遗传多态性与基因突变

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


影响非密码子区域的突变

调控序列突变:使蛋白质合成的速度或效率发 生改变,进而影响着这些蛋白质的功能,并引 起疾病。
内含子与外显子剪辑位点突变:GT-AG中的任 一碱基发生置换而导致剪辑和加工异常,不能 形成正确的mRNA分子。

片段突变
片段突变是DNA链中某些小片段的 碱基序列发生缺失、重复或重排。
多态性表现形式

蛋白质、酶的多态
结合珠蛋白: HP-1、HP2-1、HP2-2; G6PD有3种类型; 抗原多态性:红细胞抗原ABO型;HLA的 多态性;

多态性表现形式


染色体多态:染色体的细胞遗 传学形态

随体的有无、次溢痕的大小、以及带 纹的变异等。
多态性表现形式


DNA多态 (分子水平的遗传多态)
基因剪接 (gene splicing) 转录调控 (transcript regulation) 非编码RNA (noncoding RNA)

DNA 多态的检测方法

限制性片断长度多态性 (RFLP) 单链构象多态性(SSCP) 变性梯度凝胶电泳(DGGE)
等位基因特异的寡核苷酸杂交(ASO)
化学因素


芳香族化合物 吖啶类和焦宁类等扁平分子构 型的芳香族化合物可以嵌入DNA 的核苷酸序列中,导致碱基插入 或丢失的移码突变。
基因突变的一般特性
多向性
同一基因座上的基因可独立发生多次不同的 突变而形成复等位基因
可逆性
突变的方向可逆,可以是正突变,也可以是回 复突变
有害性
突变会导致人类许多疾病的发生
亚硝酸引起DNA碱基对的改变
A被其脱去氨基后可变成次黄嘌呤(H),H不能再与T配对, 而变为与C配对,经DNA复制后,可形成T-A→C-G的转换
化学因素


烷化剂 具有高度诱变活性的烷化剂,可 将烷基(CH3-、C2H5-等)引入多核苷 酸链上的任何位置,被其烷基化的核 苷酸将产生错误配对而引起突变。
个人鉴定
M1 = First Mother
C1 = First Child AF1 = Alleged Father M2 = Second Mother C2a = Second Child C2b = Third Child AF2 = Alleged Father 2
Is AF1 the father of C1?
放射性污染
化学因素

羟胺(hydroxylamine,HA)
化学污染
可使胞嘧啶(C)的化学成分发生改变, 而不能正常地与鸟嘌呤(G)配对,而改为 与腺嘌呤(A)互补。经两次复制后,C-G碱 基对就变换成T-A碱基对。
羟胺引起DNA碱基对的改变
化学因素


亚硝酸或含亚硝基化合物
可使碱基脱去氨基(-NH2) 而产生结构改变,从而引起碱 基错误配对。
烷化剂引起的DNA碱基对的改变
化学因素


碱基类似物 某些碱基类似物可以取代碱基 而插入DNA分子引起突变 。
5-BU引起的DNA碱基对的改变
5-BU与腺嘌呤(A)和鸟嘌呤(G)均可配对。如果5-BU取代T以后一 直保持与A配对,所产生的影响并不大;若与G配对,经一次复制后,就可 以使原来的A-T对变换成G-C对 5-bromo-2,4(1H,3H)-pyrimidinedione,5-BrU or 5-BU , 5-Bromouracil
基因突变的遗传学效应
如果碱基替换影响的是密码子,则会 产生同义突变、无义突变、错义突变和 终止密码突变等遗传学效应; 如果影响的是非密码子区域,则产 生几种不同的遗传学效果:无明确的遗 传学效应、改变调控序列从而影响基因 表达的调控、改变外显子-内含子接头处 的序列从而影响外显子的加工拼接。

同义突变(same sense mutation) 碱基被替换之后,产生了新的密码子,但新旧 密码子同义,所编码的氨基酸种类保持不变, 因此同义突变并不产生突变效应。
遗传多态与基因突变
四川大学华西临床医学院 医学遗传室 2011年3月
目的与要求
掌握遗传多态性的概念、分类及检出 方法 了解遗传多态性的医学意义 熟悉基因突变的概念及类型 了解基因突变与疾病的关系

遗传多态性
多态性(Polymorphism):
群体中经常存在的两种或两种以上 较常见的变异型或等位基因,其中最罕 见的一种在人群中不少于1%。

碱基对插入和(或)缺失的数目和方式不同, 对其后的密码组合的改变的影响程度不同。 移码突变引起的最小变化是在DNA链上增加或 减少一个遗传密码导致合成的多肽链多或少一 个氨基酸,若大范围改变密码组合则会引起的 整条多肽链的氨基酸种类及序列的变化。因而 移码突变的后果往往是严重的,通常是导致一 条或几条多肽链丧失活性或根本不能合成,进 而严重影响细胞或机体的正常生命活动。
碱基变异:1/1000bp 点多态 重复序列多态(STR、VNTR等)
限制性片断片断长度多态性 (RFLP)
DNA序列的改变,甚至于一个核
----Restriction fragment length polymorphism
苷酸变化,就可能引起某个限制
性内切酶切点的丢失或产生,导
致酶切片段长度的变化。
氨基酸

UAA
终止子
UAC
酪氨酸
终止密码突变(terminator codon mutation)
DNA分子中的某一个终止密码突变为编 码氨基酸的密码,从而使多肽链的合成 至此仍继续下去,直至下一个终止密码 子为止,形成超长的异常多肽链。
移码突变(frame-shift mutation)

除碱基替换外,点突变的另一种形式就 是移码突变。由于基因组DNA链中插入 或缺失1个或几个碱基对,从而使自插入 或缺失的那一点以下的三联体密码的组 合发生改变,进而使其编码的氨基酸种 类和序列发生变化。

检测技术: PCR-RFLP 酶切 (琼脂糖)电泳
Southern Blot
RFLP示例
RFLP的实例,不同位置的电泳条带显示不同的等位基因。 家系图谱和实验结果的对照关系用于显示孟德尔遗传方式。


RFLP的局限性:
单个碱基改变引起酶切位点的出现或消失, “能切”与 “不能切”两种情况,“多态 性” 信息量低; 现有的限制性内切酶不能检测出所有的 核苷酸的改变; 分布不均

二态的遗传变异 多为转换,C T
CG二核苷酸处集中分布
C
T
单核苷酸多态性的类型与作用

位于基因编码区
同义变异 错义变异 无义变异 提前终止

(synonymous)
(missense)
(nonsense) (stop codon)
单核苷酸多态性的类型与作用
位于非基因编码区或基因间隔区
物理因素

紫外线 紫外线的照射可使DNA顺序中相邻 的嘧啶类碱基结合成嘧啶二聚体,最常 见的为胸腺嘧啶二聚体(TT)。在复制 或转录进行时,该处碱基配对发生错误, 从而引起新合成的DNA或RNA链的碱基 改变。
紫 外 线 诱 发 的 胸 腺 嘧 啶 二 聚 体
物理因素



电离辐射 射线直接击中DNA链,DNA分子吸 收能量后引起DNA链和染色体的断裂, 片断发生重排,引起染色体结构畸变.
DNA 多态的检测方法


DNA芯片 DNA测序
DHPLC
质谱法
遗传多态的医学意义和应用

连锁分析与基因定位 疾病的关联分析 复杂疾病或过程的基因定位 法医学应用: 个人识别, 亲权鉴定等
遗传多态的医学意义和应用


疾病发病的分子遗传机理的阐明
镰刀血红蛋白贫血


环境因子易感基因的检出 指导用药和药物设计

基因突变的概念
基因突变(gene mutation)是 指基因组DNA分子某些碱基或其 顺序发身改变.
基因突变
生物进化的基础 产生新的基因 遗传病产生的原因
基因突变的分子机制

一般分为两大类-静态突变和动态 突变。
静态突变(static mutation)是在一定条件 下生物各世代中以相对稳定的频率发生的 基因突变。可分为点突变和片段突变。

点突变(point mutation)
DNA链中一个或一对碱基发生的
改变。它有两种形式:碱基替换和 移码突变。
碱基替换(base substitution):
DNA链中碱基之间互相替换。


转换(transition):嘌呤与嘌呤之 间,或嘧啶与嘧啶之间的替换。 颠换(transvertion):嘌呤与嘧啶 之间的替换。

动态突变(Dynamic mutation)

在人类基因组中有大量的重复序列,如微卫 星DNA或称为短串联重复序列STR,它们的重 复次数变动很大,有些STR,尤其是三核苷酸 重复,在靠近基因或位于基因序列中时,它们 的重复次数在一代一代传递过程中会发生明 显的增加,从而导致某些疾病的发生,称为动 态突变。 例如,脆性X染色体综合症即是由 于三核苷酸CCG重复序列的拷贝数增加所致。


VNTR和新一代的RFLP
----VNTR ( Variable number tandem repeats )
基因组中存在的小卫星DNA是由短 的DNA序列串联重复组成,重复次数在 人群中高度变异,当用限制酶切割VNTR 区域时,只要酶切位点不在重复区,就
可以得到各种长度不同的片段。
VNTR 区域
Is AF2 the father of C2a ? and C2b?
单核苷酸多态(SNP)
---- single nucleotide polymorphism
基因组内特定核苷酸位置上存 在两种不同的碱基,其中最少的一 种在群体中的频率不小于1%,平均 每隔100-300bp有一多态位点.
单核苷酸多态性的特征
肝酯酶基因启动子区的一个多态与他汀类降血脂的效果
有高度的相关性
(Zambon A, et al Circulation, 2001, 103(6) :792-798)
参考文献

张思仲.人类基因组的单核苷酸多态性及其医学应用, 《中华医学遗传学杂志》1999,16(2):119-121. 张思仲. 基因多态性研究与遗传性疾病,《中华 医学遗传学杂志》2000,80(9):654-656.
VNTR 示Fra Baidu bibliotek图
VNTR的特点 :
按孟德尔方式遗传 复等位基因, 多态信息含量高 用于个体鉴别、遗传分析和基因定位等
DNA指纹
用适当的限制性内切酶消化基因组DNA, 从各位点可获得一系列长度不等的小卫星片 断,如用适当的探针做印记杂交, 获得的具 有高度个体特异性的带谱。 用途:个体识别、亲子鉴定
基因突变的其它相关概念

突变体:携带突变Gene的细胞或个体 野生型:未突变Gene的细胞或个体 突变热点 (Hot spots of mutation) : DNA分子中某些部位的突变频率大大高于 平均数,这些部位称为突变热点。
诱发基因突变的因素



根据基因突变发生的原因,可将突变分为 自发突变和诱发突变。 在自然条件下,未经人工处理而发生的突变 为自发突变(spontaneous mutation)。 经人工处理而发生的突变是诱发突变 (induced mutaion)。 能诱发基因突变的各种内外环境因素统称为 诱变剂(mutagen)。

光复活修复(photoreactivation repair)
细胞内存在着一种光复活酶。在可见光的 照射下,光复活酶被激活,从而能识别嘧啶 二聚体并与之结合,形成酶-DNA复合物,然 后利用可见光提供的能量,解开二聚体,此 后光复活酶从复合物中释放出来,完成修复 过程,这一过程称为光复活修复。

无义突变(non-sense mutation)
碱基替换使编码氨基酸的密码变成终止密码 UAA、UAG或UGA。

错义突变(missense mutation)
碱基替换使编码某种氨基酸的密码子变成编码 另一种氨基酸的密码子,从而使多肽链的氨基 酸种类和序列发生改变。
DNA
ATT
颠换
ATG
mRNA
基因突变的一般特性
稀有性
在自然状态下发生突变的频率很低
随机性 可重复性
DNA损伤的修复
生物体内存在着多种DNA修复系统, 当DNA受到损伤时,在一定条件下,这 些修复系统可以部分地修正DNA分子的 损伤,从而大大降低突变所引起的有害 效应,保持遗传物质的稳定性。
紫外线引起的DNA损伤的修复
相关文档
最新文档