2018版高中数学三角函数1.2.1任意角的三角函数一导学案新人教A版
高中数学第一章三角函数1.1.1任意角导学案新人教A版必修4(2021年整理)
2018版高中数学第一章三角函数1.1.1 任意角导学案新人教A版必修4 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第一章三角函数1.1.1 任意角导学案新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第一章三角函数1.1.1 任意角导学案新人教A版必修4的全部内容。
1.1.1 任意角学习目标 1.了解角的概念。
2.掌握正角、负角和零角的概念,理解任意角的意义。
3.熟练掌握象限角、终边相同的角的概念,会用集合符号表示这些角.知识点一角的相关概念思考1 用旋转方式定义角时,角的构成要素有哪些?答案角的构成要素有始边、顶点、终边。
思考2 将射线OA绕着点O旋转到OB位置,有几种旋转方向?答案有顺时针和逆时针两种旋转方向。
思考3 如果一个角的始边与终边重合,那么这个角一定是零角吗?答案不一定,若角的终边未作旋转,则这个角是零角.若角的终边作了旋转,则这个角就不是零角。
梳理(1)角的概念:角可以看成平面内一条射线绕着端点O从一个位置OA旋转到另一个位置OB所成的图形。
点O是角的顶点,射线OA,OB分别是角α的始边和终边。
(2)按照角的旋转方向,分为如下三类:类型定义正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转,称它形成了一个零角知识点二象限角思考把角的顶点放在平面直角坐标系的原点,角的始边与x轴的非负半轴重合,旋转该角,则其终边(除端点外)可能落在什么位置?答案终边可能落在坐标轴上或四个象限内.梳理在直角坐标系内,使角的顶点与原点重合,角的始边与x轴的非负半轴重合.象限角:终边在第几象限就是第几象限角;轴线角:终边落在坐标轴上的角。
高一数学 1.2.1任意角的三角函数(一)学案 新人教a版必修4
1.2.1 任意角的三角函数(一)自主探究1.任意角三角函数的定义(1)在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么:①y 叫做α的正弦,记作sin_α,即sin α=y ; ②x 叫做α的余弦,记作cos_α,即cos α=x ;③y x 叫做α的正切,记作y x ,即tan α=y x(x ≠0).对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.(2)设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=y r,cos α=x r ,tan α=y x.2.正弦、余弦、正切函数值在各象限的符号3.诱导公式一终边相同的角的同一三角函数的值相等,即:sin(α+k ·2π)=sin_α,cos(α+k ·2π)=cos_α, tan(α+k ·2π)=tan_α,其中k ∈Z .解 以α=2π为例,其余略.设P (x ,y )为α=32π上一点,易知点P (x ,y )在y 轴负半轴上.∴x =0,y <0,r =x 2+y 2=-y >0.∴sin 32π=y r =-1;cos 32π=x r =0;tan 32π=yx ,无意义.名师点拨1.对三角函数定义的理解(1)三角函数也是一种函数,它满足函数的定义,可以看成是从一个角的集合(弧度制)到一个比值的集合的对应,并且对任意一个角,在比值集合中都有唯一确定的象与之对应,三角函数的自变量是角α,比值是角α的函数.(2)三角函数是用比值来定义的,所以三角函数的定义域是使比值有意义的角的范围.如在求正切时,若点P 的横坐标x 等于0,则tan α无意义.(3)三角函数值是比值,是一个实数,这个实数的大小和点P (x ,y )在终边上的位置无关,只由角α的终边位置确定.即三角函数值的大小只与角有关.(4)符号sin α、cos α、tan α是一个整体,离开“α”,“sin”、“cos”、“tan”不表示任何意义,更不能把“sin α”当成“sin”与“α”的乘积.2.诱导公式一的理解及其应用(1)公式一的实质是说终边相同的角的三角函数值相等.(2)公式一的结构特征:①左、右为同一三角函数;②公式左边的角为α+k ·2π,右边的角为α.(3)公式一的作用:把求任意角的三角函数值转化为求0~2π(或0°~360°)角的三角函数值.典例剖析一、利用定义求任意角的三角函数值例1 已知角α的终边上一点P (-15a,8a ) (a ∈R 且a ≠0),求α的各三角函数值. 解 ∵x =-15a ,y =8a .∴r =-15a 2+a 2=17|a | (a ≠0). (1)若a >0,则r =17a ,于是sin α=817,cos α=-1517,tan α=-815.(2)若a <0,则r =-17a ,于是sin α=-817,cos α=1517,tan α=-815.点拨 已知角终边一点求三角函数值,关键在确定该点的坐标,根据三角函数定义求解,同时应注意一些字母符号.二、判断三角函数值的符号例2 若θ为第一象限角,则能确定为正值的是( )A .sin θ2B .cos θ2C .tan θ2D .cos 2θ答案 C解析 ∵θ为第一象限角,∴2k π<θ<2k π+π2,k ∈Z .∴k π<θ2<k π+π4,k ∈Z .当k =2n (n ∈Z )时,2n π<θ2<2n π+π4(n ∈Z ).∴θ2为第一象限角,∴sin θ2>0,cos θ2>0,tan θ2>0. 当k =2n +1 (n ∈Z )时,2n π+π<θ2<2n π+54π (n ∈Z ).∴θ2为第三象限角,∴sin θ2<0,cos θ2<0,tan θ2>0, 从而tan θ2>0,而4k π<2θ<4k π+π,k ∈Z ,cos 2θ有可能取负值.点拨 根据三角函数值的符号判断角所在的象限时,可以利用口诀“一全正、二正弦、三正切、四余弦”来记忆.三、诱导公式一的应用 例3 求下列各式的值.(1)cos 253π+tan ⎝ ⎛⎭⎪⎫-154π; (2)sin(-1 320°)cos 1 110°+cos(-1 020°)sin 750°+tan 495°.解 (1)原式=cos 253π+tan ⎝ ⎛⎭⎪⎫-154π =cos ⎝ ⎛⎭⎪⎫8π+π3+tan ⎝ ⎛⎭⎪⎫-4π+π3 =cos π3+tan π4=12+1=32.(2)原式=sin(-4×360°+120°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)+tan(360°+135°)=sin 120°cos 30°+cos 60°sin 30°+tan 135°=32×32+12×12-1=0. 点拨 利用诱导公式一可把负角的三角函数化为0到2π间的三角函数,也可把大于2π的角的三角函数化为0到2π间的三角函数,即实现了“负化正,大化小”.同时要熟记特殊角的三角函数值.变式训练1.已知角α终边上一点P (-3,y ),且sin α=34y ,求cos α和tan α的值.解 sin α=y3+y2=34y . 当y =0时,sin α=0,cos α=-1,tan α=0.当y ≠0时,由y 3+y 2=3y 4,解得:y =±213. 当y =213时,P ⎝ ⎛⎭⎪⎫-3,213,r =433. ∴cos α=-34,tan α=-73.当y =-213时,cos α=-34,tan α=73. 2.若sin α<0且tan α>0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 答案 C解析 ∵sin α<0,∴α是第三、四象限角.又tan α>0, ∴α是第一、三象限角,故α是第三象限角. 3.求下列各式的值.(1)cos ⎝ ⎛⎭⎪⎫-233π+tan 174π; (2)sin 630°+tan 1 125°+tan 765°+cos 540°.解 (1)原式=cos ⎣⎢⎡⎦⎥⎤π3+-4×2π+tan ⎝ ⎛⎭⎪⎫π4+2×2π =cos π3+tan π4=12+1=32.(2)原式=sin(360°+270°)+tan(3×360°+45°)+tan(2×360°+45°)+cos(360°+180°)=sin 270°+tan 45°+tan 45°+cos 180° =-1+1+1-1=0.一、选择题1.sin 210°等于( )A.32 B .-32 C.12 D .-12 答案 D2.若cos θ>0且sin 2θ<0,则角θ的终边所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案 D3.点A (x ,y )是300°角终边上异于原点的一点,则yx的值为( ) A. 3 B .- 3 C.33 D .-33答案 B4.角α的终边经过点P (-b,4)且cos α=-35,则b 的值为( )A .3B .-3C .±3 D.5 答案 A解析 r =b 2+16,cos α=-b r =-b b 2+16=-35.∴b =3.二、填空题5.代数式:sin 2cos 3tan 4的符号是________. 答案 负号解析 ∵π2<2<π,∴sin 2>0,∵π2<3<π,∴cos 3<0, ∵π<4<32π,∴tan 4>0.∴sin 2cos 3tan 4<0.6.已知α终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为________.答案 -2<a ≤3解析 ∵sin α>0,cos α≤0,∴α位于第二象限或y 轴正半轴上,∴3a -9≤0,a +2>0,∴-2<a ≤3.7.设角α的终边经过点(-6t ,-8t ) (t ≠0),则sin α-cos α的值是________.答案 ±15解析 当t >0时,r =10|t |=10t .sin α=-45,cos α=-35,sin α-cos α=-15.当t <0时,r =10|t |=-10t .sin α=45,cos α=35,sin α-cos α=15.8.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n =________.答案 2解析 ∵y =3x ,sin α<0,∴点P (m ,n )位于y =3x 在第三象限的图象上,且m <0,n <0,n =3m .∴|OP |=m 2+n 2=10|m |=-10m =10. ∴m =-1,n =-3,∴m -n =2. 三、解答题9.已知角θ的终边上一点P (x,3) (x ≠0),且cos θ=1010x ,求sin θ,tan θ. 解 ∵r =x 2+9,cos θ=x r,∴1010x =xx 2+9. ∵x ≠0,∴x =±1.∵y =3>0,∴θ是第一或第二象限角,当θ为第一象限角时,sin θ=31010,tan θ=3;当θ为第二象限角时,sin θ=31010,tan θ=-3.10.已知α是第三象限角,试判定sin(cos α)·cos(sin α)的符号. 解 α是第三象限角,则有:cos α<0且-1<cos α<0,sin α<0且-1<sin α<0,进而有cos α是第四象限角,所以sin(cos α)<0,sin α是第四象限角,所以cos(sin α)>0, 所以sin(cos α)·cos(sin α)<0.。
高中数学第一章三角函数1.2.1任意角的三角函数(1)课时提升作业1新人教A版必修4
任意角的三角函数(一)(15分钟30分)一、选择题(每小题4分,共12分)1。
求值sin750°=( )A。
- B. — C.D。
【解析】选C.sin 750°= sin(2×360°+ 30°)=sin 30°=。
2.(2015·晋江高一检测)如果角θ的终边经过点(,-1),那么cosθ的值是( )A.—B。
- C. D.【解析】选C。
点(,-1)到原点的距离r==2,所以cosθ=.【延伸探究】将本题中点的坐标改为(—1,),求sinθ-cosθ。
【解析】点(-1,)到原点的距离r==2,所以sinθ=,cosθ=-,所以sinθ-cosθ=—=。
3.(2015·北京高一检测)已知α∈(0,2π),且sinα<0,cosα〉0,则角α的取值范围是( )A。
B.C. D.【解析】选D。
因为sinα〈0,cosα〉0,所以角α是第四象限角,又α∈(0,2π),所以α∈.二、填空题(每小题4分,共8分)4。
求值:cosπ+tan=______【解析】cosπ=cos=cos=,tan=tan=tan=,所以cosπ+tan=+.答案:+5.(2015·南通高一检测)若角135°的终边上有一点(—4,a),则a的值是________.【解析】因为角135°的终边与单位圆交点的坐标为,所以tan 135°==-1,又因为点(—4,a)在角135°的终边上,所以tan 135°=,所以=-1,所以a=4.答案:4【补偿训练】如果角α的终边过点P(2sin 30°,—2cos 30°),则cosα的值等于________。
【解析】2sin 30°=1,—2cos 30°=—,所以r=2,所以cosα=.答案:三、解答题6.(10分)判断下列各式的符号.(1)sinα·cosα(其中α是第二象限角)。
人教版高中数学必修四第一章三角函数1.2任意角的三角函数(教师版)【个性化辅导含答案】
任意角的三角函数__________________________________________________________________________________ __________________________________________________________________________________ 1.能根据三角函数的定义导出同角三角函数的基本关系式及它们之间的联系; 2.熟练掌握已知一个角的三角函数值求其它三角函数值的方法||。
3.牢固掌握同角三角函数的两个关系式||,并能灵活运用于解题. (一)任意角的三角函数: 任意点到原点的距离公式:22y x r +=1.三角函数定义:在直角坐标系中||,设α是一个任意角||,α终边上任意一点P (除了原点)的坐标为(,)x y ||,它与原点的距离为(0)r r ==>||,那么(1)比值y r 叫做α的正弦||,记作sin α||,即sin y r α=; (2)比值x r 叫做α的余弦||,记作cos α||,即cos xr α=;(3)比值y x 叫做α的正切||,记作tan α||,即tan yxα=;(4)比值x y 叫做α的余切||,记作cot α||,即cot x yα=; 2.说明:(1)α的始边与x 轴的非负半轴重合||,α的终边没有表明α一定是正角或负角||,以及α的大小||,只表明与α的终边相同的角所在的位置;(2)根据相似三角形的知识||,对于确定的角α||,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; (3)当()2k k Z παπ=+∈时||,α的终边在y 轴上||,终边上任意一点的横坐标x 都等于0||,所以tan yxα=无意义;同理当()k k Z απ=∈时||,y x =αcot 无意义;(4)除以上两种情况外||,对于确定的值α||,比值y r 、x r 、y x、xy 分别是一个确定的实数||。
2018版高中数学第一章三角函数1.2.1任意角的三角函数(一)导学案新人教A版必修4
1.2.1 任意角的三角函数(一)学习目标 1.通过借助单位圆理解并掌握任意角的三角函数定义,了解三角函数是以实数为自变量的函数.2.借助任意角三角函数的定义理解并掌握正弦、余弦、正切函数值在各象限内的符号.3.通过对任意角的三角函数定义的理解,掌握终边相同的角的同一三角函数值相等.知识点一 任意角的三角函数使锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,在终边上任取一点P ,作PM ⊥x 轴于M ,设P (x ,y ),|OP |=r .思考1 角α的正弦、余弦、正切分别等于什么? 答案 sin α=yr ,cos α=x r ,tan α=y x.思考2 对确定的锐角α,sin α,cos α,tan α的值是否随P 点在终边上的位置的改变而改变?答案 不会.因为三角函数值是比值,其大小与点P (x ,y )在终边上的位置无关,只与角α的终边位置有关,即三角函数值的大小只与角有关.思考3 在思考1中,当取|OP |=1时,sin α,cos α,tan α的值怎样表示? 答案 sin α=y ,cos α=x ,tan α=y x. 梳理 (1)单位圆在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆. (2)定义在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: ①y 叫做α的正弦,记作sin α, 即sin α=y ;②x 叫做α的余弦,记作cos α,即cos α=x ; ③y x 叫做α的正切,记作tan α,即tan α=y x(x ≠0).对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.知识点二正弦、余弦、正切函数的定义域思考对于任意角α,sin α,cos α,tan α都有意义吗?答案由三角函数的定义可知,对于任意角α,sin α,cos α都有意义,而当角α的终边在y轴上时,任取一点P,其横坐标x都为0,此时yx无意义,故tan α无意义.梳理三角函数的定义域知识点三正弦、余弦、正切函数值在各象限的符号思考根据三角函数的定义,你能判断正弦、余弦、正切函数的值在各象限的符号吗?答案由三角函数定义可知,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y),则sin α=y,cos α=x,tan α=yx.当α为第一象限角时,y>0,x>0,故sin α>0,cos α>0,tan α>0,同理可得当α在其他象限时三角函数值的符号,如图所示.梳理记忆口诀:“一全正,二正弦,三正切,四余弦”.知识点四诱导公式一思考当角α分别为30°,390°,-330°时,它们的终边有什么特点?它们的三角函数值呢?答案它们的终边重合.由三角函数的定义知,它们的三角函数值相等.梳理诱导公式一类型一 三角函数定义的应用命题角度1 已知角α终边上一点坐标求三角函数值 例1 已知θ终边上一点P (x ,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ. 解 由题意知r =|OP |=x 2+9, 由三角函数定义得cos θ=x r=xx 2+9. 又∵cos θ=1010x ,∴x x 2+9=1010x . ∵x ≠0,∴x =±1. 当x =1时,P (1,3), 此时sin θ=312+32=31010,tan θ=31=3. 当x =-1时,P (-1,3), 此时sin θ=3(-1)2+32=31010,tan θ=3-1=-3. 反思与感悟 (1)已知角α终边上任意一点的坐标求三角函数值的方法:①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应地三角函数值.②在α的终边上任选一点P (x ,y ),设P 到原点的距离为r (r >0),则sin α=yr,cos α=xr.当已知α的终边上一点求α的三角函数值时,用该方法更方便. (2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.跟踪训练1 已知角α的终边过点P (-3a ,4a )(a ≠0),求2sin α+cos α的值. 解 r =(-3a )2+(4a )2=5|a |.①若a >0,则r =5a ,角α在第二象限,sin α=y r =4a 5a =45,cos α=x r =-3a 5a =-35,∴2sin α+cos α=85-35=1.②若a <0,则r =-5a ,角α在第四象限, sin α=4a -5a =-45,cos α=-3a -5a =35,∴2sin α+cos α=-85+35=-1.综上所述,2sin α+cos α=±1.命题角度2 已知角α终边所在直线求三角函数值例2 已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值.解 由题意知,cos α≠0.设角α的终边上任一点为P (k ,-3k )(k ≠0),则x =k ,y =-3k ,r = k 2+(-3k )2=10|k |.(1)当k >0时,r =10k ,α是第四象限角, sin α=y r=-3k10k=-31010,1cos α=r x =10k k =10,∴10sin α+3cos α=10³⎝ ⎛⎭⎪⎫-31010+310=-310+310=0.(2)当k <0时,r =-10k ,α是第二象限角,sin α=y r =-3k -10k =31010,1cos α=r x =-10k k=-10, ∴10sin α+3cos α=10³31010+3³(-10)=310-310=0.综上所述,10sin α+3cos α=0.反思与感悟 在解决有关角的终边在直线上的问题时,应注意到角的终边为射线,所以应分两种情况处理,取射线上异于原点的任意一点的坐标的(a ,b ),则对应角的三角函数值分别为sin α=b a 2+b2,cos α=a a 2+b2,tan α=ba. 跟踪训练2 已知角α的终边在直线y =3x 上,求sin α,cos α,tan α的值. 解 因为角α的终边在直线y =3x 上,所以可设P (a ,3a )(a ≠0)为角α终边上任意一点, 则r =a 2+(3a )2=2|a |(a ≠0). 若a >0,则α为第一象限角,r =2a , 所以sin α=3a 2a =32, cos α=a 2a =12,tan α=3aa= 3.若a <0,则α为第三象限角,r =-2a , 所以sin α=3a -2a =-32,cos α=-a 2a =-12,tan α=3aa= 3.类型二 三角函数值符号的判断例3 (1)若α是第二象限角,则点P (sin α,cos α)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限答案 D解析 ∵α为第二象限角,∴sin α>0,cos α<0, ∴点P 在第四象限,故选D. (2)确定下列各三角函数值的符号. ①sin 182°;②cos(-43°);③tan 7π4.解 ①∵182°是第三象限角, ∴sin 182°是负的,符号是“-”. ②∵-43°是第四象限角,∴cos(-43°)是正的,符号是“+”. ③∵7π4是第四象限角,∴tan 7π4是负的,符号是“-”.反思与感悟 角的三角函数值的符号由角的终边所在位置确定,解题的关键是准确确定角的终边所在的象限,同时牢记各三角函数值在各象限的符号,记忆口诀:一全正,二正弦,三正切,四余弦.跟踪训练3 (1)已知点P (tan α,cos α)在第三象限,则α是第 象限角. 答案 二解析 由题意知tan α<0,cos α<0, ∴α是第二象限角. (2)判断下列各式的符号.①sin 145°cos(-210°);②sin 3²cos 4²tan 5. 解 ①∵145°是第二象限角,∴sin 145°>0. ∵-210°=-360°+150°,∴-210°是第二象限角, ∴cos (-210°)<0,∴sin 145°cos(-210°)<0. ②∵π2<3<π<4<3π2<5<2π,∴sin 3>0,cos 4<0,tan 5<0, ∴sin 3²cos 4²tan 5>0. 类型三 诱导公式一的应用 例4 求下列各式的值.(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin ⎝⎛⎭⎪⎫-11π6+cos 12π5²tan 4π. 解 (1)原式=sin(-4³360°+45°)cos(3³360°+30°)+cos(-3³360°+60°)sin(2³360°+30°)=sin 45°cos 30°+cos 60°sin 30°=22³32+12³12=64+14=1+64. (2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝ ⎛⎭⎪⎫2π+2π5²tan(4π+0)=sin π6+cos 2π5³0=12.反思与感悟 利用诱导公式一可把负角的三角函数化为0到2π间的三角函数,也可把大于2π的角的三角函数化为0到2π间的三角函数,即实现了“负化正,大化小”. 跟踪训练4 求下列各式的值. (1)cos 25π3+tan ⎝ ⎛⎭⎪⎫-15π4;(2)sin 810°+tan 765°-cos 360°. 解 (1)原式=cos ⎝ ⎛⎭⎪⎫8π+π3+tan ⎝ ⎛⎭⎪⎫-4π+π4 =cos π3+tan π4=12+1=32.(2)原式=sin(90°+2³360°)+tan(45°+2³360°)-cos 360°=sin 90°+tan 45°-1=1+1-1=1.1.已知角α的终边经过点(-4,3),则cos α等于( ) A.45 B.35 C.-35D.-45答案 D解析 由题意可知x =-4,y =3,r =5,所以cos α=x r =-45.故选D.2.cos(-11π6)等于( )A.12B.-12C.32D.-32答案 C解析 cos(-11π6)=cos(-2π+π6)=cos π6=32.3.若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α等于( )A.-34B.34C.43D.-43答案 D 解析 ∵cos α=332+y 2=35, ∴32+y 2=5,∴y 2=16, ∵y <0,∴y =-4,∴tan α=-43.4.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( )A.1B.0C.2D.-2答案 C解析 ∵α为第二象限角,∴sin α>0,cos α<0. ∴|sin α|sin α-cos α|cos α|=sin αsin α-cos α-cos α=2.5.已知角α的终边上有一点P (24k ,7k ),k ≠0,求sin α,cos α,tan α的值. 解 当k >0时,令x =24k ,y =7k , 则有r =(24k )2+(7k )2=25k ,∴sin α=y r =725,cos α=x r =2425,tan α=y x =724.当k <0时,令x =24k ,y =7k ,则有r =-25k ,∴sin α=y r =-725,cos α=x r =-2425,tan α=y x =724.1.正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或比值为函数值的函数.2.角α的三角函数值的符号只与角α所在象限有关,角α所在象限确定,则三角函数值的符号一定确定,规律是“一全正,二正弦,三正切,四余弦”.3.终边相同的三角函数值一定相等,但两个角的某一个函数值相等,不一定有角的终边相同,更不一定有两角相等.课时作业一、选择题1.sin(-1 380°)的值为( ) A.-12B.12C.-32D.32答案 D解析 sin(-1 380°)=sin(-360°³4+60°) =sin 60°=32. 2.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x 的值为( ) A. 3 B.± 3 C.- 2D.- 3答案 D解析 ∵cos α=x r=x x 2+5=24x , ∴x =0或2(x 2+5)=16,∴x =0或x 2=3,∴x =0(∵α是第二象限角,∴舍去)或x =3(舍去)或x =- 3.故选D. 3.已知sin θ<0,且tan θ<0,则θ为( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角答案 D4.已知角α的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( ) A.5π6 B.2π3 C.4π3D.11π6答案 D解析 ∵sin 2π3=32,cos 2π3=-12.∴角α的终边在第四象限, 且tan α=cos2π3sin2π3=-33,∴角α的最小正值为2π-π6=11π6. 5.已知角α的终边经过点P (3,4t ),且sin(2k π+α)=-35(k ∈Z ),则t 等于( )A.-916B.916C.34D.-34答案 A解析 sin(2k π+α)=sin α=-35<0,则α的终边在第三或第四象限.又点P 的横坐标为正数,所以α是第四象限角,所以t <0.又sin α=4t9+16t2,则4t9+16t2=-35,所以t =-916.6.某点从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( ) A.⎝ ⎛⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-32,-12 C.⎝ ⎛⎭⎪⎫-12,-32D.⎝⎛⎭⎪⎫-32,12 答案 A解析 由三角函数定义可得Q ⎝ ⎛⎭⎪⎫cos 2π3,sin 2π3,cos 2π3=-12,sin 2π3=32.7.如果点P (sin θ+cos θ,sin θcos θ)位于第二象限,那么角θ的终边在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限答案 C解析 由题意知sin θ+cos θ<0,且sin θcos θ>0,∴⎩⎪⎨⎪⎧sin θ<0,cos θ<0,∴θ为第三象限角.8.若角α的终边在直线y =-2x 上,则sin α等于( ) A.±15B.±55C .±255D.±12答案 C 二、填空题9.tan 405°-sin 450°+cos 750°= . 答案32解析 tan 405°-sin 450°+cos 750°=tan(360°+45°)-sin(360°+90°)+cos(720°+30°)=tan 45°-sin 90°+cos 30°=1-1+32=32. 10.使得lg(cos αtan α)有意义的角α是第 象限角. 答案 一或二解析 要使原式有意义,需cos αtan α>0, 即需cos α,tan α同号,所以α是第一或第二象限角.11.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n = .答案 2解析 ∵y =3x 且sin α<0,∴点P (m ,n )位于y =3x 在第三象限的图象上,且m <0,n <0,n =3m .∴|OP |=m 2+n 2=10|m | =-10m =10,∴m =-1,n =-3,∴m -n =2.12.函数y =|sin x |sin x +|cos x |cos x -2|sinx cos x |sin x cos x 的值域是 .答案 {-4,0,2}解析 由sin x ≠0,cos x ≠0知,x 的终边不能落在坐标轴上,当x 为第一象限角时,sin x >0,cos x >0,sin x cos x >0,y =0;当x 为第二象限角时,sin x >0,cos x <0,sin x cos x <0,y =2;当x 为第三象限角时,sin x <0,cos x <0,sin x cos x >0,y =-4;当x 为第四象限角时,sin x <0,cos x >0,sin x cos x <0,y =2.故函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x 的值域为{-4,0,2}.三、解答题13.化简下列各式:(1)sin 72π+cos 52π+cos(-5π)+tan π4;(2)a 2sin 810°-b 2cos 900°+2ab tan 1 125°.解 (1)原式=sin 32π+cos π2+cos π+1=-1+0-1+1=-1.(2)原式=a 2sin 90°-b 2cos 180°+2ab tan(3³360°+45°)=a 2+b 2+2ab tan 45°=a 2+b 2+2ab =(a +b )2.四、探究与拓展14.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,则sin θ+cos θ= .答案 0或- 2解析 ∵θ的终边过点P (x ,-1)(x ≠0),∴tan θ=-1x .又tan θ=-x ,∴x 2=1,即x =±1.当x =1时,sin θ=-22,cos θ=22,因此sin θ+cos θ=0;当x =-1时,sin θ=-22,cos θ=-22,因此sin θ+cos θ=- 2.故sin θ+cos θ的值为0或- 2.15.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限;(2)若角α的终边与单位圆相交于点M ⎝ ⎛⎭⎪⎫35,m ,求m 的值及sin α的值.解 (1)∵1|sin α|=-1sin α,∴sin α<0. ①∵lg(cos α)有意义,∴cos α>0. ②由①②得角α在第四象限.(2)∵点M (35,m )在单位圆上, ∴(35)2+m 2=1,解得m =±45.又α是第四象限角,∴m <0,∴m =-45.由三角函数定义知,sin α=-45.。
高中数学 任意角的三角函数教案 新人教版必修4-新人教版高一必修4数学教案
任意角的三角函数(一)一、教学目标:1、知识与技能〔1〕掌握任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;〔2〕理解任意角的三角函数不同的定义方法;〔3〕了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;〔4〕掌握并能初步运用公式一;〔5〕树立映射观点,正确理解三角函数是以实数为自变量的函数.2、过程与方法初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.3、情态与价值任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值〞来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合〞的对应关系与学生熟悉的一般函数概念中的“数集到数集〞的对应关系有冲突,而且“比值〞需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地说明了正弦、余弦函数中从自变量到函数值之间的对应关系,也说明了这两个函数之间的关系.二、教学重、难点重点: 任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;终边相同的角的同一三角函数值相等〔公式一〕.难点: 任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;三角函数线的正确理解.三、学法与教学用具任意角的三角函数可以有不同的定义方法,本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.说明了正弦、余弦函数中从自变量到函数值之间的对应关系,也说明了这两个函数之间的关系.另外,这样的定义使得三角函数所反映的数与形的关系更加直接,数形结合更加紧密,这就为后续内容的学习带来方便,也使三角函数更加好用了.教学用具:投影机、三角板、圆规、计算器四、教学设想第一课时任意角的三角函数〔一〕提问:锐角O的正弦、余弦、正切怎样表示?借助右图直角三角形,复习回顾.数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?如图,设锐角α的顶点与原点O重合,始边与x轴的正半轴重合,么它的终边在第一象限.在α的终边上任取一点(,)P a b ,它与原点的距离0r =>.过P 作x 轴的垂线,垂足为M ,那么线段OM 的长度为a ,线段MP 的长度为b .那么sin MP bOP rα==;cos OM a OP r α==; tan MP bOM aα==.思考:对于确定的角α,这三个比值是否会随点P 在α的终边上的位置的改变而改变呢?显然,我们可以将点取在使线段OP 的长1r =的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:sin MP b OP α==; cos OM a OP α==; tan MP bOM aα==. 思考:上述锐角α的三角函数值可以用终边上一点的坐标表示.那么,角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题――任意角的三角函数.【探究新知】1.探究:结合上述锐角α的三角函数值的求法,我们应如何求解任意角的三角函数值呢?显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角求得该角的三角函数值了.所以,我们在此引入单位圆的定义:在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆.2.思考:如何利用单位圆定义任意角的三角函数的定义?如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦(sine),记做sin α,即sin y α=; 〔2〕x 叫做α的余弦(cossine),记做cos α,即cos x α=; 〔3〕y x 叫做α的正切(tangent),记做tan α,即tan (0)yx xα=≠. 注意:当α是锐角时,此定义与初中定义相同〔指出对边,邻边,斜边所在〕;当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点(,)P x y ,从而就必然能够最终算出三角函数值.3.思考:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢? 前面我们已经知道,三角函数的值与点P 在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离r =那么sin α=,cos α=,tan yxα=.所以,三角函数是以为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数.4.例题讲评例1.求53π的正弦、余弦和正切值. 例2.角α的终边过点0(3,4)P --,求角α的正弦、余弦和正切值.教材给出这两个例题,主要是帮助理解任意角的三角函数定义.我也可以尝试其他方法:如例2:设3,4,x y =-=-那么5r ==.于是4sin 5y r α==-,3cos 5x r α==-,4tan 3y x α==. 5.巩固练习17P 第1,2,3题6.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:例3.求证:当且仅当不等式组sin 0{tan 0θθ<>成立时,角θ为第三象限角.8.思考:根据三角函数的定义,终边相同的角的同一三角函数值有和关系? 显然: 终边相同的角的同一三角函数值相等.即有公式一:sin(2)sin k απα+=cos(2)cos k απα+= (其中k Z ∈) tan(2)tan k απα+=9.例题讲评例4.确定以下三角函数值的符号,然后用计算器验证: (1)cos250︒; (2)sin()4π-; (3)tan(672)︒-; (4)tan3π例5.求以下三角函数值:(1)'sin148010︒; (2)9cos4π; (3)11tan()6π- 利用公式一,可以把求任意角的三角函数值, 转化为求0到2π(或0︒到360︒)角的三角函数值. 另外可以直接利用计算器求三角函数值,但要注意角度制的问题. 10.巩固练习17P 第4,5,6,7题11.学习小结(1)本章的三角函数定义与初中时的定义有何异同? (2)你能准确判断三角函数值在各象限内的符号吗? (3)请写出各三角函数的定义域;(4)终边相同的角的同一三角函数值有什么关系?你在解题时会准确熟练应用公式一吗?五、评价设计1.作业:习题1.2 A组第1,2题.2.比较角概念推广以后,三角函数定义的变化.思考公式一的本质是什么?要做到熟练应用.另外,关于三角函数值在各象限的符号要熟练掌握,知道推导方法.第二课时任意角的三角函数〔二〕【复习回顾】1、三角函数的定义;2、 三角函数在各象限角的符号;3、 三角函数在轴上角的值;4、 诱导公式〔一〕:终边相同的角的同一三角函数的值相等;5、 三角函数的定义域.要求:记忆.并指出,三角函数没有定义的地方一定是在轴上角,所以,凡是碰到轴上角时,要结合定义进行分析;并要求在理解的基础上记忆. 【探究新知】1.引入:角是一个图形概念,也是一个数量概念〔弧度数〕.作为角的函数——三角函数是一个数量概念〔比值〕,但它是否也是一个图形概念呢?换句话说,能否用几何方式来表示三角函数呢?2.[边描述边画]以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆〔注意:这个单位长度不一定就是1厘米或1米〕.当角α为第一象限角时,那么其终边与单位圆必有一个交点(,)P x y ,过点P 作PM x ⊥轴交x 轴于点M ,那么请你观察:根据三角函数的定义:|||||sin |MP y α==;|||||cos |OM x α==随着α在第一象限内转动,MP 、OM 是否也跟着变化? 3.思考:〔1〕为了去掉上述等式中的绝对值符号,能否给线段MP 、OM 规定一个适当的方向,使它们的取值与点P 的坐标一致?〔2〕你能借助单位圆,找到一条如MP 、OM 一样的线段来表示角α的正切值吗?我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角α的终边不在坐标轴时,以O 为始点、M 为终点,规定:当线段OM 与x 轴同向时,OM 的方向为正向,且有正值x ;当线段OM 与x 轴反向时,OM 的方向为负向,且有正值x ;其中x 为P 点的横坐标.这样,无论那种情况都有cos OM x α==同理,当角α的终边不在x 轴上时,以M 为始点、P 为终点,规定:当线段MP 与y 轴同向时,MP 的方向为正向,且有正值y ;当线段MP 与y 轴反向 时,MP 的方向为负向,且有正值y ;其中y 为P 点的横坐标.这样,无论那种情况都有sin MP y α==4.像MP OM 、这种被看作带有方向的线段,叫做有向线段〔direct line segment 〕.5.如何用有向线段来表示角α的正切呢?如上图,过点(1,0)A 作单位圆的切线,这条切线必然平行于轴,设它与α的终边交于点T ,请根据正切函数的定义与相似三角形的知识,借助有向线段OA AT 、,我们有tan y AT xα==我们把这三条与单位圆有关的有向线段MP OM AT 、、,分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线.6.探究:〔1〕当角α的终边在第二、第三、第四象限时,你能分别作出它们的正弦线、余弦线和正切线吗?〔2〕当α的终边与x 轴或y 轴重合时,又是怎样的情形呢?7.例题讲解 例1.42ππα<<,试比较,tan ,sin ,cos αααα的大小.处理:师生共同分析解答,目的体会三角函数线的用处和实质. 8.练习19P 第1,2,3,4题9学习小结(1)了解有向线段的概念.(2)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来.(3)体会三角函数线的简单应用. 【评价设计】1. 作业:比较以下各三角函数值的大小(不能使用计算器)(1)sin15︒、tan15︒〔2〕'cos15018︒、cos121︒〔3〕5π、tan 5π2.练习三角函数线的作图.同角三角函数的基本关系一、教学目标: 1、知识与技能(1) 使学生掌握同角三角函数的基本关系;(2)某角的一个三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;〔5〕牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;〔6〕灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;〔7〕掌握恒等式证明的一般方法.2、过程与方法由圆的几何性质出发,利用三角函数线,探究同一个角的不同三角函数之间的关系;学习一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习,巩固所学知识.3、情态与价值通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法.二、教学重、难点重点:公式1cos sin 22=+αα及αααtan cos sin =的推导及运用:〔1〕某任意角的正弦、余弦、正切值中的一个,求其余两个;〔2〕化简三角函数式;〔3〕证明简单的三角恒等式.难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.三、学法与教学用具利用三角函数线的定义, 推导同角三角函数的基本关系式:1cos sin 22=+αα及αααtan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等.教学用具:圆规、三角板、投影四、教学设想【创设情境】与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.【探究新知】 1. 探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一 下同一个角不同三角函数之间的关系吗?如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,而且1OP =.由勾股定理由221MP OM +=,因此221x y +=,即22sin cos 1αα+=.根据三角函数的定义,当()2a k k Z ππ≠+∈时,有sin tan cos ααα=.这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切.2. 例题讲评 例6.3sin 5α=-,求cos ,tan αα的值. sin ,cos ,tan ααα三者知一求二,熟练掌握.3. 巩固练习23P 页第1,2,3题4.例题讲评例7.求证:cos 1sin 1sin cos x xx x+=-. 通过本例题,总结证明一个三角恒等式的方法步骤. 5.巩固练习23P 页第4,5题 6.学习小结〔1〕同角三角函数的关系式的前提是“同角〞,因此1cos sin 22≠+βα,γβαcos sin tan ≠. 〔2〕利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.五、评价设计(1) 作业:习题组第10,13题.(2) 熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关 系式;注意三角恒等式的证明方法与步骤.。
人教版高中数学-高一数学导学案03 任意角的三角函数
(2)比值_______叫做α的余弦,记作_______,即_________
(3)比值_______叫做α的正切,记作_______,即_________;
2.三角函数的定义域、值域
3.三角函数的符号
由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知:
由四个图看出:
当角 的终边不在坐标轴上时,有向线段 ,于是有
,_______ ,________
._________
我们就分别称有向线段 为正弦线、余弦线、正切线。
(三)例题
例1.已知角α的终边经过点 ,求α的三个函数制值。
变式训练1:已知角 的终边过点 ,求角 的正弦、余弦和正切值.
例2.求下列各角的三个三角函数值:
(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);
(2)理解任意角的三角函数不同的定义方法;
(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;
(4)掌握并能初步运用公式一;
(5)树立映射观点,正确理解三角函数是以实数为自变量的函数.
①正弦值 对于第一、二象限为_____( ),对于第三、四象限为____( );
②余弦值 对于第一、四象限为_____( ),对于第二、三象限为____( );
③正切值 对于第一、三象限为_______( 同号),对于第二、四象限为知道:__________________________
即有:_________________________
_________________________
【必做练习】高中数学第一章三角函数1.1.1任意角教案新人教A版必修4
课题:任意角
[课时安排]
1 课时
[教学目标]
1.理解任意大小的角正角、 负角和零角, 掌握终边相同的角、
象限角、区间角、终边在坐标轴上的角 .
2.从数形结合的角度认识角
3.培养学生用运动变化的观点分析问题,提高学生用换元、
转化、数形结合等数学思想方法解决问题的能力
[教学重点]
理解概念,掌握终边相同角的表示法 .
A. 30° B . 30°
C
. 630° D . 630°
3. 把 1485°转化为 α + k· 360°( 0°≤ α < 360° , k∈ Z)的形式是( )
A . 45o 4×360°
B
C. 45o 5× 360°
D
o
. 45 4× 360°
o
.315 5× 360°
4. 下列结论中正确的是 ( )
方向旋转形成的角;
零角:射线没有任何旋转形成的角;
负角:按
方向旋转形成的角。
(3)象限角与坐标轴上的角:
B 终边
始边
O 顶点
A
使角 的顶点与原点重合,始边与 x 轴正半轴重合,终边落第几象限,则
称为
;终边落在坐标轴上的角称为
。
2. 与角 终边相同的角为
k 360
k z) ,连同角 可构成一个集
合 S ,即
部编本试题,欢迎下载!
最新人教版试题
(4) 第四象限 . 探究 2. 写出与角
45 的终边相同的角的集合 S,并写出 S 中适合不等式
360
720 的元素 β .
【当堂训练】 1. 与 405°角终边相同的角是( )
A. k ·360°- 45° ( k Z )
人教版高中数学全套教案导学案高中数学 (1.2.1 任意角的三角函数)教案 新人教A版必修4
任意角的三角函数1.2.1 任意角的三角函数整体设计教学分析学生已经学过锐角三角函数,它是用直角三角形边长的比来刻画的.锐角三角函数的引入与“解三角形”有直接关系.任意角的三角函数是刻画周期变化现象的数学模型,它与“解三角形”已经没有什么关系了.因此,与学习其他基本初等函数一样,学习任意角的三角函数,关键是要使学生理解三角函数的概念、图象和性质,并能用三角函数描述一些简单的周期变化规律,解决简单的实际问题.本节以锐角三角函数为引子,利用单位圆上点的坐标定义三角函数.由于三角函数与单位圆之间的这种紧密的内部联系,使得我们在讨论三角函数的问题时,对于研究哪些问题以及用什么方法研究这些问题等,都可以从圆的性质(特别是对称性)中得到启发.三角函数的研究中,数形结合思想起着非常重要的作用.利用信息技术,可以很容易地建立角的终边和单位圆的交点坐标、单位圆中的三角函数线之间的联系,并在角的变化过程中,将这种联系直观地体现出来.所以,信息技术可以帮助学生更好地理解三角函数的本质.激发学生对数学研究的热情,培养学生勇于发现、勇于探索、勇于创新的精神;通过学生之间、师生之间的交流合作,实现共同探究、教学相长的教学情境.三维目标1.通过借助单位圆理解并掌握任意角的三角函数定义,理解三角函数是以实数为自变量的函数,并从任意角的三角函数定义认识正弦、余弦、正切函数的定义域,理解并掌握正弦、余弦、正切函数在各象限内的符.2.通过对任意角的三角函数定义的理解,掌握终边相同角的同一三角函数值相等.3.正确利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值表示出来,即用正弦线、余弦线、正切线表示出来.4.能初步应用定义分析和解决与三角函数值有关的一些简单问题.重点难点教学重点:任意角的正弦、余弦、正切的定义,终边相同的角的同一三角函数值相等.教学难点:用角的终边上的点的坐标来刻画三角函数;三角函数符;利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值用几何形式表示.课时安排2课时教学过程第1课时导入新课思路 1.我们把角的范围推广了,锐角三角函数的定义还能适用吗?譬如三角形内角和为180°,那么sin200°的值还是三角形中200°的对边与斜边的比值吗?类比角的概念的推广,怎样修正三角函数定义?由此展开新课.另外用“单位圆定义法”单刀直入给出定义,然后再在适当时机联系锐角三角函数,这也是一种不错的选择.思路 2.教师先让学生看教科书上的“思考”,通过这个“思考”提出用直角坐标系中角的终边上点的坐标表示锐角三角函数的问题,以引导学生回忆锐角三角函数概念,体会引进象限角概念后,用角的终边上点的坐标比表示锐角三角函数的意义,从而为定义任意角的三角函数奠定基础.教科书在定义任意角的三角函数之前,作了如下铺垫:直角三角形为载体的锐角三角函数→象限角为载体的锐角三角函数→单位圆上点的坐标表示的锐角三角函数. 推进新课新知探究提出问题问题①:在初中时我们学了锐角三角函数,你能回忆一下锐角三角函数的定义吗? 问题②:你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?活动:教师提出问题,学生口头回答,突出它是以锐角为自变量,边的比值为函数值的三角函数,教师并对回答正确的学生进行表扬,对回答不出来的同学给予提示和鼓励.然后教师在黑板上画出直角三角形.教师提示:前面我们对角的概念已经进行了扩充,并且学习了弧度制,知道了角的集合与实数集是一一对应的,在此基础上,我们来研究任意角的三角函数.教师在直角三角形所在的平面上建立适当的坐标系,画出角α的终边;学生给出相应点的坐标,并用坐标表示锐角三角函数.图1如图1,设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,那么它的终边在第一象限.在α的终边上任取一点P(a,b),它与原点的距离22b a >0.过P 作x 轴的垂线,垂足为M,则线段OM 的长度为a,线段MP 的长度为b.根据初中学过的三角函数定义,我们有sin α=OP MP =r b ,cos α=OP OM =r a ,tan α=OP MP =ab . 讨论结果:①锐角三角函数是以锐角为自变量,边的比值为函数值的三角函数.②sin α=OP MP =rb ,cos α=OP OM =r a ,tan α=OM MP =a b . 提出问题问题①:如果改变终边上的点的位置,这三个比值会改变吗?为什么?问题②:你利用已学知识能否通过取适当点而将上述三角函数的表达式简化?活动:教师先让学生们相互讨论,并让他们动手画画图形,看看从图形中是否能找出某种关系来.然后提问学生,由学生回答教师的问题,教师再引导学生选几个点,计算一下对应的比值,获得具体认识,并由相似三角形的性质来证明.最后可以发现,由相似三角形的知识,对于确定的角α,这三个比值不会随点P 在α的终边上的位置的改变而改变.过图形教师引导学生进行对比,学生通过对比发现取到原点的距离为1的点可以使表达式简化.此时sin α=OPMP =b,cos α=OP OM =a,tan α=OM MP =a b . 在引进弧度制时我们看到,在半径为单位长度的圆中,角α的弧度数的绝对值等于圆心角α所对的弧长(符由角α的终边的旋转方向决定).在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆.这样,上述P 点就是α的终边与单位圆的交点.锐角三角函数可以用单位圆上点的坐标表示.同样地,我们可以利用单位圆定义任意角的三角函数.图2如图2所示,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)y 叫做α的正弦,记作sin α,即sin α=y;(2)x 叫做α的余弦,记作cos α,即cos α=x; (3)x y 叫做α的正切,记作tan α,即tan α=xy (x≠0). 所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.教师出示定义后,可让学生解释一下定义中的对应关系.教师应指出任意角的正弦、余弦、正切的定义是本节教学的重点.用单位圆上点的坐标表示任意角的三角函数,与学生在锐角三角函数学习中建立的已有经验有一定的距离,与学生在数学必修一的学习中建立起来的经验也有一定的距离.学生熟悉的函数y=f(x)是实数到实数的一一对应,而这里给出的三角函数首先是实数(弧度数)到点的坐标的对应,然后才是实数(弧度数)到实数(横坐标或纵坐标)的对应,这就给学生的理解造成一定的困难.教师在教学中可以在学生对锐角三角函数已有的几何直观认识的基础上,先建立直角三角形的锐角与第一象限角的联系,在直角坐标系中考查锐角三角函数,得出用角的终边上点的坐标(比值)表示锐角三角函数的结论,然后再“特殊化”引出用单位圆上点的坐标表示锐角三角函数的结论.在此基础上,再定义任意角的三角函数.在导学过程中教师应点拨学生注意,尽管我们从锐角三角函数出发来引导学生学习任意角的三角函数,但任意角的三角函数与锐角三角函数之间并没有一般与特殊的关系.教师在教学中应当使学生体会到,用单位圆上点的坐标表示锐角三角函数,不仅简单、方便,而且反映本质.教师可以引导学生通过分析三角函数定义中的自变量是什么,对应关系有什么特点,函数值是什么.特别注意α既表示一个角,又是一个实数(弧度数).“它的终边与单位圆交于点P(x,y)”包含两个对应关系.从而可以把三角函数看成是自变量为实数的函数.值得注意的是:(1)正弦、余弦、正切、余切、正割、余割都是以角为自变量,以比值为函数值的函数.(2)sin α不是sin 与α的乘积,而是一个比值;三角函数的记是一个整体,离开自变量的“sin”“tan”等是没有意义的.讨论结果:①这三个比值与终边上的点的位置无关,根据初中学过的三角函数定义,有sin α=OP MP =rb ,cos α=OP OM =r a , tan α=OP MP =a b . 由相似三角形的知识,对于确定的角α,这三个比值不会随点P 在α的终边上的位置的改变而改变.②能.提出问题问题①:学习了任意角,并利用单位圆表示了任意角的三角函数,引入一个新的函数,我们可以对哪些问题进行讨论?问题②:根据三角函数的定义,正弦、余弦、正切的定义域、值域是怎样的?活动:教师引导学生结合在数学必修一中的有关函数的问题,让学生回顾所学知识,并总结回答老师的问题,教师对学生总结的东西进行提问,并对回答正确的学生进行表扬,回答不正确或者不全面的学生给予提示和补充.教师让学生完成教科书上的“探究”,教师提问或让学生上黑板板书.按照这样的思路,我们一起来探究如下问题:请根据任意角的三角函数定义,先将正弦、余弦、正切函数在弧度制下的定义域填入下表,再将这三种函数的值在各象限的符填入图3中的括内. 三角函数定义域 sin αcos αtan α图3教师要注意引导学生从定义出发,利用坐标平面内点的坐标的特征得定义域、函数值的符等结论.对于正弦函数sin α=y,因为y 恒有意义,即α取任意实数,y 恒有意义,也就是说sin α恒有意义,所以正弦函数的定义域是R;类似地可写出余弦函数的定义域;对于正切函数tan α=x y ,因为x=0时,xy 无意义,即tan α无意义,又当且仅当角α的终边落在纵轴上时,才有x=0,所以当α的终边不在纵轴上时,xy 恒有意义,即tan α恒有意义,所以正切函数的定义域是α≠2π +k π(k∈Z ).(由学生填写下表) 三角函数定义域 sin αR cos αR tan α {α|α≠2π+k π,k∈Z } 三角函数的定义告诉我们,各三角函数在各象限内的符,取决于x,y 的符,当点P 在第一、二象限时,纵坐标y>0,点P 在第三、四象限时,纵坐标y<0,所以正弦函数值对于第一、二象限角是正的,对于第三、四象限角是负的(可制作课件展示);同样地,余弦函数在第一、四象限是正的,在第二、三象限是负的;正切函数在第一、三象限是正的,在第二、四象限是负的.从而完成上面探究问题.即“一全正,二正弦,三正切,四余弦”.讨论结果:①定义域、值域、单调性等.②y=sin α与y=cos α的定义域都是全体实数R ,值域都是[-1,1].y=tan α的定义域是{α|α≠2π +k π(k∈Z )},值域是R . 应用示例思路1例1 已知角α的终边经过点P 0(-3,-4),求角α的正弦、余弦和正切值.活动:教师留给学生一定的时间,学生独立思考并回答.明确可以用角α终边上任意一点的坐标来定义任意角的三角函数,但用单位圆上点的坐标来定义,既不失一般性,又简单,更容易看清对应关系.教师要点拨引导学生习惯画图,充分利用数形结合,但要提醒学生注意α角的任意性.如图4,设α是一个任意角,P(x,y)是α终边上任意一点,点P 与原点的距离r=22y x +>0,那么:图4①r y 叫做α的正弦,即sin α=ry ; ②r x 叫做α的余弦,即cos α=rx ; ③x y 叫做α的正切,即tan α=x y (x≠0). 这样定义三角函数,突出了点P 的任意性,说明任意角α的三角函数值只与α有关,而与点P 在角的终边上的位置无关,教师要让学生充分思考讨论后深刻理解这一点. 解:由已知,可得OP 0=22)4()3(-+-=5.图5如图5,设角α的终边与单位圆交于点P(x,y).分别过点P 、P 0作x 轴的垂线MP 、M 0P 0,则|M 0P 0|=4,|MP|=-y,|OM 0|=3,|OM|=-x,△OMP∽△OM 0P 0,于是sin α=y=1y =||||OP MP -=||||000OP P M -=54-; cos α=x=1x =||||OP OM -=||||00OP OM -=53-;tan α=x y =a cos sin =34. 点评:本例是已知角α终边上一点的坐标,求角α的三角函数值问题.可以先根据三角形相似将这一问题化归到单位圆上,再由定义得解.变式训练求35π的正弦、余弦和正切值.图6解:在平面直角坐标系中,作∠AOB=35π,如图6. 易知∠AOB 的终边与单位圆的交点坐标为(21,23-), 所以sin 35π=23-,cos 35π=21,tan 35π=3-. 例2 求证:当且仅当下列不等式组成立时,角θ为第三象限角.⎩⎨⎧><.0tan ,0sin θθ 活动:教师引导学生讨论验证在不同的象限内各个三角函数值的符有什么样的关系,提示学生从三角函数的定义出发来探究其内在的关系.可以知道:三角函数的定义告诉我们,各三角函数在各象限内的符,取决于x,y 的符,当点P 在第一、二象限时,纵坐标y>0,点P 在第三、四象限时,纵坐标y<0,所以正弦函数值对于第一、二象限角是正的,对于第三、四象限角是负的;同样地,余弦函数在第一、四象限是正的,在第二、三象限是负的;正切函数在第一、三象限是正的,在第二、四象限是负的.证明:我们证明如果①②式都成立,那么θ为第三象限角.因为①sin θ<0成立,所以θ角的终边可能位于第三或第四象限,也可能位于y 轴的非正半轴上;又因为②式tan θ>0成立,所以θ角的终边可能位于第一或第三象限.因为①②式都成立,所以θ角的终边只能位于第三象限.于是角θ为第三象限角.反过来请同学们自己证明.点评:本例的目的是认识不同位置的角对应的三角函数值的符,其条件以一个不等式出现,在教学时要让学生把问题的条件、结论弄清楚,然后再给出证明.这一问题的解决可以训练学生的数学语言表达能力.变式训练(2007北京高考)已知cos θ·tan θ<0,那么角θ是( )A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角答案:C例3 求下列三角函数值: (1)sin390°;(2)cos 619π;(3)tan(-330°). 活动:引导学生总结终边相同角的表示法有什么特点,终边相同的角相差2π的整数倍,那么这些角的同一三角函数值有何关系?为什么?引导学生从角的终边的关系到角之间的关系再到函数值之间的关系进行讨论,然后再用三角函数的定义证明.由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等.由此得到一组公式(公式一):sin(α+k·2π)=sin α,cos(α+k·2π)=cos α,tan(α+k·2π)=tan α,其中k∈Z .利用公式一,可以把求任意角的三角函数值,转化为求0到2π(或0°到360°)角的三角函数值.这个公式称为三角函数的“诱导公式一”. 解:(1)sin390°=sin(360°+30°)=sin30°=21; (2)cos 619π=cos(2π+67π)=cos 67π=23-; (3)tan(-330°)=tan(-360°+30°)=tan30°=33. 点评:本题主要是对诱导公式一的考查,利用公式一将任意角都转化到0—2π范围内求三角函数的值.思路2例1 已知角α的终边在直线y=-3x 上,则10sin α+3sec α=.活动:要让学生独立思考这一题目,本题虽然是个填空题,看似简单但内含分类讨论思想,可以找两个学生来板演这个例题.对解答思路正确的学生给以鼓励,对思路受阻的学生要引导其思路的正确性.并适时地点拨学生:假如是个大的计算题应该怎样组织步骤.解:设角α终边上任一点为P(k,-3k)(k≠0),则 x=k,y=-3k,r=22(-3k)k +=10|k |.(1)当k>0时,r=10k ,α是第四象限角,sin α=r y =kk 103-=10103-,sec α=x r =k k 10=10,∴10sin α+3sec α=10×10103-+310=-310+310=0. (2)当k<0时,r=k 10-,α为第二象限角,sin α=r y =kk 103--=10103,sec α=x r =k k 10-=10-, ∴10sin α+3sec α=10×10103+3×(10-)=310-310=0. 综合以上两种情况均有10sin α+3sec α=0.点评:本题的解题关键是要清楚当k>0时,P(k,-3k)是第四象限内的点,角α的终边在第四象限;当k<0时,P(k,-3k)是第二象限内的点,角α的终边在第二象限内,这与角α的终边在y=-3x 上是一致的.变式训练设f(x)=sin 3πx,求f(1)+f(2)+f(3)+…+f(72)的值. 解:∵f(1)=sin3π=23,f(2)=sin 32π=23,f(3)=sin π=0, f(4)=sin 44π=23-,f(5)=sin 35π=23-,f(6)=sin2π=0, ∴f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0.而f(7)=sin 37π=sin 3π,f(8)=sin 38π=sin 32π,…,f(12)=sin 312π=sin2π, ∴f(7)+f(8)+f(9)+f(10)+f(11)+f(12)=0.同理f(13)+f(14)+f(15)+f(16)+f(17)+f(18)=0,…,f(67)+f(68)+…+f(72)=0, ∴f(1)+f(2)+f(3)+…+f(72)=0.求函数y=a sin +tan α的定义域.活动:让学生先回顾求函数的定义域需要注意哪些特点,并让学生归纳出一些常见函数有意义的要求,根据函数有意义的特征来求自变量的范围.对于三角函数这种特殊的函数在解三角不等式时要结合三角函数的定义进行.求含正切函数的组合型三角函数的定义域时,正切函数本身的定义域往往被忽略,教师提醒学生应引起注意这种情况.同时,函数的定义域是一个集合,所以结论要用集合形式表示.解:要使函数y=a sin +tan α有意义,则sin α≥0且α≠k π+2π(k∈Z ). 由正弦函数的定义知道,sin α≥0就是角α的终边与单位圆的交点的纵坐标非负. ∴角α的终边在第一、二象限或在x 轴上或在y 轴非负半轴上,即2k π≤α≤π+2k π(k∈Z ).∴函数的定义域是{α|2k π≤α<2π+2k π或2π+2k π<α≤(2k+1)π,k∈Z }.点评:本题的关键是弄清楚要使函数式有意义,必须sin α≥0,且tan α有意义,由此推导出α的取值范围就是函数的定义域.变式训练求下列函数的定义域:(1)y=sinx+cosx;(2)y=sinx+tanx; (3)y=xx x tan cos sin +;(4)y=x sin +tanx. 解:(1)∵使sinx,cosx 有意义的x∈R ,∴y=sinx+cosx 的定义域为R .(2)要使函数有意义,必须使sinx 与tanx 有意义.∴有⎪⎩⎪⎨⎧+≠∈2ππk x R x ∴函数y=sinx+tanx 的定义域为{x |x≠k π+2π,k∈Z }. (3)要使函数有意义,必须使tanx 有意义,且tanx≠0. ∴有⎪⎩⎪⎨⎧≠+≠πππk x ,k x 2(k∈Z ),∴函数y=xx x tan cos sin +的定义域为{x |x≠2πk ,k∈Z }. (4)当sinx≥0且tanx 有意义时,函数有意义, ∴有⎪⎩⎪⎨⎧+≠+≤≤2x ,1)(2k 2k ππππk x (k∈Z ). ∴函数y=sinx +tanx 的定义域为[2k π,2k π+2π)∪(2k π+2π,(2k+1)π](k∈Z ). 知能训练课本本节练习.解答: 1.sin 67π=21-;cos 67π=23-;tan 67π=33 点评:根据定义求某个特殊角的三角函数值.2.sin θ=135;cos θ=1312-;tan θ=125-. 点评:已知角α终边上一点的坐标,由定义求角α的三角函数值.3. 角α0° 90° 180° 270° 360° 角α的弧度数 0 2π Π 23π 2πsinα0 1 0 -1 0cosα 1 0 -1 0 1tanα0 不存在0 不存在0点评:熟悉特殊角的三角函数值,并进一步地理解公式一.4.当α为钝角时,cosα和tanα取负值.点评:认识与三角形内角有关的三角函数值的符.5.(1)正;(2)负;(3)零;(4)负;(5)正;(6)正.点评:认识不同位置的角对应的三角函数值的符.6.(1)①③或①⑤或③⑤;(2)①④或①⑥或④⑥;(3)②④或②⑤或④⑤;(4)②③或②⑥或③⑥.点评:认识不同象限的角对应的三角函数值的符.7.(1)0.874 6;(2)3;(3)0.5;(4)1.点评:求三角函数值,并进一步地认识三角函数的定义及公式一.课堂小结本节课我们给出了任意角三角函数的定义,并且讨论了正弦、余弦、正切函数的定义域,任意角的三角函数实质上是锐角三角函数的扩展,是将锐角三角函数中边的比变为坐标与距离、坐标与坐标的比,记忆方法可用锐角三角函数类比记忆,至于三角函数的定义域可由三角函数的定义分析得到.本节课我们重点讨论了两个内容,一是三角函数在各象限内的符,二是一组公式,两者的作用分别是:前者确定函数值的符,后者将任意角的三角函数化为0°到360°角的三角函数,这两个内容是我们日后学习的基础,经常要用,请同学们熟记.作业课本习题1.2A组题1—9.设计感想关于三角函数定义法,总的说来就两种:“单位圆定义法”与“终边定义法”.这两种方法本质上是一致的.正因为此,各种数学出版物中,两种定义方法都有采用.在学习本节的过程中可以与初中学习的三角函数定义进行类比、学习.理解任意角三角函数的定义不但是学好本节内容的关键,也是学好本章内容的关键.在教学中,教师应该充分调动学生独立思考和总结的能力,以巩固对知识的理解和掌握.教师在教学中,始终引导学生紧扣三角函数的定义,善于利用数形结合.在利用三角函数定义进行求值时,应特别强调要注意横向联系,即不仅仅能求出该值,还要善于观察该值与其他三角函数值之间的联系,找出规律来求解.(设计者:房增凤)第2课时导入新课思路 1.(情境导入)同学们都在一些旅游景地或者在公园中见过大观览车,大家是否想过大观览车在转动过程中,座椅离地面的高度随着转动角度的变化而变化,二者之间有怎样的相依关系呢?思路 2.(复习导入)我们研究了三角函数在各象限内的符,学习了将任意角的三角函数化成0°—360°角的三角函数的一组公式,前面还分析讨论了三角函数的定义域,这些内容的研究,都是建立在任意角的三角函数定义之上的,这些知识在以后我们继续学习“三角”内容时,是经常、反复运用的,请同学们务必在理解的基础上要加强记忆.由三角函数的定义我们知道,对于角α的各种三角函数我们都是用比值来表示的,或者说是用数来表示的,今天我们再来学习正弦、余弦、正切函数的另一种表示方法——几何表示法.我们知道,直角坐标系内点的坐标与坐标轴的方向有关.因此自然产生一个想法是以坐标轴的方向来规定有向线段的方向,以使它们的取值与点的坐标联系起来.推进新课新知探究提出问题问题①:回忆上节课学习的三角函数定义并思考:三角函数的定义能否用几何中的方法来表示,应怎样表示呢?问题②:回忆初中学过的线段,若加上方向会怎样呢?什么是有向线段?活动:指导学生在平面直角坐标系内作出单位圆,设任意角α的顶点在原点,始边与x 轴的非负半轴重合,终边与单位圆相交于点P(x,y),x 轴的正半轴与单位圆相交于A(1,0),过P 作x 轴的垂线,垂足为M;过A 作单位圆的切线,这条切线必平行于y 轴(垂直于同一条直线的两直线平行),设它与角α的终边或其反向延长线交于点T.教师点拨学生观察线段的方向与点P 的坐标.显然,线段OM 的长度为|x|,线段MP 的长度为|y|,它们都只能取非负值. 当角α的终边不在坐标轴上时,我们可以把OM 、MP 都看作带有方向的线段:如果x>0,OM 与x 轴同向,规定此时OM 具有正值x;如果x<0,OM 与x 轴正向相反(即反向),规定此时OM 具有负值x,所以不论哪一种情况,都有OM=x.如果y>0,把MP 看作与y 轴同向,规定此时MP 具有正值y;如果y<0,把MP 看作与y 轴反向,规定此时MP 具有负值y,所以不论哪一种情况,都有MP=y.引导学生观察OM 、MP 都是带有方向的线段,这种被看作带有方向的线段叫做有向线段. 于是,根据正弦、余弦函数的定义,就有sin α=r y =1y =y=MP, cos α=r x =1x =x=OM. 这两条与单位圆有关的有向线段MP 、OM 分别叫做角α的正弦线、余弦线.类似地,我们把OA 、AT 也看作有向线段,那么根据正切函数的定义和相似三角形的知识,就有tan α=x y =OAAT =AT. 这条与单位圆有关的有向线段AT,叫做角α的正切线.讨论结果:①能.②被看作带有方向的线段叫做有向线段.提出问题问题①:怎样把三角函数线与有向线段联系在一起?问题②:正弦线、余弦线、正切线在平面直角坐标系中是怎样规定的?当角α的终边变化时,它们有什么变化?活动:师生共同讨论,最后一致得出以下几点:(1)当角α的终边在y 轴上时,余弦线变成一个点,正切线不存在.(2)当角α的终边在x 轴上时,正弦线、正切线都变成点.(3)正弦线、余弦线、正切线都是与单位圆有关的有向线段,所以作某角的三角函数线时,一定要先作单位圆.(4)线段有两个端点,在用字母表示正弦线、余弦线、正切线时,要先写起点字母,再写终点字母,不能颠倒;或者说,含原点的线段,以原点为起点,不含原点的线段,以此线段与x 轴的公共点为起点.(5)三种有向线段的正负与坐标轴正反方向一致,三种有向线段的数量与三种三角函数值相同.正弦线、余弦线、正切线统称为三角函数线.讨论结果:①略.②略.示例应用思路1例1 如图7,α,β的终边分别与单位圆交于点P,Q,过A(1,0)作切线AT,交图7射线OP 于点T,交射线OQ 的反向延长线于T′,点P 、Q 在x 轴上的射影分别为点M 、N,则sin α=______________,cos α=______________,tan α=______________,sin β=______________,cos β=______________,tan β=______________.活动:根据三角函数线的定义可知,sin α=MP,cos α=OM,tan α=AT,sin β=NQ,cos β =ON,tan β=AT′.答案:MP OM AT NQ ON AT′点评:掌握三角函数线的作法,注意用有向线段表示三角函数线时,字母的书写顺序不能随意颠倒.变式训练利用三角函数线证明|sin α|+|cos α|≥1.解:当α的终边落在坐标轴上时,正弦(或余弦)线变成一个点,而余弦(或正弦)线的长等于r,所以|sin α|+|cos α|=1.当角α终边落在四个象限时,利用三角形两边之和大于第三边有|sin α|+|cos α|=|OM |+|MP |>1,∴|sin α|+|cos α|≥1.例2 在单位圆中画出适合下列条件的角α的终边或终边所在的范围,并由此写出角α的集合:(1)sin α=21;(2)sin α≥21. 活动:引导学生画出单位圆,对于(1),可设角α的终边与单位圆交于A(x,y),则sin α=y,所以要作出满足sin α=21的终边,只要在单位圆上找出纵坐标为21的点A,则OA 即为角α的终边;对于(2),可先作出满足sin α=21的角的终边,然后根据已知条件确定角α的范围.图8。
高一数学人教A版必修4练习1.2.1 任意角的三角函数的定义及其应用(一) Word版含解析
第一章三角函数三角函数
.任意角的三角函数
任意角的三角函数的定义及其应用(一)
.理解并掌握任意角的三角函数的定义及其表示,能熟练求三角函数的值.
.理解并掌握三角函数线的几何表示,能利用三角函数线确定三角函数值的取值范围或角的取值范围.
一、任意角的三角函数
.单位圆:在直角坐标系中,以原点为圆心,以单位长度为半径的圆称为单位圆.
.三角函数的定义:设角α的顶点与原点重合,始边与轴非负半轴重合.在直角坐标系中,角α终边与单位圆交于一点(,),则==.那么:
()叫做α的正弦,记作α,即=α;
()叫做α的余弦,记作α,即=α;
()叫做α的正切,记作α,即=α(≠).
正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们把它们统称为三角函数.
练习:已知角的终边与单位圆的交点为,求角α的正弦、余弦和正切值.
解析:由三角函数定义知,
α==,α==-,α==-.
.三角函数的值与点在终边上的位置有关系吗?
解析:利用三角形的相似性可知任意角α的三角函数值只与α有关,而与点的位置无关.对于α角的终边上任意一点,设其坐标为(,),点到原点的距离=>.
()比值叫做α的正弦,记作α,即α=;()比值叫做α的余弦,记作α,即α=;
()比值叫做α的正切,记作α,即α=.点在单位圆上是一种特殊情形.。
必修四第一章 三角函数1.2.1第一课时
(2)若 cosθ<0 且 sinθ>0,则2θ是第
象限角.
A.一
数
学 必
C.一或三
修
④
·
人
教
A
版
B.三 D.任意象限角
( C)
返回导航
第一章 三角函数
[解析] (1)①π2<3<π,π<4<32π,32π<5<2π,
∴sin3>0,cos4<0,tan5<0,∴sin3·cos4·tan5>0.
②注意到角的终边为射线,所以应分两种情况处理,取射线上任意一点坐标
(a,b),则对应角的正弦值 sinα= a2b+b2,余弦值 cosα= a2a+b2,正切值 tanα数 学Fra bibliotek必=ab.
修 ④
(2)当角 α 的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参
·
人 教
数进行分类讨论.
A
版
返回导航
数 学 必 修 ④ · 人 教 A 版
返回导航
第一章 三角函数
3.已知α是第三象限角,设sinαcosα=m,则有
A.m>0
B.m=0
C.m<0
D.m的符号不确定
(A)
4.(2018·江西高安中学期末)已知角α的终边经过P(1,2),则tanα·cosα等于 25 _____5_.
数 学 必
[解析] 由三角函数的定义,tanα=yx=2,cosα=xr= 55,∴tanα·cosα=255.
人 教
函数值的函数,我们将它们统称为三角函数(trigonometric function).
A
版
高中数学(新课标人教A版)必修4 第一章三角函数精品课件 1.2任意角的三角函数(3课时)
tan 3
例5.求下列三角函数值
sin1480 10
'
9 s 4
11 tan( ) 6
小结:
1.任意角的三角函数是由角的终边与单 位圆交点的坐标来定义的. 2.三角函数值的符号是利用三角函数的 定义来推导的.要正确记忆三个三角函数 在各个象限内的符号; 3.诱导公式一的作用可以把大角的三角 函数化为小角的三角函数.
应用 1.利用同角三角函数的基 本关系求某个角的三角函数 值 例1.已知sinα=-3/5,且 α在第三象限,求cosα和 tanα的值.
例2.已知 cos m (m 0, m 1), 求的其他三角函数值
4 sin 2 cos 例3.已知 tanα=3,求值(1) 5 cos 3 sin
y
a的终边 P(x,y)
1
P(x,y)
a
O
M
A(1,.0)
x
(1)y叫做 的正弦,记作sin ,即 sin y (2)x叫做 的余弦,记作cos,即 cos x y y (3) 叫做 的正切,记作tan ,即 tan x x
阅读课本P12:三角函数的定义
例题:
5 1 求 的正弦、余弦和正切值. 3
作业:
课本P20习题1.2A组
1,2,6,7,9
1.2.1任意角的三角函数(2)
复习回顾
1、三角函数的定义; 2、三角函数在各象限角的符号; 3、三角函数在轴上角的值; 4、诱导公式(一):终边相同的角的 同一三角函数的值相等; 5、三角函数的定义域.
角是一个图形概念,也是一个数量概 念(弧度数). 作为角的函数——三角函数是一个 数量概念(比值),但它是否也是一个 图形概念呢?
【同步练习】必修四 1.2.1 任意角的三角函数-高一数学人教版(必修4)(解析版)
第一章 三角函数1.2.1 任意角的三角函数一、选择题1.已知sin α+cos α=–15,α∈(0,π),则tan α的值为A .–43或–34B .–43C .–34D .34【答案】C【解析】∵sin α+cos α=–15,α∈(0,π),∴α为钝角,结合sin 2α+cos 2α=1,∴sin α=35,cos α=–45,则tan α=sin cos αα=–34,故选C . 2.若点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,则sin α的值为A .12-B .12C .3D 3 【答案】C【解析】因为点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,即点132⎛- ⎝⎭,在角α的终边上,则3sin α=,故选C .3.若角α的终边过点P (3,–4),则cos α等于A .35B .34-C .45-D .45【答案】A【解析】∵角α的终边过点P (3,–4),∴r =5,∴cos α=35,故选A .4.如果角θ的终边经过点(3,–4),那么sin θ的值是A .35B .35-C .45D .45-【答案】D【解析】∵角θ的终边经过点(3,–4),∴x =3,y =–4,r 22x y +,∴sin θ=y r=–45,故选D .5.若sinαtanα<0,且costanαα<0,则角α是A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】∵sinαtanα<0,可知α是第二或第三象限角,又costanαα<0,可知α是第三或第四象限角.∴角α是第三象限角.故选C.6.已知点P(x,3)是角θ终边上一点,且cosθ=–45,则x的值为A.5 B.–5 C.4 D.–4 【答案】D【解析】∵P(x,3)是角θ终边上一点,且cosθ=–45,∴cosθ=29x+=–45,∴x=–4.故选D.7.若点P(sinα,tanα)在第三象限,则角α是A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】D【解析】∵点P(sinα,tanα)在第三象限,∴sinα<0,tanα<0.∴角α是第四象限角.故选D.8.如果角α的终边过点(2sin60°,–2cos60°),则sinα的值等于A.12B.–12C.–3D.–3【答案】B【解析】角α的终边过点(2sin60°,–2cos60°),即(31-,),由任意角的三角函数的定义可知:sinα=()()221 231=-+-.故选B.9.若角120°的终边上有一点(–4,a),则a的值是A.43B.43-C.43±D.310.已知4sin5α=,并且P(–1,m)是α终边上一点,那么tanα的值等于A .43-B .34-C .34D .43【答案】A 【解析】∵4sin5α=,并且P (–1,m )是α45=,∴m =43,那么tan α=1m-= –m =–43,故选A . 11.已知sin α<0,且tan α>0,则α的终边所在的象限是A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】∵sin α<0,∴α的终边在第三、第四象限或在y 轴负半轴上,∵tan α>0,∴α的终边在第一或第三象限,取交集可得,α的终边所在的象限是第三象限角.故选C . 12.若角α终边经过点P (sin2π2πcos 33,),则sin α=A .12BC .12-D . 【答案】C【解析】∵角α终边经过点P (sin 2π2πcos 33,),即点P ,–12),∴x ,y =–12,r =|OP |=1,则sin α=y r=y =–12,故选C .13.已知角α的终边过点12P ⎛ ⎝⎭,,则sin α=A .12B C D . 【答案】C【解析】由题意可得,x =12,y ,r =|OP |=1,∴sin α=y r,故选C .14.已知角α的终点经过点(–3,4),则–cos α=A .35B .–35C .45D .–45【答案】A【解析】∵角α的终点经过点(–3,4),∴x =–3,y =4,r =|OP |=5,则–cos α=–35x r =,故选A . 二、填空题15.若角α的终边与单位圆交于P (–35,45),则sin α=45;cos α=___________;tan α=___________.【答案】45;35-;43- 【解析】∵角α的终边与单位圆交于P (–35,45),|OP |=223455⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭=1,∴由任意角的三角函数的定义可知:sin α=44515=,同理可得cos α=35-;tan α=445335=--;故答案为:45;35-;43-.16.已知23cos 4a x a-=-,x 是第二、三象限角,则a 的取值范围是__________.17.已知角α的终边经过点P (–2,4),则sin α–cos α的值等于__________.35【解析】∵角α的终边经过点P (–2,4),∴x =–2,y =4,r =|OP 5,∴sin α=25y r =,cos α=xr= 5,则sin α–cos α3535. 18.适合条件|sin α|=–sin α的角α是__________.【答案】[2k π–π,2k π],k ∈Z【解析】∵|sin α|=–sin α,∴–sin α≥0,∴sin α≤0,由正弦曲线可以得到α∈[2k π–π,2k π],k ∈Z ,故答案为:[2k π–π,2k π],k ∈Z .19.若角α的终边经过点(–1,–2),则tan α=___________.【答案】2【解析】∵角α的终边经过点(–1,–2),∴由三角函数定义得tan α=21--=2.故答案为:2. 20.已知角θ的终边经过点P (x ,2),且1cos 3θ=,则x =___________.2 【解析】∵角θ的终边经过点P (x ,2),且21cos 34x θ==+,解得x 22.21.若sinθ<0,cosθ>0,则θ在第___________象限.【答案】四【解析】由sinθ<0,可知θ为第三、第四象限角或终边在y轴负半轴上的角.由cosθ<0,可知θ为第一、第四象限角或终边在x轴正半轴上的角.取交集可得,θ在第四象限.故答案为:四.三、解答题22.已知点P(3m,–2m)(m<0)在角α的终边上,求sinα,cosα,tanα.【解析】因为点P(3m,–2m)(m<0)在角α的终边上,所以x=3m,y=–2m,r=–13m,sinα=21313yr==,cosα=31313xr=-=-,tanα=32yx=-.23.确定下列各式的符号:(1)sin 103°·cos 220°;(2)cos 6°·tan 6.24.已知角α的终边在直线y=2x上,分别求出sinα,cosα及tanα的值.【解析】当角α的终边在第一象限时,在角α的终边上任意取一点P(1,2),则x=1,y=2,r=|OP5,∴sinα=255yr==cosα=55xr=,tanα=yx=2;当角α的终边在第三象限时,在角α的终边上任意取一点P(–1,–2),则x=–1,y=–2,r=|OP|=5,∴sinα=yr=5=25,cosα=xr=5=5,tanα=yx=2.25.已知角α的终边上一点P (m )(m ≠0),且sin α=4,求cos α,tan α的值.【解析】设P (x ,y ).由题设知x=y=m ,所以r 2=|OP|2=(2+m 2(O 为原点),,所以sin α=mr =4,所以=,3+m 2=8,解得当r=,x=所以cos =,tan当m=r=,x=y=所以cos =,tan26.已知角α终边上一点P (m ,1),cos α=–13.(1)求实数m 的值; (2)求tan α的值.【解析】(1)角α终边上一点P (m ,1),∴x =m ,y =1,r =|OP∴cos α=–13,解得m =.(2)由(1)可知tan α=1m。
2017-2018学年高中数学必修4全册学案含解析人教A版287P
2017~2018学年人教A版高中数学必修4全册学案解析目录✧第一章三角函数1.1.1任意角✧第一章三角函数1.1.2蝗制✧第一章三角函数1.2.1任意角的三角函数第一课时三角函数的定义✧第一章三角函数1.2.1任意角的三角函数第二课时三角函数线及其应用✧第一章三角函数1.2.2同角三角函数的基本关系✧第一章三角函数1.3三角函数的诱导公式一✧第一章三角函数1.3三角函数的诱导公式二✧第一章三角函数1.4.1正弦函数余弦函数的图象✧第一章三角函数1.4.2正弦函数余弦函数的性质一✧第一章三角函数1.4.2正弦函数余弦函数的性质二✧第一章三角函数1.4.3正切函数的性质与图象✧第一章三角函数1.5函数y=Asinωx+φ的图象一✧第一章三角函数1.5函数y=Asinωx+φ的图象二✧第一章三角函数1.6三角函数模型的简单应用✧第二章平面向量2.1平面向量的实际背景及基本概念✧第二章平面向量2.2.1向量加法运算及其几何意义✧第二章平面向量2.2.2向量减法运算及其几何意义✧第二章平面向量2.2.3向量数乘运算及其几何意义✧第二章平面向量2.3.1平面向量基本定理✧第二章平面向量2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算✧第二章平面向量2.3.4平面向量共线的坐标表示✧第二章平面向量2.4.1平面向量数量积的物理背景及其含义✧第二章平面向量2.4.2平面向量数量积的坐标表示模夹角✧第二章平面向量2.5平面向量应用举例✧第三章三角恒等变换3.1.1两角差的余弦公式✧第三章三角恒等变换3.1.2两角和与差的正弦余弦正切公式1 ✧第三章三角恒等变换3.1.2两角和与差的正弦余弦正切公式2 ✧第三章三角恒等变换3.1.3二倍角的正弦余弦正切公式✧第三章三角恒等变换3.2简单的三角恒等变换1.1.1任意角[提出问题]问题1:当钟表慢了(或快了),我们会将分针按某个方向转动,把时间调整准确.在调整的过程中,分针转动的角度有什么不同?提示:旋转方向不同.问题2:在体操或跳水比赛中,运动员会做出“转体两周”“向前翻腾两周半”等动作,做上述动作时,运动员分别转体多少度?提示:顺时针方向旋转了720°或逆时针方向旋转了720°,顺时针方向旋转了900°.[导入新知]角的分类1.按旋转方向2.(1)角的终边在第几象限,则称此角为第几象限角;(2)角的终边在坐标轴上,则此角不属于任何一个象限.[化解疑难]1.任意角的概念认识任意角的概念应注意三个要素:顶点、始边、终边.(1)用旋转的观点来定义角,就可以把角的概念推广到任意角,包括任意大小的正角、负角和零角.(2)对角的概念的认识关键是抓住“旋转”二字.①要明确旋转方向;②要明确旋转角度的大小;③要明确射线未作任何旋转时的位置.2.象限角的前提条件角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.[提出问题]在条件“角的顶点与坐标原点重合,始边与x轴非负半轴重合”下,研究下列角:30°,390°,-330°.问题1:这三个角的终边位置相同吗?提示:相同.问题2:如何用含30°的式子表示390°和-330°?提示:390°=1×360°+30°,-330°=-1×360°+30°.问题3:确定一条射线OB,以它为终边的角是否唯一?提示:不唯一.[导入新知]终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={}β|β=α+k·360°,k∈Z,即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.[化解疑难]所有与角α终边相同的角,连同角α在内可以用式子k·360°+α,k∈Z表示,在运用时需注意以下几点.(1)k是整数,这个条件不能漏掉.(2)α是任意角.(3)k·360°,k∈Z与α之间用“+”连接,如k·360°-30°,k∈Z应看成k·360°+(-30°),k∈Z.(4)终边相同的角不一定相等,终边相同的角有无数个,它们相差周角的整数倍;相等的角终边一定相同.[例1] 已知角的顶点与坐标原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是第几象限角.(1)-75°;(2)855°;(3)-510°.[解] 作出各角,其对应的终边如图所示:(1)由图①可知:-75°是第四象限角.(2)由图②可知:855°是第二象限角.(3)由图③可知:-510°是第三象限角.[类题通法]象限角的判断方法(1)根据图形判定,在直角坐标系中作出角,角的终边落在第几象限,此角就是第几象限角.(2)根据终边相同的角的概念把角转化到0°~360°范围内,转化后的角在第几象限,此角就是第几象限角.[活学活用]在直角坐标系中,作出下列各角,在0°~360°范围内,找出与其终边相同的角,并判定它是第几象限角.(1)360°;(2)720°;(3)2 012°;(4)-120°.解:如图所示,分别作出各角,可以发现:(1)360°=0°+360°,(2)720°=0°+2×360°,因此,在0°~360°范围内,这两个角均与0°角终边相同.所以这两个角不属于任何一个象限.(3)2 012°=212°+5×360°,所以在0°~360°范围内,与2 012°角终边相同的角是212°,所以2 012°是第三象限角.(4)-120°=240°-360°,所以在0°~360°范围内,与-120°角终边相同的角是240°,所以-120°是第三象限角.[例2] (1)720°≤β<360°的元素β写出来.(2)分别写出终边在下列各图所示的直线上的角的集合.(3)写出终边落在图中阴影部分(包括边界)的角的集合.[解] (1)与角α=- 1 910°终边相同的角的集合为{}β|β=-1 910°+k ·360°,k ∈Z .∵-720°≤β<360°,∴-720°≤-1 910°+k ·360°<360°,∴31136≤k <61136, 故k =4,5,6.k =4时,β=-1 910°+4×360°=-470°.k =5时,β=-1 910°+5×360°=-110°.k =6时,β=-1 910°+6×360°=250°.(2)①在0°~360°范围内,终边在直线y =0上的角有两个,即0°和180°,因此,所有与0°角终边相同的角构成集合S 1={β|β=0°+k ·360°,k ∈Z},而所有与180°角终边相同的角构成集合S 2={β|β=180°+k ·360°,k ∈Z},于是,终边在直线y =0上的角的集合为S =S 1∪S 2={β|β=k ·180°,k ∈Z}.②由图形易知,在0°~360°范围内,终边在直线y =-x 上的角有两个,即135°和315°,因此,终边在直线y =-x 上的角的集合为S ={β|β=135°+k ·360°,k ∈Z}∪{β|β=315°+k ·360°,k ∈Z}={β|β=135°+k ·180°,k ∈Z}.③终边在直线y =x 上的角的集合为{β|β=45°+k ·180°,k ∈Z},结合②知所求角的集合为S ={β|β=45°+k ·180°,k ∈Z}∪{β|β=135°+k ·180°,k ∈Z}={β|β=45°+2k ·90°,k ∈Z}∪{β|β=45°+(2k +1)·90°,k ∈Z}={β|β=45°+k ·90°,k ∈Z}.(3)终边落在OA 位置上的角的集合为{α|α=90°+45°+k ·360°,k ∈Z}={α|α=135°+k ·360°,k ∈Z},终边落在OB 位置上的角的集合为{β|β=-30°+k ·360°,k ∈Z},故阴影部分角的集合可表示为{α|-30°+k ·360°≤α≤135°+k ·360°,k ∈Z}.[类题通法]1.常用的三个结论(1)终边相同的角之间相差360°的整数倍.(2)终边在同一直线上的角之间相差180°的整数倍.(3)终边在相互垂直的两直线上的角之间相差90°的整数倍.2.区域角是指终边落在坐标系的某个区域的角,其写法可分三步(1)先按逆时针方向找到区域的起始和终止边界;(2)由小到大分别标出起始、终止边界对应的一个角α,β,写出所有与α,β终边相同的角;(3)用不等式表示区域内的角,组成集合.[活学活用]1.将下列各角表示为α+k·360°(k∈Z,0°≤α<360°)的形式,并指出是第几象限角.(1)420°;(2)-495°;(3)1 020°.答案:(1)420°=60°+360°第一象限角(2)-495°=225°-2×360°第三象限角(3)1 020°=300°+2×360°第四象限角2.已知角α的终边在如图所示的阴影部分内,试指出角α的取值范围.答案:{α|30°+k·180°≤α<105°+k·180°,k∈Z}分别是第几象限角?[例3] 若α是第二象限角,则2α,2[解] (1)∵α是第二象限角,∴90°+k·360°<α<180°+k·360°(k∈Z),∴180°+k·720°<2α<360°+k·720°(k∈Z),∴2α是第三或第四象限的角,或角的终边在y轴的非正半轴上.(2)∵α是第二象限角,∴90°+k·360°<α<180°+k·360°(k∈Z),∴45°+k ·180°<α2<90°+k ·180°(k ∈Z). ①当k =2n (n ∈Z)时,45°+n ·360°<α2<90°+n ·360°(n ∈Z), 即α2是第一象限角; ②当k =2n +1(n ∈Z)时,225°+n ·360°<α2<270°+n ·360°(n ∈Z), 即α2是第三象限角. 故α2是第一或第三象限角. [类题通法]1.n α所在象限的判断方法确定n α终边所在的象限,先求出n α的范围,再直接转化为终边相同的角即可. 2.αn 所在象限的判断方法已知角α所在象限,要确定角αn所在象限,有两种方法: (1)用不等式表示出角αn的范围,然后对n 的取值分情况讨论:被n 整除;被n 除余1;被n 除余2;……;被n 除余n -1.从而得出结论.(2)作出各个象限的从原点出发的n 等分射线,它们与坐标轴把周角分成4n 个区域.从x 轴非负半轴起,按逆时针方向把这4n 个区域依次循环标上1,2,3,4.标号为几的区域,就是根据α终边所在的象限确定αn 的终边所落在的区域.如此,αn所在的象限就可以由标号区域所在的象限直观地看出.[活学活用]已知角α为第三象限角,试确定角2α,α2分别是第几象限角. 答案:2α可能是第一象限角、第二象限角或终边在y 轴非负半轴上的角α2可能是第二象限角或第四象限角1.角的概念的易错点[典例] 下列说法中正确的是( )A.三角形的内角必是第一、二象限角B.第一象限角必是锐角C.不相等的角终边一定不相同D.若β=α+k·360°(k∈Z),则α和β终边相同[解析] 90°角可以是三角形的内角,但它不是第一、二象限角;390°角是第一象限角,但它不是锐角;390°角和30°角不相等,但终边相同,故A、B、C均不正确.对于D,由终边相同的角的概念可知正确.[答案] D[易错防范]1.若三角形是直角三角形,则有一个角为直角,且直角的终边在y轴的非负半轴上,不属于任何象限.若忽视此点,则易错选A.2.锐角是第一象限角,但第一象限角不一定是锐角,如380°角为第一象限角,但它不是锐角.若混淆这两个概念,则易误选B.3.当角的范围扩充后,相差k·360°(k∈Z)的角的终边相同.若忽视此点,易错选C.4.解决好此类问题应注意以下三点:(1)弄清直角和象限角的区别,把握好概念的实质内容.(2)弄清锐角和象限角的区别.(3)对角的认识不能仅仅局限于0°~360°.[成功破障]下列说法:①锐角都是第一象限角;②第一象限角一定不是负角;③第二象限角大于第一象限角;④第二象限角是钝角;⑤小于180°的角是钝角、直角或锐角.其中正确命题的序号为________.答案:①[随堂即时演练]1.把一条射线绕着端点按顺时针方向旋转240°所形成的角的大小是( )A.120°B.-120°C.240° D.-240°答案:D2.与-457°角的终边相同的角的集合是( )A.{α|α=457°+k·360°,k∈Z}B.{α|α=97°+k·360°,k∈Z}C.{α|α=263°+k·360°,k∈Z}D.{α|α=-263°+k·360°,k∈Z}答案:C3.下列说法中正确的序号有________.①-65°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-315°是第一象限角.答案:①②③④4.在0°~360°范围内与-1 050°终边相同的角是________,它是第________象限角.答案:30°一5.试写出终边在直线y=-3x上的角的集合S,并把S中适合不等式-180°≤α<180°的元素α写出来.答案:S={α|α=120°+k·180°,k∈Z} 适合不等式-180°≤α<180°的元素α为-60°,120°[课时达标检测]一、选择题1.-435°角的终边所在的象限是( )A.第一象限B.第二象限C.第三象限 D.第四象限答案:D2.终边在第二象限的角的集合可以表示为( )A.{α|90°<α<180°}B.{α|90°+k·180°<α<180°+k·180°,k∈Z}C.{α|-270°+k·180°<α<-180°+k·180°,k∈Z}D.{α|-270°+k·360°<α<-180°+k·360°,k∈Z}答案:D3.若α是第四象限角,则-α一定是( )A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角答案:A4.集合M={α|α=k·90°,k∈Z}中各角的终边都在( )A.x轴非负半轴上B.y轴非负半轴上C.x轴或y轴上D.x轴非负半轴或y轴非负半轴上答案:C5.角α与角β的终边关于y轴对称,则α与β的关系为( )A.α+β=k·360°,k∈ZB.α+β=k·360°+180°,k∈ZC.α-β=k·360°+180°,k∈ZD.α-β=k·360°,k∈Z答案:B二、填空题6.已知角α=-3 000°,则与角α终边相同的最小正角是________.答案:240°7.如果将钟表拨快10分钟,则时针所转成的角度是________度,分针所转成的角度是________度.答案:-5 -608.已知角2α的终边在x轴的上方,那么α是第________象限角.答案:一或三三、解答题9.如果θ为小于360°的正角,这个角θ的4倍角的终边与这个角的终边重合,求θ的值.解:由题意得4θ=θ+k·360°,k∈Z,∴3θ=k·360°,θ=k·120°,又0°<θ<360°,∴θ=120°或θ=240°.10.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.解:由题意可知,α+β=-280°+k·360°,k∈Z.∵α,β都是锐角,∴0°<α+β<180°.取k=1,得α+β=80°.①α-β=670°+k·360°,k∈Z,∵α,β都是锐角,∴-90°<α-β<90°.取k=-2,得α-β=-50°.②由①②,得α=15°,β=65°.11.写出终边在下列各图所示阴影部分内的角的集合.解:先写出边界角,再按逆时针顺序写出区域角,则得(1){α|30°+k·360°≤α≤150°+k·360°,k∈Z};(2){α|150°+k·360°≤α≤390°+k·360°,k∈Z}.1.1.2 弧 度 制[提出问题]问题1:在角度制中,把圆周等分成360份,其中的一份是多少度? 提示:1°.问题2:半径为1的圆的周长是2π,即周长为2π时,对应的圆心角是360°,那么弧长为π时,对应的圆心角是多少?提示:180°.问题3:在给定半径的圆中,弧长一定时,圆心角确定吗? 提示:确定. [导入新知] 1.角度制与弧度制 (1)角度制①定义:用度作为单位来度量角的单位制. ②1度的角:周角的1360作为一个单位. (2)弧度制①定义:以弧度作为单位来度量角的单位制. ②1弧度的角:长度等于半径长的弧所对的圆心角. 2.任意角的弧度数与实数的对应关系正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. 3.角的弧度数的计算如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=l r.[化解疑难]角度制和弧度制的比较(1)弧度制与角度制是以不同单位来度量角的单位制. (2)1弧度的角与1度的角所指含义不同,大小更不同.(3)无论是以“弧度”还是以“度”为单位来度量角,角的大小都是一个与“半径”大小无关的值.(4)用“度”作为单位度量角时,“度”(即“°”)不能省略,而用“弧度”作为单位度量角时,“弧度”二字或“rad”通常省略不写.[提出问题]问题1:周角是多少度?是多少弧度? 提示:360°,2π.问题2:半圆所对的圆心角是多少度?是多少弧度? 提示:180°,π.问题3:既然角度与弧度都是角的度量单位制,那么它们之间如何换算? 提示:π=180°. [导入新知]1.弧度与角度的换算[化解疑难]角度与弧度互化的原则和方法 (1)原则:牢记180°=π rad , 充分利用1°=π180 rad ,1 rad =⎝⎛⎭⎪⎫180π°进行换算.(2)方法:设一个角的弧度数为α,角度数为n , 则α rad =⎝⎛⎭⎪⎫α·180π°;n °=n ·π180 rad.[扇形的弧长及面积公式设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则扇形的弧长及面积公式的记忆(1)扇形的弧长公式的实质是角的弧度数的计算公式的变形:|α|=l r⇔l =r |α|. (2)扇形的面积公式S =12lR 与三角形的面积公式极为相似(把弧长看作底,把半径看作高),可以类比记忆.[例1] (1)72°;(2)-300°;(3)2;(4)-2π9.[解] (1)72°=72×π180=2π5;(2)-300°=-300×π180=-5π3;(3)2=2×⎝⎛⎭⎪⎫180π°=⎝ ⎛⎭⎪⎫360π°;(4)-2π9=-⎝ ⎛⎭⎪⎫2π9×180π°=-40°.[类题通法] 角度与弧度互化技巧在进行角度与弧度的换算时,抓住关系式π rad =180°是关键,由它可以得到:度数×π180=弧度数,弧度数×180π=度数. [活学活用]已知α=15°,β=π10,γ=1,θ=105°,φ=7π12,试比较α,β,γ,θ,φ的大小.答案:α<β<γ<θ=φ[例2] 2. (2)已知一半径为R 的扇形,它的周长等于所在圆的周长,那么扇形的圆心角是多少弧度?面积是多少?[解] (1)4(2)设扇形的弧长为l ,由题意得2πR =2R +l ,所以l =2(π-1)R ,所以扇形的圆心角是lR=2(π-1),扇形的面积是12Rl =(π-1)R 2.[类题通法]弧度制下涉及扇形问题的攻略(1)明确弧度制下扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,r 是扇形的半径,α是扇形的圆心角).(2)涉及扇形的周长、弧长、圆心角、面积等的计算,关键是先分析题目已知哪些量求哪些量,然后灵活运用弧长公式、扇形面积公式直接求解或列方程(组)求解.注意:运用弧度制下的弧长公式及扇形面积公式的前提是α为弧度. [活学活用]已知扇形的周长是30 cm ,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?答案:r =152 cm 时,α=2,扇形面积最大,最大面积为2254cm 2.[例3] 的角的集合.[解] (1)如题图①,∵330°角的终边与-30°角的终边相同,将-30°化为弧度,即-π6, 而75°=75×π180=5π12,∴终边落在阴影部分内(不包括边界)的角的集合为⎩⎨⎧θ⎪⎪⎪⎭⎬⎫2k π-π6<θ<2k π+5π12,k ∈Z .(2)如题图②,∵30°=π6,210°=7π6,这两个角的终边所在的直线相同,因此终边在直线AB 上的角为α=k π+π6,k ∈Z ,又终边在y 轴上的角为β=k π+π2,k ∈Z ,从而终边落在阴影部分内(不包括边界)的角的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪k π+π6<θ<k π+π2,k ∈Z . [类题通法]用弧度制表示角应关注的三点(1)用弧度表示区域角,实质是角度表示区域角在弧度制下的应用,必要时需进行角度与弧度的换算.注意单位要统一.(2)在表示角的集合时,可以先写出一周范围(如-π~π,0~2π)内的角,再加上2k π,k ∈Z.(3)终边在同一直线上的角的集合可以合并为{x |x =α+k π,k ∈Z};终边在相互垂直的两直线上的角的集合可以合并为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =α+k ·π2,k ∈Z. 在进行区间合并时,一定要做到准确无误. [活学活用]以弧度为单位,写出终边落在直线y =-x 上的角的集合. 答案:αα=34π+k π,k ∈Z1.弧度制下的对称关系[典例] 若角α的终边与角π6的终边关于直线y =x 对称,且α∈(-4π,4π),则α=________.[解析] 如图所示,设角π6的终边为OA ,OA 关于直线y =x 对称的射线为OB ,则以OB 为终边且在0到2π之间的角为π3,故以OB 为终边的角的集合为αα=π3+2k π,k ∈Z.∵α∈(-4π,4π), ∴-4π<π3+2k π<4π(k ∈Z),∴-136<k <116(k ∈Z).∵k ∈Z ,∴k =-2,-1,0,1,∴α=-11π3,-5π3,π3,7π3.[答案] -11π3,-5π3,π3,7π3[多维探究]在弧度制下,常见的对称关系如下(1)若α与β的终边关于x 轴对称,则α+β=2k π(k ∈Z); (2)若α与β的终边关于y 轴对称,则α+β=(2k +1)π(k ∈Z); (3)若α与β的终边关于原点对称,则α-β=(2k +1)π(k ∈Z); (4)若α与β的终边在一条直线上,则α-β=k π(k ∈Z). [活学活用]1.若α和β的终边关于x 轴对称,则α可以用β表示为( ) A .2k π+β (k ∈Z) B .2k π-β (k ∈Z) C .k π+β (k ∈Z) D .k π-β (k ∈Z) 答案:B2.在平面直角坐标系中,α=-2π3,β的终边与α的终边分别有如下关系时,求β.(1)若α,β的终边关于x 轴对称; (2)若α,β的终边关于y 轴对称; (3)若α,β的终边关于原点对称; (4)若α,β的终边关于直线x +y =0对称. 答案:(1)β=2π3+2k π,k ∈Z(2)β=-π3+2k π,k ∈Z(3)β=π3+2k π,k ∈Z(4)β=π6+2k π,k ∈Z[随堂即时演练]1.下列命题中,错误的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1°的角是周角的1360,1 rad 的角是周角的12πC .1 rad 的角比1°的角要大D .用弧度制度量角时,角的大小与圆的半径有关 答案:D2.若α=-2 rad ,则α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案:C3.-135°化为弧度为______,11π3化为角度为______.答案:-34π 660°4.已知半径为12 cm ,弧长为8π cm 的弧,其所对的圆心角为α,则与角α终边相同的角的集合为______________.答案:⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=2π3+2k π,k ∈Z5.设角α=-570°,β=3π5.(1)将α用弧度制表示出来,并指出它所在的象限;(2)将β用角度制表示出来,并在-720°~0°之间找出与它有相同终边的所有角. 答案:(1)α=-19π6;α在第二象限;(2)β=108°;在-720°~0°之间与β有相同终边的角的大小为-612°和-252°.[课时达标检测]一、选择题1.下列命题中,正确的是( ) A .1弧度是1度的圆心角所对的弧 B .1弧度是长度为半径长的弧 C .1弧度是1度的弧与1度的角之和 D .1弧度是长度等于半径长的弧所对的圆心角 答案:D2.1 920°化为弧度数为( ) A.163 B.323 C.16π3D.32π3答案:D 3.29π6是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角答案:B4.圆弧长度等于其所在圆内接正三角形的边长,则该圆弧所对圆心角的弧度数为( ) A.π3B.2π3C. 3 D .2答案:C5.集合P ={α|2k π≤α≤(2k +1)π,k ∈Z},Q ={α|-4≤α≤4},则P ∩Q 等于( ) A .∅B .{α|-4≤α≤-π,或0≤α≤π}C .{α|-4≤α≤4}D .{α|0≤α≤π} 答案:B二、填空题6.用弧度制表示终边落在x 轴上方的角的集合为________. 答案:{α|2k π<α<2k π+π,k ∈Z}7.如果一个圆的半径变为原来的一半,而弧长变为原来的32倍,则该弧所对的圆心角是原来的________倍.答案:38.若角α的终边与85π的终边相同,则在[0,2π]上,终边与α4的终边相同的角有________.答案:2π5,9π10,7π5,19π10三、解答题9.已知α=-800°.(1)把α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限角;(2)求γ,使γ与α的终边相同,且γ∈⎝ ⎛⎭⎪⎫-π2,π2.解:(1)∵-800°=-3×360°+280°,280°=149π,∴α=-800°=14π9+(-3)×2π.∵α与角14π9终边相同,∴α是第四象限角.(2)∵与α终边相同的角可写为2k π+14π9,k ∈Z 的形式,而γ与α的终边相同,∴γ=2k π+14π9,k ∈Z.又γ∈⎝ ⎛⎭⎪⎫-π2,π2,∴-π2<2k π+14π9<π2,k ∈Z , 解得k =-1,∴γ=-2π+14π9=-4π9.10.如图,动点P ,Q 从点A (4,0)出发,沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求P ,Q 第一次相遇时所用的时间及P ,Q 点各自走过的弧长.解:设P ,Q 第一次相遇时所用的时间是t ,则t ·π3+t ·⎪⎪⎪⎪⎪⎪-π6=2π, 所以t =4(s),即P ,Q 第一次相遇时所用的时间为4 s.P 点走过的弧长为4π3×4=16π3,Q 点走过的弧长为2π3×4=8π3.11.如图,已知扇形AOB 的圆心角为120°,半径长为6,求弓形ACB 的面积.解:∵120°=120180π=23π,∴l =6×23π=4π,∴AB 的长为4π.∵S 扇形OAB =12lr =12×4π×6=12π,如图所示,作OD ⊥AB ,有S △OAB =12×AB ×OD =12×2×6cos 30°×3=9 3.∴S 弓形ACB =S 扇形OAB -S △OAB =12π-9 3. ∴弓形ACB 的面积为12π-9 3.1.2.1 任意角的三角函数第一课时 三角函数的定义[提出问题使锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,在终边上任取一点P ,PM ⊥x 轴于M ,设P (x ,y ),|OP |=r .问题1:角α的正弦、余弦、正切分别等于什么? 提示:sin α=yr ,cos α=x r ,tan α=y x.问题2:对于确定的角α,sin α,cos α,tan α是否随P 点在终边上的位置的改变而改变?提示:否.问题3:若|OP |=1,则P 点的轨迹是什么?这样表示sin α,cos α,tan α有何优点?提示:P 点的轨迹是以原点O 为圆心,以1为半径的单位圆,即P 点是单位圆与角α终边的交点,在单位圆中定义sin α,cos α,tan α更简便.[导入新知]1.任意角三角函数的定义(1)单位圆:在直角坐标系中,以原点O 为圆心,以单位长度为半径的圆称为单位圆. (2)单位圆中任意角的三角函数的定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么y 叫做α的正弦,记作sin α,即sin α=y ;x 叫做α的余弦,记作cosα,即cos α=x ;yx 叫做α的正切,记作tan α,即tan α=y x(x ≠0).2.三角函数正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,它们统称为三角函数.[化解疑难]对三角函数定义的理解(1)三角函数是一种函数,它满足函数的定义,可以看成是从角的集合(弧度制)到一个比值的集合的对应.(2)三角函数是用比值来定义的,所以三角函数的定义域是使比值有意义的角的范围.(3)三角函数是比值,是一个实数,这个实数的大小与点P(x,y)在终边上的位置无关,只由角α的终边位置决定,即三角函数值的大小只与角有关.[提出问题]问题1:若角α是第二象限角,则它的正弦、余弦和正切值的符号分别怎样?提示:若角α为第二象限角,则x<0,y>0, sin α>0,cos α<0,tan α<0.问题2:当角α是第四象限角时,它的正弦、余弦和正切值的符号分别怎样?提示:sin α<0,cos α>0,tan α<0.问题3:取角α分别为30°,390°,-330°,它们的三角函数值是什么关系?为什么?提示:相等.因为它们的终边重合.问题4:取α=90°,-90°时,它们的正切值存在吗?提示:不存在.[导入新知]1.三角函数的定义域2.三角函数值的符号[化解疑难]巧记三角函数值的符号三角函数值的符号变化规律可概括为“一全正、二正弦、三正切、四余弦”.即第一象限各三角函数值均为正,第二象限只有正弦值为正,第三象限只有正切值为正,第四象限只有余弦值为正.[提出问题]问题:若角α与β的终边相同,根据三角函数的定义,你认为sin α与sin β,cos α与cos β,tan α与tan β之间有什么关系?提示:sin α=sin β,cos α=cos β,tan α=tan β. [导入新知]终边相同的角的同一三角函数的值(1)终边相同的角的同一三角函数的值相等. (2)公式:sin(α+k ·2π)=sin_α, cos(α+k ·2π)=cos_α,tan(α+k ·2π)=tan_α,其中k ∈Z. [化解疑难]诱导公式一的结构特点(1)其结构特点是函数名相同,左边角为α+k ·2π,右边角为α.(2)由公式一可知,三角函数值有“周而复始”的变化规律,即角的终边每绕原点旋转一周,函数值将重复出现.(3)此公式也可以记为:sin(α+k ·360°)=sin α,cos(α+k ·360°)=cos α,tan(α+k ·360°)=tan α,其中k ∈Z.[例1] ,cos α=________,tan α=________.(2)已知角α的终边落在直线3x +y =0上,求sin α,cos α,tan α的值. [解] (1)-1213 513 -125(2)直线3x +y =0,即y =-3x ,经过第二、四象限,在第二象限取直线上的点(-1,3),则r =-2+32=2,所以sin α=32,cos α=-12,tan α=-3;在第四象限取直线上的点(1,-3),则r =12+-32=2,所以sin α=-32,cos α=12,tan α=- 3.[类题通法]利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种: ①先利用直线与单位圆相交,求出交点坐标,然后利用三角函数的定义求出相应的三角函数值.②注意到角的终边为射线,所以应分两种情况来处理,取射线上任一点坐标(a ,b ),则对应角的正弦值sin α=b a 2+b2,余弦值cos α=a a 2+b2,正切值tan α=ba. (2)当角的终边上的点的坐标以参数的形式给出时,要根据问题的实际情况对参数进行分类讨论.[活学活用]已知角α终边上一点P 的坐标为(4a ,-3a )(a ≠0),求2sin α+cos α的值. 答案:2sin α+cos α=⎩⎪⎨⎪⎧-25,a >0,25,a <0[例2] (1)若sin αtan α<0,且tan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角(2)判断下列各式的符号:①sin 105°·cos 230°;②cos 3·tan ⎝ ⎛⎭⎪⎫-2π3. [解] (1)C(2)①∵105°,230°分别为第二、第三象限角,∴sin 105°>0,cos 230°<0.于是sin 105°·cos 230°<0. ②∵π2<3<π,∴3是第二象限角,∴cos 3<0.又∵-2π3是第三象限角,∴tan ⎝ ⎛⎭⎪⎫-2π3>0,∴cos 3·tan ⎝ ⎛⎭⎪⎫-2π3<0. [类题通法]三角函数值的符号规律(1)当角θ为第一象限角时,sin θ>0,cos θ>0或sin θ>0,tan θ>0或cos θ>0,tan θ>0,反之也成立;(2)当角θ为第二象限角时,sin θ>0,cos θ<0或sin θ>0,tan θ<0或cos θ<0,tan θ<0,反之也成立;(3)当角θ为第三象限角时,sin θ<0,cos θ<0或sin θ<0,tan θ>0或cos θ<0,tan θ>0,反之也成立;(4)当角θ为第四象限角时,sin θ<0,cos θ>0或sin θ<0,tan θ<0或cos θ>0,tan θ<0,反之也成立.[活学活用]已知点P (tan α,cos α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:B[例3] (1)sin(-1 395°)cos 1 110°+cos(-1 020°)·sin 750°;(2)sin ⎝⎛⎭⎪⎫-11π6+cos 12π5tan 4π. [解] (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 45°cos 30°+cos 60°sin 30° =22×32+12×12=64+14=1+64. (2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝ ⎛⎭⎪⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12.[类题通法]诱导公式一的应用策略应用诱导公式一时,先将角转化为0~2π范围内的角,再求值.对于特殊角的三角函数值一定要熟记.[活学活用]求下列各式的值:(1)sin 25π3+tan ⎝⎛⎭⎪⎫-15π4; (2)sin 810°+cos 360°-tan 1 125°. 答案:(1)32+1 (2)11.应用三角函数定义求值[典例] (12分)已知角α的终边过点P (-3m ,m )(m ≠0),求α的正弦、余弦、正切值.[解题流程][规范解答] 由题意可得: 由|OP |=-3m 2+m 2=分)(1)当m >0时,|OP |=10|m |=10m ,(4分)则sin α=m10m=1010,cos α=-3m10m=-3 1010,tan α=m-3m =-13.(7分)[名师批注]由于题目条件中只告诉m ≠0,不知道m 的符|OP |=\r(10)|m |.此处极易忽视此点,误认为|OP |=\r(10)m ,从而导致解题不完整而失分.(2)当m <0时,|OP |=10|m |分)则sin α=-1010,cos α=3 1010,tan α=-13.(12分)根据正切函数的定义tan α=yx,本题中tan α的取值与m 的符号无关,即无论m >0还是m <0,tan α都是m -3m =-13.[活学活用]已知角α的终边上一点P (-3,y )(y ≠0),且sin α=24y ,求cos α,tan α的值.解:当y =5时,cos α=-64,tan α=-153; 当y =-5时,cos α=-64,tan α=153.[随堂即时演练]1.已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35D .-45答案:D2.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .以上三种情况都可能 答案:B3.计算:sin ⎝ ⎛⎭⎪⎫-196π=________. 答案:124.已知角θ的顶点为坐标原点,始边为x 轴的非负半轴,若P (4,y )是角θ终边上。
人教版数学必修四:1.2.1任意角的三角函数(1)(教师版)
课题:§1.2.1任意角的三角函数(1)总第____课时班级_______________【学习目标】1.掌握任意角的正弦,余弦,正切的定义;2【重点难点】学习重点:任意角的正弦,余弦,正切的定义.学习难点:理解三角函数的定义,掌握三角函数的定义域和值域【学习过程】一、自主学习与交流反馈问题1:初中课本中是如何定义锐角三角函数的?问题2:如右图,点P是半径为R的圆O上一点,点P在圆O上运动,当点P从点A位置运动到点P位置时,∠AOP =α. 如果我们以O为坐标原点,OA为x轴正方向建立平面直角坐标系。
我们是不是可以用(r,α)来准确地表示点P的位置?点P的位置可以用它的坐标(x,y)来表示,你能找出(r,α)与(x,y)的关系吗?问题3:填表(课前先完成30°,45°,60°填空):二、知识建构与应用:1.给出任意角三角函数的定义:如图: 在平面直角坐标系中, 设角α的终边上除原点外任意一点P 的坐标是),(y x , 它与原点的距离是)0(22>+=y x r r 。
我们规定:αsin = ;αcos = ,αtan = .问题:点P 的位置不同,会不会改变三角函数值?2.三角函数的定义域3.由定义指出每个象限内的角对应的三角函数值的符号,总结规律.三、例题例1 已知α的终边经过点P(2,-3),分别求α的正弦、余弦、正切值.变式⑴: 已知角α的终边经过P(4,-3),求2sin α+cos α的值.变式⑵: 已知角α的终边经过P(4a,-3a),(a ≠0) 求2sin α+cos α的值.例2 确定下列三角函数值的符号:(1)cos 7π12 ; (2)sin(-465°) ; (3) tan 11π3例3 (1)若0sin <α且0tan <α,试确定α为第几象限角. (2)使0cos sin <⋅αα成立的角α的集合.例4 确定下列三角函数的符号:(1)sin2 (2)cos(-3) (3) )108tan(310cos 0-四、巩固练习1.已知角α的终边经过点P ,求α的正弦、余弦、正切值。
2018版高中数学第一章三角函数1.2.1任意角的三角函数二导学案新人教A版必修4201804241
1.2.1任意角的三角函数(二)学习目标 1.掌握正弦、余弦、正切函数的定义域.2.了解三角函数线的意义,能用三角函数线表示一个角的正弦、余弦和正切.3.能利用三角函数线解决一些简单的三角函数问题.知识点一三角函数的定义域π 思考正切函数y=tan x为什么规定x∈R且x≠kπ+,k∈Z?2πy P 答案当x=kπ+,k∈Z时,角x的终边在y轴上,此时任取终边上一点P(0,y P),因为2 0π 无意义,因而x的正切值不存在.所以对正切函数y=tan x,必须要求x∈R且x≠kπ+,2k∈Z.梳理正弦函数y=sin x的定义域是R;余弦函数y=cos x的定义域是R;正切函数y=tanπx的定义域是{x|x∈R且x≠kπ+,k∈Z}.2知识点二三角函数线思考1在平面直角坐标系中,任意角α的终边与单位圆交于点P,过点P作PM⊥x轴,过点A(1,0)作单位圆的切线,交α的终边或其反向延长线于点T,如图所示,结合三角函数的定义,你能得到sin α,cos α,tan α与MP,OM,AT的关系吗?答案sin α=MP,cos α=OM,tan α=AT.思考2三角函数线的方向是如何规定的?答案方向与x轴或y轴的正方向一致的为正值,反之,为负值.思考3三角函数线的长度和方向各表示什么?答案长度等于三角函数值的绝对值,方向表示三角函数值的正负.梳理图示1角α的终边与单位圆交于点P,过点P作PM垂直于x轴,有向正弦线线段MP即为正弦线余弦线有向线段OM即为余弦线过点A(1,0)作单位圆的切线,这条切线必然平行于y轴,设它与正切线α的终边或其反向延长线相交于点T,有向线段AT即为正切线类型一三角函数线5π例1作出-的正弦线、余弦线和正切线.8解如图所示,5πsin(-8 )=MP,5πcos(-8 )=OM,5πtan(-8 )=AT.反思与感悟(1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作x 轴的垂线,得到垂足,从而得到正弦线和余弦线.(2)作正切线时,应从点A(1,0)引单位圆的切线交角的终边或终边的反向延长线于一点T,即可得到正切线AT.1跟踪训练1在单位圆中画出满足sin α=的角α的终边,并求角α的取值集合.21 1 1解已知角α的正弦值,可知MP=,则P点纵坐标为2.所以在y轴上取点(0,2 ),过这点22作x轴的平行线,交单位圆于P1,P2两点,则OP1,OP2是角α的终边,因而角α的取值集π5π合为{α|α=2kπ+或α=2kπ+,k∈Z}.6 6类型二利用三角函数线比较大小2π4π2π4π2π4π例2利用三角函数线比较sin 和sin ,cos 和cos ,tan 和tan 的大小.3 5 3 5 3 52π2π2π4π4π4π解如图,sin =MP,cos =OM,tan =AT,sin =M′P′,cos =OM′,tan3 3 3 5 5 5=AT′.显然|MP|>|M′P′|,符号皆正,2π4π∴sin>sin ;3 52π4π|OM|<|OM′|,符号皆负,∴cos>cos ;3 52π4π|AT|>|AT′|,符号皆负,∴tan<tan .3 5反思与感悟利用三角函数线比较三角函数值的大小时,一般分三步:(1)角的位置要“对号入座”;(2)比较三角函数线的长度;(3)确定有向线段的正负.跟踪训练2比较sin 1 155°与sin(-1 654°)的大小.解sin 1 155°=sin(3×360°+75°)=sin 75°,sin(-1 654°)=sin(-5×360°+146°)=sin 146°.如图,在单位圆中,分别作出sin 75°和sin 146°的正弦线M1P1,M2P2.∵M1P1>M2P2,且符号皆正,∴sin1 155°>sin(-1 654°).类型三利用三角函数线解不等式(组)3命题角度1利用三角函数线解不等式组例3在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合.3 1(1)sin α≥;(2)cos α≤-.2 23解(1)作直线y=交单位圆于A,B两点,连接OA,OB,则OA与OB围成的区域(如图(1)所2示的阴影部分,包括边界),即为角α的终边的范围.π2π故满足要求的角α的集合为{α|2kπ+≤α≤2kπ+,k∈Z}.3 31(2)作直线x=-交单位圆于C,D两点,连接OC与OD,则OC与OD围成的区域(如图(2)所示2的阴影部分,包括边界),即为角α的终边的范围.2π4π故满足条件的角α的集合为{α|2kπ+≤α≤2kπ+,k∈Z}.3 3反思与感悟用单位圆中的三角函数线求解简单的三角不等式,应注意以下两点:(1)先找到“正值”区间,即0~2π内满足条件的角θ的范围,然后再加上周期;(2)注意区间是开区间还是闭区间.1 3跟踪训练3已知-≤cosθ< ,利用单位圆中的三角函数线,确定角θ的取值范围.2 2解图中阴影部分就是满足条件的角θ的范围,即2 ππ 2{θ|2kπ-π≤θ<2kπ-或2kπ+<θ≤2kπ+π,k∈Z}.3 6 6 3命题角度2利用三角函数线求三角函数的定义域例4求下列函数的定义域.(1)y=2sin x-3;2(2)y=lg(sin x-)+1-2cos x.2解(1)自变量x应满足2sin x-3≥0,3即sin x≥.2π2π图中阴影部分就是满足条件的角x的范围,即{x|2kπ+≤x≤2kπ+,k∈Z}.3 34(2)由题意知,自变量x应满足不等式组Error!即Error!则不等式组的解的集合如图(阴影部分)所示,π3π∴{x|2kπ+≤x<2kπ+,k∈Z}.3 4反思与感悟(1)求函数的定义域,就是求使解析式有意义的自变量的取值范围,一般通过解不等式或不等式组求得,对于三角函数的定义域问题,还要考虑三角函数自身定义域的限制.(2)要特别注意求一个固定集合与一个含有无限多段的集合的交集时,可以取特殊值把不固定的集合写成若干个固定集合再求交集. 跟踪训练4求函数f(x)=2sin x-1的定义域. 解要使函数f(x)有意义,必须使2sin x-1≥0,1则sin x≥.21如图,画出单位圆,作x轴的平行直线y=,2交单位圆于点P1,P2,连接OP1,OP2,分别过点P1,P2作x轴的垂线,画出如图所示的两条正弦线,1易知这两条正弦线的长度都等于.2π5π 1在[0,2π)内,sin =sin =.6 6 21因为sin x≥,所以满足条件的角x的终边在图中阴影部分内(包括边界),25。
高中数学 1.2 任意角的三角函数导学案 新人教A版必修4 学案
某某省某某市三水区实验中学高中数学 1.2 任意角的三角函数导学案新人教A版必修4【学习目标】1.掌握任意角的三角函数的定义。
2.已知角α终边上一点,会求角α的各三角函数值。
【重点难点】1. 熟练求值。
2. 理解任意角的三角函数的定义。
【预习指导】1.阅读教材第11~13页。
2.回顾初中学过的锐角三角函数的定义?(如图)在Rt△ABC中,sinA= ,cosA= , tanA= .3.思考:你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?点的位置对这三个比值有影响吗?4.在平面直角坐标系中,我们称以______为圆心,以__________为半径的圆为单位圆。
【合作探究】1. 例题研讨:例1:求下列各角的正弦、余弦、正切值:π、4π、3π、53π(讨论求法→试求(学生板演)→订正)ABC→小结:画角的终边与单位圆,求交点,求值.例2:已知角α的终边经过点P(-4,-3),求角α的正弦、余弦和正切值.(学生试求→订正→小结解法)2. 任意角的三角函数的定义:①思考:已知角α终边上任意一点P (x, y),如何求它的三角函数值呢?②定义:一般地,设角α终边上任意一点的坐标为P (x,y),它与原点的距离为r,则sinα=;cosα=;tanα=.③讨论:这三个比值与点P的位置是否有关?当α的终边落在x轴、y轴上时,哪些三角函数值无意义?任何实数是不是都有三角函数值?为什么?【达标测评】(参考《全优》P7)1.若角α终边上有一点P(0,3),则下列函数值无意义的是() A.tan α B.sin αC.cos α D.无法确定2.已知角α的终边经过点P(m,-3),且cosα=-45,则m等于( )A.-114 B.114C.-4 D.43.若点P(4,y)是角α终边上一点,且sin α=-35,则y的值是________.【归纳小结】单位圆定义任意角的三角函数;2.由终边上任一点求任意角的三角函数;【巩固练习】(各班可按实际情况安排)1.练习:教材P15:1,3;2.作业:教材P15:2.第二课时:任意角的三角函数(二)【学习目标】1. 掌握各象限的三角函数值的符号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.1 任意角的三角函数(一)学习目标 1.通过借助单位圆理解并掌握任意角的三角函数定义,了解三角函数是以实数为自变量的函数.2.借助任意角三角函数的定义理解并掌握正弦、余弦、正切函数值在各象限内的符号.3.通过对任意角的三角函数定义的理解,掌握终边相同的角的同一三角函数值相等.知识点一 任意角的三角函数使锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,在终边上任取一点P ,作PM ⊥x 轴于M ,设P (x ,y ),|OP |=r .思考1 角α的正弦、余弦、正切分别等于什么? 答案 sin α=yr ,cos α=x r ,tan α=y x.思考2 对确定的锐角α,sin α,cos α,tan α的值是否随P 点在终边上的位置的改变而改变?答案 不会.因为三角函数值是比值,其大小与点P (x ,y )在终边上的位置无关,只与角α的终边位置有关,即三角函数值的大小只与角有关.思考3 在思考1中,当取|OP |=1时,sin α,cos α,tan α的值怎样表示? 答案 sin α=y ,cos α=x ,tan α=y x. 梳理 (1)单位圆在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆. (2)定义在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: ①y 叫做α的正弦,记作sin α, 即sin α=y ;②x 叫做α的余弦,记作cos α,即cos α=x ; ③y x 叫做α的正切,记作tan α,即tan α=y x(x ≠0).对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.知识点二 正弦、余弦、正切函数的定义域思考 对于任意角α,sin α,cos α,tan α都有意义吗?答案 由三角函数的定义可知,对于任意角α,sin α,cos α都有意义,而当角α的终边在y 轴上时,任取一点P ,其横坐标x 都为0,此时y x无意义,故tan α无意义. 梳理 三角函数的定义域函数名 定义域 正弦函数 R 余弦函数 R正切函数⎩⎨⎧⎭⎬⎫x |x ∈R ,且x ≠k π+π2,k ∈Z知识点三 正弦、余弦、正切函数值在各象限的符号思考 根据三角函数的定义,你能判断正弦、余弦、正切函数的值在各象限的符号吗? 答案 由三角函数定义可知,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=y x.当α为第一象限角时,y >0, x >0,故sin α>0,cos α>0,tan α>0,同理可得当α在其他象限时三角函数值的符号,如图所示.梳理 记忆口诀:“一全正,二正弦,三正切,四余弦”. 知识点四 诱导公式一思考 当角α分别为30°,390°,-330°时,它们的终边有什么特点?它们的三角函数值呢?答案 它们的终边重合.由三角函数的定义知,它们的三角函数值相等. 梳理 诱导公式一 sin (α+k ·2π)=sinα,cos (α+k ·2π)=cosα,tan (α+k ·2π)=tanα,其中k ∈Z .类型一 三角函数定义的应用命题角度1 已知角α终边上一点坐标求三角函数值 例1 已知θ终边上一点P (x ,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ. 解 由题意知r =|OP |=x 2+9, 由三角函数定义得cos θ=x r=xx 2+9. 又∵cos θ=1010x ,∴x x 2+9=1010x . ∵x ≠0,∴x =±1. 当x =1时,P (1,3), 此时sin θ=312+32=31010,tan θ=31=3. 当x =-1时,P (-1,3), 此时sin θ=3(-1)2+32=31010,tan θ=3-1=-3. 反思与感悟 (1)已知角α终边上任意一点的坐标求三角函数值的方法:①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应地三角函数值.②在α的终边上任选一点P (x ,y ),设P 到原点的距离为r (r >0),则sin α=yr,cos α=xr.当已知α的终边上一点求α的三角函数值时,用该方法更方便. (2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.跟踪训练1 已知角α的终边过点P (-3a ,4a )(a ≠0),求2sin α+cos α的值. 解 r =(-3a )2+(4a )2=5|a |.①若a >0,则r =5a ,角α在第二象限,sin α=y r =4a 5a =45,cos α=x r =-3a 5a =-35,∴2sin α+cos α=85-35=1.②若a <0,则r =-5a ,角α在第四象限, sin α=4a -5a =-45,cos α=-3a -5a =35,∴2sin α+cos α=-85+35=-1.综上所述,2sin α+cos α=±1.命题角度2 已知角α终边所在直线求三角函数值例2 已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值.解 由题意知,cos α≠0.设角α的终边上任一点为P (k ,-3k )(k ≠0),则x =k ,y =-3k ,r = k 2+(-3k )2=10|k |.(1)当k >0时,r =10k ,α是第四象限角, sin α=y r=-3k10k=-31010,1cos α=r x =10k k =10,∴10sin α+3cos α=10×⎝ ⎛⎭⎪⎫-31010+310=-310+310=0.(2)当k <0时,r =-10k ,α是第二象限角,sin α=y r =-3k -10k =31010,1cos α=r x =-10k k=-10, ∴10sin α+3cos α=10×31010+3×(-10)=310-310=0.综上所述,10sin α+3cos α=0.反思与感悟 在解决有关角的终边在直线上的问题时,应注意到角的终边为射线,所以应分两种情况处理,取射线上异于原点的任意一点的坐标的(a ,b ),则对应角的三角函数值分别为sin α=b a 2+b2,cos α=a a 2+b2,tan α=ba. 跟踪训练2 已知角α的终边在直线y =3x 上,求sin α,cos α,tan α的值. 解 因为角α的终边在直线y =3x 上,所以可设P (a ,3a )(a ≠0)为角α终边上任意一点, 则r =a 2+(3a )2=2|a |(a ≠0). 若a >0,则α为第一象限角,r =2a , 所以sin α=3a 2a =32, cos α=a 2a =12,tan α=3aa= 3.若a <0,则α为第三象限角,r =-2a , 所以sin α=3a -2a =-32,cos α=-a 2a =-12,tan α=3aa= 3.类型二 三角函数值符号的判断例3 (1)若α是第二象限角,则点P (sin α,cos α)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限答案 D解析 ∵α为第二象限角,∴sin α>0,cos α<0, ∴点P 在第四象限,故选D. (2)确定下列各三角函数值的符号. ①sin 182°;②cos(-43°);③tan 7π4.解 ①∵182°是第三象限角, ∴sin 182°是负的,符号是“-”. ②∵-43°是第四象限角,∴cos(-43°)是正的,符号是“+”. ③∵7π4是第四象限角,∴tan 7π4是负的,符号是“-”.反思与感悟 角的三角函数值的符号由角的终边所在位置确定,解题的关键是准确确定角的终边所在的象限,同时牢记各三角函数值在各象限的符号,记忆口诀:一全正,二正弦,三正切,四余弦.跟踪训练3 (1)已知点P (tan α,cos α)在第三象限,则α是第 象限角. 答案 二解析 由题意知tan α<0,cos α<0, ∴α是第二象限角. (2)判断下列各式的符号.①sin 145°cos(-210°);②sin 3·cos 4·tan 5. 解 ①∵145°是第二象限角,∴sin 145°>0. ∵-210°=-360°+150°,∴-210°是第二象限角, ∴cos (-210°)<0,∴sin 145°cos(-210°)<0. ②∵π2<3<π<4<3π2<5<2π,∴sin 3>0,cos 4<0,tan 5<0, ∴sin 3·cos 4·tan 5>0. 类型三 诱导公式一的应用 例4 求下列各式的值.(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin ⎝⎛⎭⎪⎫-11π6+cos 12π5·tan 4π. 解 (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 45°cos 30°+cos 60°sin 30°=22×32+12×12=64+14=1+64. (2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝ ⎛⎭⎪⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12.反思与感悟 利用诱导公式一可把负角的三角函数化为0到2π间的三角函数,也可把大于2π的角的三角函数化为0到2π间的三角函数,即实现了“负化正,大化小”. 跟踪训练4 求下列各式的值. (1)cos 25π3+tan ⎝ ⎛⎭⎪⎫-15π4;(2)sin 810°+tan 765°-cos 360°. 解 (1)原式=cos ⎝ ⎛⎭⎪⎫8π+π3+tan ⎝ ⎛⎭⎪⎫-4π+π4 =cos π3+tan π4=12+1=32.(2)原式=sin(90°+2×360°)+tan(45°+2×360°)-cos 360°=sin 90°+tan 45°-1=1+1-1=1.1.已知角α的终边经过点(-4,3),则cos α等于( ) A.45 B.35 C.-35D.-45答案 D解析 由题意可知x =-4,y =3,r =5,所以cos α=x r =-45.故选D.2.cos(-11π6)等于( )A.12B.-12C.32D.-32答案 C解析 cos(-11π6)=cos(-2π+π6)=cos π6=32.3.若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α等于( )A.-34B.34C.43D.-43答案 D 解析 ∵cos α=332+y 2=35, ∴32+y 2=5,∴y 2=16, ∵y <0,∴y =-4,∴tan α=-43.4.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( )A.1B.0C.2D.-2答案 C解析 ∵α为第二象限角,∴sin α>0,cos α<0. ∴|sin α|sin α-cos α|cos α|=sin αsin α-cos α-cos α=2.5.已知角α的终边上有一点P (24k ,7k ),k ≠0,求sin α,cos α,tan α的值. 解 当k >0时,令x =24k ,y =7k , 则有r =(24k )2+(7k )2=25k ,∴sin α=y r =725,cos α=x r =2425,tan α=y x =724.当k <0时,令x =24k ,y =7k ,则有r =-25k ,∴sin α=y r =-725,cos α=x r =-2425,tan α=y x =724.1.正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或比值为函数值的函数.2.角α的三角函数值的符号只与角α所在象限有关,角α所在象限确定,则三角函数值的符号一定确定,规律是“一全正,二正弦,三正切,四余弦”.3.终边相同的三角函数值一定相等,但两个角的某一个函数值相等,不一定有角的终边相同,更不一定有两角相等.课时作业一、选择题1.sin(-1 380°)的值为( ) A.-12B.12C.-32D.32答案 D解析 sin(-1 380°)=sin(-360°×4+60°) =sin 60°=32. 2.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x 的值为( ) A. 3 B.± 3 C.- 2D.- 3答案 D解析 ∵cos α=x r=x x 2+5=24x , ∴x =0或2(x 2+5)=16,∴x =0或x 2=3,∴x =0(∵α是第二象限角,∴舍去)或x =3(舍去)或x =- 3.故选D. 3.已知sin θ<0,且tan θ<0,则θ为( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角答案 D4.已知角α的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( ) A.5π6 B.2π3 C.4π3D.11π6答案 D解析 ∵sin 2π3=32,cos 2π3=-12.∴角α的终边在第四象限, 且tan α=cos2π3sin2π3=-33,∴角α的最小正值为2π-π6=11π6. 5.已知角α的终边经过点P (3,4t ),且sin(2k π+α)=-35(k ∈Z ),则t 等于( )A.-916B.916C.34D.-34答案 A解析 sin(2k π+α)=sin α=-35<0,则α的终边在第三或第四象限.又点P 的横坐标为正数,所以α是第四象限角,所以t <0.又sin α=4t 9+16t2,则4t9+16t 2=-35,所以t =-916.6.某点从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( ) A.⎝ ⎛⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-32,-12 C.⎝ ⎛⎭⎪⎫-12,-32D.⎝⎛⎭⎪⎫-32,12 答案 A解析 由三角函数定义可得Q ⎝ ⎛⎭⎪⎫cos 2π3,sin 2π3,cos 2π3=-12,sin 2π3=32.7.如果点P (sin θ+cos θ,sin θcos θ)位于第二象限,那么角θ的终边在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限答案 C解析 由题意知sin θ+cos θ<0,且sin θcos θ>0,∴⎩⎪⎨⎪⎧sin θ<0,cos θ<0,∴θ为第三象限角.8.若角α的终边在直线y =-2x 上,则sin α等于( ) A.±15B.±55C.±255D.±12答案 C 二、填空题9.tan 405°-sin 450°+cos 750°= . 答案32解析 tan 405°-sin 450°+cos 750°=tan(360°+45°)-sin(360°+90°)+cos(720°+30°)=tan 45°-sin 90°+cos 30°=1-1+32=32. 10.使得lg(cos αtan α)有意义的角α是第 象限角. 答案 一或二解析 要使原式有意义,需cos αtan α>0, 即需cos α,tan α同号,所以α是第一或第二象限角.11.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n = .答案 2解析 ∵y =3x 且sin α<0,∴点P (m ,n )位于y =3x 在第三象限的图象上,且m <0,n <0,n =3m .∴|OP |=m 2+n 2=10|m | =-10m =10,∴m =-1,n =-3,∴m -n =2.12.函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x的值域是 . 答案 {-4,0,2}解析 由sin x ≠0,cos x ≠0知,x 的终边不能落在坐标轴上,当x 为第一象限角时,sin x >0,cos x >0,sin x cos x >0,y =0;当x 为第二象限角时,sin x >0,cos x <0,sin x cos x <0,y =2;当x 为第三象限角时,sin x <0,cos x <0,sin x cos x >0,y =-4;当x 为第四象限角时,sin x <0,cos x >0,sin x cos x <0,y =2.故函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x的值域为{-4,0,2}. 三、解答题13.化简下列各式:(1)sin 72π+cos 52π+cos(-5π)+tan π4; (2)a 2sin 810°-b 2cos 900°+2ab tan 1 125°.解 (1)原式=sin 32π+cos π2+cos π+1 =-1+0-1+1=-1.(2)原式=a 2sin 90°-b 2cos 180°+2ab tan(3×360°+45°)=a 2+b 2+2ab tan 45°=a 2+b 2+2ab =(a +b )2.四、探究与拓展14.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,则sin θ+cos θ= .答案 0或- 2解析 ∵θ的终边过点P (x ,-1)(x ≠0),∴tan θ=-1x. 又tan θ=-x ,∴x 2=1,即x =±1.当x =1时,sin θ=-22,cos θ=22, 因此sin θ+cos θ=0;当x =-1时,sin θ=-22,cos θ=-22, 因此sin θ+cos θ=- 2.故sin θ+cos θ的值为0或- 2.15.已知1|sin α|=-1sin α,且lg(cos α)有意义. (1)试判断角α所在的象限;(2)若角α的终边与单位圆相交于点M ⎝ ⎛⎭⎪⎫35,m ,求m 的值及sin α的值. 解 (1)∵1|sin α|=-1sin α, ∴sin α<0.① ∵lg(cos α)有意义,∴cos α>0.② 由①②得角α在第四象限.(2)∵点M (35,m )在单位圆上, ∴(35)2+m 2=1,解得m =±45. 又α是第四象限角,∴m <0,∴m =-45. 由三角函数定义知,sin α=-45.。