材料焊接性

合集下载

材料焊接性

材料焊接性

焊接性:同质材料或异质材料在制造工艺条件下,能够焊接形成完整接头并满足预期使用要求的能力。

工艺焊接性:指金属或材料在一定的焊接工艺条件下,能否获得优质致密、无缺陷和具有一定使用性能的焊接接头的能力。

冶金焊接性:熔焊高温下的熔池金属与气相、熔渣等相之间发生化学冶金反应所引起的焊接性变化。

屈强比:屈服强度与抗拉强度之比称为屈强比(σs/σb)焊缝强度匹配系数:焊缝强度与母材强度之比S=(σb)w/(σb)b,是表征接头力学非均质性的参数之一。

碳当量法:各种元素中,碳对冷裂纹敏感性的影响最显著。

可以把钢中合金元素的含量按相当于若干碳含量折算并叠加起来,作为粗略评定钢材冷裂纹倾向的参数指标,即所谓碳当量(CE或Ceq)。

点腐蚀:金属材料表面大部分不腐蚀或腐蚀轻微,而分散发生的局部腐蚀应力腐蚀:不锈钢在特定的腐蚀介质和拉应力作用下出现的低于强度极限的脆性开裂现象。

1、影响材料焊接性的因素:材料、设计、工艺和服役环境2、合金结构钢按性能分类可分为:强度用钢和低中合金特殊用钢3、强度用钢:热轧及正火钢、低碳调质钢、中碳调质钢4、焊缝中存在较高比例针状铁素体组织时,韧性显著提高,韧脆转变温度降低5、低碳调质钢的种类:高强度结构钢、高强度耐磨钢、高强度韧性钢;成分:碳质量分数不大于0.22%。

热处理的工艺一般为奥氏体化→淬火→回火,经淬火回火后的组织是回火低碳马氏体、下贝氏体或回火索氏体6、中碳调质钢成分:含碳量Wc=0.25%~0.5%较高,并加入合金元素(Mn、Si、Cr、Ni、B)以保证钢的淬透性7、提高耐热钢的热强性三种合金方式:基体固溶强化、第二相沉淀强化、晶界强化8、不锈钢的主要腐蚀形式:均匀腐蚀、点腐蚀、缝隙腐蚀、应力腐蚀9、铜及铜合金分为工业纯铜、黄铜、青铜及白铜10、不锈钢的分类:按化学成铬不锈钢、铬镍不锈钢、铬锰氮不锈钢按用途不锈钢、抗氧化钢、热强钢按组织奥氏体钢、铁素体钢、马氏体钢、铁素体-奥氏体双相钢、沉淀硬化钢11、铝合金的性质:化学活性强、表面极易氧化、导入性强、易造成不溶合、易形成杂质12、铸铁分为:白口铸铁、灰铸铁、可锻铸铁、球墨铸铁及蠕墨铸铁13、引起应力腐蚀开裂条件:环境、选择性的腐蚀介质、拉应力1、材料焊接性包含的两个含义一是材料在焊接加工中是否容易形成接头或产生缺陷;二是焊接完成的接头在一定的使用条件下可靠运行的能力。

材料的焊接性对焊接质量及焊接成本的影响分析

材料的焊接性对焊接质量及焊接成本的影响分析

材料的焊接性对焊接质量及焊接成本的影响分析一、引言焊接是一种重要的连接技术,在工程领域有着广泛的应用。

而材料的焊接性是决定焊接质量和焊接成本的关键因素之一。

不同材料的焊接性会影响焊接接头的牢固程度、耐腐蚀性、机械性能等。

不同的焊接性也会导致不同的焊接工艺及焊接材料的选择,从而影响焊接的成本。

对材料的焊接性进行分析,对于提高焊接质量、降低焊接成本具有重要意义。

二、材料的焊接性及其影响1. 材料的成分及结构材料的成分和结构是决定焊接性的重要因素之一。

碳含量高的钢材在焊接时容易产生焊接变脆现象,降低焊接接头的牢固程度;而不锈钢的铬含量高,容易在焊接过程中产生氧化物,影响焊接质量。

材料的结构也会影响焊接性,例如晶粒细小的材料焊接后具有优良的机械性能和耐腐蚀性,而晶粒粗大的材料则容易产生焊接裂纹,降低焊接质量。

2. 材料的热物理性能材料的热物理性能包括热导率、热膨胀系数等,对焊接性有着重要影响。

在焊接过程中,材料的热膨胀系数不同会导致在焊接接头处产生应力集中,影响焊接质量;而热导率低的材料在焊接时需要较长的预热时间,增加焊接成本。

3. 材料的表面状态材料的表面状态对焊接性有着直接影响。

表面粗糙的材料在焊接时会影响焊接接头的质量,易产生缺陷。

表面涂层、氧化物等也会影响焊接性,需要进行特殊的处理以保证焊接质量。

4. 不同材料的焊接特性不同材料的焊接特性不同,需要采用不同的焊接工艺及焊接材料。

碳钢容易进行电弧焊接,而铝合金则需要采用氩弧焊接。

在选择焊接工艺和焊接材料时需要考虑材料的焊接特性,以保证焊接质量。

1. 焊接接头的牢固程度材料的焊接性直接影响焊接接头的牢固程度。

焊接性好的材料在焊接时容易形成均匀的焊缝,焊接接头具有较高的强度和韧性;而焊接性差的材料在焊接时容易产生焊接裂纹、气孔等缺陷,降低焊接接头的牢固程度。

2. 焊接接头的耐腐蚀性1. 焊接工艺的选择不同材料的焊接性决定了需要采用不同的焊接工艺参数。

对于焊接性差的材料需要采用较高的焊接温度、较长的预热时间等,增加了焊接成本。

材料焊接性

材料焊接性

材料焊接性材料焊接性在工程设计中,材料的焊接性是一个至关重要的因素。

焊接是将两个或多个材料通过熔化和冷却来组装在一起的过程。

通过焊接,可以将两个成分相同或不同的材料连接在一起,形成一种坚固的结构形状。

材料的焊接性不仅涉及材料的物理和化学性质,还涉及焊接过程中使用的材料和工具的类型和质量。

这是因为焊接是一个高温、高压和高温度变化的过程。

有些材料非常容易焊接,如钢铁、铝和铜。

这些材料具有较高的熔点和热传导性,焊接时易于形成强有力的气密连接。

钢铁可以使用多种方法进行焊接,包括电弧焊接、气体焊接、TIG焊接、MIG焊接等。

铝和铜也可以使用类似的方法进行焊接。

然而,还有很多材料焊接起来比较困难,如不锈钢、钛、瓷砖等。

不锈钢的耐腐蚀性和强度使其成为许多工业应用的理想材料,但是它的结构相对复杂,因此需要特殊的焊接技术。

钛是轻量级、高强度、高温材料,但是其氧化膜在焊接过程中会阻碍焊接过程。

瓷砖是一种脆性材料,焊接会使其容易破裂。

为了解决这些材料的焊接难题,科学家和工程师们花费了很多时间和精力,开发出了各种新的焊接技术和材料。

例如,对于不锈钢的焊接,通常需要使用气体钨极焊或高功率激光焊技术,这些技术可以帮助减轻不锈钢的薄壁焊接和手工操作的难度。

钛和瓷砖的焊接也需要特殊的焊接技术和材料。

此外,焊接过程中的热处理也是焊接性要考虑的一个方面。

因为焊接时高温会对材料的性质产生不利影响,而焊缝周围的区域是焊接最容易出问题的地方。

通过一些热处理方法,如退火、淬火、正火等可以改善焊缝的性能。

总之,在工程设计中,选择合适的材料并保证材料的焊接性是至关重要的。

无论焊接什么材料,都需要做一些实验室测试,确定最佳的焊接方法和材料。

通过合理的焊接选择,可以确保完成的结构强度和耐用性。

除了选择合适的材料和焊接方法之外,还需要考虑其他一些因素来确保焊接质量和可靠性。

以下是一些需要考虑的因素:1. 焊接时应该注意环境。

有些焊接方法,如氧乙炔焊和某些复杂的电弧焊需要在较为干燥和通风的环境下进行。

常用金属材料的焊接性

常用金属材料的焊接性

常用金属材料的焊接性焊接是指将两个或多个金属材料通过加热或施加压力等方式连接在一起的工艺。

常用的金属材料包括钢铁、铝、铜、镍、钛等。

这些金属材料在焊接时拥有不同的特性和焊接性能。

下面将针对常见金属材料的焊接性进行详细介绍。

1.钢铁焊接性钢铁是最常见的金属材料之一,其焊接性能较好。

在钢铁焊接中常用的方法包括电弧焊、气焊、激光焊等。

其中,电弧焊是最常见的焊接方法,在焊接钢铁时通常使用熔化电极和熔化极性相同的焊条。

钢铁的焊接性能取决于其成分、组织结构以及焊接方法等因素。

2.铝焊接性铝是一种常见的轻金属,其焊接性能较差。

由于铝的氧化膜容易形成,这会降低焊接接头的强度和质量。

为了提高铝的焊接性能,可以采用预处理、焊接保护气体等方法。

常见的铝焊接方法有气焊、TIG焊等。

在气焊中需要使用钡剂等预处理剂来清除氧化膜,而TIG焊则可以通过惰性气体的保护来减少氧化膜的生成。

3.铜焊接性铜是一种良好的导电材料,其焊接性能较好。

常见的铜焊接方法有气焊、TIG焊、电弧焊等。

在铜焊接中,氧化膜的清除很重要,可以使用钝化剂等预处理剂来清除氧化膜。

TIG焊和电弧焊是常用的铜焊接方法,可以通过选择合适的焊接材料和控制焊接参数来获得理想的焊接接头。

4.镍焊接性镍是一种耐腐蚀性较好的金属材料,其焊接性能较好。

常见的镍焊接方法有电弧焊、TIG焊等。

镍焊接时,需要注意选择合适的焊接材料和适当的焊接参数来获得理想的焊接接头。

在镍焊接中,尤其需要注意焊接电缆和接地端之间的电气连接,以避免电弧腐蚀。

5.钛焊接性钛是一种重要的结构材料,其焊接性能较好。

常用的钛焊接方法有电弧焊、激光焊等。

在钛焊接中,需要注意选择合适的焊接材料和适当的焊接参数,以避免产生气泡和裂纹等缺陷。

此外,钛焊接还需要进行保护气体的控制,以避免氧化等不良影响。

综上所述,常用金属材料的焊接性能因成分、组织结构以及焊接方法等因素的不同而有所差异。

了解和掌握这些材料的焊接性能对于实际应用和工程设计具有重要意义,能够确保焊接接头的质量和可靠性。

详解典型焊接材料的焊接性

详解典型焊接材料的焊接性

详解典型焊接材料的焊接性典型焊接材料的焊接性是指在焊接过程中所表现出的特性和性能。

焊接性是影响焊接工艺和焊缝质量的重要因素之一、下面将详细介绍常见焊接材料(包括金属和非金属材料)的焊接性。

1.钢材焊接性:钢材是最常见的金属材料之一,具有广泛的应用领域。

钢材的焊接性取决于其成分、钢种和热处理状态。

一般来说,碳含量低的低碳钢和碳含量高的高碳钢都具有良好的焊接性。

焊接低碳钢时,焊接热影响区域(HAZ)容易发生退火,引起冷脆性的问题,需要采取适当的措施进行预热和后热处理。

高碳钢焊接时容易出现冷裂纹和热裂纹,需要选择适合的焊接材料和控制焊接参数。

2.铝合金焊接性:铝合金是一种轻质、高强度的金属材料,广泛用于航空、汽车和建筑等领域。

铝合金的焊接性取决于合金化元素、成分和热处理状态。

一般来说,一些铝合金易于焊接,如铝镁合金和铝锂合金,而一些铝合金焊接性较差,如硬化铝合金。

焊接铝合金时,容易发生氧化和热裂纹等问题,需要采取保护气体和合适的焊接工艺参数。

3.不锈钢焊接性:不锈钢是一种抗腐蚀性能良好的金属材料,被广泛用于食品加工、化工和医疗器械等领域。

不锈钢的焊接性受到合金元素、成分和热处理状态的影响。

普通奥氏体不锈钢(如304和316等)焊接性较好,而马氏体不锈钢焊接性较差。

焊接不锈钢时,易发生气孔和焊接晶间腐蚀等问题,需要控制焊接参数和采用适当的焊接试剂。

4.铜及铜合金焊接性:铜和铜合金是常见的导电材料,被广泛应用于电气、电子和管道等行业。

铜及铜合金的焊接性好,容易焊接。

焊接铜合金时,一般采用气焊、电弧焊或电阻焊等方法。

需要注意的是,铜及铜合金焊接时易发生氧化和高温脆性等问题,需要采取保护措施。

5.非金属材料的焊接性:非金属材料如塑料、陶瓷和橡胶等也可以进行焊接。

其中,塑料焊接性好,常用的焊接方法有热板焊接、高频焊接和超声波焊接等。

陶瓷和橡胶等材料的焊接性较差,难以进行常规焊接,常采用粘接、烧结和激光焊接等特殊方法。

各种材料的焊接性能

各种材料的焊接性能

各种材料的焊接性能焊接是一种将两个或更多的材料连接在一起的工艺。

焊接性能是指材料在焊接过程中的抗热裂纹、焊接接头的强度、抗脆性、耐腐蚀性等方面的表现。

各种材料的焊接性能有相应的特点。

金属材料是最常见的焊接材料之一、常见的金属材料包括钢铁、铝合金、铜合金、镍合金等。

这些材料具有良好的可焊性,通过适当的焊接工艺和焊接材料的选择,可以得到较高的焊接接头强度。

其中,钢铁是最常见的焊接材料,焊接性能较好,可用多种焊接方法进行焊接,例如电弧焊、气体保护焊等。

铝合金和铜合金由于具有良好的导电性和导热性,在航空航天、汽车制造等领域得到广泛应用,这些材料的焊接性能对接头质量和工件整体性能影响较大。

镍合金具有优异的耐腐蚀性和高温强度,广泛用于航空发动机、核反应堆等领域,其焊接性能对材料的使用寿命和安全性有重要影响。

非金属材料如陶瓷、塑料、纤维等也有一定的焊接性能。

陶瓷一般以粘结剂形式焊接,焊接强度较低,常用于压电陶瓷和绝缘陶瓷制品的焊接。

塑料材料的焊接主要采用热焊和超声波焊接等方法,焊接强度较高,广泛应用于塑料管道、汽车内饰等领域。

纤维材料的焊接主要是指碳纤维、玻璃纤维等复合材料的焊接,一般采用粘合剂或热焊接的方法,焊接性能一般较好。

无机非金属材料如玻璃、石墨等的焊接性能较差。

玻璃的焊接需要采用特殊的焊接工艺,焊接接头强度低,且易发生热裂纹。

石墨材料是具有良好导电和导热性能的材料,但其本身结构特殊,焊接性能较差。

总体而言,各种材料的焊接性能受材料本身性质、焊接工艺和焊接材料等因素的影响。

为了获得良好的焊接性能,需根据具体材料的特点选择合适的焊接方法和焊接材料,并严格控制焊接工艺参数,以确保焊接接头的质量和性能。

材料的焊接性对焊接质量及焊接成本的影响分析

材料的焊接性对焊接质量及焊接成本的影响分析

材料的焊接性对焊接质量及焊接成本的影响分析【摘要】本文主要探讨了材料的焊接性对焊接质量及焊接成本的影响。

首先介绍了研究的背景和意义,接着分析了影响因素、材料对焊接质量和成本的影响。

针对不同材料的焊接性能差异,讨论了焊接性能测试方法和控制焊接质量的方法。

最后对材料的选择对焊接质量和成本的综合影响进行了总结和分析,提出了未来研究方向。

通过本文的研究,可以更好地了解材料的选择对焊接质量和成本的影响,为提高焊接质量和降低成本提供参考和指导。

【关键词】焊接性、材料、焊接质量、焊接成本、影响因素、焊接性能测试、控制方法、选择、综合影响分析、未来研究方向、结论总结1. 引言1.1 研究背景焊接是一种常见的制造工艺,用于将材料用热或压力连接在一起。

在许多工业领域,如汽车制造、航空航天、建筑和家具制造等,焊接都是至关重要的环节。

而材料的焊接性对焊接质量及焊接成本有着重要的影响。

在焊接过程中,不同材料的焊接性会影响焊缝的质量和强度。

一些材料容易产生气孔、裂纹或其他缺陷,从而影响焊接质量。

而另一些材料则可以实现良好的焊接效果,确保焊接接头的稳定性和耐久性。

对材料的焊接性进行分析和测试是至关重要的。

不同材料的焊接性还会直接影响焊接成本。

一些难焊材料需要额外的设备和工艺来进行焊接,这会增加生产成本。

在实际生产中,需要综合考虑材料的焊接性能以及焊接成本,选择适合的材料来达到最佳的焊接效果。

本文将对材料的焊接性对焊接质量及焊接成本的影响进行深入分析,旨在为相关领域的从业人员提供指导和参考。

通过对材料的焊接性能进行研究,可以实现更高效、更经济的焊接过程,提高产品的质量和竞争力。

1.2 研究意义材料的焊接性对焊接质量及焊接成本的影响分析引言焊接是一种常见的金属加工工艺,在工业生产中被广泛应用。

而材料的焊接性对焊接质量及焊接成本有着重要的影响。

深入研究材料的焊接性及其影响因素,对于提高焊接质量、降低焊接成本具有重要的意义。

材料的焊接性直接影响着焊接质量。

各种材料的焊接性能

各种材料的焊接性能

各种材料的焊接性能焊接是一种将两个或多个材料连接在一起的工艺,通过加热、加压和加入填充材料,使其在接头处产生强固的连接。

不同材料的焊接性能取决于其化学成分、结构和热处理状态等因素。

下面将就几种常见材料的焊接性能进行介绍。

1.钢材焊接性能:钢材是最常用的焊接材料之一,它具有良好的焊接性能。

一般来说,低合金钢和不锈钢等易焊接的钢材,焊接时一般使用通用电弧焊、气体保护焊和电子束焊等方法。

高强度钢、高合金钢等焊接性能较差的钢材则需要采用专用的焊接工艺,如预热、后热处理和控制焊接变形等。

2.铝材焊接性能:铝材具有良好的导热性和导电性,但其氧化膜易与空气中的氧气发生反应,影响焊接质量。

因此,对于铝材焊接,一般需要采用气体保护焊、TIG焊和激光焊等方法。

同时,由于铝合金的热导率较高,所以焊接时需要更高功率的焊接设备。

3.铜材焊接性能:铜材的导热性和导电性良好,在焊接时容易产生较高的焊接温度,进而导致铜材迅速散热,难以形成良好的焊接池。

因此,铜材的常见焊接方法主要有气体保护焊、TIG焊和电弧焊等。

4.镁合金焊接性能:镁合金具有轻量化和高强度等优点,但其善热导性和易氧化的特性使其在焊接过程中面临一定的挑战。

常见的镁合金焊接方法有TIG焊、气体保护焊和电弧焊等。

此外,由于镁合金容易产生热裂纹,焊接过程中需要注意控制焊接温度和热输入。

5.硬质合金焊接性能:硬质合金是一种复合材料,其焊接性能受到合金成分、颗粒尺寸和焊接工艺的影响。

一般来说,硬质合金的焊接方法有等离子焊、电子束焊和惰性气体焊等,其中等离子焊和电子束焊具有较高的能量密度,适合高硬度和高熔点的硬质合金。

综上所述,不同材料的焊接性能受到多个因素的影响,包括化学成分、结构和热处理状态等。

在选择焊接方法时,需要根据材料的特性和要求,合理选择合适的焊接工艺,以保证焊接接头的质量和性能。

焊接冶金学材料焊接性

焊接冶金学材料焊接性

焊接冶金学材料焊接性焊接是一种常见的金属加工工艺,广泛应用于工业生产和制造业中。

而焊接性作为材料的一个重要性能指标,直接影响着焊接工艺的选择和焊接接头的质量。

本文将围绕焊接冶金学材料焊接性展开讨论,从材料的角度探讨焊接性的影响因素以及提高焊接性的方法。

首先,影响焊接性的因素主要包括材料的化学成分、微观组织和热处理状态。

材料的化学成分直接影响着焊接接头的化学成分和相变行为,从而影响焊接接头的力学性能和耐蚀性能。

微观组织则决定了材料的塑性、韧性和硬度等性能,对焊接接头的强度和韧性起着重要作用。

而材料的热处理状态则会改变材料的组织结构和性能,进而影响焊接性能。

其次,提高焊接性的方法主要包括合理选择焊接材料、优化焊接工艺和进行适当的热处理。

在选择焊接材料时,需要考虑材料的化学成分、热处理状态和微观组织,以保证焊接接头具有良好的力学性能和耐蚀性能。

在焊接工艺方面,需要根据材料的性能特点和要求,选择合适的焊接方法、焊接参数和焊接工艺控制措施,以确保焊接接头的质量。

此外,适当的热处理也可以改善焊接接头的组织结构和性能,提高焊接性。

总的来说,焊接性作为材料的重要性能指标,受到材料的化学成分、微观组织和热处理状态等因素的影响。

要提高焊接性,需要合理选择焊接材料、优化焊接工艺和进行适当的热处理。

只有全面考虑这些因素,才能确保焊接接头具有良好的力学性能和耐蚀性能,从而满足工程应用的要求。

综上所述,焊接冶金学材料焊接性是一个综合性能指标,受到多种因素的影响。

只有全面考虑材料的化学成分、微观组织和热处理状态,合理选择焊接材料、优化焊接工艺和进行适当的热处理,才能提高焊接性,确保焊接接头具有良好的性能,满足工程应用的要求。

《材料焊接性》课件

《材料焊接性》课件
定期对焊接设备进行维护和检查,确保设备正常运 行,防止因设备故障导致的安全事故。
焊接生产中的环保问题
02
01
03
焊接过程中会产生烟尘、废气、噪音等污染物,对环 境造成一定的影响。
焊接设备的选用应符合环保要求,尽量选择低烟尘、 低噪音的设备。
定期对焊接设备进行环保检测,确保设备符合相关环 保标准。
焊接废弃物的处理与再利用
超声波焊接技术
超声波振动焊接
利用超声波振动使材料产生局部高温和 压力,从而实现材料的连接。超声波振 动焊接具有快速、低成本和高质量等特 点,适用于塑料、纸张和布料等材料的 焊接。
VS
高频感应焊接
利用高频电流产生磁场,使金属材料产生 涡流热并熔化,最终连接在一起。高频感 应焊接具有高效、节能和环保等特点,适 用于薄板和管材的焊接。
无损检测
利用超声波、射线、磁粉等方法,对焊接接头进行无损检测 ,以发现潜在的缺陷和问题。
05
焊接安全与环保
焊接作业安全防护
焊接作业人员应穿戴防护服、佩戴护目镜、手套等 个人防护装备,以减少焊接过程中产生的飞溅、弧 光和高温对人体的伤害。
在焊接作业现场,应设置相应的安全警示标识,提 醒作业人员注意安全。
焊接工艺参数的调整与控制
在焊接过程中,根据实际情况对工艺参数进行调整和控制,确保焊 接质量的稳定性和可靠性。
04
焊接质量与检验
焊接质量标准与评定
焊接质量标准
根据不同的材料和焊接工艺,制定相应的焊接质量标准,包括焊接接头的强度、致密性、抗腐蚀性等方面的要求 。
焊接质量评定
通过检验和测试,对焊接接头进行质量评定,确保其满足设计要求和使用性能。
如熔化焊、压力焊、钎焊等, 每种工艺有其适用的范围和特 点,需根据具体艺进行可行性评 估,确保其能够满足焊接要求 ,并考虑生产效率和成本等因 素。

焊接冶金学-材料焊接性

焊接冶金学-材料焊接性

焊接冶金学-材料焊接性名词解释:;;1、焊接性:焊接;性是指同质材料或异质材料在制造工艺条件下,能够焊接形成完整接头并满足预期使用要求的能力。

2、碳当量:把;钢中合金元素的含量按相当于若干碳含量折算并叠加起来,作为粗略评定钢材料冷裂纹倾向的参数指标。

;;3、焊接性的间;接评定:①碳当量法;②焊接冷裂纹敏感性指数法;③消除应力裂纹敏感性指数法;④热裂纹敏感性指数;法;⑤层;状撕裂敏感性指数法;⑥焊接热影响区最高硬度法。

第三;章合金结构钢的焊接1、热;轧钢HA;Z过热区脆化原因:;采用过;大的焊接热输入,粗晶区将因晶粒长大或出现魏氏组织而降低韧性;采用过小的焊接热输入,粗晶区中的马;氏体组;织所占的比例增大而降低韧性。

2、正火;钢HA;Z过热区脆化原因:1;、晶粒;长大2、沉淀相Ti和Vc发生高温溶解,溶入奥氏体基体,在冷却过程中来不及析出,保留在铁集体内,使其;变脆;。

过热区脆化与魏氏组织无关;采用过大的焊接输入,导致晶粒粗大,主要是1200高温下其沉淀强化作用的碳;化物;和氮化物质点分解并溶于奥氏体,在随后的冷却过程中来不及析出而固溶在基体中,Nb等推迟铁素体的产生,;上贝;氏体的产生,上贝氏体增多,导致韧性下降;采用过小的焊接热输入,冷却速度加快,淬硬组织马氏体增多,导致;韧性下降。

3、分析热;轧;钢和正火钢的强化方式及主要强化元素有何不同,二者焊接性有何差异,在制定工艺时应注意什么?答:⑴强化;;方式:热轧钢用Mn、Si等合金元素固溶强化,加入V、Nb以细化晶粒和沉淀强化;正火钢在固溶强化的基础上加;;入一些碳、氮化合物形成元素C、V、Nb、Ti、Mo进行沉淀强化和晶粒细化。

⑵裂纹-热轧钢对冷、热裂纹都不敏;;感,不出现再热裂纹,出现层状撕裂;正火钢冷裂纹倾向大于热轧钢,对热裂纹不敏感出现再热裂纹和层状撕裂。

;;⑶热影响区性能变化:热轧钢脆化、晶粒粗大和粗晶脆化;正火钢粗晶脆化和组织脆化。

⑷制定工艺时应注意:热;;轧钢线能量需要适中,正火钢应选较小线能量。

焊接冶金学——材料焊接性

焊接冶金学——材料焊接性

材料焊接性的概念有两个方面的内容:一是材料在焊接加工中是否容易形成接头或产生缺陷;二是焊接完成的接头在一定的使用条件下可靠运行的能力。

研究焊接性的目的:目的在于查明一定的材料在指定的焊接工艺条件下可能出现的问题,以确定焊接工艺的合理性或材料的改进方向。

工艺焊接性—在一定焊接工艺条件下,能否获得优良致密,无缺陷焊接接头的能力。

使用焊接性—指焊接接头或整个结构满足产品技术条件规定的使用性能的程度。

影响焊接性的因素:1、材料因素,材料的因素包括母材本身和使用的焊接材料;2、设计因素,焊接接头的结构设计会影响应力状态,设计结构时应使接头处的应力处于较小的状态,能够自由收缩,这样有利于减少应力集中和防止焊接裂纹;3、工艺因数,包括施工时所采用的焊接方法、焊接工艺规程和焊后处理等;4、服役环境,指焊接结构的工作温度、负荷和工作环境。

屈强比:屈服强度与抗拉强度之比。

粗晶区脆化:被加热到1200℃以上的热影响区过热区域可能产生粗晶区输入时,韧性明显降低。

这是由于热轧钢焊接时,采用过大的焊接热输入,粗晶区将因晶粒长大或出现魏氏组织而降低韧性;焊接热输入过小,粗晶区中马氏体组织所占的比例增大而降低韧性。

热影响区脆化:在焊接热循环作用下,t(冷却时间)继续增加时低碳调质钢热影响区过热区易发生脆化,即冲击韧性明显下降。

热影响区脆化的原因除了奥氏体晶粒粗化的原因外,更主要的是由于上贝氏体格M-A组元的形成。

热影响区软化:低碳调质钢热影响区峰值温度高于母材回火温度至Ac1的区域会出现软化低碳调质钢的特点是:碳含量低,基体组织是强度和韧性都较高的低碳马氏体+下贝氏体,这对焊接有利,但是,调质状态下的钢材,只要加热温度超过它的回火温度,性能就会发生变化,焊接时由于热循环的作用使热影响区强度和韧性的下降几乎无可避免。

低碳调质钢的焊接方法:为了消除裂纹和提高焊接效率,一般采用熔化气体保护焊(MIG)或活性气体保护焊(MAG)等自动化或半自动机械化焊接方法;对于调质钢焊后热影响区强度和韧性下降的问题,可焊后重新重新进行调质处理,对于不能调质处理的,要限制焊接过程中热量对木材的作用,常用的化解方法有焊条电弧焊、CO2焊和Ar+CO2混合气体保护焊等。

材料焊接性材料焊接性3

材料焊接性材料焊接性3
从金属的特性分析焊接性
利用材料的化学成分分析
➢ 碳当量法 ➢ 由于HAZ的淬硬及冷裂纹倾向与钢种的化学成分有密切关系,
因此可以用化学成分间接评估钢材冷裂纹的敏感性。 ➢ 碳当量法是一种粗略估计低合金钢焊接冷裂敏感性的方法。 ➢ 焊接部位的淬硬倾向与化学成分有关,钢材碳当量越大,淬硬 冷裂倾向越大,焊接性越差。
➢ (2)保护方法
➢熔化焊时对焊接区的保护方法一般 渣保护(如焊条电弧焊和埋弧焊的熔渣)、气 保护(如氩弧焊的氩气保护)或者是真空(如真空电子束焊)等几种。那么,对不 同的材料可能要选择不同的保护方式。保护方法和效果直接影响金属的焊接性。
从焊接工艺条件分析焊接性
➢ (3)热循环控制
➢焊接热源的特点。根据焊接方法的不同,热源种类也有电弧热、电阻热以及摩擦 热等等。不同的焊接方法,其热源的功率、能量密度、最高加热温度等等都有所不 同,对材料的焊接性的影响也不同。
从金属的特性分析焊接性
冷裂纹敏感指数(Pcm)
➢冷裂纹敏感指数(Pc)公式综合考虑了产生冷裂纹三要素(淬硬倾 向、拘束度和扩散氢含量)的影响,使计算结果更准确。
+Cr
➢求得Pc后,利用下式即可求出斜Y坡口对接裂纹试验条件下,防 止冷裂所需要的最低预热温度t0(℃)。
从金属的特性分析焊接性
➢利用材料的物理性能分析
➢根据金属的熔点、导热系数、线膨胀系数、密度等性能对焊接热循环、 熔化、结晶、相变等过程的影响来分析焊接性。
➢利用材料的化学性能分析 ➢利用合金相图分析 ➢利用CCT图和SHCCT图分析
从焊接工艺条件分析焊接性
➢ (1)焊接Biblioteka 源的特点➢根据焊接方法的不同,热源种类也有电弧热、电阻热以及摩擦热等等。不同的焊 接方法,其热源的功率、能量密度、最高加热温度等等都有所不同,对材料的焊接 性的影响也不同。

各种材料的焊接性能

各种材料的焊接性能

金属材料的焊接性能(1)焊接性能良好的钢材主要有:低碳钢(含碳量<0.25);低合金钢(合金元素含量1~3、含碳量<0.20);不锈钢(合金元素含量>3、含碳量<0.18)。

(2)焊接性能一般的钢材主要有:中碳钢(合金元素含量<1、含碳量0.25~0.35);低合金钢(合金元素含量<3、含碳量<0.30);不锈钢(合金元素含量13~25、含碳量£0.18)(3)焊接性能较差的钢材主要有:中碳钢(合金元素含量<1、含碳量0.35~0.45);低合金钢(合金元素含量1~3、含碳量0.30~0.40);不锈钢(合金元素含量13、含碳量0.20)。

(4)焊接性能不好的钢材主要有:中、高碳钢(合金元素含量<1、含碳量>0.45);低合金钢(合金元素含量1~3、含碳量>0.40);不锈钢(合金元素含量13、含碳量0.30~0.40)。

焊条和焊丝选择的基本要点如下:同类钢材焊接时选择焊条主要考虑以下几类因素:考虑工件的物理、机械性能和化学成分;考虑工件的工作条件和使用性能;考虑工件几何形状的复杂程度、刚度大小、焊接坡口的制备情况和焊接部位所处的位置等;考虑焊接设备情况;考虑改善焊接工艺和环保;考虑成本。

异种钢材和复合钢板选择焊条主要考虑以下几类焊接情况:一般碳钢和低合金钢间的焊接;低合金钢和奥氏体不锈钢之间的焊接;不锈钢复合钢板的焊接。

焊条和焊丝的选择参数查阅机械设计手册中焊条和焊丝等章节和焊条分类及型号(GB 980-76)、焊条的性能和用途(GB 980~984-76)等有关国家标准。

###15CrMoR的换热器的热处理工艺***当板厚超过筒体内径的3%时,卷板后壳体须整体热处理。

***15CrMoR焊接性能良好。

手工焊用E5515-B2(热307)焊条,焊前预热至200-250℃(小口径薄壁管可不预热),焊后650-700℃回火处理。

自动焊丝用H13CrMoA和焊剂250等。

010#——材料焊接性

010#——材料焊接性

材料焊接性(A)一、什么是热焊接性和冶金焊接性,各涉及到焊接中的什么问题?热焊接性是指焊接热过程对焊接热影响区组织性能及产生缺陷的影响程度,它用于评定被焊金属对热作用的敏感性。

冶金焊接性是指冶金反应对焊缝性能和产生缺陷的影响程度,它包括合金元素的氧化、还原、蒸发、氢、氧、氮的溶解,对气孔、夹杂、裂纹等缺陷的敏感性。

二、简述热轧钢、正火钢和控轧钢的焊接性有什么差别,举例说明这几种钢材应用于何种焊接结构领域。

答:三类钢的焊接性都较好,但控轧钢最好,热轧钢次之,正火钢稍差。

1)热轧钢碳当量都比较低,除环境温度很低或钢板厚度很大,一般情况下其裂纹倾向都不大。

但过热区易脆化,2)当正火钢碳当量不超过0.5%时,淬硬倾向比热轧钢大,但不算严重,焊接性尚可。

但对于厚板往往需要进行预热。

当碳当量大于0.5%时钢的淬硬倾向和冷裂倾向逐渐增加,而且正火钢的过热敏感性较热轧钢大热轧钢、正火钢随着强度级别的增加,焊接性变差,主要问题是热影响区的脆化和冷裂纹热轧钢、正火钢主要用于机械零件,控轧钢主要用于管线钢、压力容器用钢、桥梁钢3)控轧钢是焊接无裂纹钢。

三、简述低合金钢焊接时选用焊接材料的原则,以及珠光体耐热钢焊接时选用焊接材料的原则,二者有何不同?低合金钢焊接时选用焊接材料的原则:根据产品对焊缝性能要求选择焊接材料:高强钢焊接时一般选择与母材强度相当的材料,必须综合考虑焊缝金属的韧性、塑性及强度。

珠光体耐热钢焊接时原则:根据化学成分的要求,即熔敷金属的化学成分应与母材相当来选用焊接材料。

四、任举出一种低碳调质钢的牌号,说明低碳调质钢焊接中容易出现什么问题。

指出低碳调质钢焊接时采用那2种典型的焊接工艺?怎样能够保证焊接接头性能,为什么?牌号:HY-80低碳调质钢焊接时主要问题:是在焊接接头热影响区出现脆化外和软化问题。

典型的焊接工艺:低碳调质钢的组织为低碳马氏体+下贝氏体,强度和韧性都较高。

这在一般电弧焊条件下就可获得与母材相近的热影响区。

材料的焊接性对焊接质量及焊接成本的影响分析

材料的焊接性对焊接质量及焊接成本的影响分析

材料的焊接性对焊接质量及焊接成本的影响分析摘要:焊接是一种常见的生产制造工艺,广泛应用于工业生产中。

材料的焊接性对焊接质量和焊接成本有着重要的影响。

本文将从焊接质量和焊接成本两个方面进行分析,探讨材料的焊接性对焊接工艺的影响,为提高焊接质量、降低焊接成本提供一定的参考。

1. 焊接质量的影响材料的焊接性对焊接质量有着直接的影响。

焊接性好的材料在焊接过程中,可以实现良好的熔合和熔透,保证焊缝的质量和牢固度。

而焊接性差的材料容易出现焊接裂纹、气孔等缺陷,影响焊接质量。

2. 焊接材料的选择在实际的焊接工艺中,针对不同的材料和焊接对象,需要选择对应的焊接材料。

焊接性好的材料可以减少焊接缺陷的产生,提高焊接质量,延长焊接件的使用寿命。

3. 焊接后处理针对焊接件,做好焊后的处理工作也是影响焊接质量的重要因素。

对于焊接性好的材料,焊后处理更容易,可以更好地保证焊接质量。

二、材料的焊接性对焊接成本的影响材料的焊接性对焊接成本有着直接的影响。

选择焊接性好的材料可以减少焊接工艺的难度,降低工艺参数的要求,降低焊接成本。

对于焊接性好的材料,焊后处理更为简单,可以减少后续的加工费用,降低焊接成本。

结论:Abstract:Welding is a common manufacturing process widely used in industrial production. The weldability of materials has an important impact on welding quality and welding costs. This paper will analyze the impact of material weldability on welding processes from the perspectives of welding quality and welding costs, to provide a reference for improving welding quality and reducing welding costs.I. The impact of material weldability on welding quality3. Post-welding treatment2. Selection of welding processesFor materials with good weldability, post-welding treatment is simpler, which can reduce subsequent processing costs and lower welding costs.Conclusion:。

材料焊接性

材料焊接性

材料焊接性
材料焊接是指通过热源对两个或多个材料进行加热,使其熔化并连接在一起的工艺。

常用的材料焊接方法有电弧焊接、气焊、激光焊接、电子束焊接等。

材料焊接具有以下几个特点:
1. 焊接强度高:焊接接头的强度一般可以达到或接近母材强度。

这是因为焊接过程中,焊缝和母材之间会形成较大的结晶颗粒,从而提高了材料的强度。

2. 焊接效率高:材料焊接方法通常能够在短时间内将材料焊接在一起,这大大提高了工作效率。

同时,焊接时只需进行部分预热和局部加热,因此能够节约能源。

3. 焊接适用范围广:材料焊接可以实现对各种类型的材料进行焊接,如金属材料、塑料材料等。

而且,不同种类的材料之间也可以进行焊接,例如金属与塑料的焊接。

4. 焊接工艺复杂:材料焊接涉及到多种工艺和技术,在焊接过程中需要控制好焊接温度、焊接速度、焊接压力等参数。

此外,还需要选择合适的焊接材料和焊接设备。

5. 焊接过程中可能会产生变形:在进行材料焊接时,由于焊接过程中的加热和冷却,会使焊接接头周围的材料发生不均匀变形,从而影响产品的质量。

因此,在焊接过程中需要采取补偿措施,如预留一定的余量,进行后续的修整和整形。

总之,材料焊接是一种常用的连接方法,具有高强度、高效率、
广泛适用等特点。

在实际应用中,需要根据具体的材料和需求选择合适的焊接方法和工艺,以确保焊接质量和产品性能。

材料焊接性分析

材料焊接性分析

一、焊接性概念材料在限定的焊接施工条件下,焊接成按规定设计要求的构件,并满足预定服役要求的能力。

(国家标准)一是结合性能----工艺焊接性材料在焊接加工中是否容易形成接头或产生缺陷二是使用性能焊接完成的接头在一定使用条件下可靠运行的能二、研究焊接性的目的1查明指定材料在指定焊接工艺条件下可能出现的问题2确定焊接工艺的合理性或材料的改进方向三、影响焊接性的因素1材料因素2设计因素3工艺因素4服役环境四、评定焊接性的原则一是评定焊接接头产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;二是评定焊接接头能否满足结构使用性能要求五、评定焊接接头工艺缺陷的敏感性主要进行抗裂性试验,其中包括热裂纹试验、冷裂纹试验、消除应力裂纹试验和层状撕裂试验。

六、实焊类方法包含:裂纹敏感性试验、焊接接头的力学性能测试、低温脆性试验、断裂韧性试验、高温蠕变及持久强度试验。

(较小的焊件直接做试验,较大的实物缩小化)七、碳当量的间接估测法定义:可以把钢中合金元素的含量按相当于若干碳含量折算并叠加起来,作为粗略评定钢材冷裂纹倾向的参数指标,即所谓碳当量(CE或Ceq)。

焊接热影响区的淬硬及冷裂纹倾向与钢种的化学成分有密切关系化学成分间接地评估钢材冷裂纹的敏感性。

将钢中各种合金元素折算成碳的含量。

钢中决定强度和可焊性的因素主要是含碳量。

以Ceq值的大小估价冷裂纹倾向的大小,认为Ceq值越小,钢材的焊接性能越好。

缺点:1碳当量公式没有考虑元素之间的交互作用2没有考虑板厚、结构拘束度、焊接工艺、含氢量等因素的影响。

3用碳当量评价焊接性是比较粗略的,使用时应注意条件。

所以,碳当量法只能用于对钢材焊接性的初步分析1)使用国际焊接学会(IIW)推荐的碳当量公式时,对于板厚δ<20mm的钢材CE<0.4%焊接性良好,焊前不需要预热;CE=0.4%-0.6%,尤其是CE>0.5%时,焊接性差,钢材易淬硬,表焊接性已变差,焊接时需预热才能防止裂纹,随板厚增大预热温度要相应提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《材料焊接性》(专科)学案第一章绪论二、本章习题1. 根据本章所述内容,举例说明低合金钢焊接在工程结构中的重要作用。

2.先进材料的发展和应用在工程中越来越受到人们的重视,简述先进材料(如陶瓷、金属间化合物和复合材料等)和金属材料相比,在工程结构中的应用有什么不同?第2章材料焊接性及其试验方法1. 了解焊接性的基本概念。

什么是工艺焊接性?影响工艺焊接性的主要因素有哪些?焊接性,是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的难易程度。

工艺焊接性是指在一定焊接工艺条件下,获得优质、无缺陷的焊接接头的能力。

影响因素:材料因素、工艺因素、结构因素、使用条件。

2. 什么是热焊接性和冶金焊接性,各涉及到焊接中的什么问题?冶金焊接性指在熔焊高温下的熔池金属与气象熔渣等相互之间繁盛化学冶金反映所引起的焊接变化3. 举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。

工艺焊接性是指影响焊接操作的焊接性能,如电弧的稳定性、焊缝的成形性、脱渣性、飞溅大小及发尘量等。

而使用焊接性则是指焊件需满足的使用要求,如接头的力学性能、物理性能及化学性能要求。

有时,工艺焊接性好的材料如果焊接材料选择不当,其使用性能就不一定好:例如不锈钢焊接,若使用普通结构钢焊条焊接,其工艺焊接性很好,即焊接过程很顺利,但是,焊缝不耐腐蚀,就不能满足不锈钢焊件的使用要求,因此焊接接头是不合格的。

金属材料使用性能主要指力学性能,即金属材料在外力作用下表现出来的各种特性,如弹性、塑性、韧性、强度、硬度等。

比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好|第3章低合金结构钢的焊接1. 分析热轧钢和正火钢的强化方式及主强化元素有什么不同。

二者的焊接性有何差异,在制定焊接工艺时应注意什么问题。

热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si。

(2)细晶强化,主要强化元素:Nb,V。

(3)沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式:(1)固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:V,Nb,Ti,Mo(3)沉淀强化,主要强化元素:Nb,V,Ti,Mo.;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。

热轧钢被加热到1200℃以上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件粗晶区的析出相基本固溶,抑制A长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝、M-A等导致韧性下降和时敏感性增大。

制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接2. 分析16Mn的焊接性特点,给出相应的焊接材料及焊接工艺要求。

可靠措施3. 16Mn与15MnTi的焊接性有何差异?16Mn的焊接工艺是否适用于15MnTi的焊接,为什么?第4章不锈钢及耐热钢的焊接1. 不锈钢焊接时,为什么要控制焊缝中的含碳量?如何控制焊缝中的含碳量?或2. 为什么18-8奥氏体不锈钢焊缝中要求含有一定数量的铁素体组织?通过什么途径控制焊缝中的铁素体含量?18-8型奥氏体不锈钢中,具有一定数量的铁素体组织,可以增加钢材的抗热裂纹及耐晶间腐蚀的能力。

(1)铁素体对热裂纹的影响1)铁素体可以细化奥氏体组织,并在一定程度上打乱树枝晶的方向性,见图4。

如果焊缝是单相组织,奥氏体柱状晶很粗大,易熔共晶物集中在较少的晶界上,形成较厚的晶间偏析夹层,焊后冷却过程中在拉应力的作用下很容易沿晶界被拉裂,形成热裂纹。

若在组织中加入了少量铁素体后,会使柱状晶变细,晶界增多。

同样数量的易熔共晶物被分割,将不连续地分散在各个晶界上,从而降低热裂纹倾向。

2)铁素体能比奥氏体溶解更多的有害杂质如S、P等。

(2)铁素体对晶间腐蚀的影响双相组织对防止晶间腐蚀的有利作用,见图5。

单相组织的焊缝由于柱状晶发展较快,晶间夹层厚而连续,析出碳化物后,贫铬区贯穿于晶粒之间,构成侵蚀性介质的腐蚀通道。

3. 18-8不锈钢焊接接头区域在哪些部位可能产生晶间腐蚀,是由于什么原因造成的?如何防止?第5章铸铁的焊接1. 铝及其合金是如何分类的,各以何种途径强化?铝合金焊接时存在什么问题,在焊接性方面有何特点(哪些焊接性好,哪些焊接性差)?2. 为什么Al-Mg合金及Al-Li合金焊接时易形成气孔?铝及其合金焊接时产生气孔的原因是什么,如何防止气孔?分析为什么纯铝焊接易出现分散小气孔,而Al-Mg合金焊接则易出现集中大气孔?3. 纯铝及不同类型的铝合金焊接应选用什么成分的焊丝比较合理?纯铝可以焊接,但它的以下特点是焊接中不可忽视的:1,熔点低(660度)。

2,它的银白色光泽从室温至熔化都不会有明显变化。

3,高温时它的强度几乎完全丧失,客易塌陷,4,它的表面氧化膜不能以化学方法清除,只能从机械方式清除,或以物理方式溶觪掉。

5,清理过的表面又会很快形成一层新的氧化膜焊接时采取必不可少的对症下药方式铝合金焊接时选用的焊丝:第6章铝及其合金的焊接1. 工业上常用的铸铁有哪几种?简述碳在每种铸铁中的存在形式和石墨形态有何不同,对力学性能各有什么影响?一、按断口分为:1、灰口铸铁:HT150、HT200、HT250、HT300、HT350.2、白口铸铁:二、按石墨形态分为:1、片状石墨铸铁:2、球墨铸铁:QT350-18、QT400-15、QT450-12、QT500-8、QT600~800-8~2。

3、蠕墨铸铁:三、按使用功能分为:1、一般用途铸铁2、耐磨铸铁:白口铸铁、高(中、低)铬铸铁及其它合金铸铁。

3、耐腐蚀铸铁:4、耐高温铸铁:1、根据碳的存在形式不同分:(1)白口铸铁碳主要以渗碳体形式存在,其断口呈银白色,所以称为白口铸铁。

这类铸铁的性能既硬又脆,很难进行切削加工,所以很少直接用来制造机器零件。

(2)灰铸铁碳大部分或全部以石墨形式存在,其断口呈暗灰色,故称灰铸铁。

它是目前工业生产中应用最广泛的一种铸铁。

(3)麻口铸铁碳大部分以渗碳体形式存在,少部分以石墨形式存在,断口呈灰白色。

这种铸铁有较大的脆性,工业上很多好使用。

2、根据石墨几何形状不同分:(1)灰铸铁石墨以片状存在于铸铁中。

(2)可锻铸铁石墨以团絮状存在于铸铁中。

(3)球墨铸铁石墨以球状存在于铸铁中。

(4)蠕墨铸铁石墨以蠕虫状存在铸铁中。

2. 分析影响铸铁型焊缝组织的主要因素有哪些?①与焊缝基体组织有关,焊缝中渗碳体越多,焊缝中出现裂纹数量越多。

当焊缝基体全为珠光体与铁素体组成,而石墨化过程又进行得较充分时,由于石墨化过程伴随有体积膨胀过程,可以松弛部分焊接应力,有利于改善焊缝的抗裂性。

②与焊缝石墨形状有关粗而长的片状石墨容易引起应力集中,会减小抗裂性。

石墨以细片状存在时,可改善抗裂性。

石墨以团絮状存在时,焊缝具有较好的抗裂性能。

③与焊补处刚度与焊补体积的大小及焊缝长短有关焊补处刚度大,焊补体积大,焊缝越长都将增大应力状态,促使裂纹产生。

3.分析灰铸铁电弧焊焊接接头形成白口与淬硬组织的区域特点、原因及危害。

灰铸铁在化学成分上的特点是碳高及S、P杂质高,这就增大了焊接接头对冷却速度变化的敏感性及冷热裂纹的敏感性。

在力学性能上的特点是强度低,基本无塑性。

焊接过程具有冷速快及焊件受热不均匀而形成焊接应力较大的特殊性。

这些因素导致焊接性不良。

主要问题两方面:一方面是焊接接头易出现白口及淬硬组织。

另一方面焊接接头易出现裂纹。

(一)焊接接头易出现白口及淬硬组织P103,以含碳为3%,含硅2.5%的常用灰铸铁为例,分析电弧焊焊后在焊接接头上组织变化的规律。

1.焊缝区当焊缝成分与灰铸铁铸件成分相同时,则在一般电弧焊情况下,由于焊缝冷却速度远远大于铸件在砂型中的冷却速度,焊缝主要为共晶渗碳体+二次渗碳铁+珠光体,即焊缝基本为白口铸铁组织。

防止措施:焊缝为铸铁①采用适当的工艺措施来减慢焊逢的冷却速度。

如:增大线能量。

②调整焊缝化学成分来增强焊缝的石墨化能力。

异质焊缝:若采用低碳钢焊条进行焊接,常用铸铁含碳为3%左右,就是采用较小焊接电流,母材在第一层焊缝中所占百分比也将为1/3~1/4,其焊缝平均含碳量将为0.7%~1.0%,属于高碳钢(C>0.6%)。

这种高碳钢焊缝在快冷却后将出现很多脆硬的马氏体。

采用异质金属材料焊接时,必须要设法防止或减弱母材过渡到焊缝中的碳产生高硬度组织的有害作用。

2.半熔化区特点:该区被加热到液相线与共晶转变下限温度之间,温度范围1150~1250℃。

该区处于液固状态,一部分铸铁已熔化成为液体,其它未熔部分在高温作用下已转变为奥氏体。

1)冷却速度对半熔化区白口铸铁的影响V冷很快,液态铸铁在共晶转变温度区间转变成莱氏体,即共晶渗碳体加奥氏体。

继续冷却则为C所饱和的奥氏体析出二次渗碳体。

在共析转变温度区间,奥氏体转变为珠光体。

由于该区冷速很快,在共析转变温度区间,可出现奥氏体→马氏体的过程,并产生少量残余奥氏体。

该区金相组织见其左侧为亚共晶白口铸铁,其中白色条状物为渗碳体,黑色点、条状物及较大的黑色物为奥氏体转变后形成的珠光体。

右侧为奥氏体快冷转变成的竹叶状高碳马氏体,白色为残余奥氏体。

还可看到一些未熔化的片状石墨。

当半熔化区的液态金属以很慢的冷却速度冷却时,其共晶转变按稳定相图转变。

最后其室温组织由石墨+铁素体组织组成。

当该区液态铸铁的冷却速度介于以上两种冷却速度之间时,随着冷却速度由快到慢,或为麻口铸铁,或为珠光体铸铁,或为珠光体加铁素体铸铁。

影响半熔化区冷却速度的因素有:焊接方法、预热温度、焊接热输入、铸件厚度等因素。

例:电渣焊时,渣池对灰铸铁焊接热影响区先进行预热,而且电渣焊熔池体积大,焊接速度较慢,使焊接热影响区冷却缓慢,为防止半熔化区出现白口铸铁焊件预热到650~700℃再行焊接的过程称热焊。

这种热焊工艺使焊接熔池与HAZ很缓慢地冷却,从而为防止焊接接头白口铸铁及高碳马氏体的产生提供了很好的条件。

研究灰铸铁试板焊件、热输入相同时,随板厚的增加,半熔化区冷却速度加快。

白口淬硬倾向增大。

2)化学成分对半熔化区白口铸铁的影响铸铁焊接半熔化区的化学成分对其白口组织的形成同样有重大影响。

该区的化学成分不仅取决于铸铁本身的化学成分,而且焊逢的化学成分对该区也有重大影响。

这是因为焊逢区与半熔化区紧密相连,且同时处于熔融的高温状态,为该两区之间进行元素扩散提供了非常有利的条件。

某元素在两区之间向哪个方向扩散首先决定于该元素在两区之间的含量梯度(含量变化)。

元素总是从高含量区域向低含量区域扩散,其含量梯度越大,越有利于扩散的进行。

提高熔池金属中促进石墨化元素(C、Si、Ni等)的含量对消除或减弱半熔化区白口的形成是有利的。

用低碳钢焊条焊铸铁时,半熔化区的白口带往往较宽。

相关文档
最新文档