人教版数学九年级上册 第25章概率初步单元测试试题(一)
人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)
人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)一、选择题(共8小题,4*8=32) 1. 下列事件中,是必然事件的为( ) A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩2. 对“某市明天下雨的概率是75%”这句话,理解正确的是( ) A .某市明天将有75%的时间下雨B .某市明天将有75%的地区下雨C .某市明天一定下雨D .某市明天下雨的可能性较大3. 甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中( ) A .甲获胜的可能更大 B .甲、乙获胜的可能一样大 C .乙获胜的可能更大D .由于是随机事件,因此无法估计4. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A .19 B .16 C .13 D .235. 从长度分别为1 cm ,3 cm ,5 cm ,6 cm 四条线段中随机取出三条,则能够组成三角形的概率为( )A .14B .13C .12D .346. 已知在一个不透明的口袋中有4个只有颜色不相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )A.34B.23C.916D.127. 从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为( ) A.12 B.13 C.14 D.158. 如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M(a ,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是( )A.38B.716C.12D.916 二.填空题(共6小题,4*6=24)9.在5张卡片上各写0,2,4,6,8中的一个数,从中抽出一张为偶数是_____事件; 10. 下表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次投中的概率约为________(精确到0.1).投篮次数n 50 100 150 200 250 300 500 投中次数m 28 60 78 104 123 152 251 投中频率mn0.560.600.520.520.490.510.5011. 某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是________.12. 一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个正方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__________.13. 一个盒子里有完全相同的三个小球,球上分别标上数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是_______.14. 现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为 .三.解答题(共5小题,44分)15.(6分) 请指出在下列事件中,哪些是随机事件,哪些是必然事件,哪些是不可能事件.(1)a2+b2=-1(其中a,b都是实数);(2)篮球队员在罚球线上投篮一次,未投中;(3)掷一次骰子,向上一面的点数是6;(4)任意画一个三角形,其内角和是360°;(5)水往低处流;(6)射击运动员射击一次,命中靶心.16.(8分) 有一组卡片,制作的颜色、大小相同,分别标有1~11这11个数字,现在将它们背面向上任意颠倒次序,然后放好后任意抽取一张,求下列事件的概率.(1)抽到两位数;(2)抽到的数是2的倍数;(3)抽到的数大于10.17.(8分) 某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是__ __;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.18.(10分) 在四张编号为A、B、C、D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A、B、C、D 表示);(2)我们知道,满足a2+b2=c2的三个正整数a、b、c称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(12分) 为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务活动,班长为了解志愿服务活动的情况,收集整理数据后,绘制成以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.参考答案1-4CDCC 5-8ADCB 9.必然 10.0.5 11.1612.2313.1214.2515.解:随机事件:(2)(3)(6);必然事件:(5);不可能事件:(1)(4) 16.解:(1)P(抽到两位数)=211(2)P(抽到的数是2的倍数)=511(3)P(抽到的数大于10)=11117.解:(1)P(小文诵读《长征》)=13 ;故答案为:13 (2)记《红星照耀中国》、《红岩》、《长征》分别为A ,B ,C ,列表如下:A B C A (A ,A) (A ,B) (A ,C) B (B ,A) (B ,B) (B ,C) C(C ,A)(C ,B)(C ,C)由表格可知,共有9种等可能性结果,其中小文和小明诵读同一种读本的有3种结果,∴小文和小明诵读同一种读本的概率为39 =1318.解:(1)画树状图如下:共有12种等可能的结果数.(2)由题意,易知卡片B 、C 、D 中的三个数,是勾股数则抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率=612=12.19.解:(1)该班全部人数:12÷25%=48.(2)48×50%=24,补全折线统计图如图所示:(3)648×360°=45°. (4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:小明 小丽 1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)务活动的概率为416=14.。
初中数学人教版九年级上册第二十五章 概率初步单元复习-章节测试习题(1)
章节测试题1.【题文】如图,假设可以随机在图中取点,(1)这个点取在阴影部分的概率是_______;(2)在保留原阴影部分情况下,请你重新设计图案(直接在图上涂阴影),使得这个点取在阴影部分的概率为.【答案】(1) ;(2)见解答,答案不唯一【分析】(1)用阴影部分的面积除以图形总面积即可;(1)使所设计图案阴影部分的面积占整个图案面积的即可.【解答】(1)1÷7=(2)如图所示(红色部分),答案不唯一2.【题文】游戏者同时转动如图的两个转盘进行“配紫色游戏”,若要使游戏者获胜的概率为,转盘B不动,转盘A应该如何设计?并写出解答过程说明理由.【答案】将转盘A平均分成10分,一份是蓝色,一份是红色,其他是绿色.说明理由见解答【分析】B转盘有2种情况,A转盘有3种情况,要想获胜的概率为,则应让转盘A 分成10份,使配成紫色的情况数有2种即可.【解答】将转盘A平均分成10分,一份是蓝色,一份是红色,其他是绿色.则共有20种,能配成紫色的情况有两种,∴P(配成紫色)=3.【题文】在不透明的袋子中装有5个红球和8个黄球,每个球除颜色外都相同.(1)从中任意摸出一个球,摸到球的可能性大.(2)如果再放入若干个黄球并摇匀,随机摸出一个球是红球的概率是,请问放入了多少个黄球?【答案】(1)黄;(2)2.【分析】(1)分别求出摸出各种颜色球的概率,即可比较出摸出何种颜色球的可能性大;(2)由红球所占的份数可求出总数目,进而可求出放入黄球的个数.【解答】(1)摸到红球的概率为=,摸到黄球的概率为:,所以摸到黄球的可能性大.故答案为:黄;(2)∵随机摸出一个球是红球的概率是,∴总的小球数=5÷=15(个),∴放入黄球的个数=15-13=2.4.【题文】学生甲与乙学习概率初步知识后设计了如下游戏:甲手中有6、8、10 三张扑克牌,乙手中有 5、8、9 三张扑克牌,每局比赛时,两人从各自手中随机取一张牌进行比较,数字大的则本局获胜.(1)若每人随机取出手中的一张牌进行比较,请列举出所有情况;(2)求学生乙一局比赛获胜的概率.【答案】(1)详见解答;(2).【分析】(1)根据题意可以写出所有的可能性;(2)根据(1)中的结果可以得到乙本局获胜的可能性,从而可以解答本题.【解答】解:(1)由题意可得,每人随机取出手中的一张牌进行比较的所有情况是:,,,,,,,,.(2)由()知共有9种等可能的情况,学生乙获胜的情况有:,,,所以学生乙一局比赛获胜的概率是:.故答案为:(1)见解答;(2).5.【题文】小王和小张利用如图所示的转盘做游戏,转盘的盘面被分为面积相等的4个扇形区域,且分别标有数字1,2,3,4.游戏规则如下:两人各转动转盘一次,分别记录指针停止时所对应的数字,如两次的数字都是奇数,则小王胜;如两次的数字都是偶数,则小张胜;如两次的数字是奇偶,则为平局.解答下列问题:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.【答案】(1);(2)该游戏公平.【分析】(1)根据概率公式直接计算即可;(2)画树状图得出所有等可能的情况数,找出两指针所指数字都是偶数或都是奇数的概率即可得知该游戏是否公平.【解答】解:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率= ;(2)该游戏公平.理由如下:画树状图为:共有16种等可能的结果数,其中两次的数字都是奇数的结果数为4,所以小王胜的概率= ;两次的数字都是偶数的结果数为4,所以小张胜的概率= ,因为小王胜的概率与小张胜的概率相等,所以该游戏公平.6.【题文】某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据动转盘的次数n100 150 200 500 800 1000落在“铅笔”的次数m68 111 136 345 546 701落在“铅笔”的频率0.68 0.74 0.68 0.69 0.68 0.70(结果保留小数点后两位)(1)转动该转盘一次,获得铅笔的概率约为______;(结果保留小数点后一位)(2)铅笔每支0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天大致需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.【答案】(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36【分析】(1)利用频率估计概率求解;(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算4000×0.5×0.7+4000×3×0.3即可;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n度,则4000×3×+4000×0.5(1-)=3000,然后解方程即可.【解答】(1)转动该转盘一次,获得铅笔的概率约为0.7;故答案为: 0.7(2)4000×0.5×0.7+4000×3×0.3=5000,所以该商场每天大致需要支出的奖品费用为5000元;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n度,则4000×3×+4000×0.5(1-)=3000,解得n=36,所以转盘上“一瓶饮料”区域的圆心角应调整为36度.故答案为36.7.【答题】下列事件是必然事件的是()A. 乘坐公共汽车恰好有空座B. 同位角相等C. 打开手机就有未接电话D. 三角形内角和等于180°【答案】D【分析】本题考查了必然事件。
人教版九年级数学上册《第二十五章概率初步》单元检测卷及答案
人教版九年级数学上册《第二十五章概率初步》单元检测卷及答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列事件为随机事件的是()A.通常加热到100℃时水沸腾B.三角形的内角和是360°C.掷骰子一次向上点数不小于1D.经过有信号灯的路口时遇到红灯2.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相向,小红通过多次换球试验后发现,摸到黄球的频率稳定在0.7左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个3.下列说法中错误的是()A.概率很小的事件不可能发生B.不可能事件发生的概率为0C.随机事件发生的概率大于或等于0且小于或等于1D.必然事件发生的概率为14.成语是中国语言文化的缩影,有着深厚丰富的文化底蕴,学习成语,运用成语,了解成语当中所包含的语言文化现象,是我们学习语言、学习中国传统文化必不可少的一个环节和目的.下列成语所描述的事件中,属于随机事件的是()A.画饼充饥B.不期而遇C.水涨船高D.水中捞月5.如图1,一个均匀的转盘被平均分成10等份,分别标有1,2,3,4,5,6,7,8,9,10.小凯转动转盘做频率估计概率的实验,当转盘停止转动后,指针指向的数字即为实验转出的数字.图2,是小凯记录下的实验结果情况,那么小凯记录的实验是()A.转动转盘后,出现偶数B.转动转盘后,出现能被3整除的数C.转动转盘后,出现比6大的数D.转动转盘后,出现能被5整除的数6.随着城市化进程的加速和人们对环保出行的需求增加,共享电瓶的发展趋势日益明显.如图,某共享电瓶柜中装有4块“48V12A”、6块“48V20A”以及6块“60V12A”三种型号的电瓶,匆忙的小王从中随机取出一块,恰好为“60V12A”的电瓶的概率为()A.13B.34C.38D.1167.随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为()A.13B.38C.12D.238.现有4张卡片,其中3张卡片正面上的图案是“ ”,1张卡片正面上的图案是“ ”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.916B.34C.38D.129.在一个不透明的罐子里装有若干个白色的围棋,现要估计白棋的个数,从装黑棋的罐子里取出10个黑棋放入白棋的罐子里.这些棋子除㖣色外其他完全相同.将罐子里的棋子搅匀,从中随机摸出一个棋子,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有25次摸到黑棋子,估计这个罐子里的白棋有()A.80个B.75个C.70个D.60个10.如图,正方形ABCD内接于℃O,℃O2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是()A .2π B .2π C .12πD 2π二、填空题11.袋中有同样大小的5个球,其中3个红球,2个白球,从袋中任意地摸出一个球,这个球是红色的概率是 .12.在完全相同的四张卡片上分别写有如下四个命题:①半圆所对的弦是直径;②圆既是轴对称图形,也是中心对称图形;③弦的垂线一定经过这条弦所在圆的圆心;④圆内接四边形的对角互补.把这四张卡片放入一个不透明的口袋内搅匀,从口袋内任取一张卡片,则取出卡片上的命题是真命题的概率是 .13.如果k 是投掷一枚质地均匀的骰子所得的点数,则关于x 的一元二次方程()21410k x x -++=有两个实数根的概率是 .14.初一(5)班有学生37人,其中4个或4个以上学生在同一个月出生的可能性用百分数表示为 %. 15.如图,某城市的道路都是横平竖直的,小明同学家住在A 点处,学校在B 点处.小明每天上学会随机选择一条最近的道路从A 点步行至B 点.某一天C 点施工无法经过,小明同学并不知情,那么小明能够不绕路的概率是 .三、解答题16.阳春三月,万物复苏,全国各地迎来了开学潮.某校全体师生齐聚操场,举行2024年春季开学典礼暨安全教育第一课活动,德育校长就用电、食品、交通、防火、防诈骗、防校园欺凌、一盔一戴等安全方面给全校师生进行了知识讲解,让全校师生了解校园安全知识,增强了师生们“珍爱生命,安全第一”的常识.随后,七、八年级举行了一次校园安全知识竞赛,经过评比后,七年级的两名学生(用A ,B 表示)和八年级的两名学生(用C ,D 表示)获得优秀奖.(1)从获得优秀奖的这四名学生中随机抽取一名进行经验分享,恰好抽到七年级学生的概率是.(2)从获得优秀奖的这四名学生中随机抽取两名进行经验分享,请用列表法或画树状图法,求抽取的两名学生恰好一名来自七年级、一名来自八年级的概率.17.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字2、3、4、x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如表:摸球总次数20306090120180240330450“和为7”出现的频数10132430375882110150“和为7”出现的频率0.500.430.400.330.310.320.340.330.33解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率是;(2)当x=5时,请用列表法或树状图法计算“和为7”的概率.18.某校为了解学生身体健康状况,从全校600名学生的体质健康测试结果登记表中,随机选取了部分学生的测试数据进行初步整理(如图1).并绘制出不完整的条形统计图(如图2).成绩频数百分比不及格3a及格b20%良好45c优秀3232%图1学生体质健康统计表图2学生体质健康条形图(1)图1中a=,b=,c=;(2)请补全图2的条形统计图,并估计该校学生体质健康测试结果为“良好”和“优秀”的总人数;(3)为听取测试建议,学校选出了3名“良好”1名“优秀”学生,再从这4名学生中随机抽取2人参加学校体质健康测试交流会.请用列表或画树状图的方法,计算所抽取的两人均为“良好”的概率.19.在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3、,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.(1)写出点M坐标的所有可能的结果;(2)求点M在直线y=x上的概率;(3)求点M的横坐标与纵坐标之和是偶数的概率.20.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视” “重视” “比较重视” “不重视” 四类,并将结果绘制成下图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)在扇形统计图中,“比较重视”所占的圆心角的度数为,并补全条形统计图.(2)该校共有学生2400 人,请你估计该校对视力保护“非常重视”的学生人数.(3)对视力“非常重视” 的4 人有一名男生、三名女生,若从中随机抽取两人向全校作视力保护经验交流,请利用树状图或列表法,求出恰好抽到的都是女生的概率.参考答案1.【答案】D【解析】【解答】解:A .在标准大气压下,水的沸点为100℃,因此100℃时水沸腾为必然事件,A不符合题意;B.三角形内角和180°,因此三角形的内角和是360°为不可能事件,B不符合题意;C.骰子的向上的点数有1、2、3、4、5、6,不可能小于1,因此掷骰子一次向上点数不小于1为不可能事件,C不符合题意;D.是否遇到红灯会随时间变化,因此为随机事件,D符合题意.故答案为:D.【分析】必然事件的几率为100%,不可能事件的几率为0%,随机事件的概率介于两者之间.2.【答案】A【解析】【解答】解:摸到黄球的频率稳定在0.7左右∴黄球的个数为50×0.7=35(个)∴布袋中白球可能有50-35=15(个).故答案为:A.【分析】利用频率估计概率得到摸到黄球的概率为0.7,根据概率公式求出黄球的个数,即可求解. 3.【答案】A【解析】【解答】解:A. 概率很小的事件发生的可能性小,故错误,A符合题意;B. 不可能事件发生的概率为,故正确,0 B不符合题意;C.随机事件发生的概率为0≤P≤1,故正确,C不符合题意;D.必然事件发生的概率为1,故正确,D不符合题意;故答案为:A.【分析】必然事件:一定发生的事件,其概率为1;随机事件:可能发生可能不发生的事件,其概率为0≤P≤1;不可能事件:一定不会发生的事件,其概率为0;依此分析即可得出答案.4.【答案】B5.【答案】B6.【答案】C7.【答案】B【解析】【解答】解:对每个小正方形随机涂成黑色或白色的情况,如图所示共有8种情况,其中恰好是两个黑色小正方形和一个白色小正方形情况有3种∴恰好是两个黑色小正方形和一个白色小正方形的概率为3 8故答案为:B【分析】利用概率公式求解即可。
【精品试卷】人教版数学九年级上册《第二十五章 概率初步》单元测试
(2)若小军事先选择的数是5,用列表法或画树状图的方法求他获胜的概率.
23.有,,三种款式的帽子,甲,乙两种款式的围巾,穿戴时小华任意选一顶帽子
和一条围巾.
(1)用列表法或树状图表示搭配的所有可能性结果.
(2)求小华恰好选中她所喜欢的款帽子和乙款围巾的概率.
24.在一个不透明的口袋里装有颜色不同的黑、白两种颜色的球共4个,某学习小组做
19.在一个不透明的袋子中有6个红球和若干个白球,这些球除颜色外均相同,每次从
袋子中摸出一个球记录颜色后再放回,经过大量重复试验,摸到白球的频率稳定在
0.25,则袋子中白球的个数是 ______.
20.在一个不透明的盒子中装有个球,它们除了颜色之外其它都没有区别,其中含有
3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放
3.下列说法正确的是( )
A. 为了解人造卫星的设备零件的质量情况,应选择抽样调查
B. 了解九年级(1)班同学的视力情况,应选择全面调查
C. 购买一张体育彩票中奖是不可能事件
D. 抛掷一枚质地均匀的硬币刚好正面朝上是必然事件
4.翻开鲁教版八年级下册数学课本,恰好是45页,这个事件是( )
A. 不可能事件
回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出的值
大约是______.
三 、解答题(本大题共 4 小题,共 32 分)
21.某校为了加强同学们的安全意识,随机抽取部分同学进行了一次安全知识测试,按
照测试成绩分为优秀、良好、合格和不合格四个等级,绘制了如下不完整的统计图.
等,则小球从出口落出的概率是( )
1
1
1
1
A. 2
初中-数学-人教版-人教版九上 第25章 概率初步 单元测试题(一)
人教版九上第25章概率初步单元测试题(一)一、选择题1、桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则()A. 能够事先确定抽取的扑克牌的花色B. 抽到黑桃的可能性更大C. 抽到黑桃和抽到红桃的可能性一样大D. 抽到红桃的可能性更大2、下列事件中是必然事件的是()A. 今年2月1日,房山区的天气是晴天B. 从一定高度落下的图钉,落地后钉尖朝上C. 长度分别是2cm,3cm,4cm的三根木条首尾相接,组成一个三角形D. 小雨同学过马路,遇到红灯3、如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、9.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为()A. 12B.14C.16D.184、有一则笑话:妈妈正在给一对双胞胎洗澡,先洗哥哥,再洗弟弟,刚把两人洗完,就听到两个小家伙在床上笑,“你们笑什么?”妈妈问“妈妈!”老大回答,“您给弟弟洗了两回,可是还没给我洗呢!”此事件发生的概率为()A. 14B.13C.12D. 15、从是,0,π,227,6这五个数中随机抽取一个数,抽到有理数的概率是()A. 15B.25C.35D.456、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是()A. 13B.23C.14D.157、在班级体锻课上,有三名同学站在△ABC的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个凳子,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置在△ABC的()A. 三边中线的交点B. 三条角平分线的交点C. 三边上高的交点D. 三边垂直平分线的交点8、在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A. 8B. 12C. 16D. 209、一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.则此口袋中估计白球的个数是()个.A. 20B. 30C. 40D. 5010、一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,并且选择每条路径的可能性相等,则它获得食物的概率是()A. 13B.14C.27D.23二、填空题11、如图,是可以自由转动的一个转盘,转动这个转盘,当它停下时,指针落在标有号码______上的可能性最大.12、“经过某交通信号灯的路口,遇到红灯“是______事件(填“必然”、“不可能“、“随机”)13、“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.有一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正形区域(含边)的概率是.14、抛掷一枚均匀的硬币,前5次都正面朝上,则抛掷第50次正面朝上的概率是.15、一个暗箱里装有10个黑球,8个白球,6个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是.16、在某校运动会4×400m接力赛中,甲乙两名同学都是第一棒,他们随机从三个赛道中抽取两个不同赛道,则甲乙两名同学恰好抽中相邻赛道的概率为.17、盒子里放着一个黑球和一个红球,它们除了颜色外,其余都相同.甲、乙两人规定每人摸出一球,摸出后再放回,摸到红球甲赢,摸到黑球乙赢,如果甲先摸,乙后摸,那么这个游戏______(填“公平”或“不公平”).18、在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为______.三、解答题19、口袋A中有2个相同的小球,分别写有数字3,6,口袋B中有4个相同的小球,分别写有数字3,4,5,6,在口袋B中随机地抽出一个小球放入口袋A中.求以口袋A中的3个小球上的数字为边能构成等腰三角形的可能性大小.20、下列成语,哪些刻画的是必然事件?哪些刻画的是不可能事件?哪些刻画的是随机事件?(1)万无一失;(2)胜败乃兵家常事;(3)水中捞月;(4)十拿九稳;(5)海枯石烂;(6)守株待兔;(7)百战百胜;(8)九死一生.你还能举出类似的成语吗?21、如图,假设可以随机在图中取点,(1)这个点取在阴影部分的概率是_______;(2)在保留原阴影部分情况下,请你重新设计图案(直接在图上涂阴影),使得这个点取在阴影部分的概率为3 7 .22、游戏者同时转动如图的两个转盘进行“配紫色游戏”,若要使游戏者获胜的概率为1 10,转盘B不动,转盘A应该如何设计?并写出解答过程说明理由.23、在不透明的袋子中装有5个红球和8个黄球,每个球除颜色外都相同.(1)从中任意摸出一个球,摸到球的可能性大.(2)如果再放入若干个黄球并摇匀,随机摸出一个球是红球的概率是13,请问放入了多少个黄球?24、学生甲与乙学习概率初步知识后设计了如下游戏:甲手中有6、8、10 三张扑克牌,乙手中有5、8、9 三张扑克牌,每局比赛时,两人从各自手中随机取一张牌进行比较,数字大的则本局获胜.(1)若每人随机取出手中的一张牌进行比较,请列举出所有情况;(2)求学生乙一局比赛获胜的概率.25、小王和小张利用如图所示的转盘做游戏,转盘的盘面被分为面积相等的4个扇形区域,且分别标有数字1,2,3,4.游戏规则如下:两人各转动转盘一次,分别记录指针停止时所对应的数字,如两次的数字都是奇数,则小王胜;如两次的数字都是偶数,则小张胜;如两次的数字是奇偶,则为平局.解答下列问题:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.26、某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据动转盘的次数n1001502005008001000落在“铅笔”的次数m68111136345546701落在“铅笔”的频率0.680.740.680.690.680.70(结果保留小数点后两位)(1)转动该转盘一次,获得铅笔的概率约为______;(结果保留小数点后一位)(2)铅笔每支0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天大致需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.参考答案1、【答案】B【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:A、因为袋中扑克牌的花色不同,所以无法确定抽取的扑克牌的花色,故本选项错误;B、因为黑桃的数量最多,所以抽到黑桃的可能性更大,故本选项正确;C、因为黑桃和红桃的数量不同,所以抽到黑桃和抽到红桃的可能性不一样大,故本选项错误;D、因为红桃的数量小于黑桃,所以抽到红桃的可能性小,故本选项错误.选B.2、【答案】C【分析】此题涉及的知识点是必然事件,根据必然事件的定义用排除法就可以得到答案【解答】A. 今年2月1日,房山区的天气是晴天,某一天,天气没有办法准确预测,属于偶然事件。
人教版九年级数学上册《第二十五章概率初步》单元检测卷带答案
人教版九年级数学上册《第二十五章概率初步》单元检测卷带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列事件中,必然事件是()A.随机抛掷一颗骰子,朝上的点数是6B.今天考试小明能得满分C.明天气温会升高D.早晨的太阳从东方升起2.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,那么两辆汽车经过这个十字路口时,第一辆车向左转,第二辆车向右转的概率是().A.13B.19C.29D.4273.在抛硬币的游戏中,若抛了10000 次,则出现正面的频率恰好是50%,这是() A.很可能的B.必然的C.不可能的D.不太可能的4.甲、乙、丙、丁四位同学去看电影,还剩下如图所示座位,乙正好坐在甲旁边的概率是()A.25B.35C.12D.345.在一个不透明的袋中,装有2个黄球和3个红球,它们除颜色外都相同.从袋中任意摸出两个球,则这两个球颜色不同的概率是()A.35B.25C.45D.156.甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是A.1B.12C.13D.147.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是()A.12B.34C.14D.18.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为5红1蓝,如果要使两人获胜机会相等,那么第2颗骰子上蓝色的面数是()A.6B.5C.4D.39.如图,湖边建有A,B,C,D共4座凉亭,从入口处进,先经过凉亭A(已经参观过的凉亭,再次经过时不作停留),则最后一次参观的凉亭为凉亭D的概率为()A.14B.13C.12D.2310.某同学想向班主任发短信拜年,可一时记不清班主任手机号码后三位数的顺序,只记得是1,6,9三个数字,则该同学一次发短信成功的概率是()A.16B.13C.19D.12二、填空题11.下列成语描述的事件:①水中捞月①水涨船高①守株待兔①瓮中捉鳖①拔苗助长,属于必然事件的是(填序号).12.如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的概率是.13.小明的爸爸妈妈各有两把钥匙,可以分别打开单元门和家门,小明随机从爸爸和妈妈的包里各拿出一把钥匙,恰好能打开单元门和家门的概率 .14.我市某校举行“喜迎二十大、永远跟党走、奋进新征程”主题教育活动,校团委为了让同学们进一步了解中国科技的发展,请同学们从选出的以下五个内容中任选两个内容进行手抄报的制作:“北斗卫星”“5G时代”“智轨快运系统”“东风快递”“神舟十三号”.其中恰好选择“北斗卫星”“5G时代”的概率是.15.现有如图所示“2022·北京冬梦之约”的四枚邮票,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小萱从中随机抽取一枚不放回,再从中随机抽取一枚,则小萱抽到的两枚邮票恰好是冰墩墩和雪容融的概率是.16.下列事件:①打开电视机,它正在播放广告;①从一只装有红球的口袋中,任意摸出一个球,恰是白球;①两次抛掷正方体骰子,掷得的数字之和小于13;①抛掷硬币1000次,第1000次正面向上,其中为随机事件的是.17.在一个不透明的袋子中装有红球和黑球一共12个,每个球除颜色不同外其余都一样,任意摸出一个球,那么袋中的红球有个.是黑球的概率为14三、解答题18.为进一步挖掘全国春茶优质产品,2023年第七届中国昆明(国际)春茶周于4月28日如约开启.云南省111个著名山头和125个村寨春茶都在本次活动中展示,其中就包括著名的班章、冰岛、昔归、易武等著名山头品牌,小芸和小楠参加了本次活动,并打算分别从A:班章,B:冰岛,C:昔归,D:易武四个著名山头品牌茶叶中选择一个了解相关山头品牌茶文化知识.(1)小芸选择“冰岛”著名山头品牌茶叶的概率是______;(2)用列表法或画树状图法中的一种方法,求小芸和小楠恰好选择到同一著名山头品牌茶叶了解相关茶文化知识的概率.19.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:摸球总次数1020306090120180240330450“和为8”出现的频数210132430375882110150“和为8”出现的频率0.200.500.430.400.330.310.320.340.330.33(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是1,那么x的值可以取4吗?请用列表法或画树状图法说3明理由;如果x的值不可以取4,请写出一个符合要求的x的值.20.有两个信封,每个信封内各装有四张完全相同的卡片,其中一个信封内的四张卡片上分别写有1,2,3,4四个数,另一个信封内的四张卡片上分别写有5,6,7,8四个数.甲,乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于16,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率;(2)你认为这个游戏公平吗?为什么?21.有五张形状、大小和质地相同的卡片A、B、C、D、E,正面分别写有一个正多边形(所有正多边形的边长相等),把五张卡片洗匀后正面朝下放在桌面上(1)若从中随机抽取一张(不放回),接着再随机抽取一张.请你用画树形图或列表的方法列举出可能出现的所有结果;(2)从这5张卡片中随机抽取2张,利用列表或画树状图计算:与卡片上图形形状相对应的这两种地板砖能进行平面镶嵌的概率是多少?22.手机微信推出了抢红包游戏,它有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以生成不等金额的红包.现有一用户发了三个“拼手气红包”,总金额为3元,随机被甲、乙、丙三人抢到.(1)判断下列事件中,哪些是确定事件,哪些是不确定事件?①丙抢到金额为1元的红包;①乙抢到金额为4元的红包①甲、乙两人抢到的红包金额之和一定比丙抢到的红包金额多;(2)记金额最多、居中、最少的红包分别为A,B,C.①求出甲抢到红包A的概率;①若甲没抢到红包A,则乙能抢到红包A的概率又是多少?参考答案1.D2.B3.D 4.A 5.A 6.D 7.A 8.D 9.C 10.A 11.②④ 12.57 13.1214.110 15.16 16.①④ 17.918.(1)14 (2)1419.(1)0.33 (2)不可以取4,x =6 20.(1)P (甲)=716,(2)不公平 21.31022.(1)事件①,①是不确定事件,事件①是确定事件;(2)①13;①12.。
人教版九年级上册数学《第25章概率初步》单元测试题(解析版)
人教版九年级上册数学《第25章概率初步》单元测试题(解析版)1.下列事件中,是随机事件的是()a.通常温度降到0℃以下,纯净水结冰b.随意翻到一本书的某页,这页的页码是偶数c.我们班里有46个人,必有两个人是同月生的d、在一个不透明的袋子里有两个红色的球和一个白色的球。
除了颜色外,它们都一样。
如果你随意触摸一个球,你更可能触摸到白色的球而不是红色的球2.从甲、乙、丙、丁四人中任选1名代表,甲被选中的可能性是()a.b。
c.d、一,3.甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中()a.甲获胜的可能更大b、 A和b同样有可能赢C。
b更有可能赢d.由于是随机事件,因此无法估计以下习语中描述的事件是随机事件b.水中捞月c、等兔子d.缘木求鱼5.在下列事件中,这是不可避免的:(a)买电影票,座位号必须是偶数。
B.随时打开电视,播放新闻c.将△acb绕点c旋转50°得到△a′c′b′,这两个三角形全等d.阴天就一定会下雨6.下列事件是不可能发生的:(a)地球的体积大于太阳的体积;(c)在降雨期间,湖的水位上升b.第一个来学校的是女生d.体育运动中肌肉拉伤7.如图所示,在游戏转盘中,红色、黄色和蓝色扇区的中心角分别为60°、90°和210°。
转盘自由旋转后指针落在黄色区域的概率为()a.b.c.d.8.小王连续四次投掷质地均匀的硬币,硬币都朝上落下。
如果他第五次扔硬币,硬币朝上的概率是()a.1b.c。
d.9.如图所示,在3×3的正方形网格中,a点和B点位于网格点(网格线的交点)上,并且△ ABC轴对称图形是()a.b.c、 d。
10.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是()a.b。
c.d。
人教版九年级数学上《第25章概率初步》单元测试含答案解析
人教版九年级数学上《第25章概率初步》单元测试含答案解析一、选择题:1.同时掷两枚质地平均的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是()A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为132.下列说法正确的是()A.可能性专门小的事件在一次实验中一定可不能发生B.可能性专门小的事件在一次实验中一定发生C.可能性专门小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列事件是确定事件的为()A.太平洋中的水常年不干B.男生比女生高C.运算机随机产生的两位数是偶数D.星期天是晴天4.一只小鸟自由悠闲地在空中飞行,然后随意落在图中所示的某个方格中中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有6个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与那个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是()A.B.C.D.不能确定6.在一个不透亮的袋子中装有2个红球,3个白球,它们除颜色外其余均相同,随机从中摸出一球,记录下颜色后将它放回袋子中,充分摇匀后,再随机摸出一球,则两次都摸到红球的概率是()A.B.C.D.7.下列说法正确的是()A.一颗质地平均的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说改日下雨的概率是50%,因此改日将有一半时刻在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等8.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50米,100米,50米×2往返跑三项,力量类有原地掷实心球,立定跳远,引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是()A.B.C.D.9.元旦游园晚会上,有一个闯关活动:将20个大小重量完全要样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.假如任意摸出一个乒乓球是红色,就能够过关,那么一次过关的概率为()A.B.C.D.10.关于频率和概率的关系,下列说法正确的是()A.频率等于概率;B.当实验次数专门大时,频率稳固在概率邻近;C.当实验次数专门大时,概率稳固在频率邻近;D.实验得到的频率与概率不可能相等二、填空题11.在一个不透亮的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个,搅匀后,从中同时摸出2个小球,请你写出那个实验中的一个可能事件:.12.掷一枚平均的骰子,2点向上的概率是,7点向上的概率是.13.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,若从中随机地取出1个球,记事件A为“取出的是红球”,事件B为“取出的是黄球”,事件C为“取出的是蓝球”,则P(A)= ,P(B)= ,P(C)= .14.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透亮的袋中搅匀,假如不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.15.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为.16.从下面的6张牌中,任意抽取两张.求其点数和是奇数的概率为.17.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是.18.在一个不透亮的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n= .三、解答题19.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下:被调查人数n 1001 1000 1004 1003 1000中意人数m 999 998 1002 1002 1000中意频率(1)运算表中各个频率;(2)读者对该杂志中意的概率约是多少?(3)从中你能说明频率与概率的关系吗?20.一个布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小明从布袋中摸出一个球后放回去摇匀,再摸出一个球,请你利用画树状图法分析并求出小明两次都能摸到白球的概率.21.杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?22.在一个不透亮的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 65 124 178 302 481 599 1803摸到白球的频率0.65 0.62 0.593 0.604 0.601 0.599 0.601(1)请估量:当n专门大时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)= ;(3)试估算盒子里黑、白两种颜色的球各有多少只?《第25章概率初步》参考答案与试题解析一、选择题:1.同时掷两枚质地平均的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是()A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为13【考点】随机事件.【分析】找到一定可不能发生的事件即可.【解答】解:A、6点+6点=12点,为随机事件,不符合题意;B、例如:1点+1点=2点,为随机事件,不符合题意;C、例如:1点+5点=6点,为随机事件,不符合题意;D、两枚骰子点数最大之和为12点,不可能是13点,为不可能事件,符合题意.故选:D.【点评】本题考查事件的分类,事件依照其发生的可能性大小分为必定事件、随机事件、不可能事件.不可能事件是指在一定条件下,一定不发生的事件.2.下列说法正确的是()A.可能性专门小的事件在一次实验中一定可不能发生B.可能性专门小的事件在一次实验中一定发生C.可能性专门小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生【考点】可能性的大小.【分析】事件的可能性要紧看事件的类型,事件的类型决定了可能性及可能性的大小.【解答】解:A、可能性专门小的事件在一次实验中也会发生,故A错误;B、可能性专门小的事件在一次实验中可能发生,也可能不发生,故B错误;C、可能性专门小的事件在一次实验中有可能发生,故C正确;D、不可能事件在一次实验中更不可能发生,故D错误.故选:C.【点评】一样地必定事件的可能性大小为1,不可能事件发生的可能性大小为0,随机事件发生的可能性大小在0至1之间.注意可能性较小的事件也有可能发生;可能性专门大的事也有可能不发生.3.下列事件是确定事件的为()A.太平洋中的水常年不干B.男生比女生高C.运算机随机产生的两位数是偶数D.星期天是晴天【考点】随机事件.【分析】确定事件包括必定事件和不可能事件.必定事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件.【解答】解:B,C,D差不多上不一定发生的事件,属于不确定事件.是确定事件的为:太平洋中的水常年不干.故选A.【点评】明白得概念是解决这类基础题的要紧方法.注意确定事件包括必定事件和不可能事件.4.一只小鸟自由悠闲地在空中飞行,然后随意落在图中所示的某个方格中(2020•汕头模拟)中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有6个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与那个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是()A.B.C.D.不能确定【考点】概率公式.【分析】先运算出此观众前两次翻牌均获得若干奖金后,现在还有多少个商标牌,其中有奖的有多少个,它们的比值即为所求.【解答】解:∵某观众前两次翻牌均获得若干奖金,即现在还有18个商标牌,其中有奖的有4个,∴他第三次翻牌获奖的概率是=.故选B.【点评】本题考查的是随机事件概率的求法,假如一个事件有n种可能,而且这些事件的可能性相同,其中事件A显现m种结果,那么事件A的概率P(A)=.6.在一个不透亮的袋子中装有2个红球,3个白球,它们除颜色外其余均相同,随机从中摸出一球,记录下颜色后将它放回袋子中,充分摇匀后,再随机摸出一球,则两次都摸到红球的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】压轴题.【分析】依据题意先用列表法或画树状图法分析所有等可能的显现结果,然后依照概率公式求出该事件的概率即可.【解答】红1 红2 白1 白2 白3 红1 红1红1 红1红2 红1白1 红1白2 红1白3红2 红2红1 红2红2 红2白1 红2白2 红2白3白1 白1红1 白1红2 白1白1 白1白2 白1白3白2 白2红1 白2红2 白2白1 白2白2 白2白3白3 白3红1 白3红2 白3白1 白3白2 白3白3解:由列表可知共有5×5=25种可能,两次都摸到红球的有4种,因此概率是.故选D.【点评】考查概率的概念和求法,用树状图或表格表达事件显现的可能性是求解概率的常用方法.用到的知识点为:概率=所求情形数与总情形数之比.7.下列说法正确的是()A.一颗质地平均的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说改日下雨的概率是50%,因此改日将有一半时刻在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等【考点】概率的意义.【专题】压轴题.【分析】概率是反映事件发生气会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、是随机事件,错误;B、中奖的概率是1%,买100张该种彩票不一定会中奖,错误;C、改日下雨的概率是50%,是说改日下雨的可能性是50%,而不是改日将有一半时刻在下雨,错误;D、正确.故选D.【点评】正确明白得概率的含义是解决本题的关键.注意随机事件的条件不同,发生的可能性也不等.8.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50米,100米,50米×2往返跑三项,力量类有原地掷实心球,立定跳远,引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是()A.B.C.D.【考点】概率公式.【专题】压轴题.【分析】依据题意找到所有等可能的显现结果,然后依照概率公式求出该事件的概率.【解答】解:共有3×3=9种可能,同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的有1种,因此概率是.故选D.【点评】用到的知识点为:概率=所求情形数与总情形数之比.9.元旦游园晚会上,有一个闯关活动:将20个大小重量完全要样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.假如任意摸出一个乒乓球是红色,就能够过关,那么一次过关的概率为()A.B.C.D.【考点】概率公式.【专题】应用题.【分析】让红球的个数除以球的总个数即为所求的概率.【解答】解:全部20个球,只有2个红球,因此任意摸出一个乒乓球是红色的概率是=.故选D.【点评】此题考查概率的求法:假如一个事件有n种可能,而且这些事件的可能性相同,其中事件A显现m种结果,那么事件A的概率P(A)=.10.关于频率和概率的关系,下列说法正确的是()A.频率等于概率;B.当实验次数专门大时,频率稳固在概率邻近;C.当实验次数专门大时,概率稳固在频率邻近;D.实验得到的频率与概率不可能相等【考点】利用频率估量概率.【分析】大量反复试验时,某事件发生的频率会稳固在某个常数的邻近,那个常数就叫做事件概率的估量值,而不是一种必定的结果.【解答】解:A、频率只能估量概率;B、正确;C、概率是定值;D、能够相同,如“抛硬币实验”,可得到正面向上的频率为0.5,与概率相同.故选B.【点评】考查利用频率估量概率,大量反复试验下频率稳固值即概率.二、填空题11.在一个不透亮的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个,搅匀后,从中同时摸出2个小球,请你写出那个实验中的一个可能事件:摸到1个红球,1个白球.【考点】随机事件.【专题】开放型.【分析】填写一个有可能发生,也可能不发生的事件即可.【解答】解:摸到1个红球,1个白球或摸到2个红球.【点评】可能事件确实是可能发生,也可能不发生的事件.12.掷一枚平均的骰子,2点向上的概率是,7点向上的概率是0 .【考点】概率公式.【分析】由掷一枚平均的骰子有6种等可能的结果,其中2点向上的有1种情形,7点向上的有0种情形,直截了当利用概率公式求解即可求得答案.【解答】解:∵掷一枚平均的骰子有6种等可能的结果,其中2点向上的有1种情形,7点向上的有0种情形,∴2点向上的概率是:,7点向上的概率是:0.故答案为:,0.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情形数与总情形数之比.13.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,若从中随机地取出1个球,记事件A为“取出的是红球”,事件B为“取出的是黄球”,事件C为“取出的是蓝球”,则P(A)= ,P(B)= ,P(C)= .【考点】概率公式.【分析】分别用所求的情形与总情形的比值即可得答案.【解答】解:∵盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,∴若从中随机地取出1个球,则P(A)=,P(B)==,P(C)=.故答案为:,,.【点评】此题考查概率的求法:假如一个事件有n种可能,而且这些事件的可能性相同,其中事件A显现m种结果,那么事件A的概率P(A)=.14.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透亮的袋中搅匀,假如不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.【考点】列表法与树状图法.【分析】列举出所有情形,看所求的情形占总情形的多少即可.【解答】解:列表得:(1,5)(2,5)(3,5)(4,5)﹣(1,4)(2,4)(3,4)﹣(5,4)(1,3)(2,3)﹣(4,3)(5,3)(1,2)﹣(3,2)(4,2)(5,2)﹣(2,1)(3,1)(4,1)(5,1)∴一共有20种情形,这两个球上的数字之和为偶数的8种情形,∴这两个球上的数字之和为偶数的概率是=.【点评】列表法能够不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时还要注意是放回实验依旧不放回实验.用到的知识点为:概率=所求情形数与总情形数之比.15.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为.【考点】概率公式;轴对称图形;中心对称图形.【分析】四边形,三角形,正方形,梯形,平行四边形,圆中任取一个图形共有6个结果,且每个结果显现的机会相同,其中既是轴对称图形又是中心对称图形的正方形和圆两个.【解答】解:∵在四边形,三角形,正方形,梯形,平行四边形,圆6个图形中,既是轴对称图形又是中心对称图形的正方形和圆两个.∴从中任取一个图形既是轴对称图形又是中心对称图形的概率为.【点评】正确认识轴对称图形和中心对称图形以及明白得列举法求概率是解题的关键.用到的知识点为:概率=所求情形数与总情形数之比.16.从下面的6张牌中,任意抽取两张.求其点数和是奇数的概率为.【考点】概率公式.【分析】一个奇数和一个偶数得和是奇数,6张牌中,任意抽取两张总共有6×5=30种情形,运算出和是奇数的情形个数,利用概率公式进行运算.【解答】解:一个奇数和一个偶数总共有2×2×4=16种情形,故点数和是奇数的概率为.【点评】假如一个事件有n种可能,而且这些事件的可能性相同,其中事件A显现m种结果,那么事件A的概率P(A)=.17.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:∵袋子中共有2+3=5个球,2个红球,∴从中任意摸出一个球,则摸到红球的概率是.故答案为:.【点评】此题考查概率的求法:假如一个事件有n种可能,而且这些事件的可能性相同,其中事件A显现m种结果,那么事件A的概率P(A)=.18.在一个不透亮的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n= 1 .【考点】概率公式.【专题】压轴题.【分析】依照白球的概率公式列出关于n的方程,求出n的值即可.【解答】解:由题意知:,解得n=1.【点评】用到的知识点为:概率=所求情形数与总情形数之比.三、解答题19.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下:被调查人数n 1001 1000 1004 1003 1000中意人数m 999 998 1002 1002 1000中意频率0.998 0.998 0.998 0.999 1.000(1)运算表中各个频率;(2)读者对该杂志中意的概率约是多少?(3)从中你能说明频率与概率的关系吗?【考点】利用频率估量概率.【分析】(1)概率确实是中意的人数与被调查的人数的比值;(2)依照题目中中意的频率估量出概率即可;(3)从概率与频率的定义分析得出即可.【解答】解:(1)由表格数据可得:≈0.998, =0.998,≈0.998,≈0.999, =1.000;(2)由第(1)题的结果知出版社5次“读者问卷调查”中,收到的反馈信息是:读者对杂志中意的概率约是:P(A)=0.998;(3)频率在一定程度上反映了事件发生的可能性大小.尽管每进行一连串(n次)试验,所得到的频率能够各不相同,但只要 n相当大,频率与概率是会专门接近的.因此,概率是能够通过频率来“测量”的,频率是概率的一个近似.概率是频率稳固性的依据,是随机事件规律的一个表达.实际中,当概率不易求出时,人们常通过作大量试验,用事件显现的频率去近似概率.【点评】此题考查了利用频率估量概率,大量反复试验下频率稳固值即概率.用到的知识点为:频率=所求情形数与总情形数之比.20.一个布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小明从布袋中摸出一个球后放回去摇匀,再摸出一个球,请你利用画树状图法分析并求出小明两次都能摸到白球的概率.【考点】列表法与树状图法.【分析】依据题意先用画树状图法分析所有等可能的显现结果,然后依照概率公式求出该事件的概率.【解答】解:画树形图如下:由图可知,两次摸球可能显现的结果共有9种,而显现(白,白)的结果只有一种,因此,小明两次摸球都摸到白球的概率为P=.【点评】画树状图法能够不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情形数与总情形数之比.21.(2005•南通)杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?【考点】游戏公平性.【分析】游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判定双方取胜的概率是否相等,或转化为在总情形明确的情形下,判定双方取胜所包含的情形数目是否相等. 【解答】解:(1)那个游戏对双方不公平. ∵P (拼成电灯)=;P (拼成小人)=;P (拼成房子)=;P (拼成小山)=,∴杨华平均每次得分为(分); 季红平均每次得分为(分).∵<,∴游戏对双方不公平.(2)改为:当拼成的图形是小人时杨华得3分,其余规则不变, 就能使游戏对双方公平.(答案不惟一,其他规则可参照给分)【点评】本题考查的是游戏公平性的判定.判定游戏公平性就要运算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情形数与总情形数之比.22.(2008•贵阳)在一个不透亮的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m 65 124 178 302 481 599 1803 摸到白球的频率0.650.620.5930.6040.6010.5990.601(1)请估量:当n 专门大时,摸到白球的频率将会接近 0.6 ;(精确到0.1) (2)假如你摸一次,你摸到白球的概率P (白球)= 0.6 ; (3)试估算盒子里黑、白两种颜色的球各有多少只? 【考点】利用频率估量概率. 【专题】图表型.【分析】(1)运算出其平均值即可; (2)概率接近于(1)得到的频率;(3)白球个数=球的总数×得到的白球的概率,让球的总数减去白球的个数即为黑球的个数.【解答】解:(1)∵摸到白球的频率为0.6,∴当n专门大时,摸到白球的频率将会接近0.6.(2)∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.(3)盒子里黑、白两种颜色的球各有40﹣24=16,40×0.6=24.【点评】本题比较容易,考查利用频率估量概率.大量反复试验下频率稳固值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.。
人教版九年级上册数学 第二十五章 概率初步 单元测试卷(含答案解析)
人教版九年级上册数学第二十五章概率初步单元测试卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.彩民李大叔购买1张彩票,中奖.这个事件是( )A.必然事件B.确定性事件C.不可能事件D.随机事件2.老师从甲、乙、丙、丁四位同学中任选一人去学校劳动基地浇水,选中甲同学的概率是( )A.15B.14C.13D.343.如图,在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以围成一个矩形,从这些矩形中任选一个,则所选矩形含点A的概率是( )A.14B.13C.38D.494.下列说法正确的是( )A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是1 3C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖5.一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是( )A. 至少有1个白球B. 至少有2个白球C. 至少有1个黑球D. 至少有2个黑球6.某市公园的东、南、西、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )A.12B.14C.16D.1167.从1,2,3,4,5这五个数中任选两个数,其和为偶数的概率为( )A.15B.25C.35D.458.如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为( )A.14B.12C.π8D.π49.下表显示的是某种大豆在相同条件下的发芽试验结果.每批粒数n100 300 400 600 1000 2000 3000 发芽的粒数m96 282 382 570 948 1904 2850 发芽的频率mn0.960 0.940 0.955 0.950 0.948 0.952 0.950①当n为400时,发芽的大豆粒数为382,发芽的频率为0.955,所以大豆发芽的概率是0.955;②随着试验时大豆粒数的增加,大豆发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95;③若大豆粒数n为4000,估计大豆发芽的粒数大约为3800.其中推断合理的是( )A.①②③B.①②C.①③D.②③10.一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是( )A.第一次摸出的球是红球,第二次摸出的球一定是绿球B.第一次摸出的球是红球,第二次摸出的球不一定是绿球C.第一次摸出的球是红球的概率是1 3D.两次摸出的球都是红球的概率是1 9二、填空题(每小题4分,共20分)11.有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于_______.12.班里有18名男生,15名女生,从中任意抽取a名打扫卫生,若女生被抽到是必然事件,则a的取值范围是_________.13.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是___________.14.大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图.用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为_____________2cm.15.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回、搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是________.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)在三个不透明的布袋中分别放入一些除颜色不同外其他都相同的玻璃球,并搅匀,具体情况如下表:布袋编号 1 2 3袋中玻璃球色彩、数量2个绿球、2个黄球、5个红球1个绿球、4个黄球、4个红球6个绿球、3个黄球(1)从1号布袋中随机摸出1个玻璃球,该球是黄色、绿色或红色;(2)从2号布袋中随机摸出2个玻璃球,2个球中至少有1个不是绿色;(3)从3号布袋中随机摸出1个玻璃球,该球是红色;(4)从1号布袋中和2号布袋中各随机摸出1个玻璃球,2个球的颜色一致.17.(8分)回答下列问题:。
人教版九年级数学上册第25章概率初步单元测试(含解析)
人教版九年级数学上册第25章概率初步单元测试(含解析)(时间120分钟,总分值120分)一、选择题(每题3分,共30分)1.以下事情属于肯定事情的是()A.蒙上眼睛射击正脱靶心B.买一张彩票一定中奖C.翻开电视机,电视正在播放旧事联播D.月球绕着地球转2.在一个不透明的布袋中装有白色、白色玻璃球共40个,除颜色外其他完全相反.小明经过屡次摸球实验后发现,其中摸到白色球的频率动摇在15%左右,那么口袋中白色球能够有()A.4个B.6个C.34个D.36个3.掷一个平均的小正方体,这个小正方体的每个面上区分标有数字1,2,3,4,5,6.恣意掷出小正方体后,能够性最大的是()A.朝上的数字是5B.朝上的数字是偶数C.朝上的数字是奇数D.朝上的数字小于54.以下说法正确的选项是()A.一颗质地平均的骰子已延续抛投了2 015次,其中抛掷出5点的次数最少,那么第2 016次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预告说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等5.小明在一个装有白色和白色球各一个的口袋中摸出一只球,然后放回搅匀再摸出一只球,重复屡次实验后,发现某种〝状况〞出现的时机约为50%,那么这种状况能够是()A.两次摸到白色球B.两次摸到白色球C.两次摸到不同颜色的球D.先摸到白色球,后摸到白色球6.在如下图的正方形和圆形组成的盘面上投掷飞镖,飞镖落在阴影区域的概率是( )A.12B.13C.14D.15 7.经过某十字路口的汽车,能够直行,也能够左转或许右转,假设这三种能够性大小相反,那么经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是( )A.47B.49C.29D.19 8.在区分标有号码2,3,4,…,10的9个球中,随机取出两个球,记下它们的标号,那么较大标号被较小标号整除的概率是( )A.14B.29C.518D.736 9.如图,A ,B 是边长为1的小正方形组成的网格上的两个格点,在格点中恣意放置点C ,恰恰能使△ABC 的面积为1的概率是( )A.625B.15C.425D.725 10.假定〝抢30〞游戏规那么是:第一团体先说〝1〞或〝1,2〞,第二团体要接着往下说一个或两个数,然后又轮到第一团体,再接着往下说一个或两个数,这样两人重复轮番,每次每人说一个或两个数都可以,但是不可以连说三个数,谁先抢到30,谁就失利,假定改成〝抢32〞,那么采取适当战略,其结果是( )A.先报数者胜B.后报数者胜C.两者都能够胜D.很难预料二、填空题(每题4分,共24分)11.如图是可以自在转动的一个转盘,转动这个转盘,当它停下时,指针落在标有号码 上的能够性最大.12.某校先生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通讯号灯,他在路口遇到红灯的概率为13,遇到黄灯的概率为19,那么他遇到绿灯的概率为 .13.掷一枚质地平均的正方体骰子(六个面上区分刻有1到6的点数),向上一面出现的点数大于2且小于5的概率为 .14.在一个不透明的布袋中,装有红、黑、白三种只要颜色不同的小球,其中白色小球4个,黑、白色小球的数目相反.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此少量摸球实验后,小明发现其中摸出的红球的频率动摇于20%,由此可以估量布袋中的黑色小球有个.15.一个不透明盒子内装有大小、外形相反的四个球,其中红球1个,绿球1个,白球2个,小明摸出一个球不放回,再摸出一个球,那么两次都摸到白球的概率是.16.小明和小丽做掷硬币(质量平均)游戏.规那么是:连掷四次硬币,当其中有三次结果相反时,小明获胜;当恰有两次结果相反时,小丽获胜,其他状况不计胜负.那么这个规那么对有利.三、解答题(共66分)17.(6分)按以下要求各举一例:(1)一个发作能够性为0的不能够事情;(2)一个发作能够性为100%的肯定事情;(3)一个发作能够性大于50%的随机事情.18.(6分)一个口袋中有9个红球和假定干个白球,在不允许将球倒出来数的前提下,小明采用如下的方法预算其中白球的个数:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色…,小明重复上述进程共摸了100次,其中40次摸到白球,请回答:(1)口袋中的白球约有多少个?(2)有一个游乐场,要依照上述红球、白球的比例配置彩球池,假定彩球池里共有1 200个球,那么需预备多少个红球?19.(8分)一个口袋里有假定干个白球,没有其他颜色的球,而且不许将球倒出来数,那么你该如何来估量出其中的白球数呢?试设计出两种不同的方案.20.(8分)一个口袋中有红球24个和假定干个绿球,从口袋中随机摸出一个球记下其颜色,再把它放回口袋中摇匀,重复上述进程,实验200次,其中有125次摸到绿球,由此估量口袋中共有多少个球?21.(8分)小颖和小红两位同窗在学习〝概率〞时,做掷骰子(质地平均的正方体)实验.(1)他们在一次实验中共做了60次实验,实验的结果如下:①此次实验中〝3点朝上〞的频率是多少?②小红说:〝依据实验,出现3点朝上的概率最小.〞她的说法正确吗?为什么?(2)小颖和小红在实验中假设各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大约率.22. (8分)一个不透明口袋中装有红球6个,黄球9个,绿球3个,这些球除颜色外没有任何其他区别.现从中恣意摸出一个球.(1)计算摸到的是绿球的概率.(2)假设要使摸到绿球的概率为1,需求在这个口袋中再放入多少个绿球?423.(10分)一只纸箱中装有除颜色外完全相反的白色、黄色、蓝色乒乓球共100个.从纸箱中恣意摸出一球,摸到白色球、黄色球的概率区分是0.2,0.3.(1)试求出纸箱中蓝色球的个数;(2)小明向纸箱中再放进白色球假定干个,小丽为了估量放入的红球的个数,她将箱子外面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,屡次重复上述进程后,她发现摸到红球的频率在0.5左近动摇,请据此估量小明放入的红球的个数.24.(12分)某商场设计了两种促销方案:第一种是顾客在商场消费每满200元就可以从一个装有100个完全相反的球(球上区分标有数字1,2,…,100)的箱子中随机摸出一个球(摸后放回).假定球上的数字是88,那么返500元购物券;假定是66或99,那么返300元购物券;假定球上的数字被5整除,那么返5元购物券;假定是其他数字不返还购物券.第二种是顾客在商场消费每满200元直接返还15元购物券.估量活动时期将有5 000人参与活动.请你经过计算说明商家选择哪种方案促销合算些?参考答案1.D 解析:A,蒙上眼睛射击正脱靶心是随机事情,应选项错误;B,买一张彩票不一定中奖,应选项错误;C,翻开电视机,电视正在播放旧事联播是随机事情,应选项错误;D,月球绕着地球转是肯定事情,正确.2.B 解析:∵摸到白色球的频率动摇在15%左右,∴摸到白色球的频率为15%,故红球的个数为40×15%=6个.3.D 解析:A,由于一个平均的正方体骰子有6个面,点数是5是一个面,所以5朝上的概率是16;B,偶数有3个,偶数朝上的概率是12;C,奇数有3个,奇数朝上的概率是12;D,小于5的数有1,2,3,4共4个,朝上的数字小于5的概率是23.概率最大的为D.4.D 解析:A,一颗质地平均的骰子已延续抛投了2 015次,其中抛掷出5点的次数最少,那么第2 016次能够抛掷出5点,故A 错误;B,某种彩票中奖的概率是1%,因此买100张该种彩票能够会中奖,故B 错误;C,天气预告说明天下雨的概率是50%,明天能够下雨,故C 错误;D 对,故D 正确.5.C6.C 解析:应用图形的旋转易观察发现阴影局部占一切面积的14,所以飞镖落在阴影区域的概率是14.7.C 解析:画〝树状图〞罗列这两辆汽车行驶方向一切能够的结果如下图: ∴这两辆汽车行驶方向共有9种能够的结果;由〝树状图〞知,两辆汽车一辆左转,一辆右转的结果有2种,且一切结果的能够性相等,∴P (两辆汽车一辆左转,一辆右转)=29.8.B 解析:在区分标有号码2,3,4,…,10的9个球中,随机取出两个球,共有8+7+6+5+4+3+2+1=36种等能够的结果数,其中较大标号被较小标号整除有(2,4),(2,6),(2,8),(2,10),(3,6),(3,9),(4,8),(5,10),所以较大标号被较小标号整除的概率=836=29.9.A 解析:如下图,在4×4的网格中共有25个格点,而使得三角形面积为1的格点有6个,故使得三角形面积为1的概率为625.10.A 解析:先报数者首先报两个数1,2,然后第二团体接着无论说一个或两个数,先报数者都与第二团体说的数凑成3个数,如此循环,最后剩下的三个数是30,31,32.第二团体无论再说一个或两个数,先报数者一定能抢到32失利.应选A.11.5 解析:∵号码是5的扇形所占的面积最大, ∴指针落在标有号码5上的能够性最大.12.59 解析:∵经过一个十字路口,共有红、黄、绿三色交通讯号灯,∴在路口遇到红灯、黄灯、绿灯的概率之和是1,∵在路口遇到红灯的概率为13,遇到黄灯的概率为19,∴遇到绿灯的概率为1-13−19=59.13.13 解析:掷一枚平均的骰子时,有6种状况,出现点数大于2且小于5的状况有2种,故其概率是26=13.14.8 解析:设黑色的数目为x ,那么黑、白色小球一共有2x 个, ∵屡次实验发现摸到红球的频率是20%,那么得出摸到红球的概率为20%, ∴44+2x =20%,解得x=8, ∴黑色小球的数目是8个.15.16 解析:画树状图得: ∵共有12种等能够的结果,两次都摸到白球的有2种状况,∴两次都摸到白球的概率是212=16. 16.小明 解析:画树状图得:∴连掷四次硬币共16种状况,其中有三次结果相反的有8种状况,恰有两次结果相反有6种状况,∴P (小明获胜)=816=12,P (小丽获胜)=616=38,∴P (小明获胜)>P (小丽获胜),∴这个规那么对小明有利.17.剖析:依据要求判别事情的类型,再依据肯定事情、不能够事情、随机事情的概念可举出例子.解:(1)一个发作能够性为0的不能够事情:在一个装着白球和黑球的袋中摸球,摸出红球;(2)一个发作能够性为100%的肯定事情:抛掷一石头,石头终将落地;(3)一个发作能够性大于50%的随机事情.在一个装着10个白球和1个黑球的袋中摸球,摸出白球.18.剖析:(1)等量关系为:白球的个数除以球的总数=40÷100,把相关数值代入计算即可;(2)红球的个数=球的总数×红球的概率,计算即可.解:(1)设白球的个数为x个,依据题意得xx+9=40100,解得x=6,可估量口袋中的白球的个数是6个.(2)1 200×100-40100=720.所以需预备720个红球.19.剖析:此题有两个方案:(1)可以向口袋里另放几个黑球,从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不时重复上述进程;记载一共摸球的次数,并记载摸到黑球的次数,来估量白球的个数;(2)应用抽样调查方法,从口袋中抽出几个球做上标志,然后放回袋中,从口袋中一次摸出多个球,求出其中做标志的球与摸到球总数的比值,再把球放回口袋中,不时重复上述进程;据此来估量白球的数目.解:方案(1):可以向口袋里另放几个黑球;方案(2):也可以从口袋中抽出几个球做上标志,然后放回袋中.20.剖析:在异样条件下,少量重复实验时,随机事情发作的频率逐渐动摇在概率左近.求出绿球的概率,依据概率公式停止计算即可.解:设有绿球x个,那么xx+24=125200,解得x=40,故袋中球总数为40+24=64(个).所以口袋中约有64个球.21.剖析:(1)①由于实验中〝3点朝上〞的次数有6次,总数为60,由此即可失掉此次实验中〝3点朝上〞的频率;②小红的说法不正确,由于应用频率估量概率实验次数必需比拟多,重复实验,频率才渐渐接近概率.(2)首先可以求出点数之和的一切能够状况,然后应用概率的定义即可失掉概率最大的点数之和.解:(1)①∵实验中〝3点朝上〞的次数有6次,总数为60,∴此次实验中〝3点朝上〞的频率为6÷60=0.1;②小红的说法不正确,∵应用频率估量概率实验次数必需比拟多,重复实验,频率才渐渐接近概率, ∴而她的实验次数太少,没有代表性,∴小红的说法不正确;(2)两枚骰子朝上的点数之和能够状况:∴和为2的有1种,和为3的有2种,和为4的有3种,和为5的有4种,和为6的有5种,和为7的有6种,和为8的有5种,和为9的有4种,和为10的有3种,和为11的有2种,和为12的有1种,两枚骰子朝上的点数之和为7时的概率最大,最大约率为6÷36=16.22.剖析:(1)依据随机事情概率大小的求法,用契合条件的状况数目除以全部状况的总数即为发作的概率;(2)依据绿球的概率公式失掉相应的方程,求解即可.解:(1)依据题意剖析可得口袋中装有红球6个,黄球9个,绿球3个,共18个球,故P(摸到绿球)=318=16;(2)设需求在这个口袋中再放入x个绿球,得3+x18+x =14,解得x=2.所以需求在这个口袋中再放入2个绿球.23.剖析:(1)蓝色球的个数等于总个数乘以摸到蓝色球的概率即可;(2)由于摸到红球的频率在0.5左近动摇,所以摸出红球的概率为0.5,再设出红球的个数,依据概率公式列方程解答即可.解:(1)由得纸箱中蓝色球的个数为100×(1-0.2-0.3)=50(个).(2)设小明放入红球x 个,依据题意得20+x 100+x =0.5,解得x=60(个).经检验:x=60是所列方程的根.答:小明放入的红球的个数为60.24.剖析:依据题意区分计算出取得500元,300元购物券的概率,求得平均数,进而求得总付费,比拟即可.解:取得500元,300元购物券的概率区分是1100=0.01,2100=0.02,取得5元购物券的概率是20100=0.2.摸球一次取得购物券的平均金额为(0.01×500+0.02×300+0.2×5)=12(元).假设有5 000人参与摸球,那么相应频率大致为0.01,0.02,0.2,商场付出的购物券的金额是5 000×12=60 000元.假定返还15元购物券,需付出5 000×15=75 000元,商场选择摸球的促销方式合算.。
第二十五章++概率初步++单元练习+++2024-2025学年人教版九年级数学上册
第二十五章概率初步单元练习2024-2025学年人教版数学九年级上册一、单选题1.中国古代的“四书”是指《论语》、《孟子》、《大学》、《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分,现有《论语》、《大学》各2本,《孟子》、《中庸》各1本,若从这6本书中随机抽取1本书,则恰好抽取到《大学》的概率是()A.12B.14C.13D.162.某超市开展“迎藏历新年”大酬宾活动,凡购物满200元者,可参与一次转盘抽奖(如图1).德吉购买了220元的物品,她最有可能抽中()A.一等奖B.二等奖C.三等奖D.谢谢惠顾3.一个不透明的口袋里装有分别标有汉字“大”、“美”、“山”、“西”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.从中任取一球,不放回,再从中任取一球,取出的两个球上的汉字能组成“美西”的概率是()A.12B.14C.16D.184.某同学现有一装有若干个黄球的袋子.为了估计袋子中黄球的数量,该同学向这袋黄球中放入了30个绿球(所有球除颜色外其余均相同),摇匀后随机抓取60个,其中绿球共计10个,则袋子中黄球的数量约为()A.200个B.180个C.240个D.150个5.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和不小于5的概率为()A.15B.25C.35D.456.随机掷一枚质地均匀的硬币两次,落地后至多有一次反面朝上的概率为()A.34B.14C.12D.237.兴趣学习小组对某品种的麦粒在相同条件下进行发芽试验,结果如下表所示:通过试验,估计在这批麦粒中任取一粒能发芽的概率(精确到0.01)是()A.0.92B.0.93C.0.95D.0.988.有下列命题:①过直线外一点有且只有一条直线与这条直线平行;①有两个角互余的三角形是直角三角形;①垂直于同一条直线的两条直线互相平行;①在△ABC中,若∠A=2∠B= 3∠C,则△ABC为直角三角形.随机抽取一个,是真命题的概率为()A.14B.12C.34D.19.下面的四个命题中,真命题是()A.两条直线被第三条直线所截,同位角相等B.抽签中奖的概率为110,则每抽10次签,一定会有1次中奖C.一组数据的方差越大,数据越稳定D.400人中至少有两人的生日在同一天是必然事件10.袋中有形状、大小都相同的8个球,上面依次写着2、3、4、5、6、7、8、9八个数字,小刚和小明两人玩摸球游戏,下面规则中对双方都公平的是()A.任意摸一球,摸到质数小刚胜,摸到合数小明胜B.任意摸一球,摸到2的倍数小刚胜,摸到3的倍数小明胜C.任意摸一球,小于5小刚胜,大于5小明胜D.任意摸一球,小于6小刚胜,大于6小明胜,11.一个盒子里有黑球6个,白球若干,这些球除颜色外都相同.将盒子里的球搅拌均匀,从中随机摸出一个球,记下颜色后放回盒子里,不断重复这一过程,共摸了100次球,发现有70次摸到白球.则盒子中白球大约有()A.7个B.10个C.14个D.16个12.抛掷一枚质地均匀的图钉,图钉落地后,可能针尖朝上,也可能针尖朝下.数学小组的同学进行抛掷图钉实验,得到如表实验数据,下列说法错误的()实验次数100200300400500600700800…针尖朝上次数m109166221278329385440…针尖朝上频率0.570.5450.5530.55250.5560.5480.550.545…A.投掷100次针尖朝上的次数是57B.投掷400次的针尖朝上的频率是0.5525C.任意投掷一枚图钉,针尖朝上的概率是0.5D.投掷2000次图钉,针尖朝上的次数大约有1100次二、填空题13.一影院正在放映《热辣滚烫》,某人在售票窗口购票一张,该票座位号码是奇数属于事件.14.在一个不透明的口袋中,装有若干个红球和白球,它们除颜色外其余都相同,从中任意,若白球有10个,则红球有个.摸出一个球,摸到红球的概率为2715.三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张记为a,将数字牌放回洗匀后,再随机抽取一张记为b,则a≤b的概率是.16.以文促旅,以旅彰文.“非遗+旅游”已成为文旅融合发展的重要一环,让非遗产品通过旅游市场走进寻常百姓家,小文制作了“非遗”专题卡片,下图是其中的四张,这些卡片除图案外其余完全相同,将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,则抽到的两张卡片恰好是徐沟背铁棍和翼城花鼓的概率是.17.为了解该微信二维码中间带微信图标小正方形区域的面积,某小组同学做了抛掷点的实验,实验数据如下:在正方形内投掷的点数n1002003004006008009001000试估计“点落入圆形区域内”的概率(精确到0.01) .18.“六①一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法:①当n很大时,估计指针落在“铅笔”区域的频率大约是0.70;①假如你去转动转盘一次,获得铅笔的概率大约是0.70;①如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次;①转动转盘10次,一定有3次获得文具盒.中正确的是.三、解答题19.汽车租赁公司共有出租车120辆,每辆汽车的日租金为160元,出租业务供不应求,为适合市场需求,经有关部门批准,公司准备适当提高日租金.经市场调查发现,一辆汽车的日租金每增加10元,每天出租的汽车相应地减少6辆,若不考虑其他因素,一辆汽车的日租金提高几个10元时,才能使公司的日租金收入最高?公司的日租金总收入比提高租金前增加了多少?(公司日租金总收入=每辆汽车的日租金×公司每天出租的汽车数)20.某商场的打折活动规定:凡在本商场购物,可转动如图所示的转盘一次,并根据所转结果付账.(1)分别求出打九折,打八折的概率;(2)小红和小明分别购买了价值200元的商品,活动后一共付钱360元,请你分析他俩获得优惠的情况.21.某校开展了以“学习百年党史,汇聚团结伟力”为主题的知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分成A,B,C,D,E五个等级,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:等级成绩xA50≤x<60B60≤x<70C70≤x<80D80≤x<90E90≤x<100(1)本次调查一共随机抽取了______名学生的成绩,补全学生成绩频数分布直方图;(2)若成绩在80分及以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少人?(3)本次成绩前四名有2名女生和2名男生,若从这四人中随机抽取2名同学代表学校参加比赛,请用画树状图或列表法求出全是女学生的概率.22.某校九年级计划组织学生外出开展研学活动,在选择研学活动地点时,随机抽取了部分学生进行调查,要求被调查的学生从A、B、C、D四个研学活动地点中选择自己最喜欢的一个.根据调查结果,编制了如下两幅不完整的统计图,根据图中信息,解答下列问题:(1)此次被调查的学生共有__________人,研学活动地点A所在扇形的圆心角的度数为__________;(2)若该年级共有800名学生,请估计最喜欢去C地研学的学生人数;(3)九(1)班研学归来,班主任组织学生进行研学收获及感悟交流分享会,A小组有两名男同学和两名女同学,从A小组中随机选取2人谈收获及感悟,请用列表法或画树状图法,求恰好抽中两名同学为一男一女的概率.23.在学习《用频率估计概率》时,小明和他的伙伴们设计了一个摸球试验:在一个不透明帆布袋中装有白球和红球共4个,这4个球除颜色外无其他差别.每次摸球前先将袋中的球搅匀,然后从袋中随机摸出1个球,观察该球的颜色并记录,再把它放回.在老师的帮助下,小明和他的伙伴们用计算机模拟这个摸球试验.如图显示的是这个试验中摸出一个球是红球的结果.(1)根据频率与概率关系的知识,请估计从这个不透明的帆布袋中随机摸出一个球是红球的概率约是______(精确到0.01),其中红球的个数是______;(2)如果从这个不透明的帆布袋中同时摸出两个球,用列表或画树状图法求摸出的两个球刚好一个是红球和一个是白球的概率.24.如图,地面上有一个不规则的封闭图形ABCD,为求得它的面积,小明设计了如下方法:①在此封闭图形内画出一个半径为2米的圆.②在此封闭图形旁边闭上眼睛向封闭图形内掷小石子(可把小石子近似的看成点),记录如下:掷小石子落在不规则图形内的总次数50150300500⋯小石子落在圆内(含圆上)的次数m2061123206⋯小石子落在圆外的阴影部分(含外缘)的次数n3089177294⋯m:n0.6670.6850.6950.701⋯(1)通过以上信息,可以发现当投掷的次数很大时,m:n的值越来越接近______(结果精确到0.1);(2)若以小石子所落的有效区域为总数(即m+n),则随着投掷次数的增大,小石子落在圆内(含圆上)的频率值稳定在______附近(结果精确到0.1);(3)请你利用(2)中所得频率的值,估计整个封闭图形ABCD的面积是多少平方米?(结果保留π)。
初中数学 人教版九年级上册 第25章《概率初步》单元测试卷(附答案) (1)
人教版数学九年级上册第25章概率初步单元测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.从1−9这九个自然数中任取一个,是2的倍数的概率是()A.23B.59C.49D.292.在一次抽奖中,若抽中的概率是0.34,则抽不中的概率是()A.0.34B.0.17C.0.66D.0.763.一副扑克牌,去掉大小王,从中任抽一张,抽到的牌是6的概率是()A.12B.14C.110D.1134.袋中有同样大小的3个球,其中2个红色,1个白色.从袋中任意地同时摸出两个球,这两个球的颜色相同的概率是()A.16B.14C.13D.125.掷一次骰子(每面分别刻有1−6点),向上一面的点数是质数的概率等于()A.16B.12C.13D.236.如图所示,小明、小刚利用两个转盘进行游戏;规则为小明将两个转盘各转一次,如配成紫色(红与蓝)得5分,否则小刚得3分,此规则对小明和小刚()A.公平B.对小明有利C.对小刚有利D.不可预测7.一个不透明的袋中装有除颜色外均相同的2个红球、1个白球,从中随机摸出2个球,则下列说法正确的是()A.至少有一个是白球B.至少有一个是红球C.一定是一个白球、一个红球D.一定是两个红球8.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲、乙两人进行模球游戏:甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.如果规定:乙摸到与甲相同颜色的球为乙胜,否则为输,则乙在游戏中能获胜的概率为()A.13B.14C.19D.239.在一个不透明的布袋中,红色、黑色的球共有10个,它们除颜色外其他完全相同.张宏通过多次摸球试验后发现其中摸到红球的频率稳定在20%附近,则口袋中红球的个数很可能是()A.2个B.5个C.8个D.10个10.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为()A.60个B.50个C.40个D.30个二、填空题(共 8 小题,每小题 3 分,共 24 分)11.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放12.“双十二”期间,小冉的妈妈在网上商城给小冉买了一个书包,除了书包打八折外还随机赠送购买者1支笔(除颜色外其它都相同且数量有限).小冉的妈妈购买成功时,还有5支黑色,3支绿色,2支红色的笔.那么随机赠送的笔为绿色的概率为________.13.小明和小颖按如下规则做游戏:桌面上放有8粒豆子,每次取1粒或2粒,由小明先取,最后取完豆子的人获胜.要使小明获胜的概率为1,那么小明第一次应该取走________粒.14.“刘翔在110米跨栏比赛中一定不会输给其他任何一个选手”是________事件(填“必然”,“不可能”或“不确定”).15.从一个装有2个白球,3个红球,5个黄球的口袋中,随机摸一个不是白球的概率为________.16.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字都是奇数的概率为________.17.一只不透明的袋子中装有2个红球、3个白球,这些球除颜色外都相同,摇匀后从中任意摸出一个球,摸到红球的概率是________.18.小明和爸爸今年五一节准备到峨眉山去游玩,他们选择了报国寺、伏虎寺、清音阁三个景点去游玩.如果他们各自在这三个景点中任选一个景点作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择报国寺为第一站的概率是________.三、解答题(共 8 小题,共 66 分)19.(6分) 在一个不透明的袋中装有3个完全相同的小球,上面分别标号为1、2、3,从中随机摸出两个小球,并用球上的数字组成一个两位数.(1)求组成的两位数是奇数的概率;(2)小明和小华做游戏,规则是:若组成的两位数是4的倍数,小明得3分,否则小华得3分,你认为该游戏公平吗?说明理由;若不公平,请修改游戏规则,使游戏公平.20.(6分) 为决定谁获得仅有的一张电影票,甲和乙设计了如下游戏:在三张完全相同的卡片上,分别写上字母A,B,B,背面朝上,每次活动洗均匀.甲说:我随机抽取一张,若抽到字母B,电影票归我;乙说:我随机抽取一张后放回,再随机抽取一张,若两次抽取的字母相同的电影票归我.(1)求甲获得电影票的概率;(2)求乙获得电影票的概率;(3)此游戏对谁有利?21.(9分) 小明和小亮想趁暑假去看世博会,可是只有一张门票,谁都想去,最后商定通过转盘游戏来决定.他们准备了如图12所示两个可以自由转动的转盘A、B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,小明去:数字之和为1时,小亮去.(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止)(1)用树状图或列表法求小明去的概率;(2)这个游戏规则对小明、小亮双方公平吗?请判断并说明理由.22.(9分) 判断下列事件为必然事件,随机事件,还是不可能事件?一个昏庸的国王,总是用抽卡片的方式决定他的臣民的生与死.如果抽到卡片上写着生,国王就让臣民活下去,如果抽到卡片上写着死,国王就杀死臣民,每次国王都准备两张卡片.(1)若两张卡片均为死,该臣民最终活着;(2)若两张卡片均为死,该臣民被杀死;(3)若两张卡片上分别写着一“生”一“死”,该臣民最终活着.23.(9分) 在一个不透明的盒子中装有3个形状大小完全一样的小球,上面分别有标号1,2,−1,用树状图或列表的方法解决下列问题:(1)将球搅匀,从盒中一次取出两个球,求其两标号互为相反数的概率.(2)将球搅匀,摸出一个球将其标号记为k,放回后搅匀后再摸出一个球,将其标号记为b.求直线y=kx+b不经过第三象限的概率.24.(9分) 小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为________;(2)求他们三人在同一个半天去游玩的概率.25.(9分)在一个口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地摸取一个小球然后放回,再随机地摸出一个小球.记事件A为“两次取的小球的标号的和是2的整数倍”,记事件B为“两次取的小球的标号的和是2或+P(A)是否成立,并说明理由.3的整数倍”,请你判断等式P(B)=1326.(9分) 解答下列问题:(1)在一个不透明的口袋中有10个红球和若干个白球,这些球除颜色不同外其他都相同,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下颜色,再把它放回袋中,不断重复上述过程,实验总共摸了200次,其中有50次摸到了红球,那么估计口袋中有白球多少个?(2)请思考并作答:在一个不透明的口袋里装有若干个形状、大小完全相同的白球,在不允许将球倒出来的情况下,如何估计白球的个数(可以借助其它工具及用品)?写出解决问题的主要步骤及估算方法,并求出结果(其中所需数量用a、b、c等字母表示).答案 1.C 2.C 3.D 4.C 5.B 6.A 7.B 8.A 9.A 10.C 11.0.6 12.310 13.214.不确定 15.45 16.14 17.25 18.1919.解:(1)画树状图如下:一共有6种等可能的结果,组成的两位数是奇数的有13,23,21,31共4种情况,两位数是奇数的概率为23;(2)∵组成的两位数是4的倍数的有2种情况, ∴P (小明得3分)=13,P (小华得3分)=23,∴该游戏不公平.可改游戏规则为:组成的两位数是4的倍数,小明得2分,否则小华得1分. 20.解:(1)根据题意得:P (甲获得电影票)=23;(2)列表如下:则P (乙获得电影票)=59;(3)∵23>59, ∴此游戏对甲更有利. 21.解:(1)画树状图得:∵共有12种等可能的结果,小明去的有3种情况; ∴小明去的概率为:312=14;(2)公平. 理由:∵数字之和为1的有3种情况, ∴P (小亮去)=312=14,∴P (小明去)=P (小亮去),∴这个游戏规则对小明、小亮双方公平.22.解:(1)不可能事件(2)必然事件(3)随机事件 23.解:(1)列表得:所以两标号互为相反数的概率=26=13;(2)列表如下:∴P (不经过第三象限)=29. 24.(1)14.25.解:等式P(B)=13+P(A)不成立, 理由:列表得:其中为2的倍数的有5种,为2或3的倍数的有7种, 故P(A)=59,P(B)=79, 故P(B)=13+P(A)不成立.26.解:(1)∵实验总共摸了200次,其中有50次摸到了红球, ∵口袋中有10个红球,假设有x 个白球, ∴1010+x =50200,解得:x =30,∴口袋中有白球30个;(2)可以拿出a 个标上记号,然后搅匀后再拿出b 个,带记号的有c 个,即可估计白球的个数. 设球的总个数为x ,b x=ca ,∴x =ab c.∴白球的个数为abc .。
第25章 概率初步单元测试卷 人教版数学九年级上册
数学概率初步单元测试卷 人教版数学九年级上册一、相信你的选择1. 在数-1,1,2中任取两个数作为点的坐标,那么该点刚好在一次函数y =x -2图象上的概率是 ( )A .12;B .13;C .14;D .16; 2. 中央电视台“幸运52”栏目中的“百宝箱”互动环节是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻),某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是 ( )(A) (B) (C) . (D) . 14 15 16 3 203. 从分别写有数字4-,3-,2-,1-,0,1,2,3,4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是( )A .19B .13C .12D .234. 下列事件中是随机事件的有( )①早晨的太阳一定从东方升起;②打开数学课本时刚好翻到第60页;③从一定高度落下的图钉,落地后钉尖朝上;④今年14岁的小云一定是初中学生.A.1个B.2个C.3个D.4个5. 为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的可估计为( )A .3000条B .2200条C .1200条D .600条6. 下列说法中不正确的是( )A .“某射击运动员射击一次,正中把靶心”属于随机事件B .“13名同学至少有两名同学的出生月份相同”属于必然事件C .“在标准大气压下,当温度降到﹣1℃时,水结成冰”属于随机事件D .“某袋中只有5个球,且都是黄球,任意摸出一球是白球”属于不可能事件7. 一个盒子里有完全相同的三个小球,球上分别标有数-1,1,2.随机摸出一个小球(不放回),其数记为p ,再随机摸出另一个小球,其数记为q ,则满足关于x 的方程x 2-px +q =0有实数根的概率是( )A .12B .13C .23D .568. 袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是( )A .B .C .D .9. 在一个不透明的口袋中装有5张完全相同的卡片,卡片上面分别写有数字-2、-1、0、1、3,从中随机抽出一张卡片,卡片上面的数字是负数的概率为( )A. B. C. D.10. 如图,甲为四等分数字转盘,乙为三等分数字转盘,同时自由转动两个转盘,当转盘停止转动后(若指针指在边界处则重转),两个转盘指针指向数字之和不超过4的概率是( ) A.56 B.13 C.23 D.12二、试试你的身手11. 一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为______.12. 在如图的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为______.13. 在m 2□6m □9的“□”中任意填上“+”或“-”,所得的代数式为完全平方式的概率为________.14. 如图,在4×4正方形网格中,任选取一个白色的小正方形并涂红,使图中红色部分的图形构成一个轴对称图形的概率是________.15. 任意掷一枚均匀硬币两次,两次都是同一面朝上的概率是__________. 16. 乙两人在5次体育测试中的成绩(成绩为整数,满分为100分)如下表,其中乙的第5次成绩的个位数字被污损,则乙的平均成绩高于甲的平均成绩的概率是________.17. 有五张分别写有数字0,3,2,12,-1的卡片,它们除数字不同外其他均形同,从中任抽一张,那么抽到比0小的数的概率是___________.三、挑战你的技能18. 有形状、大小和质地都相同的四张卡片,正面分别写有A、B、C、D和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A、B、C、D表示);(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜,若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利,为什么?19. 农科所为了考察某种水稻穗长的分布情况,在一块试验田里随机抽取了52个谷穗作为样本,量得它们的长度(单位:cm).对样本数据适当分组后,列出了如下频数分布表:(1)请你在图1,图2中分别绘出频数分布直方图和频数折线图;(2)请你对这块试验田里的水稻穗长进行分析;(3)求这块试验田里穗长在5.5≤x<7范围内的谷穗的概率.20. 在一个不透明的盒子里,装有四个分别标有数字,,,的小球,它们的形状、大小、质地等完全相同.小强先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;(2)求小强、小华各取一次小球所确定的点(x,y)落在一次函数的图象上的概率;求小强、小华各取一次小球所确定的数x、y满足的概率.21. 在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张.若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)22. 某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E•两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.电脑单价A型:6000元;B 型:4000元;C型:2500元;D型:4000元;E型:2000元;(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,则A型号电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌电脑共36台,•恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.23. 将A,B,C,D四名同学随机排在甲、乙两张课桌上,每张课桌坐两人,A同学坐在甲课桌上的概率是多少?。
新编人教版九年级数学上《第25章概率初步》单元检测题有答案
九年级数学(上)第25章《概率初步》单元检测题一、选择题(每小题3分,共30分)1. “抛一枚均匀硬币,落地后正面向上”这一事件是( B )A .必然事件 B. 随机事件 C. 确定事件 D. 不可能事件2. 从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是1P ,摸到红球的概率是2P ,则( B )A. 1P =1,2P =1B. 1P =0,2P =1C. 1P =0,2P =14D. 1P =2P =143. 如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上相应的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是( B ) A.16 B.13 C.12 D.234. 掷一个质地均匀的正方体骰子,当骰子停止后,朝上一面的点数为5的概率是( C )A. 1B. 15C. 16D. 0 5. 在抛掷一枚硬币的实验中,某一组做了500次实验,其出现正面的频率是49.6%,可以推知出现正面的次数是( A )A. 248B. 250C. 258D. 无法确定6.(2015绍兴)在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是( B )A. 13B. 25C. 12D. 357. 一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有6个黄球. 每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n 大约是( D )A. 6B. 10C. 18D. 208.(2015德州)经过某十字路口的汽车,可能直行,也可能左转或者右转. 如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是( C )A. 47B.49C.29D.199. 如图,转动两个转盘,当指针所指的数之和为奇数时,小明胜,否则小亮胜,则小亮获胜的概率是( D )A. 13B.12C.49D.5910. 一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2. 随机摸出一个小球(不放回),其数字记为p,再随机摸出另一个小球,其数字记为q,则满足关于x的方程2++x px q=0有实数根的概率是( A )A. 12B.13C.23D.56二、填空题(每小题3分,共18分)11. 如图,是一幅普通扑克牌中的13张黑桃牌,将它们洗均匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为 . (813)12. 在英语句子“Wish you success!”(祝你成功)中任选一个字母,这个字母为“s”的概率是 . (3 14)13. 在一个不透明的口袋中有颜色不同的红、白两种小球,其中红球3只,白球n只,若从袋中任取一个球,摸出白球的概率为34,则n= . (9)14. 为了估计不透明的袋子里装有多少白球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记,那么你估计袋中大约有个白球 .(100)15.(2015河南)现有四张分别标有数字1,2,3,4的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽取一张,则两次抽取的卡片所标数字不同的概率是.(58)16. 如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;则从第(n)个图中随机取出一个球是黑球的概率是 .(21n)三、解答题(共8题,共72分)17.(本题8分)布袋中装有1个红球,2个白球,3个黑球,它们除了颜色外完全相同,从袋中任意摸出一个球,求摸出的球是白球的概率 .解:1 318.(本题8分)一个口袋中有3个大小相同的小球,球面上分别写有数字1、2,3,从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.解:(1)共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,所以两次摸出的球上的数字和为偶数的概率为59.19.(本题8分)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率 .解:(1)14; (2)∵共有12种等可能结果,他恰好买到雪碧和奶汁的有两种情况∴他恰好买到雪碧和奶汁的概率为:21126= .20.(本题8分)在一个不透明的口袋中装有红、白、黑三种颜色的小球若干个,它们只有颜色不同,其中有白球2个、黑球1个. 已知从中任意摸出1个球得白球的概率为12. (1)求口袋中有多少个红球;(2)求从袋中一次摸出2个球,得一红一白的概率.(要求画出树状图)解:(1)设袋中有x 个红球,据题意得21212=++x ,解得x=1 ∴袋中有红球1个; (2)P (摸得一红一白)=1321.(本题8分)“阳光体育”运动关乎每个学生未来的幸福生活,今年五月,我市某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班选2-3名选手参赛,现将80名选手比赛成绩(单位:次/分钟)进行统计. 绘制成频数分布直方图,如图所示 .(1)图中a 值为 ;(2)将跳绳次数在160-190的选手依次记为1A 、2A 、3A ,从中随机抽取两名选手作经验交流,请用画树状图或列表法求恰好抽取到的选手是1A 和2A 的概率 .解:(1)根据题意得:a=80-8-40-28=4,故答案为4 ;(2)画树状图略, ∵共有12种等可能的结果,恰好抽取到选手1A 和2A 的有两种情况∴恰好抽取到选手1A 和2A 的概率为:21126= .22.(本题10分)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人的某一人. 求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给分析过程)(2)如果甲跟另外n(n ≥2)个人做(1)同样的游戏,那么,第三次传球后球回到甲手里的概率是 ________.(请直接写出结果).解:(1)画树状图略,∵共有9种等可能的结果,其符合要求的结果有3种∴P (第二次传球后球回到甲手里)=3193= (2)21-n n23.(本题10分)某校组织了一次初三科技小制作比赛,有A .B .C ,D 四个班共提供了100件参赛作品. C 班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图l 和图2两幅尚不完整的统计图中 .(1)B 班参赛作品有多少件?(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?(4)将写有A ,B ,C ,D 四个字母的完全相同的卡片放入箱中,从中一次随机抽出两张卡片,求抽到A ,B 两班的概率 .解:(1)100(1-35%-20%-20%)=25(件),答:B班参赛作品有25件;(2)∵C班提供的参赛作品的获奖率为50%∴C班的参赛作品的获奖数量为:100×20%×50%=10(件),画图略;(3)A班的获奖率为1410035%⨯×100%=40%,B班的获奖率为1125×100%=44%,C班的获奖率为50%,D班的获奖率为810020%⨯×100%=40%,故B班的获奖率高;(4)画图略,一共有12种等可能的情况,符合题意的有2种情况,则从中一次随机抽出两张卡片,抽到A,B两班的概率为21 126=.24.(本题12分)已知M(x,y)是平面直角坐标系xOy中的点,其中x是从l、2、3三个数中任取的一个数,y是从l、2、3、4四个数中任取的一个数 .(l)计算由x、y确定的点M(x,y)在函数y= -x+5的图象上的概率;(2)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6则小明胜;若x、y满足xy<6则小红胜,这个游戏公平吗?说明理由. 若不公平,请写出公平的游戏规则;(3)定义“点M(x,y)在直线x+y=n上”为事件A(2≤n≤7,n为整数),则当A的概率最大时,n的所有可能的值为 .(不需要解答过程)解:(1)14;(2)P(小明胜)=14,P(小红胜)=712;游戏规则改为:若x,y满足xy>6则小明得7分,若x、y满足xy<6则小红得3分;(3)4、5 .。
人教版九年级上册(新)第25章《概率初步》全章试题含答案
人教版九年级上册(新)第25章《概率初步》全章试题班级: 姓名: 分数一、单选题1.“抛一枚均匀硬币,落地后正面朝上”.这一事件是 ( )A. 随机事件B. 确定事件C. 必然事件D. 不可能事件 2.下列说法不正确的是A .选举中,人们通常最关心的数据是众数( )B .从1、2、3、4、5中随机取一个数,取得奇数的可能性比较大C .必然事件的概率为1D .某游艺活动的中奖率是60%,说明参加该活动10次就有6次会获奖3.在一个不透明的口袋中,装有3个红球,2个白球,除颜色不同外其余都相同,则随机从口袋中摸出一个球为红色的概率是( ) A .31 B .52 C .51 D .53 4.在一个不透明袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是( ) A .14 B .13C .12D .23 5.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的可估计为( )A .3000条B .2200条C .1200条D .600条6.下表是某种抽奖活动中,封闭的抽奖箱中各种球的颜色、数量,以及它们所代表的奖项:为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为( ) A.16 B. 51C. 310D. 12 7.某奥体中心的构造如图所示,其东、西面各有一个入口A 、B ,南面为出口C ,北面分别有两个出口D 、E .聪聪若任选一个入口进入,再任选一个出口离开,那么他从入口A 进入并从北面出口离开的概率为( ) A .16 B .15 C .13D .12第8题图8. 如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是( )A .π2 B .2π C .π21D .π29.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )A.14 B. 12 C. 34D. 1 10. 从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M :“这个四边形是等腰梯形” .下列判断正确的是( ) A .事件M 是不可能事件 B .事件M 是必然事件 C .事件M 发生的概率为 15D .事件M 发生的概率为 25二、填空题11.一个盒子内装有大小、形状相同的四个球,其中红球1个,绿球1个,白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是 ; 12.同时抛掷两枚硬币正面均朝上的概率为____ .13.在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为l 的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个第7题图小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是 .14.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近,则袋中黄色球可能有___________个.15.一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m +n = .16.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏 .(填“公平”或“不公平”).17. 在x 2□2xy□y 2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是___________.18.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是 .19. 从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程20x x k -+= 的k 值,则所得的方程中有两个不相等的实数根的概率是 .20.如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下一层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;;则从第(n )个图中随机取出一个球,是黑球的概率是 .三、解答题21.有3张形状材质相同的不透明卡片,正面分别写有1、2、-3,三个数字.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字作为一次函数b kx y +=中k 的值;第二次从余下的两张卡片中再随机抽取一张,上面标有的数字作为b 的值.(1)k 的值为正数的概率是 ; (2)用画树状图或列表法求所得到的一次函数b kx y +=的图像经过第一、三、四象限的概率.22.小英与她的父亲、母亲计划清明小长假外出旅游,初步选择了苏州、常州、上海、南京四个城市,由于时间仓促,他们只能去其中一个城市,到底去哪一个城市三个人意见不统一,在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定,规则如下:①在一个不透明的袋子中装一个红球(苏州)、一个白球(常州)、一个黄球(上海)和一个黑球(南京),这四个球除颜色不同外,其余完全相同;②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则,前面的记录作废,按规则②重新摸球,直到两人所摸出球的颜色相同为止.按照上面的规则,请你解答下列问题:(1)已知小英的理想旅游城市是常州,小英和母亲随机各摸球一次,,请用画树状图或列表法求两人均摸出白球的概率是多少?(2)已知小英母亲的理想旅游城市是上海,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少?参考答案一、填空题1、A2、D 3、D 4、A 5、A 6、A 7、A 8、A 9、B 10、B 二、填空 11、61、12、41 13、4914、6 15、 8 16: 不公平 17、21 18、31 19、53 20、21n三、解答题 21、(1)32 (2)3222、答案:解:(1)画树状图得:········· 2分∵共有16种等可能的结果,均摸出白球的只有1种情况,·········3分∴小英和母亲随机各摸球一次,均摸出白球的概率是:;·········5分(2)由(1)得:共有16种等可能的结果,至少有一人摸出黄球的有7种情况,··6分∴小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是:.·········8分。
九年级数学上册《第二十五章 概率初步》单元检测卷及答案(人教版)
九年级数学上册《第二十五章概率初步》单元检测卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列事件中属于必然事件的是()A.早上的太阳从西边升起B.掷一枚质地均匀的骰子,掷出的点数不超过6C.经过有交通信号灯的路口,遇到红灯D.打开电视任选一频道,正在播放普宁新闻2.在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是()A.15B.13C.38D.583.一个不透明的盒子里装有2个白球,2个红球,若干个黄球,这些球除了颜色外,没有任何其他区别.若从这个盒子中随机摸出一个是黄球的概率是35,则盒子中黄球的个数是()A.2 B.4 C.6 D.84.学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分届线,则都重转一次.在该游戏中乙获胜的概率是()A.14B.12C.34D.565.连接正六边形不相邻的两个顶点,并将中间的六边形涂成黑色,制成如图所示的镖盘.将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为()A.14B.13C.12D.√336.把同一副扑克牌中的红桃6、红桃7、红桃9三张牌背面朝上放在桌子上,从中随机抽取两张,牌面的数字之和为奇数的概率为()A.13B.23C.12D.167.点P的坐标是(m,n),从﹣5,﹣3,0,4,7这五个数中任取一个数作为m的值,再从余下的四个数中任取一个数作为n的值,则点P(m,n)在平面直角坐标系中第二象限内的概率是()A.25B.15C.14D.128.初三(1)班周沫同学拿了A,B,C,D四把钥匙去开教师前、后门的锁,其中A钥匙只能开前门,B钥匙只能开后门,任意取出一把钥匙能够一次打开教室门的概率是()A.12B.34C.1 D.14二、填空题9.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.10.如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于.11.一枚质地均匀的正方体骰子,六个面分别刻有1到6的点数,投一次向上一面的点数大于等于3的概率是.12.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是.13.一个暗箱里放有a个白球和3个红球,它们除颜色外完全相同.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a的值大约是.三、解答题14.为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1) 八(1)班抽中歌曲《我和我的祖国》的概率是;(2) 试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.15.如图,桌面上放置了红、黄、蓝三个不同颜色的杯子,杯子口朝上,我们做蒙眼睛翻杯子(杯口朝上的翻为杯口朝下,杯口朝下的翻为杯口朝上)的游戏.(1) 随机翻一个杯子,求翻到黄色杯子的概率;(2) 随机翻一个杯子,接着从这三个杯子中再随机翻一个,请利用树状图求出此时恰好有一个杯口朝上的概率.16.有两个不透明的布袋,其中一个布袋中有一个红球和两个白球,另一个布袋中有一个红球和三个白球,它们除了颜色外其他都相同.在两个布袋中分别摸出一个球(1) 用树形图或列表法展现可能出现的所有结果;(2) 求摸到一个红球和一个白球的概率.17.某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题.(1) 本次调查的学生共有人,在扇形统计图中,m的值是;(2) 将条形统计图补充完整;(3) 在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.18.有5张正面分别标有数字−2,−1,0,1,2的不透明卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a.(1) 求a=0的概率;(2) 求既使关于x的一次函数y=(a+1)x+a−4的图象不经过第二象限,又使关于x的方程3−ax x−3+3=x3−x有整数解的概率;(3) 若再从剩下的四张中任取一张,将卡片上的数字记为b,求使一元二次方程x2+2ax+b2=0的两根均为正数的概率.参考答案1.B2.D3.C4.C5.B6.B7.B8.D9. 31010. 3511. 2312. 11013. 1214.(1) 13(2) 树状图略共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率=69=23.15.(1) P(翻到黄色杯子)=13.(2) 将杯口朝上用“上”表示,杯口朝下用“下”表示,画树状图略所有等可能出现的结果共有9种,其中恰好有一个杯口朝上的有6种∴P(恰好有一个杯口朝上)=23.16.(1) 树状图略(2) 根据树状图得:共有12种情况,其中恰好1红1白的情况有5种故概率P=512.17.(1) 50;30%(2) 50×20%=10(人),50×10%=5(人)(3) 35.18.(1) a=0的概率=15.(2) ∵关于x的分式方程3−axx−3+3=x3−x有整数解∴3−ax+3(x−3)=−x,解得:x=64−a ∵x≠3∴a≠2∴当a=−2,1时,分式方程3−axx−3+3=x3−x有整数解;∵关于x的一次函数y=(a+1)x+a−4的图象不经过第二象限∴a+1>0a−4≤0∴−1<a≤4∴当a=0,1,2时,关于x的一次函数y=(a+1)x+a−4的图象不经过第二象限.综上,当a=1时,使得关于x的分式方程3−axx−3+3=x3−x有整数解,且关于x的一次函数y=(a+1)x+a−4的图象不经过第二象限;∴使得关于x的分式方程3−axx−3+3=x3−x有整数解,且关于x的一次函数y=(a+1)x+a−4的图象不经过第二象限的概率是:15.(3) ∵一元二次方程x2+2ax+b2=0的两根均为正数∴x1+x2=−2a>0x1x2=b2>0Δ=4a2−4b2=4(a+b)(a−b)≥0∴a<0,b≠0,且∣a∣≥∣b∣列树状图略∵共有20种等可能结果,其中使一元二次方程x2+2ax+b2=0的两根均为正数的有4种情况.∴P=15.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率初步单元测试试题(一)一.选择题1.下列事件是随机事件的是()A.画一个三角形,其内角和是360°B.投掷一枚正六面体骰子,朝上一面的点数小于7C.在只装了红球的不透明袋子里,摸出黑球D.射击运动员射击一次,命中靶心2.在一个不透明的口袋中,红色,黑色,白色的小球共有50个,除颜色外其它完全相同,乐乐通过多次摸球试验后发现,摸到红色球,黑色球的频率分别稳定在和,则口袋中白色球的个数可能为()A.20B.15C.10D.53.有一首《对子歌》中唱到:天对地,雨对风,大陆对长空.现将“天,雨,大,空”四个字书写在材质、大小完全相同的卡片上,在暗箱搅匀后,随机抽取两张,恰为“天”、“空”二字的概率为()A.B.C.D.4.一只不透明的袋子里装有4个黑球,2个白球,每个球除颜色外都相同,则事件“从中任意摸出3个球,至少有1个球是黑球”的事件类型是()A.随机事件B.不可能事件C.必然事件D.无法确定5.下列事件,是必然事件的是()A.投掷一枚硬币,向上一面是正面B.同旁内角互补C.打开电视,正播放电影《英雄儿女》D.任意画一个多边形,其外角和是360°6.现有三张正面分别标有数字﹣1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为()A.B.C.D.7.某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的次数1868821683278230.900.850.820.840.820.82“射中九环以上”的频率(结果保留两位小数)根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.82B.0.84C.0.85D.0.908.如图是一个可以自由转动的转盘,转盘分成黑、白两种颜色指针的位置固定,转动的转盘停止后,指针恰好指向白色扇形的穊率为(指针指向OA时,当作指向黑色扇形;指针指OB时,当作指向白色扇形),则黑色扇形的圆心角∠AOB=()ArrayA.40°B.45°C.50°D.60°9.老师组织学生做分组摸球实验.给每组准备了完全相同的实验材料,一个不透明的袋子,袋子中装有除颜色外都相同的3个黄球和若干个白球.先把袋子中的球搅匀后,从中随意摸出一个球,记下球的颜色再放回,即为一次摸球.统计各组实验的结果如下:一组二组三组四组五组六组七组八组九组十组摸球的次数100100100100100100100100100100摸到白球的次数41394043383946414238请你估计袋子中白球的个数是()A.1个B.2个C.3个D.4个10.如图,小猫在5×5的地板砖上行走,并随机停留在某一块方砖上,则它停留在阴影方砖上的概率是()A.B.C.D.二.填空题11.不透明的盒子中装有除标号外完全相同的4个小球,小球上分别标有数﹣4,﹣2,3,5,从盒子中随机抽取一个小球,数记为a,再从剩下的球中随机抽取一个小球,数记为b,则使得点(a,a﹣b)在第四象限的概率为.12.有六张正面分别标有数字﹣1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,则抽取的卡片上的数字为不等式组的解的概率为.13.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是.14.在一个不透明的袋中装有2个黑色小球和若干个红色小球,每个小球除颜色外都相同,每次摇匀后随机摸出一个小球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红色小球的频率稳定于0.8,则可估计这个袋中红色小球的个数约为.15.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在字母“C”所示区域内的概率是.三.解答题16.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.17.一个口袋中放有16个球,其中红球6个,白球和黑球各若干个,每个球除了颜色外没有任何区别.小明通过大量反复的试验(每次将球搅匀后,任意摸出一个球记下颜色后再放回)发现,取出黑球的频率稳定在附近,请你估计袋中白球的个数.18.“十一期间”,美美家电商场举行了买家电进行“翻牌抽奖”的活动.其规则为:现准备有4张牌,4张牌分别对应100,200,300,400(单位:元)的现金.(1)如果某位顾客随机翻1张牌,那么这位顾客抽中200元现金的概率为.(2)如果某位顾客随机翻2张牌,且第一次翻过的牌需放回洗匀后再参加下次翻牌,用列表法或画树状图求该顾客所获现金总额不低于500元的概率.19.有A、B两个不透明的盒子,A盒里有两张卡片,分别标有数字1、2,B盒里有三张卡片,分别标有数字3、4、5,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里抽取一张卡片、抽到的卡片上标有数字为奇数的概率是;(2)从A盒、B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于5的概率.参考答案与试题解析一.选择题1.【解答】解:A、画一个三角形,其内角和是360°,是不可能事件,不合题意;B、投掷一枚正六面体骰子,朝上一面的点数小于7,是不可能事件,不合题意;C、在只装了红球的不透明袋子里,摸出黑球,是不可能事件,不合题意;D、射击运动员射击一次,命中靶心,是随机事件,符合题意;故选:D.2.【解答】解:∵多次摸球试验后发现其中摸到红色球,黑色球的频率分别稳定在和,∴摸到红色球、黑色球的概率分别为0.26和0.44,∴摸到白球的概率为1﹣0.26﹣0.44=0.3,∴口袋中白色球的个数可能为0.3×50=15.故选:B.3.【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中恰为天”、“空”的有2种结果,∴恰为“天”、“空”的概率为=,故选:D.4.【解答】解:∵一只不透明的袋子里装有4个黑球,2个白球,每个球除颜色外都相同,∴事件“从中任意摸出3个球,至少有1个球是黑球”的事件类型是必然事件.故选:C.5.【解答】解:A.投掷一枚硬币,向上一面是正面是随机事件,不合题意;B.同旁内角互补是随机事件,不合题意;C.打开电视,正播放电影《英雄儿女》是随机事件,不合题意;D.任意画一个多边形,其外角和是360°是必然事件,符合题意;故选:D.6.【解答】解:画树状图为:共有9种等可能的结果数,其中点P(m,n)在第二象限的结果数为2,所以点P(m,n)在第二象限的概率=;故选:D.7.【解答】解:∵从频率的波动情况可以发现频率稳定在0.82附近,∴这名运动员射击一次时“射中九环以上”的概率是0.82.故选:A.8.【解答】解:∵指针恰好指向白色扇形的穊率为,∴黑、白两种颜色的扇形的面积比为1:7,∴∠AOB=×360°=45°,故选:B.9.【解答】解:由表格可知共摸球1000次,其中摸到白球的频率稳定在0.4,∴在袋子中摸出一个球,是白球的概率为0.4,设白球有x个,则=0.4,解得:x=2,故选:B.10.【解答】解:∵图中共有25个方格,设每个小正方形的边长为1,其中阴影部分占了9个方格,∴阴影方砖在整个方格中所占面积的比值=,∴最终停在阴影方砖上的概率为.故选:D.二.填空题(共5小题)11.【解答】解:画树状图为:共有12种等可能的结果,其中点(a,a﹣b)在第四象限的结果数为1,所以使得点(a,a﹣b)在第四象限的概率=.故答案为.12.【解答】解:∵不等式组,∴1<x≤4,∴不等式组的整数解为2,3,4,∴抽取的卡片上的数字为不等式组的解的概率==,故答案为.13.【解答】解:由游戏转盘划分区域的圆心角度数可得,指针落在数字“Ⅱ”所示区域内的概率是=.故答案为:.14.【解答】解:设红色小球有x个,根据题意得:=0.8,解答:x=8,经检验x=8是原方程的根,故答案为:8.15.【解答】解:由图知字母“C”所示区域的圆心角度数为360°﹣(60°+120°+60°)=120°,∴当转盘停止转动后,指针落在字母“C”所示区域内的概率是=,故答案为:.三.解答题(共4小题)16.【解答】解:(1)∵共有A,B,C,D,4个小区,∴甲组抽到A小区的概率是,故答案为:.(2)根据题意画树状图如下:∵共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率为.17.【解答】解:∵取出黑球的频率稳定在附近,∴黑球的个数是16×=4(个),∴袋中白球的个数是16﹣6﹣4=6个.18.【解答】解:(1)随机翻1张牌,那么抽中200元现金的概率为;故答案为:;(2)画树状图为:共有16种等可能的结果,其中随机翻2张牌所获现金总额不低于500元的结果数为10种,∴所获现金总额不低于500元的概率==.19.【解答】解:(1)从A盒里抽取一张卡片,抽到的卡片上标有数字为奇数的概率为;故答案为:;(2)画树状图得。