多元统计分析模拟试题
(完整版)多元统计分析试题及答案
2009学年第2学期 考试科目:多元统计分析 考试类型:(闭卷) 考试时间:100 分钟学号 姓名 年级专业一、填空题(5×6=30)22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。
()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪ ⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。
215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
二、计算题(5×11=50)(),123设X=x x x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫ ⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
多元统计学多元统计分析试题(A卷)(答案)
《多元统计分析》试卷1、若),2,1(),,(~)(n N X p =∑αμα 且相互独立,则样本均值向量X 服从的分布为2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。
3、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_、Fisher 判别法、Bayes 判别法、逐步判别法。
4、Q 型聚类是指对_样品_进行聚类,R 型聚类是指对_指标(变量)_进行聚类。
5、设样品),2,1(,),,('21n i X X X X ip i i i ==,总体),(~∑μp N X ,对样品进行分类常用的距离有:明氏距离,马氏距离2()ijd M =)()(1j i j i x x x x -∑'--,兰氏距离()ij d L =6、因子分析中因子载荷系数ij a 的统计意义是_第i 个变量与第j 个公因子的相关系数。
7、一元回归的数学模型是:εββ++=x y 10,多元回归的数学模型是:εββββ++++=p p x x x y 22110。
8、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。
9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。
一、填空题(每空2分,共40分)1、设三维随机向量),(~3∑μN X ,其中⎪⎪⎪⎭⎫ ⎝⎛=∑200031014,问1X 与2X 是否独立?),(21'X X 和3X 是否独立?为什么?解: 因为1),cov(21=X X ,所以1X 与2X 不独立。
把协差矩阵写成分块矩阵⎪⎪⎭⎫⎝⎛∑∑∑∑=∑22211211,),(21'X X 的协差矩阵为11∑因为12321),),cov((∑='X X X ,而012=∑,所以),(21'X X 和3X 是不相关的,而正态分布不相关与相互独立是等价的,所以),(21'X X 和3X 是独立的。
多元统计学多元统计分析试题(A卷)(答案)【精选文档】
《多元统计分析》试卷1、若 且相互独立,则样本均值向量服从的分布为。
2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。
3、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_、Fisher 判别法、Bayes 判别法、逐步判别法。
4、型聚类是指对_样品_进行聚类,型聚类是指对_指标(变量)_进行聚类。
5、设样品,总体,对样品进行分类常用的距离有:明氏距离,马氏距离,兰氏距离。
6、因子分析中因子载荷系数的统计意义是_第i 个变量与第j 个公因子的相关系数。
7、一元回归的数学模型是:,多元回归的数学模型是:。
8、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。
9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。
1、设三维随机向量,其中,问与是否独立?和是否独立?为什么?解: 因为,所以与不独立。
把协差矩阵写成分块矩阵,的协差矩阵为因为,而,所以和是不相关的,而正态分布不相关与相互独立是等价的,所以和是独立的.2、设抽了五个样品,每个样品只测了一个指标,它们分别是1 ,2 ,4。
5 ,6 ,8。
若样本间采用明氏距离,试用最长距离法对其进行分类,要求给出聚类图. 解:样品与样品之间的明氏距离为:样品最短距离是1,故把合并为一类,计算类与类之间距离(最长距离法)得距离阵 类与类的最短距离是1。
5,故把合并为一类,计算类与类之间距离(最长距离法)得距离阵类与类的最短距离是3。
5,故把合并为一类,计算类与类之间距离(最长距离法)得距离阵分类与聚类图(略)(请你们自己做)3、设变量的相关阵为的特征值和单位化特征向量分别为一、填空题(每空2分,共40分)二、计算题(每小题10分,共40分)(1) 取公共因子个数为2,求因子载荷阵。
(2) 计算变量共同度及公共因子的方差贡献,并说明其统计意义。
解:因子载荷阵变量共同度: ===公共因子的方差贡献:统计意义(省略)(学生自己做)4、设三元总体的协方差阵为,从出发,求总体主成分,并求前两个主成分的累积贡献率。
应用多元统计分析试题及答案
一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。
通常聚类分析分为 Q型聚类和 R型聚类。
4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。
5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。
6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。
二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。
在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。
选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。
被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。
2、简述相应分析的基本思想。
相应分析,是指对两个定性变量的多种水平进行分析。
设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。
对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。
要寻求列联表列因素A和行因素B的基本分析特征和最优列联表示。
相应分析即是通过列联表的转换,使得因素 A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。
把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A、B的联系。
3、简述费希尔判别法的基本思想。
从k个总体中抽取具有p个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。
将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。
多元统计分析
多元统计分析多元统计分析习题集(⼀)⼀、填空题1.若()(,),(1,2,,)p X N n αµα∑= 且相互独⽴,则样本均值向量X 服从的分布是____________________。
2.变量的类型按尺度划分为___________、____________、_____________。
3.判别分析是判别样品_____________的⼀种⽅法,常⽤的判别⽅法有_____________、_____________、_____________、_____________。
4.Q 型聚类是指对_____________进⾏聚类,R 型聚类指对_____________进⾏聚类。
5.设样品12(,,,),(1,2,,)i i i ip X X X X i n '== ,总体(,)p X N µ∑ ,对样品进⾏分类常⽤的距离有____________________、____________________、____________________。
6.因⼦分析中因⼦载荷系数ij a 的统计意义是_________________________________。
7.主成分分析中的因⼦负荷ij a 的统计意义是________________________________。
8.对应分析是将__________________和__________________结合起来进⾏的统计分析⽅法。
9.典型相关分析是研究__________________________的⼀种多元统计分析⽅法。
⼆、计算题 1.设3(,)X N µ∑ ,其中410130002?? ?∑= ? ??,问1X 与2X 是否独⽴?12(,)X X '与3X 是否独⽴?为什么?2.设抽了5个样品,每个样品只测了⼀个指标,它们分别是1,2,4.5,6,8。
若样品间采⽤绝对值距离,试⽤最长距离法对其进⾏分类,要求给出聚类图。
多元统计分析试卷
一.填空题(每空2分,共30分)1.若--------(看不清)且相互独立,则样本均值向量X 2服从的分布为_______2.聚类分析是判别样品所属类型的一种统计方法,常用的聚类分析方法有距离判别法、Fisher 判别法、Bavers 判别法、逐步判别法。
3.主成份同因子分析之间的差异在于方差,_____。
4.设样本-------,总体-----,对样本进行分类常用的工具有:马氏距离--=_______,相关系数_______,它们之间的关系如何_______。
5.因子分析中的因子载荷系数共性方差的统计意义是_______。
6.典型相关分析是研究两组变量之间_______的一种多元统计方法。
7.刻画两个变量之间相关程度的通过统计指标是_______。
8.数据标准化对因子分析的结构分解有什么影响_______。
二.计算题(每小题12分,共60分)1.设三维随机变量-----,其中⎪⎪⎪⎭⎫ ⎝⎛=∑210140005,问1X 与2X 是否独立?---和1X 是否独立?为什么?2.设抽了五个样品,每个样品只测了一个指标,它们分别是1 1 2 3 5 4 5,若样本间采用欧式,试用平均距离法对其进行分类,要求给出聚类图。
3.设变量321,,X X X 的相关阵为⎪⎪⎪⎭⎫ ⎝⎛=00.135.045.035.000.163.045.063.000.1R ,R 的特征值和单位化特征向量分别为T T T l l l 18.0,64.0,75.0,37.03,84.0,49.0,22.0,68.0,51.0,59.0,63.0,96.122211--==--====λλλ(1)取公共因子个数为2,求因子载荷矩阵A 。
(2)计算变量共同度—及公共因子2F 的方差贡献,并说明其统计意义。
4.设三元总体X 的协方差阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=∑841,从∑出发,求总体主成份321,,F F F ,求前两个主成份的累计贡献率。
多元统计分析考试-(2)
判断:1对2对3对4对5错6对应分析是否可降维(对)7 数据的计量尺度:定类尺度,定序尺度,定距尺度,定比尺度1.应用统计学中的数据可以不是数值。
(×)2.相关系数等于零,表明变量之间不存在任何关系。
(√ )3.双因素方差分析主要用于检验两个总体方差是否相等。
(√ )4.环比增长速度的连乘积等于相应时期的定基增长速度。
(×)5.线性回归分析中,可决系数R2是对回归模型拟合程度的评价。
(√ )6.加权平均数指数是加权综合指数的一种变形,它们具有相同的权数。
(√ )7.在假设检验中,给定的显著性水平α是在原假设为真的条件下,拒绝原假设的概率。
(×)8.在抽样调查中,允许误差也称极限误差,是抽样误差的最大值。
(×)9.若样本容量确定,则假设检验中的两类错误不能同时减少。
(√ )10.如果一组数据的众数大于中位数,且中位数又大于算术平均数,则这组数据的偏态系数小于0。
(√ )简答:一、数据的清洗技术:答案一:(1)解决缺失值:均值替换法、个案剔除法、多重替换法、热卡填充法、回归替换法。
(2)错误值:偏差分析,识别不遵守分布或回归方程的值。
(3)重复记录:合半、清除(4)不一致:可定义完整性约束用于检测不一致性,也可通过分析数据发现联系,使数据保持一致。
答案二:主要为下一步数据分析做进一步的准备,最终将数据清洗为满足分析需求的具体数据集。
期间主要内容包括:(1)数据集的预先分析:对数据进行必要的分析,如数据分组、排序、分布图、平均数、标准差描述等,以掌握数据的基本特点和基本情况,保证后续工作的有效性,也为确定应采用的统计检验方法提供依据(2)相关变量缺失值的查补检查(3)分析前相关的校正和转换工作.(4)观测值的抽样筛选.(5)其他数据清洗工作二、如何处理数据缺失值:答案一:1剔除数据,即删除数据。
2替换方法,一般有三种:均值替换法,即用其他个案中该变量观测值的平均数对缺失的数据进行替换,但这种方法会产生有偏估计,所以并不被推崇。
(完整版)多元统计分析试题及答案
(完整版)多元统计分析试题及答案试题:1. 试解释多元统计分析的含义及其与单变量和双变量统计分析的区别。
2. 简述卡方检验方法及适用场景。
3. 请解释回归分析中的回归系数及其p值的含义及作用,简单说明如何进行回归模型的选择和评估。
4. 试解释主成分分析的原理及目的,如何进行主成分分析及如何解释因子载荷矩阵。
5. 请列举和简要解释聚类分析和判别分析的适用场景,并说明两种方法的区别。
答案:1. 多元统计分析是一种将多个变量进行综合分析的方法。
与单变量和双变量统计分析不同的是,多元统计分析可以处理多个自变量和因变量的组合关系,从而探究它们之间的综合关系。
该方法通常适用于探究多种变量在某个问题中的关系、探究影响某一结果变量的因素、探究各个变量相互作用的影响等。
2. 卡方检验是根据样本数据与期望值的差异来判断观察值与理论预期是否相符,以此来验证假设是否成立的方法。
它通常用于对某个现象进行分类的相关度检验。
适用场景包括:样本的数量大于等于40,且至少有一个期望值小于5;变量为分类变量,且分类类别数不超过10个。
卡方检验的原理是将观察值和期望值进行比较,并计算卡方值,然后根据卡方值与自由度的乘积查找p值,从而得出结论。
3. 回归系数是回归方程中自变量与因变量之间的关系,在线性回归中,回归系数表示每一个自变量单位变化与因变量单位变化的关系。
p值是评估回归系数是否具有显著性的指标。
回归模型的选择有两种方法:一种是逐步回归分析,根据不同的准则进行多个回归模型的比较,选择最优的模型;另一种是正则化回归,通过加入惩罚项来保证回归模型具有良好的泛化性能。
回归模型的评估有多种方法,包括:残差分析、R方值、方差齐性检验、变量的共线性检验等。
4. 主成分分析是一种将多维数据降维处理的方法,它的目的是通过数据的变换,将多个变量转化为一些综合指标,这些指标是原始变量的线性组合。
主成分分析的步骤包括:数据标准化、计算协方差矩阵或相关系数矩阵、计算特征值和特征向量、选取主成分。
多元统计分析模拟试题
A卷1)判别分析常用的判别方法有距离判别法、贝叶斯判别法、费歇判别法、逐步判别法。
2)Q型聚类分析是对样品的分类,R型聚类分析是对变量_的分类。
3)主成分分析中可以利用协方差矩阵和相关矩阵求解主成分。
4)因子分析中对于因子载荷的求解最常用的方法是主成分法、主轴因子法、极大似然法5)聚类分析包括系统聚类法、模糊聚类分析、K-均值聚类分析6)分组数据的Logistic回归存在异方差性,需要采用加权最小二乘估计7)误差项的路径系数可由多元回归的决定系数算出,他们之间的关系为=8)最短距离法适用于条形的类,最长距离法适用于椭圆形的类。
9)主成分分析是利用降维的思想,在损失很少的信息前提下,把多个指标转化为几个综合指标的多元统计方法。
10)在进行主成分分析时,我们认为所取的m(m<p,p为所有的主成分)个主成分的累积贡献率达到85%以上比较合适。
11)聚类分析的目的在于使类内对象的同质性最大化和类间对象的异质性最大化12)是随机变量,并且有,那么服从(卡方)分布。
13)在对数线性模型中,要先将概率取对数,再分解处理,公式:14)将每个原始变量分解为两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子15)判别分析的最基本要求是分组类型在两组之上,每组案例的规模必须至少一个以上,解释变量必须是可测量的16)当被解释变量是属性变量而解释变量是度量变量时判别分析是合适的统计分析方法17)多元正态分布是一元正态分布的推广18)多元分析的主要理论都是建立在多元正态总体基础上的,多元正态分布是多元分析的基础19)因子分析中,把变量表示成各因子的线性组合,而主成分分析中,把主成分表示成各变量的线性组合。
20)统计距离包括欧氏距离和马氏距离两类1)因子负荷量是指因子结构中原始变量与因子分析时抽取出的公共因子的相关程度。
(√)(p147)2)主成分分析是将原来较少的指标扩充为多个新的综合指标的多元统计方法。
多元统计分析试题
一、填空题(30分):1、多元正态分布检验用到的三大分布为、、o2、若X〜N〃(4,Z),则AX + d~o (服从什么分布)3、常用的聚类方法有、动态聚类、等。
4、我们将变量的类型按照尺度可分为、、三类。
5、统计距离公式为o6、相似系数一般有、两种测度。
7、常用的多元数据图表示法有、、o二、计算证明题(30分):1、设抽取5个样本,每个样本只检测一个指标,他们是13, 14, 15.5, 19, 21o试用最短距离法对5个样本进行分类并画出谱系图。
71° 1 12、试验证函数/(X,九2,*3)=即+6刍+-玉工2,其中0<XI < 1,0<犬2 <2,0<工3 <一为随3机向量X=(X1,X2,X3)'的密度函数。
113、证明Gov(X,5y)= Cw(X,y)B'。
15《多元统计分析》简答题1、试简单比较一元正态总体单样本均值检验和多元正态总体均值检验。
(方差或协差阵未知时,应包括所用到的统计量,有何联系等内容)34一元正态总体样本均值的检验(方差未知时):当〃未知时,用S2 =-^—Y(X i-X)2(3.2)作为/的估计量,用统寸量:;在4 册(3.3)S来做检验。
当假设成立时,统计量/服从自由度为〃-1的,分布,从而否定域为111> %2 5 T),%2(〃—1)为自由度为〃T的,分布上的。
/2分位点。
这里我们应该注意数(33)式可以表示为t2 = 丁) = X -^\S2Y\X -//)(3.4)对于多元变量而言,可以将,分布推广为下面将要介绍的Hotelling T~分布。
多元正态总体均值检验:(-)协差阵E未知时均值向量的检验"(): JI =% (%为已知向量)H}: "No假设“。
成立,检验统计量为(〃:1):〃 + 1尸〜尸(p,〃— p)(3.7)(〃一1)〃其中,T2 =(n- 1)LV^(X-Ji()ys-1 V^(x-ji())J给定检验水平a,查产分布表,使定[-〃二二a,可[5-l)p J确定出临界值尸a,再用样本值计算出72,若〃二〃-屑〉(〃-1)〃则否定“。
(完整word版)多元统计分析习题
1.已知n=4,p=3的一个样本数据阵143X =626,X S 833534ρ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦计算,,v,2.已知23514241130010322X ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,用最短、最长、中间距离法聚类,并画出聚类树形图3.已知52=22⎡⎤∑⎢⎥⎣⎦,要求: ①求特征根12λλ, ②求特征向量12μμ,③构造主成分12,F F④计算1F 的方差Var(F 1)和2F 的方差Var(F 2)⑤计算()()()()11122122,,,,;;;F X F X F X F X ρρρρ4.设有12,G G 两个总体,从中分别抽取容量为3的样品如下:要求:(1)样本的均值向量()()12,XX 及离差阵12,S S(2)假定()()12==∑∑∑,用12,S S 联合估计∑(3)已知待判样品(27)X T=,分别用距离判别法、Fisher 判别法、Bayes 判别法判定X 的归属。
5.设111=n 个和122=n 个的观测值分别取自两个随机变量1X 和2X 。
假定这两个变量服从二元正态分布,且有相同的协方差阵。
样本均值向量和联合协方差阵为:⎥⎦⎤⎢⎣⎡--=111X ,⎥⎦⎤⎢⎣⎡=122X ,⎥⎦⎤⎢⎣⎡--=∑8.41.11.13.7。
新样品⎥⎦⎤⎢⎣⎡=21X ,要求用Bayes 法和Fisher 进行判别分析。
6.已知2变量协方差阵⎥⎦⎤⎢⎣⎡=∑3224,要求:(1)求∑的特征根及其对应的单位特征向量;(2)组建主成分1F 、2F ;(3)验证j j F Var λ=)(;(4)计算11x F ρ、21x F ρ。
7、试分析某海运学院100名新生的性别与来自的区域有无相关关系。
(20.05(1) 3.84χ=)8、已知4个样品3个数据的数据如下:44068644363X ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,试求均值向量X 、协方差阵∑、相关阵R 。
9、已知随机向量X=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x ,具有均值向量826X ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦和协方差阵,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=∑411161113。
多元统计学多元统计分析试题(A卷)(答案)
《多元统计分析》试卷1、若),2,1(),,(~)(n N X p =∑αμα 且相互独立,则样本均值向量X 服从的分布为2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_.3、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_、Fisher 判别法、Bayes 判别法、逐步判别法。
4、Q 型聚类是指对_样品_进行聚类,R 型聚类是指对_指标(变量)_进行聚类。
5、设样品),2,1(,),,('21n i X X X X ip i i i ==,总体),(~∑μp N X ,对样品进行分类常用的距离有:明氏距离,马氏距离2()ijd M =)()(1j i j i x x x x -∑'--,兰氏距离()ij d L6、因子分析中因子载荷系数ij a 的统计意义是_第i 个变量与第j 个公因子的相关系数。
7、一元回归的数学模型是:εββ++=x y 10,多元回归的数学模型是:εββββ++++=p p x x x y 22110。
8、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。
9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。
一、填空题(每空2分,共40分)二、计算题(每小题10分,共40分)1、设三维随机向量),(~3∑μN X ,其中⎪⎪⎪⎭⎫ ⎝⎛=∑200031014,问1X 与2X 是否独立?),(21'X X 和3X 是否独立?为什么?解: 因为1),cov(21=X X ,所以1X 与2X 不独立。
把协差矩阵写成分块矩阵⎪⎪⎭⎫⎝⎛∑∑∑∑=∑22211211,),(21'X X 的协差矩阵为11∑因为12321),),cov((∑='X X X ,而012=∑,所以),(21'X X 和3X 是不相关的,而正态分布不相关与相互独立是等价的,所以),(21'X X 和3X 是独立的。
应用多元统计分析试题及答案
一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。
通常聚类分析分为 Q型聚类和R型聚类。
4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。
5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。
6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。
二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。
在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。
选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。
被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。
2、简述相应分析的基本思想。
相应分析,是指对两个定性变量的多种水平进行分析。
设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。
对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。
要寻求列联表列因素A和行因素B 的基本分析特征和最优列联表示。
相应分析即是通过列联表的转换,使得因素A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。
把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A 、B 的联系。
3、简述费希尔判别法的基本思想。
从k 个总体中抽取具有p 个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数 系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。
将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。
多元统计分析试题
近几年,中国房地产业得到了长足的发展,但房地产价格的上涨一直饱受争议,甚至有逃离“北、上、广”的言论,这也从侧面反映了房地产价格的区域性特征,下表为2008年中国31个省、市、自治区房地产业的相关统计数据,试根据这些数据进行聚类分析。
表1中指标说明如下:X1:房屋平均销售价格; X2:住宅平均销售价格;X3:别墅、高档公寓平均销售价格; X4:经济适用房平均销售价格;X5:办公楼平均销售价格; X6:商业营业用房平均销售价格X7:其他平均销售价格; X8:商品房销售面积; X9:住宅销售面积为研究某地区人口死亡状况,已按某种方法将15个已知样品分为3类,指标及原始数据见表2,试建立判别函数,并判定另外4个待判样品属于哪类?表2X1:0岁组死亡概率X4:55岁组死亡概率X2:1岁组死亡概率X5:80岁组死亡概率X3:10岁组死亡概率X6:平均预期寿命题3利用主成分分析综合评价全国重点水泥企业的经济效益。
原始数据见表3。
题4.中心城市的综合发展是带动周边地区经济发展的重要动力。
在我国经济发展进程中,各个中心城市一直是该地区经济和社会发展的“引路者”。
因而,分析评价全国35个中心城市的综合发展水平,无论是对城市自身的发展,还是对周边地区的进步,都具有十分重要的意义。
选取反映城市综合发展水平的12个指标作为原始变量,运用SPSS软件,对全国35个中心城市的综合发展水平作因子分析。
1.原始数据及指标解释。
我们选取了反映城市综合发展水平的12个指标,其中包括8个社会经济指标,分别为:x—非农业人口数(万人);2x—工业总产值(万元);3x—货1运总量(万吨);x—批发零售住宿餐饮业从业人数(万人);5x—地方政府预算内收入4(万元);x—城乡居民年底储蓄余额(万元);7x—在岗职工人数(万人);8x—在岗职6工工资总额(万元)。
4个城市公共设施水平的指标:x—人均居住面积(平方米);10x—9每万人拥有公共汽车数(辆);x—人均拥有铺装道路面积(平方米);12x—人均公共绿11地面积(平方米)。
多元统计分析考试 (2)
判断:1对2对3对4对5错6对应分析是否可降维(对)7 数据的计量尺度:定类尺度,定序尺度,定距尺度,定比尺度1.应用统计学中的数据可以不是数值。
(×)2.相关系数等于零,表明变量之间不存在任何关系。
(√ )3.双因素方差分析主要用于检验两个总体方差是否相等。
(√ )4.环比增长速度的连乘积等于相应时期的定基增长速度。
(×)5.线性回归分析中,可决系数R2是对回归模型拟合程度的评价。
(√ )6.加权平均数指数是加权综合指数的一种变形,它们具有相同的权数。
(√ )7.在假设检验中,给定的显著性水平α是在原假设为真的条件下,拒绝原假设的概率。
(×)8.在抽样调查中,允许误差也称极限误差,是抽样误差的最大值。
(×)9.若样本容量确定,则假设检验中的两类错误不能同时减少。
(√ )10.如果一组数据的众数大于中位数,且中位数又大于算术平均数,则这组数据的偏态系数小于0。
(√ )简答:一、数据的清洗技术:答案一:(1)解决缺失值:均值替换法、个案剔除法、多重替换法、热卡填充法、回归替换法。
(2)错误值:偏差分析,识别不遵守分布或回归方程的值。
(3)重复记录:合半、清除(4)不一致:可定义完整性约束用于检测不一致性,也可通过分析数据发现联系,使数据保持一致。
答案二:主要为下一步数据分析做进一步的准备,最终将数据清洗为满足分析需求的具体数据集。
期间主要内容包括:(1)数据集的预先分析:对数据进行必要的分析,如数据分组、排序、分布图、平均数、标准差描述等,以掌握数据的基本特点和基本情况,保证后续工作的有效性,也为确定应采用的统计检验方法提供依据(2)相关变量缺失值的查补检查(3)分析前相关的校正和转换工作.(4)观测值的抽样筛选.(5)其他数据清洗工作二、如何处理数据缺失值:答案一:1剔除数据,即删除数据。
2替换方法,一般有三种:均值替换法,即用其他个案中该变量观测值的平均数对缺失的数据进行替换,但这种方法会产生有偏估计,所以并不被推崇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元统计分析模拟试题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998多元统计分析模拟试题(两套:每套含填空、判断各二十道)A卷1)判别分析常用的判别方法有距离判别法、贝叶斯判别法、费歇判别法、逐步判别法。
2)Q型聚类分析是对样品的分类,R型聚类分析是对变量_的分类。
3)主成分分析中可以利用协方差矩阵和相关矩阵求解主成分。
4)因子分析中对于因子载荷的求解最常用的方法是主成分法、主轴因子法、极大似然法5)聚类分析包括系统聚类法、模糊聚类分析、K-均值聚类分析6)分组数据的Logistic回归存在异方差性,需要采用加权最小二乘估计7)误差项的路径系数可由多元回归的决定系数算出,他们之间的关系为P e=√1−R28)最短距离法适用于条形的类,最长距离法适用于椭圆形的类。
9)主成分分析是利用降维的思想,在损失很少的信息前提下,把多个指标转化为几个综合指标的多元统计方法。
10)在进行主成分分析时,我们认为所取的m(m<p,p为所有的主成分)个主成分的累积贡献率达到85%以上比较合适。
11)聚类分析的目的在于使类内对象的同质性最大化和类间对象的异质性最大化12)y1是随机变量,并且有y1~N(0,1),那么y12服从(卡方)分布。
13)在对数线性模型中,要先将概率取对数,再分解处理,公式:ηij=lnp ij=,i,j=1,2lnp i+lnp.j+ln p ijp j p i14)将每个原始变量分解为两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子15)判别分析的最基本要求是分组类型在两组之上,每组案例的规模必须至少一个以上,解释变量必须是可测量的16)当被解释变量是属性变量而解释变量是度量变量时判别分析是合适的统计分析方法17)多元正态分布是一元正态分布的推广18)多元分析的主要理论都是建立在多元正态总体基础上的,多元正态分布是多元分析的基础19)因子分析中,把变量表示成各因子的线性组合,而主成分分析中,把主成分表示成各变量的线性组合。
20)统计距离包括欧氏距离和马氏距离两类1)因子负荷量是指因子结构中原始变量与因子分析时抽取出的公共因子的相关程度。
(√)(p147)2)主成分分析是将原来较少的指标扩充为多个新的综合指标的多元统计方法。
(×)(p24)3)判别分析其被解释变量为属性变量,解释变量是度量变量。
(√)(p90)4)Logistic回归对于自变量有要求,度量变量或者非度量变量都不可以进行回归。
(×) (p220)5)在系统聚类过程中,聚合系数越大,合并的两类差异越小。
(×) (P59)6)spss只能对单变量进行正态性检验。
(√)7)Logistic回归中的估计参数(b0,b1,b2,… ,b n)反应优势比率的变化,如果b i是正的,它的反对数值(指数)一定小于1。
(228)8)密度函数可以是负的。
(×) (p3)9)计算典型函数推导的典型权重有较小的不稳定性。
(×)(p205)10)10、对应分析可以用图形的方式提示变量之间的关系,同时也可以给出具体的统计量来度量这种相关关系,使研究者在作用对应分析时得到主观性较强的结论。
(×)(p179)11)多元检验具有概括和全面考察的特点,容易发现各指标之间的关系和差异。
(×)p2512)名义尺度的指标用一些类来表示,这些类之间有等级关系,但没有数量关系。
(×)p4313) k-均值法是一种非谱系聚类法(√)p4414)一般而言,不同聚类方法的结果不完全相同(√)p615)判别分析最基本要求是分组类型在两组以上且解释变量必须是可测量的(√)p9016)非谱系聚类法是把变量聚集成k个类的集合。
(×)p6417)主成分的数目大大少于原始变量的数目。
(√)p11418)因子分析只能用于研究变量之间的相关关系。
(×)p14319)聚类分析中的分类方法中,系统聚类法和分解法相似(相反)。
(×)P4320) 聚类分析的目的就是把相似的研究对象归类。
(√)P42B 卷一、填空题1. 因子分析中因子载荷系数a ij 的统计意义是第i 个变量与第j 个公因子的相关系数;(P 146)2. 类平均法的两种形式为组间联结法和组内联结法 (P56)3. 设3~(,),i 1,2,10.i x x μ∑=⋅⋅⋅则101()~i i W x μ==-∑3(10)W ∑, (p5)4.聚类分析根据实际的需要可能有两个方向,一是对样品,一是对指标聚类。
(P43)5. 模糊聚类分析方法中对原始数据进行变换,变换方法通常有标准化变换,极差变换,对数变换 (p63)()22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ∑==∑=+-6、设其中则Cov(,)=07.非谱系聚类法是把样品聚集成K 个类的集合。
(P64)8.因子分析的基本思想是根据相关性大小把原始变量分组,使得同组内的变量之间相关性较高,而不同组间的相关性较低。
(P142)9.两总体均值的比较问题也可分为两总体协方差阵相等与两总体协方差不相等两种情形。
(P25) 10.因子旋转分为正交旋转和斜交旋转。
(P150)11. Q 型聚类是指对样品进行聚类,R 型聚类是指对指标(变量)进行聚类。
(42页)12. 一元回归的数学模型是: y =β0+β1x +ε,多元回归的数学模型是:_y =β0+β1x 1+β2x 2+ βp x p +ε_。
13. 变量的类型按尺度划分有间隔尺度、有序尺度、名义尺度_. (43页)14. 判别分析是判别样品所属类型的一种统计方法,常用的判别方法有距离判别法、Fisher 判别法、Bayes 判别法、逐步判别法。
(80页)15若12112~(,),,~(,),0,p p p W n n W n A A ∑≥∑∑>,且A 1和A 2相互独立,则112~AA A +12p n n Λ(,,). 。
(19页)16. 对应分析是将R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。
(170页)17. 典型相关分析是研究两组变量之间相关分析的一种多元统计方法。
(194页)18.判别分析适用于被解释变量是非度量变量的情形。
19. 主成分分析是利用降维的思想,在损失很少信息的前提下,把多个指标转化为几个综合指标的多元统计方法。
(113页)20. 设i x ,1,2,16i =⋅⋅⋅是来自多元正态总体(,)p N μ∑,X 和A 分别为正态总体(,)p N μ∑的样本均值和样本离差阵,则2115[4(X )][4(X )]T A μμ-'=--二、判断题1、 对于任何随机向量X='21)X ...,X X p ,,(来说,其协方差阵∑都是对称阵,同时总是非负定的。
( T ) P52、 能够体现各个变量在变差大小上的不同,以及有时存在的相关性还要求距离与各变量所用的单位无关,这种距离是欧式距离。
( F )P73、 最长距离法中,选择最小的距离作为新类与其他类之间的距离,然后将类间距离最小的两类进行合并,一直合并到只有一类为止。
( F )P554、 当总体21G G 和为正态总体且协方差相等时,选用马氏距离。
( T )P905、 进行主成分分析的目的之一是减少变量的个数,所以一般不会去p 个主成分,而是取m(m<p)个主成分。
( T )P1196、 第k 个主成分k Y 与原始变量i X 的相关系数ρ(k Y ,i X )称为因子负荷量。
( T )P1207、 F=’),,(m 21F ......,F F (m<p )是不可观测的变量,其均值向量E (F )=0,协方差矩阵cov(F)=I,即向量F 的各分量不是相互独立的。
(F )P1458、每个典型函数都包括一对变量,通常一个代表自变量,另一个代表因变量。
(T)P2029、分组数据的Logistic回归不仅适用于大样本的分组数据,对小样本的未分组数据也适用。
(F)P23210、一个未知参数可以由显变量的协方差矩阵的一个或多个元素的代数函数来表达,就称这个为参数可识别。
(T)P26411、随机向量的协方差阵一定是对称的半正定阵。
(T)P512、标准化随机变量的协方差阵与原变量的相关系数相同。
(T)P513、对应分析反应的是列变量与行变量的交叉关系。
( F )P17014、若一个随机向量的任何边缘分布均为正态,则它是多元正态分布。
(T)p1015、特征函数描述空间的元素之间是否有关联,而隶属度描述了元素之间的关联是多少。
(T)p6216、非谱系聚类法是把变量聚集成K个类的集合。
(F)p6417、在对因素A和因素B进行对应分析之前没有必要进行独立性检验。
(T)p17318、系统聚类法中的“离差平方和法”的基本思想来源于如果类分得正确,同类样品的离差平方和应该较小,类与类之间的离差平方和应该较大。
(T)p5719、距离判别法对总体的分布没有特定的要求。
(T)p9020、 Wilks统计量可以化成T2统计量但是化不成F统计量。
(F)p18。