人教版九年级数学上册 一元二次方程同步练习题含答案【精华版】

合集下载

人教版九年级数学上册一元二次方程测试题(含答案)4页

人教版九年级数学上册一元二次方程测试题(含答案)4页

人教版九年级数学上册一元二次方程测试题(含答案)4页(1)x^2-9x+8=0答案:x1=8x2=1(2)x^2+6x-27=0答案:x1=3x2=-9(3)x^2-2x-80=0答案:x1=-8x2=10(4)x^2+10x-200=0答案:x1=-20x2=10(5)x^2-20x+96=0答案:x1=12x2=8(6)x^2+23x+76=0答案:x1=-19x2=-4(7)x^2-25x+154=0答案:x1=14x2=11(8)x^2-12x-108=0答案:x1=-6x2=18(9)x^2+4x-252=0答案:x1=14x2=-18(10)x^2-11x-102=0答案:x1=17x2=-6(11)x^2+15x-54=0答案:x1=-18x2=3(12)x^2+11x+18=0答案:x1=-2x2=-9(13)x^2-9x+20=0答案:x1=4x2=5(14)x^2+19x+90=0答案:x1=-10x2=-9(15)x^2-25x+156=0答案:x1=13x2=12(16)x^2-22x+57=0答案:x1=3x2=19(17)x^2-5x-176=0答案:x1=16x2=-11(18)x^2-26x+133=0答案:x1=7x2=19(19)x^2+10x-11=0答案:x1=-11x2=1(20)x^2-3x-304=0答案:x1=-16x2=19(22)x^2+13x-48=0答案:x1=3x2=-16(23)x^2+5x-176=0答案:x1=-16x2=11(24)x^2+28x+171=0答案:x1=-9x2=-19(25)x^2+14x+45=0答案:x1=-9x2=-5(26)x^2-9x-136=0答案:x1=-8x2=17(27)x^2-15x-76=0答案:x1=19x2=-4(28)x^2+23x+126=0答案:x1=-9x2=-14(29)x^2+9x-70=0答案:x1=-14x2=5(30)x^2-1x-56=0答案:x1=8x2=-7(31)x^2+7x-60=0答案:x1=5x2=-12(32)x^2+10x-39=0答案:x1=-13x2=3(33)x^2+19x+34=0答案:x1=-17x2=-2(34)x^2-6x-160=0答案:x1=16x2=-10(35)x^2-6x-55=0答案:x1=11x2=-5(36)x^2-7x-144=0答案:x1=-9x2=16(37)x^2+20x+51=0答案:x1=-3x2=-17(38)x^2-9x+14=0答案:x1=2x2=7(39)x^2-29x+208=0答案:x1=16x2=13(40)x^2+19x-20=0答案:x1=-20x2=1(41)x^2-13x-48=0答案:x1=16x2=-3(42)x^2+10x+24=0答案:x1=-6x2=-4(44)x^2-8x-209=0答案:x1=-11x2=19(45)x^2+23x+90=0答案:x1=-18x2=-5(46)x^2+7x+6=0答案:x1=-6x2=-1(47)x^2+16x+28=0答案:x1=-14x2=-2(48)x^2+5x-50=0答案:x1=-10x2=5(49)x^2+13x-14=0答案:x1=1x2=-14(50)x^2-23x+102=0答案:x1=17x2=6(51)x^2+5x-176=0答案:x1=-16x2=11(52)x^2-8x-20=0答案:x1=-2x2=10(53)x^2-16x+39=0答案:x1=3x2=13(54)x^2+32x+240=0答案:x1=-20x2=-12(55)x^2+34x+288=0答案:x1=-18x2=-16(56)x^2+22x+105=0答案:x1=-7x2=-15(57)x^2+19x-20=0答案:x1=-20x2=1(58)x^2-7x+6=0答案:x1=6x2=1(59)x^2+4x-221=0答案:x1=13x2=-17(60)x^2+6x-91=0答案:x1=-13x2=7(61)x^2+8x+12=0答案:x1=-2x2=-6(62)x^2+7x-120=0答案:x1=-15x2=8(63)x^2-18x+17=0答案:x1=17x2=1(64)x^2+7x-170=0答案:x1=-17x2=10(65)x^2+6x+8=0答案:x1=-4x2=-2(66)x^2+13x+12=0答案:x1=-1x2=-12(67)x^2+24x+119=0答案:x1=-7x2=-17(68)x^2+11x-42=0答案:x1=3x2=-14(69)x^20x-289=0答案:x1=17x2=-17(70)x^2+13x+30=0答案:x1=-3x2=-10(71)x^2-24x+140=0答案:x1=14x2=10(72)x^2+4x-60=0答案:x1=-10x2=6(73)x^2+27x+170=0答案:x1=-10x2=-17(74)x^2+27x+152=0答案:x1=-19x2=-8(75)x^2-2x-99=0答案:x1=11x2=-9(76)x^2+12x+11=0答案:x1=-11x2=-1(77)x^2+17x+70=0答案:x1=-10x2=-7(78)x^2+20x+19=0答案:x1=-19x2=-1(79)x^2-2x-168=0答案:x1=-12x2=14(80)x^2-13x+30=0答案:x1=3x2=10(81)x^2-10x-119=0答案:x1=17x2=-7(82)x^2+16x-17=0答案:x1=1x2=-17(83)x^2-1x-20=0答案:x1=5x2=-4(84)x^2-2x-288=0答案:x1=18x2=-16(85)x^2-20x+64=0答案:x1=16x2=4(86)x^2+22x+105=0答案:x1=-7x2=-15(88)x^2-4x-285=0答案:x1=19x2=-15(89)x^2+26x+133=0答案:x1=-19x2=-7(90)x^2-17x+16=0答案:x1=1x2=16(91)x^2+3x-4=0答案:x1=1x2=-4(92)x^2-14x+48=0答案:x1=6x2=8(93)x^2-12x-133=0答案:x1=19x2=-7(94)x^2+5x+4=0答案:x1=-1x2=-4(95)x^2+6x-91=0答案:x1=7x2=-13(96)x^2+3x-4=0答案:x1=-4x2=1(97)x^2-13x+12=0答案:x1=12x2=1(98)x^2+7x-44=0答案:x1=-11x2=4(99)x^2-6x-7=0答案:x1=-1x2=7 (100)x^2-9x-90=0答案:x1=15x2=-6 (101)x^2+17x+72=0答案:x1=-8x2=-9 (102)x^2+13x-14=0答案:x1=-14x2=1 (103)x^2+9x-36=0答案:x1=-12x2=3 (104)x^2-9x-90=0答案:x1=-6x2=15 (105)x^2+14x+13=0答案:x1=-1x2=-13 (106)x^2-16x+63=0答案:x1=7x2=9 (107)x^2-15x+44=0答案:x1=4x2=11 (108)x^2+2x-168=0答案:x1=-14x2=12(110)x^2-6x-55=0答案:x1=11x2=-5 (111)x^2+18x+32=0答案:x1=-2x2=-16。

最新人教版九年级上册 解一元二次方程 同步练习(含答案)

最新人教版九年级上册  解一元二次方程 同步练习(含答案)

解一元二次方程同步练习一.选择题1.方程x2-6x+5=0的两个根之和为()A.-6B.6C.-5D.52.下列方程中,没有实数根的是()A.2x2+3x=0B.(x-1)2=2C.x2+3=0D.x2-4x+3=03.已知方程x2-6x+q=0配方后是(x-p)2=7,那么方程x2+6x+q=0配方后是()A.(x-p)2=5B.(x+p)2=5C.(x-p)2=9D.(x+p)2=7 4.关于x的一元二次方程ax2-x+0.25=0有两个不相等的实数根,则a的取值范围是()A.a>0B.a>-1C.a<1D.a<1且a≠05.已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2-4ac>0;②若方程两根为-1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④6.使方程2x2-5mx+2m2=5的一根为整数的整数m的值共有()A.1个B.2个C.3个D.4个7.已知实数x满足(x2-2x+1)2+2(x2-2x+1)-3=0,那么x2-2x+1的值为()A.-1或3B.-3或1C.3D.18.定义运算:a*b=2ab,若a、b是方程x2+x-m=0(m>0)的两个根,则(a+1)*b+2a的值为()A.mB.2-2mC.2m-2D.-2m-29.三角形两边的长是6和8,第三边满足方程x2-24x+140=0,则三角形周长为()A.24B.28C.24或28D.以上都不对10.从-2,-1,0,1,2,4,这六个数中,随机抽一个数、记为a,若数a使关于x的一元二次方程x2-2(a-4)x+a2=0有实数解,且关于y的分式方有整数解,则符合条件的a的值的和是()A.-2B.0C.1D.211.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的两倍,则称这样的方程为“2倍根方程”,以下说法不正确的是()A.方程x2-3x+2=0是2倍根方程B.若关于x的方程(x-2)(mx+n)=0是2倍根方程,则m+n=0 C.若m+n=0且m≠0,则关于x的方程(x-2)(mx+n)=0是2倍根方程D.若2m+n=0且m≠0,则关于x的方程x2+(m-n)x-mn=0 是2倍根方程12.若整数a使得关于x的一元二次方程(a+2)x2+2ax+a-1=0有实数根,且关于x的不等式组有解且最多有6个整数解,则符合条件的整数a的个数为()A.3B.4C.5D.6二.填空题13.方程(x-3)(x+2)=0的根是.14.已知(x2+y2+1)(x2+y2+3)=8.则x2+y2的值为.15.已知a,b是方程x2+3x-1=0的两根,则a2b+ab2的值是.16.已知关于x的一元二次方程(0.25m-1)x2-x+1=0有实数根,则m的取值范围是.17.对于实数a,b,定义运算“*“,a*b=例如4*2,因为4>2,所以4*2=42-4×2=8.若x1,x2是一元二次方程x2-8x+16=0的两个根,则x1*x2=.三.解答题18.解下列一元二次方程:(1)x2+4x-8=0;(2)(x-3)2=5(x-3);(3)2x2-4x=1(配方法).19.设实数a,b满足a2(b2+1)+b(b+2a)=40,a(b+1)+b=8,求的值.20.已知关于x的一元二次方程有两个不相等的实数根x1,x2.(1)若m为正整数,求m的值;(2)在(1)的条件下,求代数式(x1x2)(x12+x22)的值.21.已知关于x的一元二次方程kx2+(1-2k)x+k-2=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)当k取满足(1)中条件的最小整数时,设方程的两根为α和β,求代数式α3+β2+β+2016的值.22.基本事实:“若ab=0,则a=0或b=0”.方程x2-x-6=0可通过因式分解化为(x-3)(x+2)=0,由基本事实得x-3=0或x+2=0,即方程的解为x=3或x=-2.(1)试利用上述基本事实,解方程:3x2-x=0;(2)若实数m、n满足(m2+n2)(m2+n2-1)-6=0,求m2+n2的值.参考答案1-5:BCDDC 6-10:DDDAD 11-12:BC13、x=3或x=-214、115、316、m≤5且m≠417、018、19、820、(1)m=1;(2)21、:(1)k>-0.25且k≠0;(2)2020.22、(2)3。

人教版初三上学期数学一元二次方程及解法练习题(附答案)

人教版初三上学期数学一元二次方程及解法练习题(附答案)

人教版初三上学期数学一元二次方程及解法练习题(附答案)人教版初三上学期数学一元二次方程及解法练习题(附答案)(1);(2);(3);(4)。

4、一元二次方程根的判别式与其根的关系:综合练习: 1.观察下列方程: ①x2=1 ②3x2=1-x ③x(x-1)= x -1 ④ +2x-5=0 ⑤x2-y-1=0 ⑥x2-(x-3)2=9 其中是一元二次方程的是 . 2.把方程(x-2)(x+3)=5化为一元二次方程一般形式为 .其中二次项系数为 . 一次项系数为 . 常数项为 . 3.关于x的方程(m+2)xn-1-(2m-1)x-3=0,当时,它是一元二次方程,当时,它是一元一次方程. 1、用直接开平方法解方程:⑴x2=9 ⑵3x2=12 ⑶ 1/3 x2-3=0 ⑷ (3x+1)2=1 ⑸(2x-1)2 -9=0 ⑹x2+4x+4=1(7).x2=16 (8) . 2x2 -6 =0 (9) (x+1)2=4(10) (3x+2)2=4 (11)3(x-1)2=15 (12)x2+6x+9=25能力提升: 1.关于x的方程(n-1)xn2+1-(2n+1)x-3=0,当n= 时,它是一元二次方程 2.解一元二次方程:(1) x2+2x+1=4 (2)x2+2x-3=0一元二次方程及解法(2)配方法步骤:举例说明题组训练: 1、把下列方程化为(x+ m)2=n(m,n是常数,n≥0)的形式(1)x2+2x=48;(2)x2-4x=12;(3)x2-6x+6=0;(4) 2、完成下列填空:x2+4x+4=(__+__)2 x2-8x+___=(__―__)2 4x2+__x+25=(___+__)2 16 x2+__x+1=(__+__)2 x2+10x+___=(__+__)2 x2-5x+___=(__―__)29x2-__x+25=(___+__)2 9 x2-¬__x+1=(__-__)2 3、用配方法解方程(1)x2-10x-11=0 (2)x2-6x+4= 0 (3)x2+4x-16= 0(4)x2-4x=12;(5)x2-6x=7 (6)x2+8x+2=0(7)x2-4x-5=0 (8) x2+5x+2=0 (9)3x2+2x-5=0(10)2y2+y-6=0 (11)3x2+8x-3=0 (12)-2x2=5x-3一元一次方程及解法(3)求根公式推导过程:(和应用求根公式的步骤)根的判别式与根的关系:跟踪训练:先用根的判别式判断根的情况再求解:(1)x -x-1=0;(2)5x +2=3x2;(3)y -6=5y(4)3t -2t-1=0 (5)4x(x-1)=x -1 (6)x2-6x+4= 0(7)3x +1=2 x (8)2y2+y-5= 0 (9)x2-4x=12;(10)3x2+6x=1 (11)2t2-7t-4=0; (12)x2-x-1=0(13)y2-6=5y (14)3t2-2t-1=0 (15)4x(x-1)=x2-1一元一次方程及解法(4)因式分解法解一元二次方程的原理: 1、填空(1)方程x2=x的解是。

人教版九年级数学上册《21.2解一元二次方程》同步练习题(附带答案)

人教版九年级数学上册《21.2解一元二次方程》同步练习题(附带答案)

人教版九年级数学上册《21.2解一元二次方程》同步练习题(附带答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.方程的实数根的个数是()A.0个B.1个C.2个D.无法确定2.以3,4为两实数根的一元二次方程为()A.B.C.D.3.用配方法解方程,下列配方正确的是()A.B.C.D.4.若是方程的一个根,则此方程的另一个根是()A.B.C.D.5.若关于的一元二次方程有实数根,则实数的取值范围是()A.B.C.且D.且6.若是一元二次方程的两根,则的值是()A.B.1 C.5 D.7.亮亮在解一元二次方程+▢=0时,不小心把常数项丢掉了,已知这个一元二次方程有实数根,则丢掉的常数项的最大值是()A.7 B.12 C.16 D.188.已知是关于x的方程的实数根.下列说法:①此方程有两个不相等的实数根;②当时,一定有;③b是此方程的根;④此方程有两个相等的实数根.上述说法中,正确的有()A.①②B.②③C.①③D.③④二、填空题:(本题共5小题,每小题3分,共15分.)9.方程x2-4x=5的根是.10.关于x的方程有两个不相等的实数根,则m的取值范围是.11.一元二次方程的两根为和,则的值为.12.已知一元二次方程▢+2=0,在▢中添加一个合适的数字,使该方程没有实数根,则添加的数字可以是.13.已知关于x的一元二次方程,当的斜边长a为,且两条直角边的长b、c恰好是这个方程的两个根,的周长为.三、解答题:(本题共5题,共45分)14.(1)(2)15.(1);(2) .16.当x满足条件时,求出方程x2﹣2x﹣4=0的根.17.已知有关于x的一元二次方程.(1)求k的取值范围,并判断该一元二次方程根的情况;(2)若方程有一个根为-2,求k的值及方程的另一个根;(3)若方程的一个根是另一个根3倍,求k的值.18.已知关于的一元二次方程有两个不相等的实数根. (1)求m的取值范围;(2)若两实数根分别为和,且,求m的值.参考答案:1.B 2.B 3.B 4.A 5.D 6.B 7.C 8.C 9.5或-110.m>-111.912.大于就行13.14.(1)解:.(2)解:或.15.(1)解:因式分解,得于是得或解得:;(2)解:∵∴∴∴解得: .16.解:由求得,则2<x<4.解方程x2﹣2x﹣4=0可得x1=1+ ,x2=1﹣,∵2<<3,∴3<1+ <4,符合题意∴x=1+ .17.(1)解:∵关于x的一元二次方程∴∴;而∴原方程方程有两个实数根(2)解:∵方程有一个根为∴解得:∴方程为:∴∴解得:∴方程的另一个解为1.(3)解:∵∴∴解得:∵方程的一个根是另一个根3倍当时,解得:,经检验符合题意;当时,解得:,经检验符合题意;综上:或.18.(1)解:∵关于x的一元二次方程有两个不相等的实数根∴Δ>0,即,解得;∴m的取值范围为.(2)解:∵方程的两个实数根分别为x1和x2∴x1+x2=,x1x2=∴∵∴解得m=1或-3∵∴。

(人教版数学)初中9年级上册-同步练习-21.1 一元二次方程-九年级数学人教版(上)(解析版)

(人教版数学)初中9年级上册-同步练习-21.1 一元二次方程-九年级数学人教版(上)(解析版)

第二十一章一元二次方程21.1一元二次方程一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列方程是一元二次方程的是A.x2﹣y=1 B.x2+2x﹣3=0C.x2+1x=3 D.x﹣5y=6【答案】B2.关于x的一元二次方程(m﹣1)x2+2x+m2﹣1=0,常数项为0,则m值等于A.1 B.﹣1C.1或﹣1 D.0【答案】B【解析】由题意,得m2﹣1=0,且m﹣1≠0,解得m=﹣1,故选B.3.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是A.1 B.0C.−1 D.2【答案】B【解析】把x=1代入x2﹣x﹣m=0得1﹣1﹣m=0,解得m=0.故选B.4.若px2-3x+p2-p=0是关于x的一元二次方程,则A.p=1 B.p>0C.p≠0 D.p为任意实数【答案】C【解析】∵方程px2-3x+p2-p=0是关于x的一元二次方程,∴二次项系数p≠0.故选C.5.方程2x2﹣6x﹣5=0的二次项系数、一次项系数、常数项分别为A.6、2、5 B.2、﹣6、5C.2、﹣6、﹣5 D.﹣2、6、5【答案】C【解析】一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的a、b、c分别是二次项系数、一次项系数、常数项.方程2x2﹣6x﹣5=0的二次项系数、一次项系数、常数项分别为2、﹣6、﹣5.故选C.【名师点睛】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.6.已知a﹣b+c=0,则一元二次方程ax2+bx+c=0(a≠0)必有一个根是A.1 B.﹣2C.0 D.﹣1【答案】D【名师点睛】本题考查的是一元二次方程的根,即方程的解的定义.解题的关键是要掌握一元二次方程ax2+bx+c=0(a≠0)中几个特殊值的特殊形式:x=1时,a+b+c=0;x=﹣1时,a﹣b+c=0.7.若关于x的一元二次方程ax2﹣b x+4=0的解是x=2,则2020+2a﹣b的值是A.2016 B.2018C.2020 D.2022【答案】B【解析】∵关于x的一元二次方程ax2﹣bx+4=0的解是x=2,∴4a﹣2b+4=0,则2a﹣b=﹣2,∴2020+2a ﹣b=2020+(2a﹣b)=2020+(﹣2)=2018.故选B.【名师点睛】本题考查了一元二次方程的解定义.解题时,利用了“整体代入”的数学思想.二、填空题:请将答案填在题中横线上.8.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为__________.【答案】1【解析】将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.9.已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=__________.【答案】-1【解析】∵方程(m−1)x|m|+1−3x+1=0是关于x的一元二次方程,∴|m|=1,m−1≠0,解得:m=−1.故答案为:−1.10.若是方程的一个根,则的值为__________.【答案】2018【解析】由题意可知:2m2-3m-1=0,∴2m2-3m=1,∴原式=3(2m2-3m)+2015=2018,故答案为2018.【名师点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.11.已知关于x的方程(m+2)x²+4mx+1=0是一元二次方程,则m的取值范围是__________.【答案】m≠−2【名师点睛】本题考查了一元二次方程的定义,解题的关键是掌握判断一个方程是否是一元二次方程需注意几个方面:化简后;一个未知数;未知数的最高次数是2;二次项的系数不为0;整式方程. 12.若关于x的方程的常数项为0,则m的值等于__________.±【答案】32【解析】由题意知,方程(m-3)x2 +5x+m2 -18=0的常数项为m2−18,所以m2−18=0,±,解得:m=32±.故答案为:32【点睛】本题考查了方程的一般式,本题常数项为0时方程可为一元一次方程也可为一元二次方程,不论哪一种情况,都符合题意,这是解题的关键所在,也是易错点.13.一元二次方程2x2+4x﹣1=0的一次项系数及常数项之和为__________.【答案】3【解析】由题意,得:4+(﹣1)=3.故答案为3.【名师点睛】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.14.已知一个一元二次方程的一个根为3,二次项系数是1,则这个一元二次方程可以是__________.(只需写出一个方程即可)【答案】x 2﹣3x =0【解析】一元二次方程的一个根为3,二次项系数是1,这个一元二次方程可以为x 2-3x =0.故答案为x 2−3x =0.【名师点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.灵活应用整体代入的方法计算.三、解答题:解答应写出文字说明、证明过程或演算步骤.15.已知关于x 的方程(m 2 -1)x 2 -(m +1)x +m =0.(1)m 为何值时,此方程是一元一次方程?(2)m 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项. 【答案】(1)m =1;(2)m ≠±1,二次项系数为m 2-1、一次项系数为-(m +1),常数项为m .16.已知x 是一元二次方程x 2+3x ﹣1=0的实数根,求代数式 2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值. 【答案】13【解析】原式=()()()333322x x x x x x +--÷-- ()()()()321323333x x x x x x x x --=⨯=-+-+. ∵x 2+3x ﹣1=0.∴x 2+3x =1.∴x (x +3)=1.∴原式=()11333x x ==+. 17.已知x =1是关于x 的一元二次方程x 2﹣4mx +m 2=0的根,求代数式()()()2233m m m m --+-的值.【答案】2. 18.已知实数a 是方程的根. (1)计算的值;(2)计算的值.【答案】(1)2015;(2)5.【解析】(1)∵实数a 是方程的根,∴. ∴,即 . ∴; (2).∵,∴..。

人教版九年级数学上册第21章一元二次方程同步训练(含答案)

人教版九年级数学上册第21章一元二次方程同步训练(含答案)

第21章《一元二次方程》同步训练2021-2022学年人教版九年级数学上册一、单选题1.关于x 一元二次方程()22110a x x a -++-=的一个根是0,则a 的值为( ) A .1或1- B .1 C .1- D .0 2.关于x 的方程2(2)310m x x +-+=有两个不相等的实数根,则m 的取值范围是( ) A .14m <且2m ≠- B .14m <-且2m ≠- C .14m < D .14m <- 3.()()2222280m n m n ----=,则22m n -的值是( )A .4B .2-C .4或2-D .4-或2 4.由于国家出台对房屋的限购令,我省某地的房屋价格原价为2400元/米2,通过连续两次降价a 后,售价变为2000元/米2,下列方程中正确的是( )A .()2240012000a -=B .22000(1)2400a -=C .22400(1)2000a +=D .22400(1)2000a -= 5.解方程2||20x x --=的解是( )A .121,2x x =-=B .121,2x x ==-C .121,1x x ==-D .122,2x x ==- 6.下列命题①方程220kx x --=是一元二次方程;②1x =与方程21x =是同解方程;③方程2x x =与方程1x =是同解方程;④由(1)(1)9x x +-=可得13x +=或13x -=,其中正确的命题有( ).A .0个B .1个C .2个D .3个 7.设方程2320x x -+=的两根分别是1x ,2x ,则12x x +的值为( ) A .3 B .32- C .32 D .3-8.若m ,n 满足2530m m +-=,2530n n +-=,且m n ≠,则11m n+的值为( ) A .35 B .53- C .35D .53 9.如图,将边长2cm 的正方形ABCD 沿其对角线AC 剪开,再把ABC 沿着AD 方向平移,得到A B C ''',若两个三角形重叠部分的面积为21cm ,则它移动的距离AA '等于( )A .0.5cmB .1cmC .1.5cmD .2cm 10.定义:如果一元二次方程20(a 0)++=≠ax bx c 满足0a b c -+=,那么我们称这个方程为“美丽”方程.已知20(a 0)++=≠ax bx c 是“美丽”方程,且有两个相等的实数根,则下列结论正确的是( )A .a b c ==B .a b =C .b c =D .a c = 11.用求根公式法解得某方程20(a 0)++=≠ax bx c 的两个根互为相反数,则( ) A .0b = B .0c C .240b ac -= D .0b c += 12.某小区规划在一个长为40m ,宽为26m 的矩形场地ABCD 上修建三条同样宽的甬路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,若使每块草坪的面积都为2144m (如图),则甬路的宽为( )A .3mB .4mC .2mD .5m二、填空题 13.方程x (x ﹣3)=0的解为_____.14.当x 满足()()133114423x x x x +<-⎧⎪⎨-<-⎪⎩时,方程x 2﹣2x ﹣5=0的根是__. 15.已知1x ,2x 是方程2630x x ++=的两个实数根,则2112x x x x +的值等于________. 16.已知一个直角三角形的两条直角边的长恰好是方程x 2-17x +60=0的两个根,则这个直角三角形的斜边长为________.17.如果关于x 的一元二次方程()20ax b ab =>的两个根分别是11x m =+与224x m =-,那么b a的值为__________. 18.某市前年PM 2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM 2.5的年均浓度比去年也下降10%,那么今年PM 2.5的年均浓度将是____________微克/立方米.三、解答题19.解下列方程:(1)()()2253x x x x -=+; (2)22(2)(23)x x -=+;(3)(2)(3)12x x --=; (4)226(3)x x +=+;(5)2242y y y +=+.20.已知a ,b ,c 为ABC 的三边,且方程()()()()()()0x a x b x b x c x c x a --+--+--=有两个相等的实数根,试判断ABC 的形状.21.已知关于x 的方程()--+=22m m x 2mx 10有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为整数且3m <,a 是方程的一个根,求代数式22212334a a a +--+的值.22.已知1x 、2x 是方程2220x kx k k -+-=的两个实根,是否存在常数k ,使122132x x x x +=成立?若存在,请求出k 的值;若不存在,请说明理由.23.如图,Rt ABC 中,90,8,6C AC BC ∠=︒==,P ,Q 分别在AC 、BC 边上,同时由A 、B 两点出发,分别沿AC 、BC 方向向点C 匀速移动,它们的速度都是1米/秒,几秒后PCQ △的面积为Rt ABC 的面积的一半?24.在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子,镜子的长与宽的比是2∶1.已知镜面玻璃的价格是每平方米120元,边框的价格是每米30元,另外制作这面镜子还需加工费45元.设制作这面镜子的总费用是y元,镜子的宽是x 米.(1)求y与x之间的关系式;(2)如果制作这面镜子共花了195元,求这面镜子的长和宽.25.一个小球以5m/s的速度开始向前滚动,并且均匀减速,4s后小球停止滚动.(1)小球的滚动速度平均每秒减少多少?(2)小球滚动5m约用了多少秒(结果保留小数点后一位)?(提示:匀变速直线运动中,每个时间段内的平均速度v(初速度与末速度的算术平均.)数)与路程s,时间t的关系为s vt参考答案1.C2.A3.C4.D5.D6.A7.A8.D9.B10.D11.A12.C13.x 1=0,x 2=3.14.115.1016.1317.418.40.519.解:(1)()()2253x x x x -=+ ()()()()5131055330280x x x x x x x x x --+=---=-=解得:120,4x x ==;(2)22(2)(23)x x -=+223x x -=+或223x x -=--,解得:1215,3x x =-=-;(3)(2)(3)12x x --=()()225612560160x x x x x x -+=--=+-=解得:121,6x x =-=;(4)226(3)x x +=+()()()()()()2223323303230x x x x x x +=++-+=+--= 解得:123,1x x =-=-;(5)2242y y y +=+()()()()22202210y y y y y +-+=+-= 解得:1212,2y y =-=. 20 解:ABC 是等边三角形,理由如下:()()()()()()0x a x b x b x c x c x a --+--+--=,整理,得:()2320x a b c x ab bc ac -+++++= ,∴()()2=243a b c ab bc ac ∆-++-⨯++⎡⎤⎣⎦ 222444444a b c ab ac bc =++---()()()222222a b a c b c =-+-+- , ∵方程有两个相等的实数根,∴()()()222222=0a b a c b c -+-+-∴0,0,0a b a c b c -=-=-= ,∴a b c == ,∴ABC 是等边三角形.21解:(1)∵关于x 的方程(m 2﹣m )x 2﹣2mx +1=0有两个不相等的实数根, ∴222044()0m m m m m ⎧-≠⎨∆=-->⎩,解得,m >0,且m ≠1;∴m 的取值范围是:m >0,且m ≠1;(2)∵m 为整数,m <3,由(1)知,m >0,且m ≠1;∴m =2,∴关于x 的方程(m 2﹣m )x 2﹣2mx +1=0的就是:2x 2﹣4x +1=0;∵a 是方程的一个根,∴2a 2﹣4a +1=0,即2a 2=4a ﹣1; ∴2221411233413344a a a a a a +-+--+=---+=132a a --+=, 即22212334a a a +--+=2. 22.解:不存在.∵1x 、2x 是方程2220x kx k k -+-=的两个实根,∴240b ac -≥,即22(2)4()0k k k ---≥,解得,0k ≥;由题意可知122x x k +=,212x x k k =-, ∵12121212122221122()232x x x x x x x x x x x x x x +=+-=+=, ∴222(2)32)2(k k k k k --=-,解得120,7k k ==-,经检验,27k =-是原方程的解, ∵0k ≥,∴不存在常数k ,使122132x x x x +=成立. 23.解:设经过x 秒后△PCQ 的面积是Rt △ACB 面积的一半,则AP =x ,BQ =x∴CP =8-x ,CQ =6-x ,∵∠C =90° ∴1=242ABC S AC BC ⋅=△,()()118622CPQ S PC CQ x x =⋅=--△, ∵△PCQ 的面积是Rt △ACB 面积的一半,∴()()11862422x x --=⨯ 解得x 1=12(舍去),x 2=2.答:经2秒△PCQ 的面积是Rt △ACB 面积的一半.24.解:(1)y =(2x +2x +x +x )×30+45+2x 2×120=240x 2+180x +45;(2)由题意可列方程为240x 2+180x +45=195,整理得8x 2+6x -5=0,即(2x -1)(4x +5)=0,解得x 1=0.5,x 2=-1.25(舍去)∴x =12,∴2x =1,答:镜子的长和宽分别是1m 和12m .25.解:(1)从滚动到停下平均每秒速度减少值为:速度变化÷小球运动速度变化的时间,即5÷4=54(m/s ), 故小球的滚动速度平均每秒减少54小m/s ;. (2)设小球滚动到5m 用了x s , 即55(5)452x x +-⋅=,解得14x =+,24 1.2x =-.答:小球滚动到5 m 约用了1.2 s .。

人教版九年级数学上册《21.1一元二次方程》同步练习题-附答案

人教版九年级数学上册《21.1一元二次方程》同步练习题-附答案

人教版九年级数学上册《21.1一元二次方程》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列关于x 的方程是一元二次方程的是( )A .20ax bx c ++=B .240x x-= C .()()1110x x +-+= D .()22125x x x -= 2.一元二次方程221x x -=的一次项系数和常数项依次是( )A .1-和1B .1-和1-C .2和1-D .1-和33.将一元二次方程()()()21235x x x x +-=+-化为一般形式为( )A .2510x x -+=B .290x x +-=C .2430x x -+=D .210x x -+=4.一元二次方程x 2+px ﹣2=0的一个根为2,则p 的值为( )A .1B .2C .﹣1D .﹣25.若a 是方程2230x x --=的一个解,则263a a -的值为() A .3B .3-C .9D .9-二、填空题 6.只含有 个未知数,并且未知数的 次数是2的方程,叫做一元二次方程,它的一般形式为 .7.一元二次方程()521x x x -=+的一次项系数是 .8.若关于x 的一元二次方程20x a -=的一个根是2,则=a .9.若方程()2190a x x -+-=是关于x 的一元二次方程,则a 的取值范围是__________.10.已知m 是方程210x x --=的一个根,则代数式2552021m m -+的值是 .三、解答题11.判断下列各式哪些是一元二次方程.①21x x ++;②2960x x -=;③ 2102y =;④ 215402x x-+=; ⑤ 2230x xy y +-=;⑥ 232y =;⑦ 2(1)(1)x x x +-=.12.已知13,都是方程230==-x x+-=的根,求a、b的值和这个一元二次方程的一般形式.ax bx13.已知m是方程2250x x+-=的一个根,求32+--的值.259m m m14.根据题意列出方程,化为一般式,不解方程.(1)一个大正方形的边长比一个小正方形边长的3倍多1,若两正方形面积和为53,求这两正方形的边长.(2)某班同学之间为了相互鼓励,每两人之间进行一次击掌,共击掌595次.求本班有多少名同学(设本班有x名同学).参考答案1.C2.B3.A4.C5.C6.一最高20(0)++=≠ax bx c a7.7-8.49.1a ≠10.202611.②③⑥.12.1a = 2b = 2 230x x +-= 13.9-14.(1)10x 2+6x-52=0;(2)211900x x --=。

人教版九年级数学上册:一元二次方程同步练习 (含答案)

人教版九年级数学上册:一元二次方程同步练习 (含答案)

第二十一章 一元二次方程21.1 一元二次方程知识点1.只含有 个未知数,并且未知数的 方程叫一元二次方程.2.一元二次方程的一般形式是 ,其中二次项为 ,一次项 ,常数项 ,二次项系数 ,一次项系数 .3.使一元二次方程左右两边 叫一元二次方程的解。

一.选择题1.下列方程是一元二次方程的是( )A .x-2=0B .x 2-4x-1=0C .x 2-2x-3D .xy+1=02.下列方程中,是一元二次方程的是( )A .5x+3=0B .x 2-x (x+1)=0C .4x 2=9D .x 2-x 3+4=03.关于x 的方程013)2(22=--+-x x a a 是一元二次方程,则a 的值是( )A .a=±2B .a=-2C .a=2D .a 为任意实数4.把一元二次方程4)3()1(2+-=-x x x 化成一般式之后,其二次项系数与一次项分别是( )A .2,-3B .-2,-3C .2,-3xD .-2,-3x5.若关于x 的一元二次方程x 2+5x+m 2-1=0的常数项为0,则m 等于( )A .1B .2C .1或-1D .06.把方程2(x 2+1)=5x 化成一般形式ax 2+bx+c=0后,a+b+c 的值是( )A .8B .9C .-2D .-17.(2013•安顺)已知关于x 的方程x 2-kx-6=0的一个根为x=3,则实数k 的值为( )A .1B .-1C .2D .-28.(2013•牡丹江)若关于x 的一元二次方程为ax 2+bx+5=0(a ≠0)的解是x=1,则2013-a-b 的值是( )A .2018B .2008C .2014D .2012二.填空题9.当m= 时,关于x 的方程5)3(72=---x x m m 是一元二次方程;10.若方程kx 2+x=3x 2+1是一元二次方程,则k 的取值范围是 .11.方程5)1)(13(=+-x x 的一次项系数是 .12.(2012•柳州)一元二次方程3x 2+2x-5=0的一次项系数是 .13.关于x 的一元二次方程3x (x-2)=4的一般形式是 .14.(2005•武汉)方程3x 2=5x+2的二次项系数为 ,一次项系数为 .15.(2007•白银)已知x=-1是方程x 2+mx+1=0的一个根,则m= .16.(2010•河北)已知x=1是一元二次方程x 2+mx+n=0的一个根,则m 2+2mn+n 2的值为 .17.(2013•宝山区一模)若关于x 的一元二次方程(m-2)x 2+x+m 2-4=0的一个根为0,则m 值是 .18.已知关于x 的一元二次方程ax 2+bx+c=0(a ≠0)有一个根为1,一个根为-1,则a+b+c= ,a-b+c= .三.解答题19.若(m+1)x |m|+1+6-2=0是关于x 的一元二次方程,求m 的值.20.(2013•沁阳市一模)关于x 的方程(m 2-8m+19)x 2-2mx-13=0是否一定是一元二次方程?请证明你的结论.21.一元二次方程0)1()1(2=++++c x b x a 化为一般式后为01232=-+x x ,试求0222=-+c b a 的值的算术平方根.21.1 一元二次方程知识点1.一,最高次数是2的整式。

人教版九年级数学上册解一元二次方程 同步练习含答案【优选范本】

人教版九年级数学上册解一元二次方程 同步练习含答案【优选范本】

21.2专题训练 一元二次方程的解法及配方法的应用一、一元二次方程的解法1.用直接开平方法解方程:(1)(4x -1)2=225;解:x 1=4,x 2=-72(2)13(x -2)2=8; 解:x 1=2+26,x 2=2-2 6(3)9x 2-6x +1=9;解:x 1=43,x 2=-23(4)3(2x +1)2-2=0.解:x 1=-12+66,x 2=-12-662.用配方法解方程:(1)2t 2-3t =-1;解:t 1=12,t 2=1(2)2x 2+5x -1=0;解:x 1=-5+334,x 2=-5-334(3)(2x -1)(3x -1)=3-6x ;解:x 1=12,x 2=-23(4)(2x -1)2=x(3x +2)-7.解:x 1=4,x 2=23.用公式法解方程:(1)x 2=6x +1;解:x 1=3+10,x 2=3-10(2)0.2x 2-0.1=0.4x ;解:x 1=2+62,x 2=2-62(3)2x -2=2x 2.解:原方程无实数根4.用因式分解法解方程:(1)(x -1)2-2(x -1)=0;解:x 1=3,x 2=1(2)5x(x -3)=(x -3)(x +1);解:x 1=3,x 2=14(3)(x +2)2-10(x +2)+25=0.解:x 1=x 2=35.用适当的方法解方程:(1)2(x -3)2=x 2-9;解:x 1=3,x 2=9(2)(2x +1)(4x -2)=(2x -1)2+2;解:x 1=-1+62,x 2=-1-62(3)(x +1)(x -1)+2(x +3)=8.解:x 1=1,x 2=-3二、配方法的应用(一)最大(小)值6.利用配方法证明:无论x 取何实数值,代数式-x 2-x -1的值总是负数,并求出它的最大值.解:-x 2-x -1=-(x +12)2-34,∵-(x +12)2≤0,∴-(x +12)2-34<0,故结论成立.当x =-12时,-x 2-x -1有最大值-347.对关于x 的二次三项式x 2+4x +9进行配方得x 2+4x +9=(x +m)2+n.(1)求m ,n 的值;(2)求x 为何值时,x 2+4x +9有最小值,并求出最小值为多少?解:(1)∵x 2+4x +9=(x +m)2+n =x 2+2mx +m 2+n ,∴2m =4,m 2+n =9,∴m =2,n =5(2)∵m=2,n=5,∴x2+4x+9=(x+2)2+5,∴当x=-2时,有最小值是5(二)非负数的和为08.已知a2+b2+4a-2b+5=0,求3a2+5b2-5的值.解:∵a2+b2+4a-2b+5=0,∴(a2+4a+4)+(b2-2b+1)=0,即(a+2)2+(b-1)2=0,∴a=-2,b=1.∴3a2+5b2-4=3×(-2)2+5×12-5=129.若a,b,c是△ABC的三边长且满足a2-6a+b2-8b+c-5+25=0,请根据已知条件判断其形状.解:等式变形为a2-6a+9+b2-8b+16+c-5=0,即(a-3)2+(b-4)2+c-5=0,由非负性得(a-3)2=0,(b-4)2=0,c-5=0,∴a=3,b=4,c=5.∵32+42=52,即a2+b2=c2,∴△ABC为直角三角形。

人教版九年级数学上册 一元二次方程同步练习题含答案【精】

人教版九年级数学上册 一元二次方程同步练习题含答案【精】

人教版九年级数学上册第21章《一元二次方程》同步练习1带答案◆随堂检测1、判断下列方程,是一元二次方程的有____________.(1)32250x x -+=; (2)21x =; (3)221352245x x x x --=-+; (4)22(1)3(1)x x +=+;(5)2221x x x -=+;(6)20ax bx c ++=. (提示:判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断.)2、下列方程中不含一次项的是( )A .x x 2532=-B .2916x x =C .0)7(=-x xD .0)5)(5(=-+x x3、方程23(1)5(2)x x -=+的二次项系数___________;一次项系数__________;常数项_________.4、1、下列各数是方程21(2)23x +=解的是( ) A 、6 B 、2 C 、4 D 、05、根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式.(1)4个完全相同的正方形的面积之和是25,求正方形的边长x .(2)一个矩形的长比宽多2,面积是100,求矩形的长x .(3)一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长x . ◆典例分析已知关于x 的方程22(1)(1)0m x m x m --++=.(1)x 为何值时,此方程是一元一次方程?(2)x 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项。

分析:本题是含有字母系数的方程问题.根据一元一次方程和一元二次方程的定义,分别进行讨论求解. 解:(1)由题意得,21010m m ⎧-=⎨+≠⎩时,即1m =时, 方程22(1)(1)0m x m x m --++=是一元一次方程210x -+=.(2)由题意得,2(1)0m -≠时,即1m ≠±时,方程22(1)(1)0m x m x m --++=是一元二次方程.此方程的二次项系数是21m -、一次项系数是(1)m -+、常数项是m .◆课下作业●拓展提高1、下列方程一定是一元二次方程的是( )A 、22310x x+-= B 、25630x y --= C 、220ax x -+= D 、22(1)0a x bx c +++=2、2121003m x x m -++=是关于x 的一元二次方程,则x 的值应为( ) A 、m =2 B 、23m =C 、32m =D 、无法确定 3、根据下列表格对应值:判断关于x 的方程0,(0)ax bx c a ++=≠的一个解x 的范围是( )A 、x <3.24B 、3.24<x <3.25C 、3.25<x <3.26D 、3.25<x <3.284、若一元二次方程20,(0)ax bx c a ++=≠有一个根为1,则=++c b a _________;若有一个根是-1,则b 与a 、c 之间的关系为________;若有一个根为0,则c=_________.5、下面哪些数是方程220x x --=的根?-3、-2、-1、0、1、2、3、6、若关于x 的一元二次方程012)1(22=-++-m x x m 的常数项为0,求m 的值是多少? ●体验中考1、(2009年,武汉)已知2x =是一元二次方程220x mx ++=的一个解,则m 的值是( )A .-3B .3C .0D .0或3(点拨:本题考查一元二次方程的解的意义.)2、(2009年,日照)若(0)n n ≠是关于x 的方程220x mx n ++=的根,则m n +的值为( )A .1B .2C .-1D .-2(提示:本题有两个待定字母m 和n ,根据已知条件不能分别求出它们的值,故考虑运用整体思想,直接求出它们的和.)参考答案:◆随堂检测1、(2)、(3)、(4) (1)中最高次数是三不是二;(5)中整理后是一次方程;(6)中只有在满足0a ≠的条件下才是一元二次方程.2、D 首先要对方程整理成一般形式,D 选项为2250x -=.故选D.3、3;-11;-7 利用去括号、移项、合并同类项等步骤,把一元二次方程化成一般形式231170x x --=,同时注意系数符号问题.4、B 将各数值分别代入方程,只有选项B 能使等式成立.故选B.5、解:(1)依题意得,2425x =,化为一元二次方程的一般形式得,24250x -=.(2)依题意得,(2)100x x -=,化为一元二次方程的一般形式得,221000x x --=.(3)依题意得,222(2)10x x +-=,化为一元二次方程的一般形式得,22480x x --=.◆课下作业●拓展提高1、D A 中最高次数是三不是二;B 中整理后是一次方程;C 中只有在满足0a ≠的条件下才是一元二次方程;D 选项二次项系数2(1)0a +≠恒成立.故根据定义判断D.2、C 由题意得,212m -=,解得32m =.故选D. 3、B 当3.24<x <3.25时,2ax bx c ++的值由负连续变化到正,说明在3.24<x <3.25范围内一定有一个x 的值,使20ax bx c ++=,即是方程20ax bx c ++=的一个解.故选B. 4、0;b a c =+;0 将各根分别代入简即可.5、解:将3x =-代入方程,左式=2(3)(3)20----≠,即左式≠右式.故3x =-不是方程220x x --=的根.同理可得2,0,1,3x =-时,都不是方程220x x --=的根.当1,2x =-时,左式=右式.故1,2x =-都是方程220x x --=的根. 6、解:由题意得,21010m m ⎧-=⎨-≠⎩时,即1m =-时,012)1(22=-++-m x x m 的常数项为0.●体验中考1、A 将2x =带入方程得4220m ++=,∴3m =-.故选A.2、D 将x n =带入方程得220n mn n ++=,∵0n ≠,∴20n m ++=,∴2m n +=-.故选D.。

人教版数学九年级上册《一元二次方程》练习题及答案

人教版数学九年级上册《一元二次方程》练习题及答案

一元二次方程练习 附答案一、填空题:1、已知两个数的差等于4,积等于45,则这两个数为 和 。

2、当m 时,方程()05122=+--mx x m 不是一元二次方程,当m 时,上述方程是一元二次方程。

3、用配方法解方程0642=--x x ,则___6___42+=+-x x ,所以_______,21==x x 。

4、如果()4122++-x m x 是一个完全平方公式,则=m 。

5、当 ≥0时,一元二次方程02=++c bx ax 的求根公式为 。

6、如果21x x 、是方程06322=--x x 的两个根,那么21x x += ,21x x ⋅= 。

7、若方程032=+-m x x 有两个相等的实数根,则m = ,两个根分别为 。

8、若方程0892=+-x kx 的一个根为1,则k = ,另一个根为 。

9、以-3和7为根且二次项系数为1的一元二次方程是 。

10、关于x 的一元二次方程0322=+++m m x mx 有一个根为零,那m 的值等于 。

二、选择题1、下列方程中,一元二次方程是( )(A ) 221x x +(B ) bx ax +2(C ) ()()121=+-x x (D ) 052322=--y xy x2、方程()()1132=-+x x 的解的情况是( )(A )有两个不相等的实数根 (B )没有实数根(C )有两个相等的实数根 (D )有一个实数根3、如果一元二次方程()012=+++m x m x 的两个根是互为相反数,那么有( )(A )m =0 (B )m =-1 (C )m =1 (D )以上结论都不对4、已知21x x 、是方程122+=x x 的两个根,则2111x x +的值为( )(A )21- (B )2 (C )21(D )-25、不解方程,01322=-+x x 的两个根的符号为( )(A )同号 (B )异号 (C )两根都为正 (D )不能确定6、已知一元二次方程()002≠=+m n mx ,若方程有解,则必须( ) A 、0=n B 、同号mn C 、的整数倍是m n D 、异号mn7、若的值为则的解为方程10522++=-+a a ,x x a ( ) A 、12 B 、6 C 、9 D 、168、某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为( )A 、%10B 、%15C 、%20D 、%25三、解下列方程1、0152=+-x x (用配方法)2、()()2232-=-x x x3、052222=--x x4、()()22132-=+y y四、不解方程,求作一个新的一元二次方程,使它的两个根分别是方程272=-x x 的两根的2倍。

最新人教版九年级数学上册 解一元二次方程 同步习题(解析版)

最新人教版九年级数学上册  解一元二次方程 同步习题(解析版)

解一元二次方程 同步习题一、选择题1.一元二次方程2x2+6x +3= 0 经过配方后可变形为( )A. (x +3)2 =6B. (x −3)2 =12C. (x +32)2=34D. (x −32)2=154 2.下列一元二次方程中,有两个不相等实数根的是( )A. x 2−x +14=0 B. x2+2x+4=0 C. x2-x+2=0D. x2-2x=03.已知x1 , x2是方程x2﹣3x ﹣2=0的两根,则x12+x22的值为( )A. 5B. 10C. 11D. 134.已知m 、n 、4分别是等腰三角形(非等边三角形)三边的长,且m 、n 是关于 x 的一元二次方程 x 2−6x +k +2=0 的两个根,则k 的值等于 ( )A. 7B. 7或6C. 6或−7 D. 65.已知矩形的长和宽是方程 x 2−7x +8=0 的两个实数根,则矩形的对角线的长为( )A. 6B. 7C. √41D. √33二、填空题6.一元二次方程x2﹣2x﹣1=0的两根分别为x1 ,x2 ,则1x1+1x2的值为________.7.若关于x的一元二次方程x²-4x+m=0没有实数根,请写出一个满足条件的m 的值________。

8.三角形两边的长分别是8cm和15cm,第三边的长是方程x2﹣24x+119=0的一个实数根,则三角形的面积是________.9.已知α,β是方程x2−3x−2=0的两个实数根,则α2−3α−αβ的值为________.10.方程组{x+y=3xy=2的根是________三、计算题11.解方程:(1)(x+2)2=4(自选方法)(2)2x²-x-1=0(配方法)、(3)x²-1=4x(公式法)(4)x²-1=2x+2(因式分解法)12.小明同学在解一元二次方程3x2-8x(x-2)=0时,他是这样做的:解一元二次方程3x2-8x(x-2)=0解:3x-8x-2=0…………第一步-5x-2=0………………第二步-5x=2……………………第三步x=- 25……………………第四步小明的解法从第几步开始出现错误?请你写出正确的求解过程。

九年级数学上册《第二十一章一元二次方程》同步练习题及答案(人教版)

九年级数学上册《第二十一章一元二次方程》同步练习题及答案(人教版)

九年级数学上册《第二十一章一元二次方程》同步练习题及答案(人教版) 班级姓名学号一、单选题1.方程x2=4x的根是()A.4 B.-4 C.0或4 D.0或-42.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0B.1x2+1x=2C.x2+2x=x2−1D.3(x+1)2=2(x+1)3.若x=1是方程x2+ax﹣2=0的一个根,则a的值为()A.0 B.1 C.2 D.34.如果一个一元二次方程的根是x1=x2=2,那么这个方程可以是()A.x2=4 B.x2+4=0C.x2+4x+4=0 D.x2-4x+4=05.已知关于x的方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为()A.-1 B.0 C.1 D.1或-16.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1C.k≤5,且k≠1 D.k>57.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或108.定义:cx2+bx+a=0是一元二次方程ax2+bx+c=0的倒方程.则下列四个结论:①如果x=2是x2+2x+c=0的倒方程的解,则c=−54;②如果ac<0,那么这两个方程都有两个不相等的实数根;③如果一元二次方程ax2−2x+c=0无实数根,则它的倒方程也无实数根;④如果一元二次方程ax2+bx+c=0有两个不相等的实数根,则它的倒方程也有两个不相等的实数根. 其中正确的有()A.1个B.2个C.3个D.4个二、填空题9.写一个以5,﹣2为根的一元二次方程(化为一般形式).10.一元二次方程x2-3x=0的较大的根为。

11.把方程3x (x ﹣1)=2﹣2x 化成一元二次方程的一般形式为12.若一元二次方程ax 2﹣bx ﹣2015=0有一根为x=﹣1,则a+b= .13.已知 {x =−2y =3是方程x ﹣ky=1的解,那么k= . 三、解答题14.已知x=1是方程x 2﹣5ax+a 2=0的一个根,求代数式3a 2﹣15a ﹣7的值.15.若关于x 的二次方程(m+1)x 2+5x+m 2﹣3m=4的常数项为0,求m 的值.16.已知关于x 的方程(k ﹣1)(k ﹣2)x 2+(k ﹣1)x+5=0.求:(1)当k 为何值时,原方程是一元二次方程;(2)当k 为何值时,原方程是一元一次方程;并求出此时方程的解.17.阅读下题的解答过程,请判断其是否有错,若有错误,请你写出正确的m 值.已知m 是关于x 的方程mx 2﹣2x+m=0的一个根,求m 的值.解:把x=m 代入原方程,化简得m 2=m ,两边同除以m ,得m=1把m=1代入原方程检验,可知m=1符合题意.18.关于x 的一元二次方程x 2﹣3x+k =0有实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程(m ﹣1)x 2+x+m ﹣3=0与方程x 2﹣3x+k =0有一个相同的根,求此时m 的值.19.已知关于x 的一元二次方程x 2+(m ﹣2)x +m ﹣3=0.(1)求证:无论m 取何值,方程总有实数根.(2)设该方程的两个实数根分别为x 1,x 2,且2x 1+x 2=m +1,求m 的值.1.C2.D3.B4.D5.C6.B7.B8.C9.x2-3x-10=0(不唯一)10.x=311.3x2−x−2=012.201513.k=﹣114.解:∵x=1是方程x2﹣5ax+a2=0的一个根∴1﹣5a+a2=0.∴a2﹣5a=﹣1∴3a2﹣15a﹣7=3(a2﹣5a)﹣7=3×(﹣1)﹣7=﹣10,即3a2﹣15a﹣7=﹣10.15.解:∵关于x的二次方程(m+1)x2+5x+m2﹣3m﹣4=0的常数项为0∴m2﹣3m﹣4=0,即(m﹣4)(m+1)=0解得:m=4或m=﹣1当m=﹣1时,方程为5x=0,不合题意;则m的值为4.16.解:(1)依题意得:(k﹣1)(k﹣2)≠0解得k≠1且k≠2;(2)依题意得:(k﹣1)(k﹣2)=0,且k﹣1≠0所以k﹣2=0解得k=2所以该方程为x+5=0解得x=﹣5.17.解:错误,由于关于x的方程不一定是一元二次方程此时,方程为﹣2x=0∴x=0,符合题意当m ≠0时∴m 3﹣2m+m=0∴m (m 2﹣1)=0∴m 2﹣1=0∴m=±1综上所述,m=0或±1.18.(1)解:根据题意得△=(-3)2-4k ≥0,解得k ≤ 94(2)解:满足条件的k 的最大整数为2,此时方程变形为方程x 2-3x+2=0,解得x 1=1,x 2=2 当相同的解为x=1时,把x=1代入方程得m-1+1+m-3=0,解得m= 32当相同的解为x=2时,把x=2代入方程得4(m-1)+2+m-3=0,解得m=1,而m-1≠0 不符合题意,舍去,所以m 的值为 3219.(1)证明:∵Δ=(m −2)2−4(m −3)=m 2−4m +4−4m +12=m 2−8m +16=(m −4)2≥0 ∴无论m 取何值,此方程总有实数根;(2)解:∵该方程的两个实数根分别为x 1,x 2∴{x 1+x 2=−(m −2)=2−m 2x 1+x 2=m +1,且 x 1x 2=m −3 解得 {x 1=2m −1x 2=3−3m∴(2m −1)(3−3m)=m −3∴6m −3−6m 2+3m =m −3 即 6m 2−8m =0∴m(6m −8)=0∴解得 m =0 或 m =43。

新人教版九年级数学上册 :《一元二次方程》习题精选及答案解析

新人教版九年级数学上册 :《一元二次方程》习题精选及答案解析

《一元二次方程》姓名 得分一、填空题(每空2分,共32分) 1.把一元二次方程(x -2)(x +3)=1化为一般形式是 . 2.用配方法解方程2250x x --=时,配方后得到的方程是 ;当x = 时,分式2926x x --的值为零;一元二次方程2x (x -1)=x -1的解是 ;3.方程(x-1)2=4的解是 ;方程2x =x 的解是 .4.足球世界杯预选赛实行主客场的循环赛,即每两支球队都要在自己的主场和客场踢一场。

共举行比赛210场,则参加比赛的球队共有 支。

5.一个菱形的两条对角线的和是14cm ,面积是24 cm 2,则这个菱形的周长是___ _______。

6.当m 时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根,此时这两个实数根是 .7.请你写出一个有一根为1的一元二次方程: .8.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设 平均每月降价的百分率为x ,根据题意列出的方程是 . 9.在实数范围内定义一种运算“*”,其规则为22*a b a b =-,根据这个规则, 方程(2)50*x +=的解为.10.李娜在一幅长90cm 、宽40cm 的风景画的四周外围镶上一条宽度相同的金色纸边,制 成一幅挂图,使风景画的面积是整个挂图面积的54%,设金色纸边的宽度为xcm ,根据题 意,所列方程为: 。

11.若方程2310x x --=的两根为1x 、2x ,则1211x x +的值为 . 12.设a b ,是方程220110x x +-=的两个实数根,则22a a b ++的值为 . 二、选择题(每小题3分,共24分)1.下列方程中,是一元二次方程的是( ) A .221x x y ++=B .2110x x+-= C .20x = D .2(1)(3)1x x x ++=- 2.一元二次方程x 2-3x +4=0的根的情况是( )A .有两个不相等的实根B .有两个相等的实根C .无实数根D .不能确定 3.已知代数式2346x x -+的值为9,则2463x x -+的值为( ) A .18 B .12 C .9 D .74.直角三角形两条直角边的和为7,面积为6,则斜边为( )AB .5 C.75.若a+b+c=0,则关于x 的一元二次方程ax 2+bx+c=0(a≠0)有一根是( ).A .1B .-1C .0D .无法判断6.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色 纸边的宽为x cm ,那么x 满足的方程是( )A .213014000x x +-= B .2653500x x +-= C .213014000x x --=D .2653500x x --=7.为执行“两免一补”政策,某地区2007年投入教育经费2500万元,预计2009年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,那么下面列出的方程正确的是( ) A .225003600x =B .22500(1%)3600x +=C .22500(1)3600x +=D .22500(1)2500(1)3600x x +++=8.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( ) A .1 B .12C .13D .25三、解答题(共64分) 1.解下列方程(10分)(1)解方程:2420x x ++= (2) 解方程2220x x --=2.(8分)关于x 的方程04)2(2=+++kx k kx 有两个不相等的实数根. (1)求k 的取值范围;(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由。

最新人教版九年级上册数学解一元二次方程(因式分解法)同步练习(含答案)

最新人教版九年级上册数学解一元二次方程(因式分解法)同步练习(含答案)

解一元二次方程(因式分解法)一、填空题(填出下列一元二次方程的根)1.x (x -3)=0.______2.(2x -7)(x +2)=0.______3.3x 2=2x .______4.x 2+6x +9=0.______5.______6.______ 7.(x -1)2-2(x -1)=0.______.8.(x -1)2-2(x -1)=-1.______二、选择题9.方程(x -a )(x +b )=0的两根是( ).A .x 1=a ,x 2=bB .x 1=a ,x 2=-bC .x 1=-a ,x 2=bD .x 1=-a ,x 2=-b10.下列解方程的过程,正确的是( ).A .x 2=x .两边同除以x ,得x =1.B .x 2+4=0.直接开平方法,可得x =±2.C .(x -2)(x +1)=3×2.∵x -2=3,x +1=2, ∴x 1=5, x 2=1.D .(2-3x )+(3x -2)2=0.整理得3(3x -2)(x -1)=0, .03222=-x x .)21()21(2x x -=+.1,3221==∴x x三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程)11.3x (x -2)=2(x -2).12.*13.x 2-3x -28=0.14.x 2-bx -2b 2=0.*15.(2x -1)2-2(2x -1)=3.*16.2x 2-x -15=0.四、解答题17.x 取什么值时,代数式x 2+8x -12的值等于2x 2+x 的值. .32x x综合、运用、诊断一、写出下列一元二次方程的根18..______________________.19.(x -2)2=(2x +5)2.______________________.二、选择题20.方程x (x -2)=2(2-x )的根为( ).A .-2B .2C .±2D .2,221.方程(x -1)2=1-x 的根为( ).A .0B .-1和0C .1D .1和022.方程的较小的根为( ). A .B .C .D .三、用因式分解法解下列关于x 的方程23.24.4(x +3)2-(x -2)2=0.0222=-x x 0)43)(21()43(2=--+-x x x 43-218543.2152x x =-25.26.abx 2-(a 2+b 2)x +ab =0.(ab ≠0)四、解答题27.已知关于x 的一元二次方程mx 2-(m 2+2)x +2m =0.(1)求证:当m 取非零实数时,此方程有两个实数根;(2)若此方程有两个整数根,求m 的值..04222=-+-b a ax x参考答案1.x =0,x 2=3. 2. 3.4.x 1=x 2=-3. 5. 6. 7.x =1,x 2=3. 8.x 1=x 2=2. 9. B . 10. D .11.12. .2,2721-==x x ⋅==32,021x x .6,021==x x .322,021-==x x ⋅==32,221x x ⋅==33,021x x13.x 1=7,x 2=-4.14.x 1=2b ,x 2=-b . 15.x 1=0,x 2=2.16. 17.x 1=3,x 2=4.18. 19.x 1=-1,x 2=-7.20.C . 21.D . 22.C .23.x 1=0,x 2=-10.24. 25.26. 27.(1)∆=(m 2-2)2.当m ≠0时,∆≥0;(2)(mx -2)(x -m )=0,m =±1或m =±2. .3,2521=-=x x .2,021==x x ⋅-=-=34,821x x .2,221b a x b a x +=-=⋅==b a x a b x 21,。

九年级数学上册《第二十一章 一元二次方程》同步练习题附带答案(人教版)

九年级数学上册《第二十一章 一元二次方程》同步练习题附带答案(人教版)

九年级数学上册《第二十一章 一元二次方程》同步练习题附带答案(人教版)姓名 班级 学号一、选择题:1.下列方程是关于 x 的一元二次方程的是( )A .20ax bx c ++=B .2112x x +=C .2221x x x +=-D .()23(1)21x x +=+2.要使方程(a-3)x 2+(b+1)x+c=0是关于x 的一元二次方程,则( )A .a ≠0B .a ≠3C .a ≠3且b ≠-1D .a ≠3且b ≠-1且c ≠03.一元二次方程22(1)(1)1x a x x x -+=--化成一般式后,二次项系数为1,一次项系数为﹣1,则a 的值为( )A .﹣1B .1C .﹣2D .24.“读万卷书,行万里路.”某校为了丰富学生的阅历知识,坚持开展课外阅读活动,学生人均阅读量从七年级的每年100万字增加到九年级的每年121万字.设该校七至九年级人均阅读量年均增长率为x ,则可列方程为( )A .()21001121x +=B .()21001%121x +=C .()10012121x +=D .()()210010*********x x ++++=5.若 1x =- 是关于x 的一元二次方程 ()2200ax bx a ++=≠ 的一个根,则202122a b -+= ( )A .2025B .2023C .2019D .20176.方程230x +=的二次项系数与一次项系数及常数项之积为( )A .3B .CD .9- 7.若0x 是方程()2200ax x c a ++=≠的一个根,设2M ac =-,20(1)N ax =+则下列关于M与N 的关系正确的为( )A .M N =B .1M N =+C .3M N +=D .2M N = 8.若关于x 的方程()200ax bx c a ++=≠满足0a b c -+=,称此方程为“月亮”方程.已知方程()221999100a x ax a -+=≠是“月亮”方程,则22199919991a a a a +++的值为( ) A .-1B .2C .1D .-2 二、填空题: 9.将方程 22143x x x -+=- 化为一般形式为 .10.已知关于x 的方程(a ﹣1)x 2﹣2x+1=0是一元二次方程,则a 的取值范围是11.若关于x 的一元二次方程()221210m x x m -++-=的常数项为0,则m 的值是 . 12.某市从2020年开始大力发展旅游产业.据统计,该市2020年旅游收入约为2亿元.预计2022年旅游收入约达2.88亿元,设该市旅游收入的年平均增长率为x ,根据题意列出方程为 .13.若关于 x 的一元二次方程 ()2100mx nx m +-=≠ 的一个解是 1x = ,则 m n + 的值是 .三、解答题:14.若(m+1)x |m|+1+6x ﹣2=0是关于x 的一元二次方程,求m 的值.15.学完一元二次方程后,在一次数学课上,同学们说出了一个方程的特点:①它的一般形式为ax 2+bx+c=0(a 、b 、c 为常数,a ≠0)②它的二次项系数为5③常数项是二次项系数的倒数的相反数你能写出一个符合条件的方程吗?16.把方程(3x+2)(x ﹣3)=2x ﹣6,化成一般形式,并写出它的二次项系数,一次项系数和常数项.17.一元二次方程化为一般式后为 ,试求 a 2+b 2-c 2的值的算术平方根.18.完成下列问题:(1)已知x ,y 为实数,且 2y = ,求 23x y - 的值.(2)已知 m 是方程 2202110x x -+= 的一个根,求代数式 2120202m m m-++ 的值.参考答案:1.D 2.B 3.B 4.A 5.A 6.D 7.B 8.D9.230x x +-=10.a ≠111.-112.()221 2.88x +=13.114.解:由题意,得|m|+1=2,且m+1≠0解得m=115.解:由①知这是一元二次方程,由②③可确定 a c 、 ,而 b 的值不唯一确定,可为任意数,熟悉一元二次方程的定义及特征是解答本题的关键.这个方程是5x 2-2x - 15=0. 16.解:(3x+2)(x ﹣3)=2x ﹣63x 2﹣9x=0所以它的二次项系数是3,一次项系数是﹣9,常数项是017.解:a (x+1)2+b (x+1)+c=0化作一元二次方程的一般形式为ax 2+(2a+b)x+a+b+c=0又一般形式为3x 2+2x-1=0∴a=3,2a+b=2,a+b+c=-1解得,a=3,b=-4,c=0∴a 2+b 2-c 2=25,则其算术平方根是5.18.(1)解:由题意得, 5050x x --,∴52x y ==-,∴2310616x y -=+=(2)解:∵m 是方程 2202110x x -+= 的一个根∴2202110m m -+=∴220211m m =-211202022021120202m m m m m m -++=--++21111202112022m m m m +=++=+=+=。

21 1一元二次方程同步练习(含简单答案)人教版九年级数学上册

21 1一元二次方程同步练习(含简单答案)人教版九年级数学上册

21.1一元二次方程一、单选题1.若()21510a x x --+=是关于x 的一元二次方程,则a 不能取( )A .0B .1C .-1D .2 2.将一元二次方程2792x x +=化成一般式后,二次项系数和一次项系数分别为( ) A .7,9 B .27x ,﹣2x C .7,2 D .7,﹣2 3.若关于x 的一元二次方程230x x a -+=的一个根是1,则a 的值为( ) A .2 B .1 C .0 D .2- 4.若22(1)0b a +-=,则下列方程中是一元二次方程的是( ) A .250ax x b +-=B .()()21350b x a x -++-=C .()()21170a x b x -+--=D .2(1)10b x ax -+-= 5.若关于x 的一元二次方程2(1)5(1)(3)0m x x m m -++--=的常数项为0,则m 的值等于( )A .1B .3C .1或3D .0A .1个B .2个C .3个D .4个 7.将一元二次方程2314x x -=化成一般形式为( )A .2341x x +=B .2341x x -=C .23410x x --=D .23410x x +-= 8.已知关于x 的一元二次方程222(4)(21)40k x k x k ++-+-=有一个根是0,则k 的值是( )A .4B .±2C .2D .2- 9.若一元二次方程20ax bx c ++=中的二次项系数与常数项之和等于一次项系数,则方程必有一根是( )A .0B .1C .-1D .±1二、填空题三、解答题参考答案:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级数学上册第21章《一元二次方程》同步练习1
带答案
◆随堂检测
1、判断下列方程,是一元二次方程的有____________.
(1)32250x x -+=; (2)21x =; (3)221352245
x x x x --=-+; (4)2
2(1)3(1)x x +=+;(5)2221x x x -=+;(6)20ax bx c ++=. (提示:判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断.)
2、下列方程中不含一次项的是( )
A .x x 2532=-
B .2916x x =
C .0)7(=-x x
D .0)5)(5(=-+x x
3、方程23(1)5(2)x x -=+的二次项系数___________;一次项系数__________;常数项_________.
4、1、下列各数是方程21(2)23
x +=解的是( ) A 、6 B 、2 C 、4 D 、0
5、根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式.
(1)4个完全相同的正方形的面积之和是25,求正方形的边长x .
(2)一个矩形的长比宽多2,面积是100,求矩形的长x .
(3)一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长x . ◆典例分析
已知关于x 的方程22
(1)(1)0m x m x m --++=.
(1)x 为何值时,此方程是一元一次方程?
(2)x 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项。

分析:本题是含有字母系数的方程问题.根据一元一次方程和一元二次方程的定义,分别进行讨论求解. 解:(1)由题意得,21010m m ⎧-=⎨+≠⎩
时,即1m =时, 方程22
(1)(1)0m x m x m --++=是一元一次方程210x -+=.
(2)由题意得,2(1)0m -≠时,即1m ≠±时,方程22(1)(1)0m x m x m --++=是一元二次方程.此方程的二次项系数是2
1m -、一次项系数是(1)m -+、常数项是m .
◆课下作业
●拓展提高
1、下列方程一定是一元二次方程的是( )
A 、22310x x
+-= B 、25630x y --= C 、220ax x -+= D 、22(1)0a x bx c +++=
2、2121003
m x x m -++=是关于x 的一元二次方程,则x 的值应为( ) A 、m =2 B 、23m =
C 、32m =
D 、无法确定 3、根据下列表格对应值:
判断关于x 的方程0,(0)ax bx c a ++=≠的一个解x 的范围是( )
A 、x <3.24
B 、3.24<x <3.25
C 、3.25<x <3.26
D 、3.25<x <3.28
4、若一元二次方程20,(0)ax bx c a ++=≠有一个根为1,则=++c b a _________;若有一个根是-1,则b 与a 、c 之间的关系为________;若有一个根为0,则c=_________.
5、下面哪些数是方程220x x --=的根?
-3、-2、-1、0、1、2、3、
6、若关于x 的一元二次方程012)1(22=-++-m x x m 的常数项为0,求m 的值是多少? ●体验中考
1、(2009年,武汉)已知2x =是一元二次方程2
20x mx ++=的一个解,则m 的值是( )
A .-3
B .3
C .0
D .0或3
(点拨:本题考查一元二次方程的解的意义.)
2、(2009年,日照)若(0)n n ≠是关于x 的方程220x mx n ++=的根,则m n +的值为( )
A .1
B .2
C .-1
D .-2
(提示:本题有两个待定字母m 和n ,根据已知条件不能分别求出它们的值,故考虑运用整体思想,直接求出它们的和.)
参考答案:
◆随堂检测
1、(2)、(3)、(4) (1)中最高次数是三不是二;(5)中整理后是一次方程;(6)中只有在满
足0a ≠的条件下才是一元二次方程.
2、D 首先要对方程整理成一般形式,D 选项为2250x -=.故选D.
3、3;-11;-7 利用去括号、移项、合并同类项等步骤,把一元二次方程化成一般形式231170x x --=,同时注意系数符号问题.
4、B 将各数值分别代入方程,只有选项B 能使等式成立.故选B.
5、解:(1)依题意得,2425x =,
化为一元二次方程的一般形式得,24250x -=.
(2)依题意得,(2)100x x -=,
化为一元二次方程的一般形式得,221000x x --=.
(3)依题意得,222(2)10x x +-=,
化为一元二次方程的一般形式得,22480x x --=.
◆课下作业
●拓展提高
1、D A 中最高次数是三不是二;B 中整理后是一次方程;C 中只有在满足0a ≠的条件下才是一元二次方程;D 选项二次项系数2(1)0a +≠恒成立.故根据定义判断D.
2、C 由题意得,212m -=,解得32m =
.故选D. 3、B 当3.24<x <3.25时,2ax bx c ++的值由负连续变化到正,说明在3.24<x <3.25范
围内一定有一个x 的值,使20ax bx c ++=,即是方程2
0ax bx c ++=的一个解.故选B. 4、0;b a c =+;0 将各根分别代入简即可.
5、解:将3x =-代入方程,左式=2(3)(3)20----≠,即左式≠右式.故3x =-不是方程220x x --=的根.
同理可得2,0,1,3x =-时,都不是方程2
20x x --=的根.
当1,2x =-时,左式=右式.故1,2x =-都是方程220x x --=的根. 6、解:由题意得,21010
m m ⎧-=⎨-≠⎩时,即1m =-时,012)1(22=-++-m x x m 的常数项为0.
●体验中考
1、A 将2x =带入方程得4220m ++=,∴3m =-.故选A.
2、D 将x n =带入方程得220n mn n ++=,∵0n ≠,∴20n m ++=,
∴2m n +=-.故选D.。

相关文档
最新文档