定理是关键.8.一个多边形的内角和是900°,这个多边形的边数是()A.10 B.9 C 8 D.7考点:多边形内角与外角.分析:根据多边形的内角和公式(n﹣2)•180°,列式求解即可.解答:解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:D.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.二.填空题(共6小题)9.五边形的内角和为540°.考点:多边形内角与外角.专题:常规题型.分析:根据多边形的内角和公式(n﹣2)•180°计算即可.解答:解:(5﹣2)•180°=540°.故答案为:540°.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键,是基础题.10.若一个正多边形的一个内角等于135°,那么这个多边形是正八边形.考点:多边形内角与外角.分析:一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解答:解:∵内角与外角互为邻补角,∴正多边形的一个外角是180°﹣135°=45°,∵多边形外角和为360°,∴360°÷45°=8,则这个多边形是八边形.故答案为:八.点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.11.正多边形的一个外角等于20°,则这个正多边形的边数是18 .考点:多边形内角与外角.分析:根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解答:解:因为外角是20度,360÷20=18,则这个多边形是18边形.故答案为:18点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.12.一个多边形的内角和比外角和的3倍多180°,则它的边数是9 .考点:多边形内角与外角.专题:计算题.分析:多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是3×360°+180°.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,得到方程,从而求出边数.解答:解:根据题意,得(n﹣2)•180°=3×360°+180°,解得:n=9.则这个多边形的边数是9.故答案为:9.点评:考查了多边形内角与外角,此题只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.13.一个正多边形的一个外角等于30°,则这个正多边形的边数为12 .考点:多边形内角与外角.分析:正多边形的一个外角等于30°,而多边形的外角和为360°,则:多边形边数=多边形外角和÷一个外角度数.解答:解:依题意,得多边形的边数=360°÷30°=12,故答案为:12.点评:题考查了多边形内角与外角.关键是明确多边形的外角和为定值,即360°,而当多边形每一个外角相等时,可作除法求边数.14.内角和与外角和相等的多边形的边数为四.考点:多边形内角与外角.分析:根据多边形的内角和公式与外角和定理列式进行计算即可求解.解答:解:设这个多边形是n边形,则(n﹣2)•180°=360°,解得n=4.故答案为:四.点评:本题考查了多边形的内角和公式与外角和定理,熟记内角和公式,外角和与多边形的边数三.解答题(共7小题)15.若∠A与∠B的两边分别垂直,请判断这两个角的等量关系.(1)如图1,∠ A与∠B的等量关系是相等;如图2,∠A与∠B的等量关系是互补;对于上面两种情况,请用文字语言叙述:如果一个角的两边与另一个角的两边分别垂直,那么这两个角的关系是相等或互补.(2)请选择图1或图2其中的一种进行证明.考点:多边形内角与外角;垂线;直角三角形的性质.分析:根据垂直的量相等的角都等于90°,对顶角相等,所以∠A=∠B,同样根据垂直的量相等的角都等于90°,根据四边形的内角和等于360°,所以∠A+∠B=360°﹣90°﹣90°=180°.所以如果一个角的两边与另一个角的两边分别垂直,那么这两个角的关系是相等或互补.解答:解:(1)如图1,∠A与∠B的等量关系是相等;如图2,∠A与∠B的等量关系是互补;对于上面两种情况,请用文字语言叙述:如果一个角的两边与另一个角的两边分别垂直,那么这两个角的关系是相等或互补.故答案为:相等,互补,如果一个角的两边与另一个角的两边分别垂直,那么这两个角的关系是相等或互补;(2)选图2.∵四边形的内角和等于360°,∴∠A+∠B=360°﹣90°﹣90°=180°.∴∠A与∠B的等量关系是互补.点评:本题考查了垂线的定义.解题的关键是明确四边形的内角和等于360°,三角形的内角和等于180°,对顶角相等的性质.16.一个正多边形的一个内角的度数比相邻外角的6倍还多12°,求这个正多边形的内角和.考点:多边形内角与外角.专题:计算题.分析:设这个正多边形的一个外角的度数为x,利用一个内角与相邻外角互补得到180°﹣x=6x+12°,解得x=24°,再根据外角和定理计算出正多边形的边数,然后根据多边形内角和定理计算即可.解答:解:设这个正多边形的一个外角的度数为x,根据题意得180°﹣x=6x+12°,解得x=24°,所以这个正多边形边数==15,所以这个正多边形的内角和=(15﹣2)×180°=2340°.点评:本题考查了多边形内角与外角:内角和定理:(n﹣2)•180° (n≥3,且n为整数);多边形的外角和等于360度.17.在缙云广场上,有一种多边形地砖的内角和为540°,请你求出这种多边形地砖的边数.考点:多边形内角与外角.分析:根据多边形的内角和公式(n﹣2)•180°列式计算即可得解.解答:解:设这种多边形地砖的边数为n,则(n﹣2)×180°=540°,解得 n=5.答:这种多边形地砖的边数为5.点评:本题考查了多边形的内角和公式,熟记公式是解题的关键.18.在凸多边形中,四边形的内角和为360°,五边形的内角和为540°,六边形的内角和为720°,经过观察、探索、归纳,你认为凸九边形的内角和为多少?简单扼要地写出你的思考过程.考点:多边形内角与外角.专题:探究型.分析:根据四边形的内角和为360°,五边形的内角和为540°,六边形的内角和为720°.可以得到边数增加1,相应内角和增加180度.这样依次得到七边形的内角和,八边形的内角和,从而推得九边形的内角和.解答:解:七边形的内角和比六边形的内角和多180度,因而是900度;八边形的内角和比七边形的内角和多180度,因而是1080度;九边形的内角和比八边形的内角和多180度,因而是1260度.点评:正确找出多边形的边数的变化与内角和的变化之间的关系,是解决本题的关键.19.在四边形ABCD中,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,∠C的大小.考点:多边形内角与外角.专题:计算题.分析:本题可设∠A=x(度),则∠B=x+20,∠C=2x,利用四边形的内角和即可解决问题.解答:解:设∠A=x,则∠B=x+20°,∠C=2x.四边形内角和定理得x+(x+20°)+2x+60°=360°,解得x=70°.∴∠A=70°,∠B=90°,∠C=140°.点评:本题需仔细分析题意,利用多边形的内角和公式结合方程即可解决问题.20.一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的,求这个多边形的边数及内角和.考点:多边形内角与外角.分析:此题要结合多边形的内角与外角的关系来寻求等量关系,构建方程求出每个外角.多边形外角和是固定的360°.解答:解:设多边形的一个内角为x度,则一个外角为x度,依题意得x+x=180°,11 x=180°,x=108°. 360°÷(×108°)=5.(5﹣2)×180°=540°.答:这个多边形的边数为5,内角和是540°.点评: 本题考查多边形的内角与外角的关系、方程的思想.关键是记住多边形一个内角与外角互补和外角和的特征.21.一个正多边形的每一个内角都比其外角多100°,求该正多边形的边数.考点: 多边形内角与外角.分析: 可根据正多边形的一个内角与外角互补可得外角的度数,进而让360除以一个外角的度数即为多边形的边数.解答: 解:设正多边形的外角为x ,则内角为180﹣x ,∴180﹣x ﹣x=100,解得x=40,∴这个正多边形的边数为360÷40=9.故该正多边形的边数是9.点评: 考查有关正多边形的外角和内角的计算;得到正多边形的外角的度数是解决本题的突破点;注意应用正多边形的外角与内角互补这个隐含的知识点.。
强化训练华东师大版七年级数学下册第9章多边形定向测评试卷(精选含详解)
七年级数学下册第9章多边形定向测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、四边形的内角和与外角和的数量关系,正确的是()A.内角和比外角和大180°B.外角和比内角和大180°C.内角和比外角和大360°D.内角和与外角和相等∠+∠+∠+∠=()2、如图,在六边形ABCDEF中,若1290∠+∠=︒,则3456A.180°B.240°C.270°D.360°∠等于()3、如图所示,一副三角板叠放在一起,则图中αA.105°B.115°C.120°D.135°4、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是()A.10 B.8 C.7 D.45、若一个多边形的内角和为720°,则该多边形为()边形A.四B.五C.六D.七6、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有()A.1个B.2个C.3个D.4个7、以下列长度的各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.2cm,5cm,9cmC.7cm,8cm,10cm D.6cm,6cm,13cm8、数学课上,同学们在作ABC中AC边上的高时,共画出下列四种图形,其中正确的是().A.B.C.D.9、如图,直线l1、l2分别与△ABC的两边AB、BC相交,且l1∥l2,若∠B=35°,∠1=105°,则∠2的度数为()A.45°B.50°C.40°D.60°10、如图,在ABC中,AD、AE分别是边BC上的中线与高,4AE ,CD的长为5,则ABC的面积为()A.8 B.10 C.20 D.40第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,△ABC的面积等于35,AE=ED,BD=3DC,则图中阴影部分的面积等于 _______2、如图,已知BE、CD分别是△ABC的内角平分线,BE和CD相交于点O,且∠A=40°,则∠DOE=____________∠+∠+∠+∠+∠+∠的度数为_______.3、如图,A B C D E F4、若正n边形的每个内角都等于120°,则这个正n边形的边数为________.5、一个三角形的其中两个内角为88︒,32︒,则这个第三个内角的度数为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在六边形ABCDEF中,从顶点A出发,可以画几条对角线?它们将六边形ABCDEF分成哪几个三角形?2、探究与发现:(1)如图(1),在△ADC 中,DP 、CP 分别平分∠ADC 和∠ACD .①若70A ∠=︒,则P ∠= .②若A α∠=,用含有α的式子表示P ∠为 .(2)如图(2),在四边形ABCD 中,DP 、CP 分别平分∠ADC 和∠BCD ,试探究∠P 与∠A +∠B 的数量关系,并说明理由.(3)如图(3),在六边形ABCDEF 中,DP 、CP 分别平分∠EDC 和∠BCD ,请直接写出∠P 与∠A +∠B +∠E +∠F 的数量关系: .3、已知一个正多边形一个内角等于一个外角的32倍,求这个正多边形的边数.4、已知直线AB ∥CD ,EF 是截线,点M 在直线AB 、CD 之间.(1)如图1,连接GM ,HM .求证:M AGM CHM ∠=∠+∠;(2)如图2,在GHC ∠的角平分线上取两点M 、Q ,使得AGM HGQ ∠=∠.请直接写出M ∠与GQH ∠之间的数量关系;(3)如图3,若射线GH 平分BGM ∠,点N 在MH 的延长线上,连接GN ,若AGM N ∠=∠,12M N HGN ∠=∠+∠,求MHG ∠的度数.5、如图,在ABC 中,CD 是ACB ∠的平分线,点E 在边AC 上,且DE CE =.(Ⅰ)求证:∥DE BC ;(Ⅱ)若50A ∠=︒,60B ∠=︒,求BDC ∠的大小.-参考答案-一、单选题1、D【解析】【分析】直接利用多边形内角和定理分别分析得出答案.【详解】解:A .四边形的内角和与外角和相等,都等于360°,故本选项表述错误;B .四边形的内角和与外角和相等,都等于360°,故本选项表述错误;C .六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;D .四边形的内角和与外角和相等,都等于360°,故本选项表述正确.故选:D .【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°.2、C【解析】【分析】根据多边形外角和360︒求解即可.【详解】解:123456360∠+∠+∠+∠+∠+∠=︒ ,1290∠+∠=︒()345636012270∴∠+∠+∠+∠=︒-∠+∠=︒,故选:C【点睛】本题考查了多边形的外角和定理,掌握多边形外角和360︒是解题的关键.3、A【解析】【分析】根据直角三角板各角的度数和三角形外角性质求解即可.【详解】解:如图,∠C =90°,∠DAE =45°,∠BAC =60°,∴∠CAO =∠BAC -∠DAE =60°-45°=15°,∴α∠=∠C +∠CAO =90°+15°=105°,故选:A .【点睛】本题考查三角板中的度数计算、三角形的外角性质,熟知三角板各角度数,掌握三角形的外角性质是解答的关键.4、C【解析】【分析】根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.【详解】解:条线段的长分别是4,4,m,若它们能构成三角形,则m<<m4444-<<+,即08又m为整数,则整数m的最大值是7故选C【点睛】本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.5、C【解析】【分析】根据多边形的内角和,可得答案.【详解】解:设多边形为n边形,由题意,得n-︒=︒,(2)180720n=,解得6故选:C.【点睛】本题考查了多边形的内角与外角,解题的关键是利用多边形的内角和.6、C【解析】【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.∵c是奇数,∴c=3或5或7,有3个值.则对应的三角形有3个.故选:C.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.7、C【解析】【分析】根据三角形三条边的关系计算即可.【详解】解:A. ∵2+4=6,∴2cm,4cm,6cm不能组成三角形;B. ∵2+5<9,∴2cm,5cm,9cm不能组成三角形;C. ∵7+8>10,∴7cm,8cm,10cm能组成三角形;D. ∵6+6<13,∴6cm,6cm,13cm不能组成三角形;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.8、A【解析】【分析】满足两个条件:①经过点B;②垂直AC,由此即可判断.【详解】解:根据垂线段的定义可知,A选项中线段BE,是点B作线段AC所在直线的垂线段,故选:A.【点睛】本题考查作图-复杂作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9、C【解析】【分析】根据三角形内角和定理球场∠3的度数,利用平行线的性质求出答案.【详解】解:∵∠B=35°,∠1=105°,∴∠3=180-∠1-∠B=40︒,∵l1∥l2,∴∠2=∠3=40︒,故选:C..【点睛】此题考查三角形内角和定理,两直线平行内错角相等的性质,熟记三角形内角和等于180度及平行线的性质并熟练解决问题是解题的关键.10、C【解析】【分析】根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.【详解】解:∵AD是边BC上的中线,CD的长为5,∴CB=2CD=10,ABC的面积为1110420 22BC AE⨯=⨯⨯=,故选:C.【点睛】本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长. 二、填空题 1、15 【解析】 【分析】连接DF ,根据AE =ED ,BD =3DC ,可得12ABEBDEABDSSS ==,AEFDEFSS=,3ABDADCSS= ,3BDFCDFSS=,然后设△AEF 的面积为x ,△BDE 的面积为y ,则DEF S x =△,BDFS x y =+,ABES y =,()13CDFSx y =+,再由△ABC 的面积等于35,即可求解. 【详解】解:如图,连接DF ,∵AE =ED , ∴12ABE BDE ABDSSS == ,AEFDEFSS=,∵BD =3DC , ∴3ABD ADCSS= ,3BDFCDFSS=设△AEF 的面积为x ,△BDE 的面积为y ,则DEF S x =△,BDFS x y =+,ABESy =,()13CDFSx y =+, ∵△ABC 的面积等于35,∴()1353x x y y x y +++++= , 解得:15x y += . 故答案为:15 【点睛】本题主要考查了与三角形中线有关的面积问题,根据题意得到12ABEBDEABDSSS ==,AEFDEFSS=,3ABDADCSS= ,3BDFCDFSS=是解题的关键.2、110°##110度 【解析】 【分析】根据∠A =40°求出∠ABC +∠ACB =140°,根据角平分线的定义求出∠EBC +∠BCD =70°,进而求出∠BOC =110°,最后根据对顶角相等即可求解. 【详解】解:如图,∵∠A =40°, ∴∠ABC +∠ACB =180°-∠A =140°, ∵BE 、CD 分别是 △ABC 的内角平分线, ∴∠EBC =12∠ABC ,∠BCD ==12∠ACB ,∴∠EBC +∠BCD =12∠ABC +12∠ACB =12(∠ABC +∠ACB )=70°, ∴∠BOC =180°-(∠EBC +∠BCD )=110°, ∴∠DOE =∠BOC =110°.故答案为:110°【点睛】本题考查了三角形内角和定理,角平分线的定义,对顶角相等等知识,熟知相关知识,运用整体思想求出∠EBC+∠BCD=70°是解题关键.3、360【解析】【分析】根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.【详解】解:如图,∵∠1=∠D+∠F,∠2=∠A+∠E,∠1+∠2+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360︒. 【点睛】本题考查了四边形的内角和,三角形的外角的性质,掌握三角形外角的性质是解题的关键. 4、6 【解析】 【分析】多边形的内角和可以表示成(2)180n -⋅︒,因为所给多边形的每个内角均相等,故又可表示成120n ︒,列方程可求解. 【详解】解:设所求正n 边形边数为n , 则120(2)180n n ︒=-⋅︒, 解得6n =, 故答案是:6. 【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理. 5、60°##60度 【解析】 【分析】依题意,利用三角形内角和为:180︒,即可; 【详解】由题得:一个三角形的内角和为:180︒;又已知两个其中的内角为:88︒,32︒; ∴ 第三个角为:180883260︒-︒-︒=︒;【点睛】本题主要考查三角形的内角和,关键在于熟练并运用基本的计算;三、解答题1、三条,分成的三角形分别是:△ABC、△ACD、△ADE、△AEF【解析】【分析】从一个n边形一个顶点出发,可以连的对角线的条数是n−3,分成的三角形数是n−2.【详解】解:如图,P从顶点A出发,可以画三条对角线,它们将六边形ABCDEF分成的三角形分别是:△ABC、△ACD、△ADE、△AEF.【点睛】本题考查多边形的对角线及分割成三角形个数的问题,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n−3,分成的三角形数是n−2.2、(1)①125°②∠P=90°+12α;(2)∠P=12(∠A+∠B)(3)∠P=12(∠A+∠B+∠E+∠F)−180°【解析】(1)①根据角平分线的定义可得:∠CDP=12∠ADC,∠DCP=12∠ACD,根据三角形内角和为180°可得∠P与∠A的数量关系;②同①的方法即可求解;(2)根据角平分线的定义可得:∠CDP=12∠ADC,∠DCP=12∠BCD,根据四边形内角和为360°,可得∠BCD+∠ADC=360°−(∠A+∠B),再根据三角形内角和为180°,可得∠P与∠A+∠B的数量关系;(3)根据角平分线的定义可得:∠CDP=12∠ADC,∠DCP=12∠BCD,根据六边形内角和为720°,可得∠BCD+∠EDC=720°−(∠A+∠B+∠E+∠F),再根据三角形内角和为180°,可得∠P与∠A +∠B的数量关系.【详解】解:(1)①∵DP、CP分别平分∠ADC和∠ACD,∴∠CDP=12∠ADC,∠DCP=12∠ACD∵∠A+∠ADC+∠ACD=180°∴∠ADC+∠ACD=180°−∠A∵∠P+∠PDC+∠PCD=180°∴∠P=180°−(∠PDC+∠PCD)=180°−12(∠ADC+∠ACD)∴∠P=180°−12(180°−∠A)=90°+12∠A=90°+12×70°=125°故答案为:125°;②∵DP、CP分别平分∠ADC和∠ACD,∴∠CDP=12∠ADC,∠DCP=12∠ACD∵∠A+∠ADC+∠ACD=180°∴∠ADC+∠ACD=180°−∠A∵∠P+∠PDC+∠PCD=180°∴∠P=180°−(∠PDC+∠PCD)=180°−12(∠ADC+∠ACD)∴∠P=180°−12(180°−∠A)=90°+12∠A=90°+12α故答案为:∠P=90°+12α;(2)∠P=12(∠A+∠B)理由如下:∵DP、CP分别平分∠ADC和∠BCD,∴∠CDP=12∠ADC,∠DCP=12∠BCD∵∠A+∠B+∠BCD+∠ADC=360°∴∠BCD+∠ADC=360°−(∠A+∠B)∵∠P+∠PDC+∠PCD=180°∴∠P=180°−(∠PDC+∠PCD)=180°−12(∠ADC+∠BCD)∴∠P=180°−12[360°−(∠A+∠B)]=12(∠A+∠B)(3)∵DP、CP分别平分∠EDC和∠BCD∴∠PDC=12∠EDC,∠PCD=12∠BCD∵∠A+∠B+∠E+∠F+∠BCD+∠EDC=720°∴∠BCD+∠EDC=720°−(∠A+∠B+∠E+∠F)∵∠P+∠PDC+∠PCD=180°∴∠P=180°−(∠PDC+∠PCD)=180°−12(∠EDC+∠BCD)∴∠P=180°−12[720°−(∠A+∠B+∠E+∠F)]∴∠P=12(∠A+∠B+∠E+∠F)−180°故答案为:∠P=12(∠A+∠B+∠E+∠F)−180°.【点睛】本题考查了四边形综合题,多边形的内角和,角平分线的性质,利用多边形的内角和表示角的数量关系是本题的关键.3、5【解析】【分析】多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,从而可根据一个正多边形的一个内角等于一个外角的32列方程求解可得.【详解】解:设此正多边形为正n边形.∵正多边形的一个内角等于一个外角的32,∴此正多边形的内角和等于其外角和的32,∴32×360°=(n-2)•180°,解得n=5.答:正多边形的边数为5.【点睛】本题考查正多边形的内角和与外角和.关键是记住内角和的公式与外角和的特征. 4、 (1)见解析(2)∠GQH +∠GMH =180°,理由见解析 (3)60° 【解析】 【分析】(1)过点M 作MI ∥AB 交EF 于点I ,可得∠AGM =∠GMI ,再由AB ∥CD ,可得MI ∥CD ,从而得到∠CHM =∠HMI ,即可求证;(2)过点M 作MP ∥AB 交EF 于点P ,同(1)可得到∠PMH =∠CHM ,∠GMP =∠AGM ,再由MH 平分∠GHC ,可得∠PHM =∠CHM ,从而得到∠PHM =∠PMH ,再由AGM HGQ ∠=∠,可得∠HGQ =∠GMP ,从而得到∠GMH =∠HGQ +∠PHM ,然后根据三角形的内角和定理,即可求解;(3)过点M 作MK ∥AB 交EF 于点K ,设,AGM N CHM αβ∠=∠=∠= ,可得902MGH α∠=︒-,同(1),可得∠GMH =∠GMK +HMK =αβ+ ,再由12M N HGN ∠=∠+∠,可得2HGN β∠=,然后根据三角形的内角和定理,可得302αβ+=︒ ,再由AB ∥CD ,可得∠AGH +∠CHG =180°,即可求解.(1)证明:如图,过点M 作MI ∥AB 交EF 于点I ,∵MI ∥AB ,∴∠AGM=∠GMI,∵AB∥CD,∴MI∥CD,∴∠CHM=∠HMI,∴∠GMH=∠HMI+∠GMI= ∠AGM+∠CHM;(2)解:∠GQH+∠GMH=180°,理由如下:如图,过点M作MP∥AB交EF于点P,∵MP∥AB,∴∠GMP=∠AGM,∵AB∥CD,∴MP∥CD,∴∠PMH=∠CHM,∵MH平分∠GHC,∴∠PHM=∠CHM,∴∠PHM=∠PMH,∵AGM HGQ ∠=∠,∴∠HGQ =∠GMP ,∵∠GMH =∠GMP +∠PMH ,∴∠GMH =∠HGQ +∠PHM ,∵∠GQH +∠HGQ +∠PHM =180°,∴∠GQH +∠GMH =180°(3)解:如图,过点M 作MK ∥AB 交EF 于点K ,设,AGM N CHM αβ∠=∠=∠= ,∵GH 平分∠BGM , ∴()1118090222MGH BGM AGM α∠=∠=︒-∠=︒-,∵MK ∥AB ,∴GMK AGM N α∠=∠=∠= ,∵AB ∥CD ,∴MK ∥CD ,∴∠HMK =∠CHM ,∴∠GMH =∠GMK +HMK =αβ+ , ∵12M N HGN ∠=∠+∠, ∴12HGN αβαβ∠=+-=,即2HGN β∠=,∵∠GMH +∠N +∠MGN =180°, ∴9021802ααβαβ+++︒-+=︒ , 解得:302αβ+=︒ ,∵AB ∥CD ,∴∠AGH +∠CHG =180°, 即901802MHG αβα+∠+︒-+=︒ , ∴902MHG αβ++∠=︒ ,∴∠MHG =60°.【点睛】本题主要考查了平行的判定和性质,三角形的内角和定理,角平分线的定义,做适当辅助线,构造平行线,并熟练掌握平行的判定和性质定理,三角形的内角和定理,角平分线的定义是解题的关键.5、(Ⅰ)见解析;(Ⅱ)85︒【解析】【分析】(Ⅰ)由CD 是ACB ∠的平分线得出DCB DCE ∠=∠,由DE CE =得出CDE DCE ∠=∠从而得出DCB CDE ∠=,由平行线的判断即可得证;(Ⅱ)由三角形内角和求出70ACB ∠=︒,由角平分线得出35BCD ∠=︒,由三角形内角和求出BDC ∠即可得出答案.【详解】(Ⅰ)∵CD 是ACB ∠的平分线,∴DCB DCE ∠=∠,∵DE CE =,∴CDE DCE ∠=∠,∴DCB CDE ∠=,∴∥DE BC ;(Ⅱ)∵50A ∠=︒,60B ∠=︒,∴180506070ACB ∠=︒-︒-︒=︒, ∴1352BCD ACB ∠=∠=︒,∴18085BDC B BCD ∠=︒-∠-∠=︒.【点睛】本题考查平行线的判定以及三角形内角和定理,掌握相关知识是解题的关键。
2021-2022学年度华东师大版七年级数学下册第9章多边形同步训练试卷
七年级数学下册第9章多边形同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB CD ∥,45A ∠=︒,30C ∠=︒,则E ∠的度数是( )A .10°B .15°C .20°D .25°2、三角形的外角和是( )A .60°B .90°C .180°D .360°3、下列各组线段中,能构成三角形的是( )A .2、4、7B .4、5、9C .5、8、10D .1、3、64、下列各组数中,不能作为一个三角形三边长的是( )A .4,4,4B .2,7,9C .3,4,5D .5,7,95、在△ABC 中,∠A =50°,∠B 、∠C 的平分线交于O 点,则∠BOC 等于( )A .65°B .80°C .115°D .50°6、已知a b ∥,一块含30°角的直角三角板如图所示放置,250∠=︒,则1∠等于( )A .140°B .150°C .160°D .170°7、如图,在六边形ABCDEF 中,若1290∠+∠=︒,则3456∠+∠+∠+∠=()A .180°B .240°C .270°D .360°8、下列长度的三条线段能组成三角形的是( )A .3,4,7B .3,4,8C .3,4,5D .3,3,79、已知,在直角△ABC 中,∠C 为直角,∠B 是∠A 的2倍,则∠A 的度数是() A .30 B .50︒ C .70︒ D .90︒10、如图,123456∠+∠+∠+∠+∠+∠=( )度.A .180B .270C .360D .540第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在三角形ABC 中,40BAC ∠=︒,点D 为射线CB 上一点,过点D 作DE AC ∥交直线AB 于点E ,DF AB ∥交直线AC 于点F ,CG 平分ACB ∠交DF 于点G .若:3:4FDC EDC ∠∠=,则DGC ∠=______°.2、一个三角形的两边长分别为2和5,则第三边的长度可取的整数值为_________(写出一个即可).3、一个多边形的内角和比它的外角和的2倍还多180°,则它是________边形.4、如图,42AOB ∠=︒,C 为OB 上的定点,P 、Q 分别为OA 、OB 上两个动点,当CP PQ +的值最小时,OCP ∠的度数为______.5、已知一个多边形的每个外角都是30°,那么这个多边形的边数是__________.三、解答题(5小题,每小题10分,共计50分)1、已知直线AB ∥CD ,EF 是截线,点M 在直线AB 、CD 之间.(1)如图1,连接GM ,HM .求证:M AGM CHM ∠=∠+∠;(2)如图2,在GHC ∠的角平分线上取两点M 、Q ,使得AGM HGQ ∠=∠.请直接写出M ∠与GQH ∠之间的数量关系;(3)如图3,若射线GH 平分BGM ∠,点N 在MH 的延长线上,连接GN ,若AGM N ∠=∠,12M N HGN ∠=∠+∠,求MHG ∠的度数. 2、如图,点E 为直线AB 上一点,∠CAE =2∠B ,BC 平分∠ACD ,求证:AB ∥CD .3、如图,将一副直角三角板的直角顶点C 叠放在一起.(1)如图(1),若∠DCE =33°,则∠BCD = ,∠ACB = .(2)如图(1),猜想∠ACB 与∠DCE 的大小有何特殊关系?并说明理由.(3)如图(2),若是两个同样的直角三角板60°锐角的顶点A重合在一起,则∠DAB与∠CAE的数量关系为.4、如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2520°的新多边形,求原多边形的边数.5、如图,在ABC中,AC=6,BC=8,AD⊥BC于D,AD=5,BE⊥AC于E,求BE的长.-参考答案-一、单选题1、B【解析】【分析】根据平行线的性质求出关于∠DOE,然后根据外角的性质求解.【详解】解:∵AB∥CD,∠A=45°,∴∠A=∠DOE=45°,∵∠DOE=∠C+∠E,又∵30C ∠=︒,∴∠E =∠DOE -∠C =15°.故选:B【点睛】本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.掌握两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和是解题关键.2、D【解析】【分析】根据三角形的内角和定理、邻补角的性质即可得.【详解】解:如图,142536180∠+∠=∠+∠=∠+∠=︒,142536540∴∠+∠+∠+∠+∠+∠=︒,又123180∠+∠+∠=︒,456540180360∴∠+∠+∠=︒-︒=︒,即三角形的外角和是360︒,故选:D .【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.3、C【解析】【分析】根据三角形的三边关系定理逐项判断即可得.【详解】解:三角形的三边关系定理:任意两边之和大于第三边.+<,不能构成三角形,此项不符题意;A、247+=,不能构成三角形,此项不符题意;B、459+>,能构成三角形,此项符合题意;C、5810+<,不能构成三角形,此项不符题意;D、136故选:C.【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.4、B【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边即可求解.【详解】解:选项A:4,4,4可以构成等边三角形,故选项A正确;选项B:2+7=9,两边之和等于第三边,不能构成三角形,故选项B错误;选项C:3+4>5,这三边可以构成三角形,故选项C正确;选项D:任意两边之和大于第三边,两边之差小于第三边,可以构成三角形,故选项D正确;故选:B.【点睛】本题考查了构成三角形的三边的条件:两边之和大于第三边,两边之差小于第三边,由此即可求解.5、C【解析】【分析】根据题意画出图形,求出∠ABC+∠ACB=130°,根据角平分线的定义得到∠CBD=12∠ABC,∠ECB=12∠ACB,再根据三角形内角和定理和角的代换即可求解.【详解】解:如图,∵∠A=50°,∴∠ABC+∠ACB=180°-∠A=130°,∵BD、CE分别是∠ABC、∠ACB的平分线,∴∠CBD=12∠ABC,∠ECB=12∠ACB,∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- 12(∠ABC+∠ACB)=180°- 12×130°=115°.故选:C【点睛】本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.6、D【解析】【分析】利用三角形外角与内角的关系,先求出∠3,利用平行线的性质得到∠4的度数,再利用三角形外角与内角的关系求出∠1.【详解】解:∵∠C=90°,∠2=∠CDE=50°,∠3=∠C+∠CDE=90°+50°=140°.∵a∥b,∴∠4=∠3=140°.∵∠A=30°∴∠1=∠4+∠A=140°+30°=170°.故选:D.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.7、C【解析】【分析】根据多边形外角和360︒求解即可.【详解】解:123456360∠+∠+∠+∠+∠+∠=︒ ,1290∠+∠=︒()345636012270∴∠+∠+∠+∠=︒-∠+∠=︒,故选:C【点睛】本题考查了多边形的外角和定理,掌握多边形外角和360︒是解题的关键.8、C【解析】【分析】根据组成三角形的三边关系依次判断即可.【详解】A 、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.B 、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.C 、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.D 、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.故选:C .【点睛】本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.9、A【解析】【分析】根据直角三角形的两个锐角互余即可得.【详解】解:设A x ∠=,则22B A x ∠=∠=,由题意得:90A B ∠+∠=︒,即290x x +=︒,解得30x =︒,即30A ∠=︒,故选:A .【点睛】本题考查了直角三角形的两个锐角互余,熟练掌握直角三角形的两个锐角互余是解题关键.10、C【解析】【分析】根据三角形外角的性质,可得946,1015∠=∠+∠∠=∠+∠ ,再由四边形的内角和等于360°,即可求解.【详解】解:如图,∠=∠+∠∠=∠+∠,根据题意得:946,1015∠+∠+∠+∠=︒,∵23910360∴123456360∠+∠+∠+∠+∠+∠=︒.故选:C【点睛】本题主要考查了三角形外角的性质,多边形的内角和,熟练掌握三角形外角的一个外角等于与它不相邻的两个内角的和,四边形的内角和等于360°是解题的关键.二、填空题1、802、4,5,6(写出一个即可)【解析】【分析】由构成三角形三边成立的条件可得第三条边的取值范围.【详解】设第三条长为x∵2+5=7,5-2=3∴3<x<7.故第三条边的整数值有4、5、6.故答案为:4,5,6(写出一个即可)【点睛】本题考查了构成三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边,关键为“任意”两边均满足此关系.3、七【解析】【分析】根据多边形的内角和公式(n -2)•180°与多边形的外角和定理列式进行计算即可求解.【详解】解:设多边形的边数为n ,则(n -2)•180°-2×360°=180°,解得n =7.故答案为:七.【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理列出方程是解题的关键. 4、6°【解析】【分析】作点C 关于直线OA 的对称点C ',连接CC ',交OA 于点D ,过点C '作C M OB '⊥,交OA 于点N ,根据CP PQ C P PQ C Q ''+=+≥,且当C Q BO '⊥时最小,所以当CP PQ +的值最小时,当点P 与点N 重合,点Q 与点M 重合时,此时OCP ∠等于OCN ∠,进而根据直角三角形的两锐角互余,以及角度的和差关系求得OCN ∠即可【详解】解:如图,作点C 关于直线OA 的对称点C ',连接CC ',交OA 于点D ,过点C '作C M OB '⊥,交OA 于点N ,∴='CP C P ,CP PQ C P PQ C Q '+∴'=+≥,且当C Q BO '⊥时最小,所以当CP PQ +的值最小时,当点P 与点N 重合,点Q 与点M 重合时,此时OCP ∠等于OCN ∠, CC OA '⊥又42AOB ∠=︒90,90DC N C ND AOC ONM ''∠+∠=︒∠+∠=︒,ONM C NA '∠=∠42CC M AOB '∴∠=∠=︒9048DCO AOC ∴∠=︒-∠=︒根据对称性可得42NC D DCD '∠=∠=︒48426NCO DCM DCM ∴∠=∠-∠=︒-︒=︒∴当CP PQ +的值最小时,OCP ∠的度数为6︒故答案为:6︒【点睛】本题考查了根据轴对称求最短线段和,垂线段最短,直角三角形的,根据题意作出图形是解题的关键.5、12【解析】【分析】利用任何多边形的外角和是360°除以外角度数即可求出答案.【详解】解:多边形的外角的个数是360÷30=12,所以多边形的边数是12.故答案为:12.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.三、解答题1、 (1)见解析(2)∠GQH +∠GMH =180°,理由见解析(3)60°【解析】【分析】(1)过点M 作MI ∥AB 交EF 于点I ,可得∠AGM =∠GMI ,再由AB ∥CD ,可得MI ∥CD ,从而得到∠CHM =∠HMI ,即可求证;(2)过点M 作MP ∥AB 交EF 于点P ,同(1)可得到∠PMH =∠CHM ,∠GMP =∠AGM ,再由MH 平分∠GHC ,可得∠PHM =∠CHM ,从而得到∠PHM =∠PMH ,再由AGM HGQ ∠=∠,可得∠HGQ =∠GMP ,从而得到∠GMH =∠HGQ +∠PHM ,然后根据三角形的内角和定理,即可求解;(3)过点M 作MK ∥AB 交EF 于点K ,设,AGM N CHM αβ∠=∠=∠= ,可得902MGH α∠=︒-,同(1),可得∠GMH =∠GMK +HMK =αβ+ ,再由12M N HGN ∠=∠+∠,可得2HGN β∠=,然后根据三角形的内角和定理,可得302αβ+=︒ ,再由AB ∥CD ,可得∠AGH +∠CHG =180°,即可求解.(1)证明:如图,过点M 作MI ∥AB 交EF 于点I ,∵MI∥AB,∴∠AGM=∠GMI,∵AB∥CD,∴MI∥CD,∴∠CHM=∠HMI,∴∠GMH=∠HMI+∠GMI= ∠AGM+∠CHM;(2)解:∠GQH+∠GMH=180°,理由如下:如图,过点M作MP∥AB交EF于点P,∵MP∥AB,∴∠GMP=∠AGM,∵AB∥CD,∴MP∥CD,∴∠PMH=∠CHM,∵MH平分∠GHC,∴∠PHM=∠CHM,∴∠PHM=∠PMH,∠=∠,∵AGM HGQ∴∠HGQ=∠GMP,∵∠GMH=∠GMP+∠PMH,∴∠GMH=∠HGQ+∠PHM,∵∠GQH+∠HGQ+∠PHM=180°,∴∠GQH+∠GMH=180°(3)解:如图,过点M作MK∥AB交EF于点K,设,AGM N CHM αβ∠=∠=∠= ,∵GH 平分∠BGM , ∴()1118090222MGH BGM AGM α∠=∠=︒-∠=︒-, ∵MK ∥AB ,∴GMK AGM N α∠=∠=∠= ,∵AB ∥CD ,∴MK ∥CD ,∴∠HMK =∠CHM ,∴∠GMH =∠GMK +HMK =αβ+ , ∵12M N HGN ∠=∠+∠, ∴12HGN αβαβ∠=+-=,即2HGN β∠=,∵∠GMH +∠N +∠MGN =180°, ∴9021802ααβαβ+++︒-+=︒ , 解得:302αβ+=︒ ,∵AB ∥CD ,∴∠AGH +∠CHG =180°, 即901802MHG αβα+∠+︒-+=︒ , ∴902MHG αβ++∠=︒ ,∴∠MHG =60°.【点睛】本题主要考查了平行的判定和性质,三角形的内角和定理,角平分线的定义,做适当辅助线,构造平行线,并熟练掌握平行的判定和性质定理,三角形的内角和定理,角平分线的定义是解题的关键.2、见解析【解析】【分析】根据三角形外角的性质,可得∠B=∠ACB,再由BC平分∠ACD,可得∠B=∠DCB,即可求证.【详解】证明:∵∠CAE=∠ACB+∠B,∠CAE=2∠B,∴∠B=∠ACB,又∵BC平分∠ACD,∴∠ACB=∠DCB,∴∠B=∠DCB,∴AB∥CD(内错角相等,两直线平行).【点睛】本题主要考查了平行线的判定,三角形外角的性质,角平分线的定义,熟练掌握平行线的判定定理,三角形外角的性质定理是解题的关键.3、(1)57°,147°;(2)∠ACB=180°-∠DCE,理由见解析;(3)∠DAB+∠CAE=120°【解析】【分析】(1)根据角的和差定义计算即可.(2)利用角的和差定义计算即可.(3)利用特殊三角板的性质,角的和差定义即可解决问题.【详解】解:(1)由题意,∠=︒-︒=︒;BCD903357ACB∠=︒+︒=︒;9057147故答案为:57°,147°.(2)∠ACB=180°-∠DCE,理由如下:∵∠ACE=90°-∠DCE,∠BCD=90°-∠DCE,∴∠ACB=∠ACE+∠DCE+∠BCD=90°-∠DCE+∠DCE+90°-∠DCE=180°-∠DCE.(3)结论:∠DAB+∠CAE=120°.理由如下:∵∠DAB+∠CAE=∠DAE+∠CAE+∠BAC+∠CAE=∠DAC+∠EAB,又∵∠DAC=∠EAB=60°,∴∠DAB+∠CAE=60°+60°=120°.故答案为:∠DAB+∠CAE=120°.【点睛】本题考查三角形的内角和定理,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4、15【解析】【分析】根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.【详解】设新多边形是n 边形,由多边形内角和公式得:180(2)2520n ︒⨯-=︒,解得:16n =,则原多边形的边数是:16115-=.∴原多边形的边数是15.【点睛】本题主要考查了多边形内角与外角,解决本题的关键是要熟练掌握多边形的内角和公式.5、203BE =. 【解析】【分析】根据三角形面积公式计算即可.【详解】 解:11=,=22ABC ABCS AC BE S BC AD ⋅⋅ AC BE BC AD ∴⋅=⋅402063BE ∴==. 【点睛】本题考查三角形面积的计算,利用等积法是解题关键.。
精品试题华东师大版七年级数学下册第9章多边形定向练习试题(含答案解析)
七年级数学下册第9章多边形定向练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)∠+∠+∠+∠+∠=()1、如图,12345A.180°B.360°C.270°D.300°2、下列叙述正确的是()A.三角形的外角大于它的内角B.三角形的外角都比锐角大C.三角形的内角没有小于60°的D.三角形中可以有三个内角都是锐角3、已知,在直角△ABC中,∠C为直角,∠B是∠A的2倍,则∠A的度数是()A.30B.50︒C.70︒D.90︒4、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为()A.3454a︒+B.2603a︒+C.3454a︒-D.2603a︒-5、正八边形每个内角度数为()A.120°B.135°C.150°D.160°6、如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,∠EAB=72°,以下四个说法:①∠CDF=30°;②∠ADB=50°;③∠ABD=22°;④∠CBN=108°其中正确说法的个数是()A.1个B.2个C.3个D.4个7、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB=10米,A、B间的距离不可能是()A.5米B.10米C.15米D.20米8、已知长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF 上的点B′处,得折痕EM,将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,则图中与∠B′ME互余的角有()A.2个B.3个C.4个D.5个9、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.下列说法正确的是()A .证法1用特殊到一般法证明了该定理B .证法1只要测量够100个三角形进行验证,就能证明该定理C .证法2还需证明其他形状的三角形,该定理的证明才完整D .证法2用严谨的推理证明了该定理10、如图,AD BC ⊥于点D ,GC BC ⊥于点C ,CF AB ⊥于点F ,下列关于高的说法错误的是( )A .在ABC 中,AD 是BC 边上的高B .在GBC 中,CF 是BG 边上的高 C .在ABC 中,GC 是BC 边上的高D .在GBC 中,GC 是BC 边上的高第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个正多边形的每个外角都等于45°,那么这个正多边形的内角和为______度.2、等腰三角形中,一条边长是2cm ,另一条边长是3cm ,这个等腰三角形的周长是________.3、如图,ABC 中,90A ∠=︒,点D 在AC 边上,∥DE BC ,若1145∠=︒,则B 的度数为_______.4、如图,在ABC 中,,40AB AC BAC =∠=︒,点D 是边AB 上一点,将BCD △沿直线CD 翻折,使点B 落在点E 处,如果ED BC ∥,那么ACD ∠等于______度.5、如图,将一张长方形纸片ABCD 沿对角线BD 折叠后,点C 落在点E 处,连接BE 交AD 于F ,再将三角形DEF 沿DF 折叠后,点E 落在点G 处,若DG 刚好平分∠ADB ,那么∠ADB 的度数是__________.三、解答题(5小题,每小题10分,共计50分)1、完成下面推理填空:如图,已知:AD BC ⊥于D ,EG BC ⊥于G ,1E ∠=∠.求证:AD 平分BAC ∠.解:∵AD BC ⊥于D ,EG BC ⊥(已知),∴90ADC EGC ∠=∠=︒(____①_____),∴EG AD ∥(同位角相等,两直线平行),∴_____②___(两直线平行,同位角相等)∠1=∠2(____③_____),又∵1∠=∠(已知),E∴∠2=∠3(_____④______),∴AD平分BAC∠(角平分线的定义).2、求下列图中的x的值(1)(2)3、如图所示,四边形ABCD中,∠ADC的角平分线DE与∠BCD的角平分线CA相交于E点,已知:∠ACB=32°,∠CDE=58°.(1)求∠DEC的度数;(2)试说明直线AD BC∥4、如图,△ABC 中,∠BAC =90°,点D 是BC 上的一点,将△ABC 沿AD 翻折后,点B 恰好落在线段CD 上的B '处,且AB '平分∠CAD .求∠BAB '的度数.5、在ABC 中,100,80,ADB C AD ∠=︒∠=︒平分,BAC BE ∠平分ABC ∠,求BED ∠的度数.-参考答案-一、单选题1、A【解析】【分析】利用三角形外角定理及三角形内角和公式求解即可.【详解】解:∵∠7=∠4+∠2,∠6=∠1+∠3,∴∠6+∠7=∠1+∠2+∠3+∠4,∵∠5+∠6+∠7=180°,∴∠1+∠2+∠3+∠4+∠5=180°.故选:A.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.2、D【解析】【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;三角形的内角可以小于60°,一个三角形的三个角可以为:20,70,90,故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.3、A【解析】【分析】根据直角三角形的两个锐角互余即可得.【详解】解:设A x ∠=,则22B A x ∠=∠=,由题意得:90A B ∠+∠=︒,即290x x +=︒,解得30x =︒,即30A ∠=︒,故选:A .【点睛】本题考查了直角三角形的两个锐角互余,熟练掌握直角三角形的两个锐角互余是解题关键.4、A【解析】【分析】根据题意设,ABD ACD βθ∠=∠=,根据三角形内角和公式定理βθ+,进而表示出α,进而根据三角形内角和定理根据()1803BDC βθ∠=︒-+即可求解【详解】解:∵∠A =α,∠DBC =3∠DBA ,∠DCB =3∠DCA ,设,ABD ACD βθ∠=∠=,∴3,3DBC DCB βθ∠=∠=180A ABC ACB ∠+∠+∠=︒即44180αβθ++=︒454αβθ∴+=︒-∴()1803BDC βθ∠=︒-+31803454544αα⎛⎫=︒-⨯︒-=︒+ ⎪⎝⎭ 故选A【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.5、B【解析】【分析】根据正多边形的每一个内角相等,则对应的外角也相等,根据多边形的外角和为360°,进而求得一个外角的度数,即可求得正八边形每个内角度数.【详解】解:∵正多边形的每一个内角相等,则对应的外角也相等,一个外角等于:360845÷=︒∴内角为18045135︒-︒=︒故选B【点睛】本题考查了正多边形的内角与外角的关系,利用外角求内角是解题的关键.6、D【解析】【分析】根据AD ∥BC ,∠C =30°,利用内错角相等得出∠FDC =∠C =30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.【详解】解:∵AD∥BC,∠C=30°,∴∠FDC=∠C=30°,故①正确;∴∠ADC=180°-∠FDC=180°-30°=150°,∵∠ADB:∠BDC=1:2,∴∠BDC=2∠ADB,∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,解得∠ADB=50°,故②正确∵∠EAB=72°,∴∠DAN=180°-∠EAB=180°-72°=108°,∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确∵AD∥BC,∴∠CBN=∠DAN=108°,故④正确其中正确说法的个数是4个.故选择D.【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.7、A【解析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.8、C【解析】【分析】先由翻折的性质得到∠AEN=∠A′EN,∠BEM=∠B′EM,从而可知∠NEM=12×180°=90°,然后根据余角的定义找出∠B′ME的余角即可.解:由翻折的性质可知:∠AEN=∠A′EN,∠BEM=∠B′EM.∠NEM=∠A′EN+∠B′EM=12∠AEA′+12∠B′EB=12×180°=90°.由翻折的性质可知:∠MB′E=∠B=90°.由直角三角形两锐角互余可知:∠B′ME的一个余角是∠B′EM.∵∠BEM=∠B′EM,∴∠BEM也是∠B′ME的一个余角.∵∠NBF+∠B′EM=90°,∴∠NEF=∠B′ME.∴∠ANE、∠A′NE是∠B′ME的余角.综上所述,∠B′ME的余角有∠ANE、∠A′NE、∠B′EM、∠BEM.故选:C.【点睛】本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键.9、D【解析】【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.10、C【解析】【详解】解:A、在ABC中,AD是BC边上的高,该说法正确,故本选项不符合题意;B、在GBC中,CF是BG边上的高,该说法正确,故本选项不符合题意;C、在ABC中,GC不是BC边上的高,该说法错误,故本选项符合题意;D、在GBC中,GC是BC边上的高,该说法正确,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.二、填空题1、1080【解析】【分析】利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】解:∵正多边形的每一个外角都等于45 ,∴正多边形的边数为360°÷45°=8,所有这个正多边形的内角和为(8-2)×180°=1080°.故答案为:1080.【点睛】本题考查了多边形内角与外角等知识,熟知多边形内角和定理(n﹣2)•180 °(n≥3)和多边形的外角和等于360°是解题关键.2、8cm或7cm##7cm或8cm【解析】【分析】因为已知长度为2cm和3cm两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.【详解】解:①当2cm为底时,其它两边都为3cm,2cm、3cm、3cm可以构成三角形,周长为8cm;②当3cm为底时,其它两边都为2cm,2cm、2cm、3cm可以构成三角形,周长为7cm;故答案为:8cm或7cm.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,解题的关键是利用分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要.3、55【解析】【分析】先求出∠EDC=35°,然后根据平行线的性质得到∠C=∠EDC=35°,再由直角三角形两锐角互余即可求解.【详解】解:∵∠1=145°,∴∠EDC=35°,∵DE∥BC,∴∠C=∠EDC=35°,又∵∠A=90°,∴∠B=90°-∠C=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,直角三角形两锐角互余,求出∠C的度数是解题的关键.4、15【解析】【分析】先根据等腰三角形的性质和三角形内角和等于180°求出∠B=∠ACB=70°,由折叠可得∠BDC=∠EDC,由DE∥AC可得∠EDC=∠BCD,在等腰三角形BDC中求出∠BCD的度数,根据角度关系可求∠ACD的度数.【详解】解:如图,=∠=AB AC BAC,40B ACB∴∠=∠=︒,70∠=∠,由折叠可知BDC EDCDE//BC,BCD EDC BDC∴∠=∠=∠,B∠=︒,70BCD BDC∴∠=∠=︒,55∴∠=∠-∠=︒-︒=︒.705515ACD ACB BCD故答案为:15【点睛】本题考查了折叠问题,涉及到平行线的性质和等腰三角形的性质,熟练运用折叠的性质是解决本题的关键.5、36°##36度【解析】【分析】根据折叠的性质可得∠BDC=∠BDE,∠EDF=∠GDF,由角平分线的定义可得∠BDA=∠GDF+∠BDG=2∠GDF,然后根据矩形的性质及角的运算可得答案.【详解】解:由折叠可知,∠BDC=∠BDE,∠EDF=∠GDF,∵DG平分∠ADB,∴∠BDG=∠GDF,∴∠EDF=∠BDG,∴∠BDE=∠EDF+∠GDF+∠BDG=3∠GDF,∴∠BDC=∠BDE=3∠GDF,∠BDA=∠GDF+∠BDG=2∠GDF,∵∠BDC+∠BDA=90°=3∠GDF+2∠GDF=5∠GDF,∴∠GDF=18°,∴∠ADB=2∠GDF=2×18°=36°.故答案为:36°.【点睛】本题考查的是角的运算及角平分线的定义,正确掌握折叠的性质是解决此题的关键.三、解答题1、垂直的定义;∠E=∠3;两直线平行,内错角相等;等量代换【解析】【分析】根据平行线的判定与性质进行解答即可.【详解】解:∵AD⊥BC于D,EG⊥BC(已知),∴∠ADC=∠EGC=90°(垂直的定义),∴EG∥AD(同位角相等,两直线平行),∴∠E=∠3(两直线平行,同位角相等)∠1=∠2(两直线平行,内错角相等),又∵∠E=∠1(已知),∴∠2=∠3(等量代换),∴AD平分∠BAC(角平分线的定义).故答案为:垂直的定义;∠E=∠3;两直线平行,内错角相等;等量代换.【点睛】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等.2、(1)65;(2)60.【解析】【分析】(1)根据四边形内角和等于360°,列方程即可求出x的值;(2)根据五边形内角和等于(5-2)⨯180°,列方程即可求出x的值.【详解】解:(1)∵四边形内角和等于360°,∴x+x+140+90=360,解得:x=65;(2)∵五边形内角和等于(5-2)⨯180°=540°,∴x+2x+150+120+90=540,解得:x=60.【点睛】本题考查了四边形和五边形的内角和,熟练掌握n 边形的内角和等于(n -2)⨯180°是解题的关键.①几何计算题中,如果依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程的思想;②求角的度数常常要用到“n 边形的内角和等于(n -2)⨯180°”这一隐含的条件.3、(1)90°;(2)见解析【解析】【分析】(1)根据三角形内角和定理即可求解;(2)首先求得∠ADC 的度数和∠DCB 的度数,根据同旁内角互补,两直线平行即可证得.【详解】解:(1)∵AC 是∠BCD 的平分线∴32ACD ACB ∠=∠=︒∵180,58CDE DEC DCE CDE ∠+∠+∠=︒∠=︒∴∠DEC =180°-∠ACD -∠CDE =180°-32°-58°=90°;(2)∵DE 平分∠ADC ,CA 平分∠BCD∴∠ADC =2∠CDE =116°,∠BCD =2∠ACD =64°∵∠ADC +∠BCD =116°+64°=180°∴AD BC ∥【点睛】本题主要考查了角平分线,平行线的判定以及三角形内角和定理,熟练掌握相关性质和定理是解答本题的关键.4、60°【解析】【分析】由折叠和角平分线可求∠BAD =30°,即可求出∠BAB '的度数.【详解】解:由折叠可知,∠BAD =∠B 'AD ,∵AB '平分∠CAD .∴∠B 'AC =∠B 'AD ,∴∠BAD =∠B 'AC =∠B 'AD ,∵∠BAC =90°,∴∠BAD =∠B 'AC =∠B 'AD =30°,∴∠BAB '=60°.【点睛】本题考查了折叠和角平分线,解题关键是掌握折叠角相等和角平分线的性质.5、50︒【解析】【分析】根据外角的性质,求得20CAD ∠=︒,根据角平分线的定义可得20BAD ∠=︒,根据三角形的内角和求得60DBA ∠=︒,角平分线的性质可得30DBE ∠=︒,根据三角形内角和即可求解.【详解】解:∵100ADB C CAD ∠=∠+∠=︒,80C ∠=︒∴20CAD ∠=︒,∵AD 平分BAC ∠∴20BAD CAD ∠=∠=︒,由三角形内角和的性质可得,18060ABC ADB BAD ∠=︒-∠-∠=︒,∵BE 平分ABC ∠∴1302DBE ABC ∠=∠=︒,由三角形内角和的性质可得,18050BED ADB EBD ∠=︒-∠-∠=︒.【点睛】此题考查了三角形内角和的性质、外角的性质以及角平分线的定义,解题的关键是掌握并灵活运用相关性质进行求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册多边形和多边形的对角线检测卷一.选择题(共8小题)1.如图,4×4的方格中每个小正方形的边长都是1,则S四边形ABCD 与S四边形ECDF的大小关系是()A.S四边形ABDC =S四边形ECDFB.S四边形ABDC<S四边形ECDFC.S四边形ABDC =S四边形ECDF+1 D.S四边形ABDC=S四边形ECDF+22.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形3.下列图形中具有稳定性的有()A.正方形B.长方形C.梯形D.直角三角形4.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成()个三角形.A. 6 B.5 C.8 D.75.若从多边形的某一顶点出发只能画五条对角线,则它是()A.六边形B.七边形C.八边形D.九边形6.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)7.下列图形中,多边形有()A.1个B.2个C.3个D.4个8.一个多边形有9条对角线,则这个多边形有多少条边()A. 6 B. 7 C 8 D.9二.填空题(共7小题)9.一个多边形的内角和为720°,从这个多边形同一个顶点可画的对角线有_________ 条.10.过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是_________ .11.过四边形一个顶点的对角线可以把四边形分成两个三角形;过五边形或六边形的一个顶点的对角线,分别把它们分成个三角形;过n边形一个顶点的对角线可以把n边形分成_________ 个(用含n的代数式表示)三角形.12.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是_________ .13.一个凸多边形的内角中,最多有_________ 个锐角.14.如图所示,将多边形分割成三角形、图(1)中可分割出2个三角形;图(2)中可分割出3个三角形;图(3)中可分割出4个三角形;由此你能猜测出,n边形可以分割出_________ 个三角形.15.若一个多边形截去一个角后,变成六边形,则原来多边形的边数可能是_________ .三.解答题(共5小题)16.用两个一样大小的含30°角的三角板可以拼成多少个形状不同的四边形?请画图说明.17.从四边形的一个顶点出发可画_________ 条对角线,从五边形的一个顶点出发可画_________ 条对角线,从六边形的一个顶点出发可画_________ 条对角线,请猜想从七边形的一个顶点出发有_________ 条对角线,从n边形的一个顶点出发有_________ 条对角线,从而推导出n边形共有_________ 条对角线.18.请你分别在下列多边形的同一顶点出发画对角线:想一想:依此规律可以把10边形分成_________ 个三角形.19.实践与探索!①过四边形一边上点P与另外两个顶点连线可以把四边形分成_________ 个三角形;②过五边形一边上点P与另外三个顶点连线可以把五边形分成_________ 个三角形;③经过上面的探究,你可以归纳出过n边形一边上点P与另外_________ 个顶点连线可以把n边形分成_________ 个三角形(用含n的代数式表示).④你能否根据这样划分多边形的方法来写出n边形的内角和公式?请说明你的理由.20.已知从多边形一个顶点出发的所有对角线将多边形分成三角形的个数恰好等于该多边形所有对角线的条数,求此多边形的内角和.参考答案与试题解析一.选择题(共8小题)1.如图,4×4的方格中每个小正方形的边长都是1,则S四边形ABCD与S四边形ECDF的大小关系是()A.S四边形ABDC=S四边形ECDF B.S四边形ABDC<S四边形ECDFC.S四边形ABDC=S四边形ECDF+1 D. S四边形ABDC=S四边形ECDF+2考点:多边形;平行线之间的距离;三角形的面积.分析:根据矩形的面积公式=长×宽,平行四边形的面积公式=边长×高可得两阴影部分的面积,进而得到答案.解答:解:S四边形ABDC=CD•AC=1×4=4,S四边形ECDF=CD•AC=1×4=4,故选:A.点评:此题主要考查了矩形和平行四边形的面积计算,关键是掌握面积的计算公式.2.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形考点:多边形.专题:压轴题.分析:一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n﹣1)边形.解答:解:当剪去一个角后,剩下的部分是一个四边形,则这张纸片原来的形状可能是四边形或三角形或五边形,不可能是六边形.故选:A.点评:剪去一个角的方法可能有三种:经过两个相邻顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.3.下列图形中具有稳定性的有()A.正方形B.长方形C.梯形D.直角三角形考点:多边形;三角形的稳定性.分析:只有三角形具有稳定性.解答:解:三角形具有稳定性.故选D.点评:在所有的图形里,只有三角形具有稳定性,也是三角形的特性,应牢牢掌握.4.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成()个三角形.A. 6 B.5 C.8 D.7考点:多边形.专题:规律型.分析:从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个四边形分割成(n﹣2)个三角形.解答:解:从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7﹣2=5个三角形.故选B.点评:本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n﹣2)个三角形.5.若从多边形的某一顶点出发只能画五条对角线,则它是()A.六边形B.七边形C.八边形D.九边形考点:多边形的对角线.分析:可根据n边形从一个顶点引出的对角线与边的关系:n﹣3,列方程求解.解答:解:设多边形有n条边,则n﹣3=5,解得n=8.即它是八边形.故选C.点评:本题考查了多边形的对角线,如果一个多边形有n条边,则经过多边形的一个顶点的所有对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.6.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)考点:多边形的对角线.分析:可根据n边形从一个顶点引出的对角线与边的关系:n﹣3,可分成(n﹣2)个三角形直接判断.解答:解:从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是(n﹣2).故选C.点评:多边形有n条边,则经过多边形的一个顶点的所有对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.7.下列图形中,多边形有()A.1个B.2个C.3个D.4个考点:多边形.分析:根据多边形的定义:平面内不在一条直线上的线段首尾顺次相接组成的图形叫多边形.解答:解:由多边形的概念可知第四个、第五个是多边形共2个.故选:B.点评:本题考查了认识平面图形.注意,多边形是由3条或3条以上的线段首尾顺次连接而成的图形,故多边形中没有曲线.8.一个多边形有9条对角线,则这个多边形有多少条边()A. 6 B.7 C.8 D.9考点:多边形的对角线.分析:可根据多边形的对角线与边的关系列方程求解.解答:解:设多边形有n条边,则=9,解得n1=6,n2=﹣3(舍去),故多边形的边数为6.故选:A.点评:这类根据多边形的对角线,求边数的问题一般都可以化为求一元二次方程的解的问题,求解中舍去不符合条件的解即可.二.填空题(共7小题)9.一个多边形的内角和为720°,从这个多边形同一个顶点可画的对角线有 3 条.考点:多边形的对角线;多边形内角与外角.分析:根据n边形的内角和是(n﹣2)•180°,可以先求出多边形的边数.再根据过多边形的一个顶点的对角线的条数与边数的关系,即可得到过这个多边形的一个顶点的对角线的条数.解答:解:根据题意,得(n﹣2)•180=720,解得:n=6.那么过这个多边形的一个顶点可作3条对角线.故答案为:3.点评:本题考查根据多边形的内角和计算公式求多边形的边数,过多边形的一个顶点的对角线的条数=边数﹣3.10.过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是10 .考点:多边形的对角线.分析:经过n边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形,根据此关系式求边数.解答:解:设多边形有n条边,则n﹣2=8,解得n=10.所以这个多边形的边数是10.点评:解决此类问题的关键是根据多边形过一个顶点的对角线与分成的三角形的个数的关系列方程求解.11.过四边形一个顶点的对角线可以把四边形分成两个三角形;过五边形或六边形的一个顶点的对角线,分别把它们分成个三角形;过n边形一个顶点的对角线可以把n边形分成(n﹣2)个(用含n的代数式表示)三角形.考点:多边形的对角线.专题:压轴题;规律型.分析:根据四边形被分成了4﹣2=2个三角形,五边形被分成了5﹣2=3个三角形,依此类推,n 边形可以被分成(n﹣2)个三角形.解答:解:过n边形一个顶点的对角线可以把n边形分成(n﹣2)个三角形.点评:此题可以从具体数据中发现规律,也可以结合图形进行分析.n边形过一个顶点有(n﹣3)条对角线,它们把n边形分割成了(n﹣2)个三角形.12.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是n2+2n .考点:多边形.专题:压轴题;规律型.分析:第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n2+2n.解答:解:第n个图形需要黑色棋子的个数是n2+2n.故答案为:n2+2n.点评:首先计算几个特殊图形,发现:数出每边上的个数,乘以边数,但各个顶点的重复了一次,应再减去.13.一个凸多边形的内角中,最多有 3 个锐角.考点:多边形.分析:根据任意凸多边形的外角和是360°.可知它的外角中,最多有3个钝角,则内角中,最多有3个锐角.解答:解:一个凸多边形的内角中,最多有3个锐角.点评:注意每个内角与其相邻的外角是邻补角,由于多边形的外角和是不变的,所以要分析内角的情况可以借助外角来分析.14.如图所示,将多边形分割成三角形、图(1)中可分割出2个三角形;图(2)中可分割出3个三角形;图(3)中可分割出4个三角形;由此你能猜测出,n边形可以分割出(n﹣1)个三角形.考点:多边形.分析:(1)三角形分割成了两个三角形;(2)四边形分割成了三个三角形;(3)以此类推,n边形分割成了(n﹣1)个三角形.解答:解:n边形可以分割出(n﹣1)个三角形.点评:此题注意观察:是连接n边形的其中一边上的点.根据具体数值进行分析找规律.n边形分割成了(n﹣1)个三角形.15.若一个多边形截去一个角后,变成六边形,则原来多边形的边数可能是5,6,7 .考点:多边形.分析:实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.解答:解:如图可知,原来多边形的边数可能是5,6,7.点评:此类问题要从多方面考虑,注意不能漏掉其中的任何一种情况.三.解答题(共5小题)16.用两个一样大小的含30°角的三角板可以拼成多少个形状不同的四边形?请画图说明.考点:多边形.专题:作图题.分析:若让它们的斜边重合,则可以拼出矩形或一组对角是直角的四边形;若让它们的直角边重合,则可以拼出两种不同的平行四边形.解答:解:四个.如图所示:点评:能够让它们的边分别重合进行不同的拼图.考查了学生的实践能力.17.从四边形的一个顶点出发可画 1 条对角线,从五边形的一个顶点出发可画 2 条对角线,从六边形的一个顶点出发可画 3 条对角线,请猜想从七边形的一个顶点出发有 4 条对角线,从n边形的一个顶点出发有(n﹣3)条对角线,从而推导出n边形共有条对角线.考点:多边形的对角线.专题:规律型.分析:根据n边形从一个顶点出发可引出(n﹣3)条对角线.从n个顶点出发引出(n﹣3)条,而每条重复一次,所以n边形对角线的总条数为(n≥3,且n为整数)可得答案.解答:解:从四边形的一个顶点出发可画1条对角线,从五边形的一个顶点出发可画2条对角线,从六边形的一个顶点出发可画3条对角线,请猜想从七边形的一个顶点出发有4条对角线,从n边形的一个顶点出发有(n﹣3)条对角线,从而推导出n边形共有条对角线,故答案为:1;2;3;4;(n﹣3);.点评:此题主要考查了多边形的对角线,关键是掌握计算公式.18.请你分别在下列多边形的同一顶点出发画对角线:想一想:依此规律可以把10边形分成8 个三角形.考点:多边形的对角线;三角形.专题:规律型.分析:先按题意对给出的四边形,五边形,六边形,七边形画对角线,从而发现规律,按规律不难求得10边形可分成三角形的个数.解答:解:∵四边形可分割成4﹣2=2个三角形;五边形可分割成5﹣2=3个三角形;六边形可分割成6﹣2=4个三角形;七边形可分割成7﹣2=5个三角形∴10边形可分割成10﹣2=8个三角形.点评:此题主要考查学生对平面图形的认识及对规律型题的掌握情况.19.实践与探索!①过四边形一边上点P与另外两个顶点连线可以把四边形分成 3 个三角形;②过五边形一边上点P与另外三个顶点连线可以把五边形分成 4 个三角形;③经过上面的探究,你可以归纳出过n边形一边上点P与另外n﹣2 个顶点连线可以把n边形分成n ﹣1 个三角形(用含n的代数式表示).④你能否根据这样划分多边形的方法来写出n边形的内角和公式?请说明你的理由.考点:多边形的对角线;多边形内角与外角.专题:规律型.分析:①②③在n边形的边上任意取一点,连接这点与各顶点的线段可以把n边形分成(n﹣1)个三角形;④欲证明多边形的内角和定理,可以把多边形的内角转移到三角形中,利用(n﹣1)个三角形,内角和为(n﹣1)×180°,n边形的内角和还要再减去P所在的一个平角,所以n边形的内角和为(n﹣2)×180°.解答:解:①过四边形一边上点P与另外两个顶点连线可以把四边形分成4﹣1=3个三角形;②过五边形一边上点P与另外三个顶点连线可以把五边形分成5﹣1=4个三角形;③经过上面的探究,你可以归纳出过n边形一边上点P与另外(n﹣2)个顶点连线可以把n边形分成(n ﹣2)个三角形(用含n的代数式表示).④在n边形的任意一边上任取一点P,连接P点与其它各顶点的线段可以把n边形分成(n﹣1)个三角形,这(n﹣1)个三角形的内角和等于(n﹣1)•180°,以P为公共顶点的(n﹣1)个角的和是180°,所以n边形的内角和是(n﹣1)•180°﹣180°=(n﹣2)•180°.故答案为:3;4;n﹣2,n﹣1.点评:本题考查了多边形的内角和定理的证明,解题关键是将多边形的内角和问题转化为三角形中解决,在n边形的任意一边上任取一点P,连接P点与其它各顶点的线段可以把n边形分成(n﹣1)个三角形.20.已知从多边形一个顶点出发的所有对角线将多边形分成三角形的个数恰好等于该多边形所有对角线的条数,求此多边形的内角和.考点:多边形的对角线;多边形内角与外角.分析:设多边形为n边形,根据从多边形一个顶点出发的所有对角线将多边形分成三角形的个数恰好等于该多边形所有对角线的条数,列出方程n﹣2=,解方程求出n的值,再关键n边形的内角和公式求解.解答:解:设多边形为n边形,由题意,得n﹣2=,整理得:n2﹣5n+4=0,即(n﹣1)(n﹣4)=0,解得:n1=4,n2=1(不合题意舍去),所以内角和为(4﹣2)×180°=360°.点评:本题考查了多边形的对角线,n边形的内角和公式.掌握n边形从一个顶点出发可引出(n ﹣3)条对角线,这(n﹣3)条对角线将n边形分成(n﹣2)个三角形,n 边形对角线的总条数为是解题的关键.11。