2010年全国高考文科数学试题及答案-北京
2010年高考文科数学试题(全国新课标卷)答案
2010年普通高等学校招生全国统一考试(新课标全国卷)文科数学答案1.D 【解析】由题可知,集合{|22}A x x=-剟,集合B ={0,l ,2,3,4,5, 6,7,8,9,10,11,12 ,13,14,15,16},所以集合AB ={0,1,2},故选D .2.C 【解析】由题可知,设(,)x y =b ,则2(8,6)(3,18)x y +=++=a b ,解得5,12x y =-=,故(5,12)=-b ,由16cos ,||||65⋅<>==a b a b a b ,故选C .3.B 【解析】由14z i ====+,可得1||2z ==,故选B . 4.A 【解析】由题可知,点(1,0)在曲线321y x x =-+上,求导可得232y x '=-,所以在点(1,0)处的切线的斜率1k =,切线过点(1,0),根据直线的点斜式可得过点(1,0)的曲线321y x x =-+的切线方程为1y x =-,故选A .5.D 【解析】设双曲线的标准方程为22221(0,0)x y a b a b-=>>,所以其渐近线方程为b y x a =±,因为点(4,2)-在渐近线上,所以12b a =,根据222c a b =+,可得22214c a a -=,解得254e =,e =,故选D .6.C 【解析】由题可知,质点P 的初始位置在0P ,所以此时点P 到x 轴的距离由题质点P 按照逆时针方向运动,所以应该是距离x 轴的距离越来越小.根据四个选项可得C 正确.7.B 【解析】由题可知,长方体的长、宽、高分别为2,,a a a ,其顶点在同一个球面上,所以球的直径等于长方体的体对角线的长度,故2R 解得R =,所以球的表面积2246S R a ππ==,故选B .8.D 【解析】根据程序框图可知,该程序框图的功能是计算1111122334(1)S k k =+++⋅⋅⋅+⨯⨯⨯⨯+, 现在输入的5N =,所以满足条件k N <的结果为11111111115(1)()()1223344556223566S =++++=-+-+⋅⋅⋅+-=⨯⨯⨯⨯⨯, 故选D .9.B 【解析】由题意可知函数()f x 是偶函数,所以当0x <时的解析式为()24(0)x f x x -=-<,所以当20x -<时,(2)(2)24x f x ---=-,要使(2)0f x ->,解得0x <;当20x -…时,2(2)24x f x --=-,要使2(2)240x f x --=->,解得4x >,综上{|(2)0}{|04}x f x x x x ->=<>或,故选B . 10.A 【解析】由题知,4cos 5α=-,α是第三项限的角,所以3sin 5α=-,由两角和的正弦公式可得sin()sin coscos sin44410πππααα+=+=-,故选A . 11.B 【解析】由题可知:平行四边形ABCD 的点D 的坐标为(0,4)-,点(,)x y 在平行四边形内部,如图,所以在(0,4)D -处目标函数25z x y =-取得最大值为20,在点(3,4)B 处目标函数25z x y =-取得最小值为-14,由题知点(,)x y 在平行四边形内部,所以端点取不到,故25z x y =-的取值范围是(-14,20),故选B .12.C 【解析】由题意可知,画出函数的图象,不妨设a b c <<,因为()()()f a f b f c ==,所以1ab =,c 的范围是( 10,12),所以abc 的范围是(10,12).13.222x y +=【解析】由题意可知,原点到直线20x y +-=的距离为圆的半径,即r ==,所以圆的方程为222x y +=. 14.1N N【解析】这种随机模拟的方法,是在[0,1]内生成了N 个点,而满足几条曲线围成的区域内的点是1N 个,所以根据比例关系1=S N S N矩形。
2010年高考文科数学真题试卷及部分答案(全国1卷word版)
2010年高考数学真题试卷(全国1卷word 版)及答案(1-18题答案)2010年普通高等学校招生全国统一考试文科数学(必修+选修I )第I 卷一、选择题(1)cos300°= (A )32- (B )12- (C )12 (D )32(2)设全集U =(1,2,3,4,5),集合M =(1,4),N =(1,3,5),则N ⋂(C ,M )(A )(1,3) (B )(1,5) (C )(3,5) (D )(4,5)(3)若变量x 、y 满足约束条件 1.0.20.y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则z =x-2y 的最大值为(A )4 (B )3 (C )2 (D )1(4)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=(A )52 (B)7 (C)6 (D)4 2(5)(1-x )2(1-x )3的展开式中x 2的系数是(A)-6 (B )-3 (C)0 (D)3(6)直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC=AA 1,则异面直线BA 1与AC 1所成的角等于(A )30° (B)45° (C)60° (D)90° (7)已知函数f (x )= lg x .若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是(A )(1,+∞) (B )[1,+∞] (C)(2,+∞) (D)[2,+∞)(8)已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则 1PF ·2PF =(A )2 (B)4 (C)6 (D)8(9)正方体ABCD -A 1BCD 1中,BB 1与平面ACD 1所成角的余弦值为(A) 23 (B)33 (C) 23 (D) 63 (10)设a =log 3,2,b =ln2,c =125-,则(A )a <b <c (B)b <c <a (C)c <a <b (D)c <b <a(11)已知圆O 的半径为1,P A 、PB 为该圆的两条切线,A 、B 为两切点,那么PA ·PB 的最小值为(A )-4+2 (B )-3+2 (C )-4+22 (D )-3+22(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB =CD =2,则四面体ABCD 的体积的最大值为(A )233 (B) 433 (C) 23 (D) 833第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(13)不等式2232x x x -++>0的解集是 . (14)已知α为第一象限的角,sin α=35,则tan α= . (15)某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程种各至少选一门.则不同的选法共有 种.(用数字作答)(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD ,则C 的离心率为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)记等差数列{a n }的前n 项和为S ,设S 3=12,且2a 1,a 2,a 3+1成等比数列,求S n .(18)(本小题满分12分)已知△ABC 的内角A ,B 及其对边a ,b 满足a +b =a cot A +b cot B ,求内角C .(19)(本小题满分12分)投到某杂志的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则予以录用:若两位初审专家都未予通过,则不予录用:若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审. (Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.(20)(本小题满分12分)如图,四棱锥S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E 为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A—DC—C的大小.(21)(本小题满分12分)已知函数f(x)=3a x4-2(3a+2)x2+4x.(Ⅰ)当a=16时,求f(x)的极值;(Ⅱ)若f(x)在(-1,1)上是增函数,求a的取值范围.(22)(本小题满分12分)已知抛物线C:y2=4x的焦点为F,过点K(-1,0)的直线l与C相交为A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设89FA FB−−→-−−→=,求△BDK的内切圆M的方程.2010年高考文科数学参考答案(全国卷1)1.C2.C3.B4.A5.A6.D7.C8.B9.D 10.C 11.D 12.B13.(-2,-1)并(2,+无穷) 14 -24/25 15..30 16.√3/317、{an}是等差数列S3=a1+a2+a3=3a2=12a2=4设公差为da1=4-d a3=4+d2a1,a2,a3+1成等比数列(a2)^2=2a1·(a3+1)4^2=2(4-d)(4+d+1)8=(4-d)(d+5)8=20-d-d^2d^2+d-12=0(d+4)(d-3)=0d=-4 或d=3若d=-4,则a1=8,an=a1+d(n-1)=8-4(n-1)=12-4nSn=(a1+an)n/2=(8+12-4n)n/2=-2n^2+10n若d=3,则a1=1,an=a1+d(n-1)=1+3(n-1)=3n-2Sn=(a1+an)n/2=(1+3n-2)n/2=(3/2)n^2-(1/2)n18、a+b=acosA/sinA+bcosB/sinB合并同类项,a(1-cosA/sinA)=b(cosB/sinB-1)由正弦定理a/b=sinA/sinB得到:cosB-sinB=sinA-cosA(自己带进去化简吧)根据两角和差公式,两边都提取根号2根号2(sin45°cosB-cos45°sinB)=根号2(sinAcos45°-cosAsin45°)即:sin(45°-B)=sin(A-45°)所以:45°-B=A-45°或45°-B+A-45°=180°(舍去)所以A+B=90°,即C=90°。
2010年高考新课标全国卷_文科数学(含答案)
2010年普通高等学校招生全国统一考试(新课标全国卷)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B =( ) A .(0,2) B .[0,2] C .{0,2}D .{0,1,2}2.已知复数z =3+i(1-3i )2,z 是z 的共轭复数,则z ·z =( )A.14B.12C .1D .23.曲线y =xx +2在点(-1,-1)处的切线方程为( ) A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -24.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )5.已知命题p 1:函数y =2x -2-x在R 为增函数.p 2:函数y =2x +2-x在R 为减函数.则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( ) A .q 1,q 3 B .q 2,q 3 C .q 1,q 4D .q 2,q 46.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .4007.如果执行如图的框图,输入N =5,则输出的数等于( )A.54B.45C.65D.568.设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( ) A .{x |x <-2或x >4} B .{x |x <0或x >4} C .{x |x <0或x >6}D .{x |x <-2或x >2}9.若cos α=-45,α是第三象限的角,则1+tanα21-tanα2=( )A .-12B.12C .2D .-210.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2B.73πa 2C.113πa 2 D .5πa 211.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)12.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1 第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.设y =f (x )为区间[0,1]上的连续函数,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算积分1⎰f (x )d x .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得积分1⎰f (x )d x 的近似值为________.14.正视图为一个三角形的几何体可以是________.(写出三种)解析:正视图是三角形的几何体,最容易想到的是三棱锥,其次是四棱锥、圆锥;对于五棱锥、六棱锥等,正视图也可以是三角形.15.过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为________________.16.在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2.若△ADC 的面积为3-3,则∠BAC =________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .18.(本小题满分12分)如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 中点.(1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线PA 与平面PEH 所成角的正弦值.19.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )20.(本小题满分12分)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|PA |=|PB |,求E 的方程. 21.(本小题满分12分)设函数f (x )=e x -1-x -ax 2. (1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.请考生在第22、23、24三题中任选一题做答.如果多做,则按所做的第一题记分. 22.(本小题满分10分) 选修4-1:几何证明选讲如图,已知圆上的弧AC =BD ,过C 点的圆的切线与BA 的延长线交于E 点,证明:(1)∠ACE =∠BCD ; (2)BC 2=BE ×CD . 23.(本小题满分10分) 选修4-4:坐标系与参数方程已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α,y =t sin α,(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θy =sin θ,(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.24.(本小题满分10分)选修4-5:不等式选讲 设函数f (x )=|2x -4|+1. (1)画出函数y =f (x )的图象;(2)若不等式f (x )≤ax 的解集非空,求a 的取值范围.2010年高校招生考试文数(新课标) 试题及答案一:选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的。
2010年高考试题文科数学(全国卷I)及答案解析
A
1 1 + x2
=
,
O
P
��� � ��� � ��� � ��� � PA • PB =| PA| ⋅ | PB| cos 2α
2 2 4 2
x 2 (1 − 2 sin2 α )
= B
��� � ��� � x ( x − 1) x − x x4 − x2 = ,令 PA • PB = y ,则 y = , x2 + 1 x2 + 1 x2 + 1
| PF1 |i| PF2 | =
(A)2 (B)4 (C) 6 (D) 8 8.B【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想, 通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析 1】.由余弦定理得 cos ∠ F1 P F2 =
| PF1 |2 + | PF2 |2 − | F1 F2 |2 2 | PF1 || PF2 |
D1 A1 D A O B1
C1
C B
面 AC D1 所 成 角 相 等 , 设 DO ⊥ 平 面 AC D1 , 由 等 体 积 法 得 VD − ACD1 = VD1− ACD , 即
1 1 S ∆ACD1 ⋅ DO = S∆ACD ⋅ DD1 .设 DD1=a, 3 3
则 S∆ ACD1 =
7.C【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本 小题时极易忽视 a 的取值范围,而利用均值不等式求得 a+b= a + 题者的用苦良心之处. 【解析 1】因为 f(a)=f(b), 所以|lga|=|lgb|, 所以 a=b(舍去) ,或 b =
1 ≥ 2 , 从而错选 D,这也是命 a
2010年北京高考文科数学试题及答案
2010年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷1至2页、第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效,考试结束后,将本试卷和答题卡。
第Ⅰ卷(选择题 共140分)一、 本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
⑴ 集合2{03},{9}P x Z x M x Z x =∈≤<=∈≤,则P M I =(A) {1,2} (B) {0,1,2} (C){1,2,3} (D){0,1,2,3}⑵在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是(A )4+8i (B)8+2i (C )2+4i (D)4+i⑶从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是(A )45 (B)35 (C )25 (D)15⑷若a,b 是非零向量,且a b ⊥,a b ≠,则函数()()()f x xa b xb a =+⋅-是(A )一次函数且是奇函数 (B )一次函数但不是奇函数(C )二次函数且是偶函数 (D )二次函数但不是偶函数(5)一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如右图所示,则该集合体的俯视图为:(6)给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,期中在区间(0,1)上单调递减的函数序号是(A )①② (B )②③ (C )③④ (D )①④(7)某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为(A )2sin 2cos 2αα-+; (B )sin 3αα+(C )3sin 1αα+ (D )2sin cos 1αα-+(8)如图,正方体1111ABCD-A B C D 的棱长为2,动点E 、F 在棱11A B 上。
2010年高考北京市数学试卷-文科(含详细答案)
绝密 使用完毕前2010年普通高等学校招生全国统一考试数学(文)(北京)本试卷分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷1至2页、第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效,考试结束后,将本试卷和答题卡。
第Ⅰ卷(选择题 共140分)一、 本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
⑴ 集合2{03},{9}P x Z x M x Z x =∈≤<=∈≤,则P M I =(A) {1,2} (B) {0,1,2} (C){1,2,3} (D){0,1,2,3} ⑵在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是(A )4+8i (B)8+2i (C )2+4i (D)4+i⑶从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是 (A )45 (B)35 (C )25 (D)15⑷若a,b 是非零向量,且a b ⊥,a b ≠,则函数()()()f x xa b xb a =+⋅-是 (A )一次函数且是奇函数 (B )一次函数但不是奇函数(C )二次函数且是偶函数 (D )二次函数但不是偶函数(5)一个长方体去掉一个小长方体,所得几何体的 正视图与侧(左)视图分别如右图所示,则该集合体 的俯视图为:(6)给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,期中在区间(0,1)上单调递减的函数序号是(A )①② (B )②③ (C )③④ (D )①④ (7)某班设计了一个八边形的班徽(如图),它由腰长为1, 顶角为α的四个等腰三角形,及其底边构成的正方形所组成, 该八边形的面积为(A )2sin 2cos 2αα-+; (B )sin 3αα+(C )3sin 1αα+ (D )2sin cos 1αα-+ (8)如图,正方体1111ABCD-A B C D 的棱长为2, 动点E 、F 在棱11A B 上。
2010年全国统一高考数学试卷(文科)(新课标)解析版
2010年全国统一高考数学试卷(文科)(新课标)解析版参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合{|||2A x x =…,}x R ∈,{|4B x =,}x Z ∈,则(A B = )A .(0,2)B .[0,2]C .{0,2}D .{0,1,2}【考点】1E :交集及其运算 【专题】11:计算题【分析】由题意可得{|22}A x x =-剟,{0B =,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求 【解答】解:{|||2}{|22}A x x x x ==-剟?{|4B x =,}{0x Z ∈=,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则{0A B =,1,2}故选:D .【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A ,B ,属于基础试题2.(5分)平面向量,a b ,已知(4,3)a =,2(3,18)a b +=,则,a b 夹角的余弦值等于( ) A .865B .865-C .1665D .1665-【考点】9S :数量积表示两个向量的夹角【分析】先设出b 的坐标,根据(4,3)a =,2(3,18)a b +=,求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦 【解答】解:设(,)b x y =, (4,3)a =,2(3,18)a b +=,∴(5,12)b =-2036cos 513θ-+∴=⨯1665=,【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.3.(5分)已知复数Z =,则||(z = )A .14B .12C .1D .2【考点】5A :复数的运算 【专题】11:计算题【分析】由复数的代数形式的乘除运算化简可得4iZ =+,由复数的模长公式可得答案.【解答】解:化简得13213iZ i+===-+1(3)(13)12323224(13)(13)i i i ii i +--=-=-=-++-,故1||2z =, 故选:B .【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题. 4.(5分)曲线321y x x =-+在点(1,0)处的切线方程为( ) A .1y x =-B .1y x =-+C .22y x =-D .22y x =-+【考点】6H :利用导数研究曲线上某点切线方程 【专题】1:常规题型;11:计算题【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在1x =处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决. 【解答】解:验证知,点(1,0)在曲线上321y x x =-+,232y x '=-,所以1|1x k y -='=,得切线的斜率为1,所以1k =; 所以曲线()y f x =在点(1,0)处的切线方程为: 01(1)y x -=⨯-,即1y x =-.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为( )A BC D 【考点】KC :双曲线的性质 【专题】11:计算题【分析】先求渐近线斜率,再用222c a b =+求离心率. 【解答】解:渐近线的方程是by x a =±,24ba∴=,12b a =,2a b =,c =,c e a ==. 故选:D .【点评】本题考查双曲线的几何性质.6.(5分)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )A .B .C .D .【考点】3A :函数的图象与图象的变换【分析】本题的求解可以利用排除法,根据某具体时刻点P 的位置到到x 轴距离来确定答案.【解答】解:通过分析可知当0t =时,点P 到x 轴距离d ,于是可以排除答案A ,D , 再根据当4t π=时,可知点P 在x 轴上此时点P 到x 轴距离d 为0,排除答案B ,故选:C .【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题. 7.(5分)设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .23a πB .26a πC .212a πD .224a π【考点】LG :球的体积和表面积 【专题】11:计算题【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R 满足22(2)6R a =,代入球的表面积公式,24S R π=球,即可得到答案. 【解答】解:根据题意球的半径R 满足22(2)6R a =,所以2246S R a ππ==球. 故选:B .【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)如果执行如图的框图,输入5N =,则输出的数等于( )A .54B .45C .65D .56【考点】EF :程序框图 【专题】28:操作型【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出111111223344556S =++++⨯⨯⨯⨯⨯的值. 【解答】解:分析程序中各变量、各语句的作用, 再根据流程图所示的顺序,可知: 该程序的作用是累加并输出111111223344556S =++++⨯⨯⨯⨯⨯的值. 11111151122334455666S =++++=-=⨯⨯⨯⨯⨯ 故选:D .【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)设偶函数()f x 满足()24(0)x f x x =-…,则{|(2)0}(x f x ->= ) A .{|2x x <-或4}x > B .{|0x x <或4}x > C .{|0x x <或6}x >D .{|2x x <-或2}x >【考点】3K :函数奇偶性的性质与判断 【专题】11:计算题【分析】由偶函数()f x 满足()24(0)x f x x =-…,可得||()(||)24x f x f x ==-,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数()f x 满足()24(0)x f x x =-…,可得||()(||)24x f x f x ==-, 则|2|(2)(|2|)24x f x f x --=-=-,要使(|2|)0f x ->,只需|2|240x -->,|2|2x -> 解得4x >,或0x <. 应选:B .【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算. 10.(5分)若cos 45α=-,α是第三象限的角,则sin()(4πα+= )A .BC .D 【考点】GG :同角三角函数间的基本关系;GP :两角和与差的三角函数 【专题】11:计算题【分析】根据α的所在的象限以及同角三角函数的基本关系求得sin α的值,进而利用两角和与差的正弦函数求得答案. 【解答】解:α是第三象限的角3sin 5α∴==-,所以324s i()445ππααα+=+=故选:A .【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)已知ABCD 的三个顶点为(1,2)A -,(3,4)B ,(4,2)C -,点(,)x y 在ABCD 的内部,则25z x y =-的取值范围是( ) A .(14,16)-B .(14,20)-C .(12,18)-D .(12,20)-【考点】7C :简单线性规划 【专题】11:计算题;16:压轴题【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D 的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围. 【解答】解:由已知条件得(0,4)AB DC D =⇒-, 由25z x y =-得255z y x =-,平移直线当直线经过点(3,4)B 时,5z-最大, 即z 取最小为14-;当直线经过点(0,4)D -时,5z-最小,即z 取最大为20,又由于点(,)x y 在四边形的内部,故(14,20)z ∈-. 如图:故选B .【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)已知函数||,010()16,102lgx x f x x x <⎧⎪=⎨-+>⎪⎩…,若a ,b ,c 互不相等,且f (a )f =(b )f =(c ),则abc 的取值范围是( ) A .(1,10)B .(5,6)C .(10,12)D .(20,24)【考点】3A :函数的图象与图象的变换;3B :分段函数的解析式求法及其图象的作法;4H :对数的运算性质;4N :对数函数的图象与性质 【专题】13:作图题;16:压轴题;31:数形结合【分析】画出函数的图象,根据f (a )f =(b )f =(c ),不妨a b c <<,求出abc 的范围即可.【解答】解:作出函数()f x 的图象如图, 不妨设a b c <<,则16(0,1)2lga lgb c -==-+∈1ab =,10612c <-+<则(10,12)abc c =∈. 故选:C .【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力. 二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线20x y +-=相切的圆的方程为 222x y += . 【考点】1J :圆的标准方程;9J :直线与圆的位置关系【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r =,所求圆的方程为222x y +=.故答案为:222x y +=【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)设函数()y f x =为区间(0,1]上的图象是连续不断的一条曲线,且恒有0()1f x 剟,可以用随机模拟方法计算由曲线()y f x =及直线0x =,1x =,0y =所围成部分的面积S ,先产生两组(每组N 个),区间(0,1]上的均匀随机数1x ,2x ,⋯,n x 和1y ,2y ,⋯,n y ,由此得到N 个点(x ,)(1y i -,2⋯,)N .再数出其中满足1()(1y f x i =…,2⋯,)N 的点数1N ,那么由随机模拟方法可得S 的近似值为1N N. 【考点】CE :模拟方法估计概率;CF :几何概型【分析】由题意知本题是求10()f x dx ⎰,而它的几何意义是函数()f x (其中0()1)f x 剟的图象与x 轴、直线0x =和直线1x =所围成图形的面积,积分得到结果. 【解答】解:1()f x dx ⎰的几何意义是函数()f x (其中0()1)f x 剟的图象与x 轴、直线0x =和直线1x =所围成图形的面积,∴根据几何概型易知110()N f x dx N≈⎰.故答案为:1N N. 【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的 ①②③⑤ (填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【考点】7L :简单空间图形的三视图 【专题】15:综合题;16:压轴题【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项. 【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形; 故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)在ABC ∆中,D 为BC 边上一点,3BC BD =,AD =,135ADB ∠=︒.若AC ,则BD = 2【考点】HR :余弦定理【专题】11:计算题;16:压轴题【分析】先利用余弦定理可分别表示出AB ,AC ,把已知条件代入整理,根据3BC BD =推断出2C D B D =,进而整理2222AC CD CD =+- 得22424AC BD BD =+-把AC ,代入整理,最后联立方程消去AB 求得BD 的方程求得BD .【解答】用余弦定理求得2222cos135AB BD AD AD BD =+-︒ 2222cos45AC CD AD AD CD =+-︒即2222AB BD BD =++①2222AC CD CD =+-② 又3BC BD = 所以2CD BD =所以 由(2)得22424AC BD BD =+-(3)因为 A C A B所以 由(3)得222424AB BD BD =+- (4) (4)2-(1) 2410BD BD --=求得2BD =故答案为:2【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(10分)设等差数列{}n a 满足35a =,109a =-. (Ⅰ)求{}n a 的通项公式;(Ⅱ)求{}n a 的前n 项和n S 及使得n S 最大的序号n 的值. 【考点】84:等差数列的通项公式;85:等差数列的前n 项和【分析】(1)设出首项和公差,根据35a =,109a =-,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{}n a 的前n 项和,整理成关于n 的一元二次函数,二次项为负数求出最值.【解答】解:(1)由1(1)n a a n d =+-及35a =,109a =-得 199a d +=-,125a d +=解得2d =-,19a =,数列{}n a 的通项公式为112n a n =- (2)由(1)知21(1)102n n n S na d n n -=+=-. 因为2(5)25n S n =--+. 所以5n =时,n S 取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)如图,已知四棱锥P ABCD -的底面为等腰梯形,//AB CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高. (Ⅰ)证明:平面PAC ⊥平面PBD ;(Ⅱ)若AB 60APB ADB ∠=∠=︒,求四棱锥P ABCD -的体积.【考点】LF :棱柱、棱锥、棱台的体积;LY :平面与平面垂直 【专题】11:计算题;14:证明题;35:转化思想【分析】(Ⅰ)要证平面PAC ⊥平面PBD ,只需证明平面PAC 内的直线AC ,垂直平面PBD 内的两条相交直线PH ,BD 即可.(Ⅱ)AB 60APB ADB ∠=∠=︒,计算等腰梯形ABCD 的面积,PH 是棱锥的高,然后求四棱锥P ABCD -的体积. 【解答】解:(1)因为PH 是四棱锥P ABCD -的高.所以AC PH ⊥,又AC BD ⊥,PH ,BD 都在平PHD 内,且PH BD H =.所以AC ⊥平面PBD .故平面PAC ⊥平面PBD (6分)(2)因为ABCD 为等腰梯形,//AB CD ,AC BD ⊥,AB =所以HA HB = 因为60APB ADB ∠=∠=︒所以PA PB ==1HD HC ==.可得PH =.等腰梯形ABCD 的面积为122S ACxBD ==+9分)所以四棱锥的体积为1(23V=⨯+.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.附:2()()()()()n ad bcKa b c d a c b d-=++++.【考点】BL:独立性检验【专题】11:计算题;5I:概率与统计【分析】(1)由样本的频率率估计总体的概率,(2)求2K的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为7014%500=(2)2K的观测值2500(4027030160)9.96720030070430k⨯-⨯=≈⨯⨯⨯因为9.967 6.635>,且2( 6.635)0.01P K=…,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)设1F ,2F 分别是椭圆222:1(01)y E x b b+=<<的左、右焦点,过1F 的直线l 与E相交于A 、B 两点,且2||AF ,||AB ,2||BF 成等差数列. (Ⅰ)求||AB ;(Ⅱ)若直线l 的斜率为1,求b 的值. 【考点】4K :椭圆的性质 【专题】15:综合题【分析】(1)由椭圆定义知22||||||4AF AB BF ++=,再由2||AF ,||AB ,2||BF 成等差数列,能够求出||AB 的值.(2)L 的方程式为y x c =+,其中c ,设1(A x ,1)y ,1(B x ,1)y ,则A ,B 两点坐标满足方程组2221y x cy x b =+⎧⎪⎨+=⎪⎩,化简得222(1)2120b x cx b +++-=.然后结合题设条件和根与系数的关系能够求出b 的大小.【解答】解:(1)由椭圆定义知22||||||4AF AB BF ++= 又222||||||AB AF BF =+,得4||3AB =(2)L 的方程式为y x c =+,其中c =设1(A x ,1)y ,2(B x ,2)y ,则A ,B 两点坐标满足方程组2221y x c y x b =+⎧⎪⎨+=⎪⎩.,化简得222(1)2120b x cx b +++-=.则2121222212,11c b x x x x b b --+==++. 因为直线AB 的斜率为1,所以21|||AB x x =-即214|3x x =-. 则224212122222284(1)4(12)8()49(1)1(1)b b b x x x x b b b --=+-=-=+++.解得b . 【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.设函数2()(1)x f x x e ax =-- (Ⅰ)若12a =,求()f x 的单调区间; (Ⅱ)若当0x …时()0f x …,求a 的取值范围. 【考点】6B :利用导数研究函数的单调性 【专题】15:综合题;53:导数的综合应用【分析】()I 求导函数,由导数的正负可得函数的单调区间;()()(1)x II f x x e ax =--,令()1x g x e ax =--,分类讨论,确定()g x 的正负,即可求得a 的取值范围. 【解答】解:1()2I a =时,21()(1)2x f x x e x =--,()1(1)(1)x x x f x e xe x e x '=-+-=-+ 令()0f x '>,可得1x <-或0x >;令()0f x '<,可得10x -<<;∴函数的单调增区间是(,1)-∞-,(0,)+∞;单调减区间为(1,0)-;()()(1)x II f x x e ax =--.令()1x g x e ax =--,则()x g x e a '=-.若1a …,则当(0,)x ∈+∞时,()0g x '>,()g x 为增函数, 而(0)0g =,从而当0x …时()0g x …,即()0f x …. 若1a >,则当(0,)x lna ∈时,()0g x '<,()g x 为减函数, 而(0)0g =,从而当(0,)x lna ∈时,()0g x <,即()0f x <. 综合得a 的取值范围为(-∞,1]. 另解:当0x =时,()0f x =成立;当0x >,可得10xe ax --…,即有1x e a x-…的最小值,由1x y e x =--的导数为1x y e '=-,当0x >时,函数y 递增;0x <时,函数递减, 可得函数y 取得最小值0,即10x e x --…,0x >时,可得11x e x-…, 则1a ….【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)如图:已知圆上的弧AC BD =,过C 点的圆的切线与BA 的延长线交于E 点,证明:(Ⅰ)ACE BCD ∠=∠. (Ⅱ)2BC BE CD =.【考点】9N :圆的切线的判定定理的证明;NB :弦切角 【专题】14:证明题【分析】()I 先根据题中条件:“AC BD =”,得BCD ABC ∠=∠.再根据EC 是圆的切线,得到ACE ABC ∠=∠,从而即可得出结论. ()II 欲证2BC BE = x CD .即证BC CDBE BC=.故只须证明~BDC ECB ∆∆即可. 【解答】解:(Ⅰ)因为AC BD =, 所以BCD ABC ∠=∠. 又因为EC 与圆相切于点C , 故ACE ABC ∠=∠所以ACE BCD ∠=∠.(5分)(Ⅱ)因为ECB CDB ∠=∠,EBC BCD ∠=∠, 所以~BDC ECB ∆∆, 故BC CDBE BC=. 即2BC BE CD =⨯.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线11cos (sin x t C t y t αα=+⎧⎨=⎩为参数),2cos (sin x C y θθθ=⎧⎨=⎩为参数),(Ⅰ)当3πα=时,求1C 与2C 的交点坐标;(Ⅱ)过坐标原点O 做1C 的垂线,垂足为A ,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【考点】3J :轨迹方程;JE :直线和圆的方程的应用;4Q :简单曲线的极坐标方程;QJ :直线的参数方程;QK :圆的参数方程 【专题】15:综合题;16:压轴题【分析】()I 先消去参数将曲线1C 与2C 的参数方程化成普通方程,再联立方程组求出交点坐标即可,()II 设(,)P x y ,利用中点坐标公式得P 点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线. 【解答】解:(Ⅰ)当3πα=时,1C的普通方程为1)y x =-,2C 的普通方程为221x y +=.联立方程组221)1y x x y ⎧=-⎪⎨+=⎪⎩, 解得1C 与2C 的交点为(1,10)(,2.(Ⅱ)1C 的普通方程为sin cos sin 0x y ααα--=①. 则OA 的方程为cos sin 0x y αα+=②, 联立①②可得2sin x α=,cos sin y αα=-;A 点坐标为2(sin α,cos sin )αα-,故当α变化时,P 点轨迹的参数方程为:()21212x sin y sin cos αααα⎧=⎪⎪⎨⎪=-⎪⎩为参数,P 点轨迹的普通方程2211()416x y -+=.故P 点轨迹是圆心为1(,0)4,半径为14的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数()|24|1f x x =-+. (Ⅰ)画出函数()y f x =的图象:(Ⅱ)若不等式()f x ax …的解集非空,求a 的取值范围.【考点】3A :函数的图象与图象的变换;7E :其他不等式的解法;5R :绝对值不等式的解法【专题】11:计算题;13:作图题;16:压轴题【分析】()I 先讨论x 的范围,将函数()f x 写成分段函数,然后根据分段函数分段画出函数的图象即可;()II 根据函数()y f x =与函数y ax =的图象可知先寻找满足()f x ax …的零界情况,从而求出a 的范围.【解答】解:(Ⅰ)由于25,2()23,2x x f x x x -+<⎧=⎨-⎩…,函数()y f x =的图象如图所示.(Ⅱ)由函数()y f x =与函数y ax =的图象可知,极小值在点(2,1) 当且仅当2a <-或12a …时,函数()y f x =与函数y ax =的图象有交点.故不等式()f x ax …的解集非空时,a 的取值范围为1(,2)[2-∞-,)+∞.【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。
2010年高考试题——数学文(全国卷I)(解析版)
2010年普通高等学校招生全国统一考试文科数学(必修+选修) 解析版本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B =g g 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一、选择题 (1)cos300︒=(A)2-(B)-12 (C)12(D) 2 1.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1cos300cos 36060cos602︒=︒-︒=︒=(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N M ⋂=ð A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,52.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识【解析】{}2,3,5U M =ð,{}1,3,5N =,则()U N M ⋂=ð{}1,3,5{}2,3,5⋂={}3,5(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力. 【解析】画出可行域(如右图),11222z x y y x z =-⇒=-,由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A)4.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a ===g ,37897988()a a a a a a a ===g 10,所以132850a a =, 所以133364564655()(50)a a a a a a a =====g(5)43(1)(1x --的展开式 2x 的系数是(A)-6 (B)-3 (C)0 (D)35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】()134323422(1)(11464133x x x x x x x x ⎛⎫-=-+---+- ⎪⎝⎭x +20y -=2x 的系数是 -12+6=-6(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°6.C 【命题意图】本小题主要考查直三棱柱111ABC A B C -的性质、异面直线所成的角、异面直线所成的角的求法.【解析】延长CA 到D ,使得AD AC =,则11ADAC 为平行四边形,1DA B ∠就是异面直线1BA 与1AC 所成的角,又三角形1A DB 为等边三角形,0160DA B ∴∠=(7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞7.C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a+≥,从而错选D,这也是命题者的用苦良心之处.【解析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+b=1a a+ 又0<a<b,所以0<a<1<b ,令()f a a=1a +由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+1=2,即a+b 的取值范围是(2,+∞).【解析2】由0<a<b,且f (a )=f (b )得:0111a b ab <<⎧⎪<⎨⎪=⎩,利用线性规划得:0111x y xy <<⎧⎪<⎨⎪=⎩,化为求z x y =+的取值范围问题,z x y y x z =+⇒=-+,2111y y x x'=⇒=-<-⇒过点()1,1时z 最小为2,∴(C) (2,)+∞(8)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则12||||PF PF =g(A)2 (B)4 (C) 6 (D) 8AB C DA 1B 1C 1D 1 O8.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析1】.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-()(22221212121212122221cos60222PF PF PF PF PF PF F F PF PF PF PF +--+-⇒=⇒=12||||PF PF =g 4【解析2】由焦点三角形面积公式得:1202201216011cot 1cot sin 602222F PF S b PF PF PF PF θ∆=====12||||PF PF =g 4(9)正方体ABCD -1111A B CD 中,1BB 与平面1ACD 所成角的余弦值为(A )3 (B(C )23(D 9.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析1】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD∆∆⋅=⋅.设DD 1=a,则122111sin 60)2222ACD S AC AD a ∆==⨯⨯=o g ,21122ACD SAD CD a ∆==g . 所以131ACD ACD S DD DO S ∆∆===g ,记DD 1与平面AC 1D 所成角为θ,则1sin DO DD θ==,所以cos 3θ=. 【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D所成角,1111cos1/3O OO ODOD∠===(10)设123log2,ln2,5a b c-===则(A)a b c<<(B)b c a<< (C) c a b<< (D) c b a<<10.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.【解析1】a=3log2=21log3, b=In2=21log e,而22log3log1e>>,所以a<b,c=125-222log4log3>=>,所以c<a,综上c<a<b.【解析2】a=3log2=321log,b=ln2=21log e, 3221log log2e<<<,32211112log log e<<<;c=12152-=<=,∴c<a<b(11)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么PA PB•u u u v u u u v的最小值为(A) 4-(B)3-+(C) 4-+3-+11.D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.【解析1】如图所示:设PA=PB=x(0)x>,∠APO=α,则∠APB=2α,,sinα=||||cos2PA PB PA PBα•=⋅u u u v u u u v u u u v u u u v=22(12sin)xα-=222(1)1x xx-+=4221x xx-+,令PA PB y•=u u u v u u u v,则4221x xyx-=+,即42(1)0x y x y-+-=,由2x是实数,所以2[(1)]41()0y y∆=-+-⨯⨯-≥,2610y y++≥,解得3y≤--或3y≥-+.故min()3PA PB•=-+u u u v u u u v.此时x=【解析2】设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫•== ⎪⎝⎭u u u v u u u v 2222221sin 12sin cos 22212sin 2sin sin 22θθθθθθ⎛⎫⎛⎫-- ⎪⎪⎛⎫⎝⎭⎝⎭=⋅-= ⎪⎝⎭换元:2sin ,012x x θ=<≤,()()1121233x x PA PB x x x--•==+-≥u u u v u u u v 【解析3】建系:园的方程为221x y +=,设11110(,),(,),(,0)A x y B x y P x -,()()2211101110110,,001AO PA x y x x y x x x y x x ⊥⇒⋅-=⇒-+=⇒=()222222221100110110221233PA PB x x x x y x x x x x •=-+-=-+--=+-≥u u u v u u u v(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(C)12.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h =故max V =.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2010年高考数学试题及答案(全国卷文数3套)
2010年全国统一高考数学试卷(文科)(全国新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2010•全国新课标)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A ∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2} 2.(5分)(2010•全国新课标)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.3.(5分)(2010•全国新课标)已知复数Z=,则|z|=()A.B.C.1D.24.(5分)(2010•全国新课标)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2 5.(5分)(2010•全国新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.6.(5分)(2010•全国新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.7.(5分)(2010•全国新课标)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa28.(5分)(2010•全国新课标)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.9.(5分)(2010•全国新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}10.(5分)(2010•全国新课标)若cosα=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.11.(5分)(2010•全国新课标)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)12.(5分)(2010•全国新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题:本大题共4小题,每小题5分.13.(5分)(2010•全国新课标)圆心在原点上与直线x+y﹣2=0相切的圆的方程为.14.(5分)(2010•全国新课标)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x =1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.15.(5分)(2010•全国新课标)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.16.(5分)(2010•全国新课标)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2010•全国新课标)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.18.(10分)(2010•全国新课标)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.19.(10分)(2010•全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.001 k 3.841 6.63510.828附:K2=.20.(10分)(2010•全国新课标)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b 的值.21.(2010•全国新课标)设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x )的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)(2010•全国新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)(2010•全国新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.24.(10分)(2010•全国新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(文科)(全国新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2010•全国新课标)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A ∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A,B,属于基础试题2.(5分)(2010•全国新课标)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选:C.【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.3.(5分)(2010•全国新课标)已知复数Z=,则|z|=()A.B.C.1D.2【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===•=•=•=,故|z|==,故选:B.【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题.4.(5分)(2010•全国新课标)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)(2010•全国新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=•4,=,a=2b,c==a,e==,即它的离心率为.故选:D.【点评】本题考查双曲线的几何性质.6.(5分)(2010•全国新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.7.(5分)(2010•全国新课标)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S=4πR2,即可得到答案.球【解答】解:根据题意球的半径R满足(2R)2=6a2,所以S=4πR2=6πa2.球故选:B.【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)(2010•全国新课标)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)(2010•全国新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.10.(5分)(2010•全国新课标)若cosα=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选:A.【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)(2010•全国新课标)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)(2010•全国新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.二、填空题:本大题共4小题,每小题5分.13.(5分)(2010•全国新课标)圆心在原点上与直线x+y﹣2=0相切的圆的方程为x2+y2=2.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=2【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)(2010•全国新课标)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x =1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:方法一:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.方法二:这种随机模拟的方法是在[0,1]内生成了N个点,而满足几条曲线围成的区域内的点是N1个,所以根据比例关系=,而正方形的面积为1,所以随机模拟方法得到的面积为.故答案为:.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)(2010•全国新课标)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的①②③⑤(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)(2010•全国新课标)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=2+.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD 推断出CD=2BD,进而整理AC2=CD2+2﹣2CD得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BD cos135°AC2=CD2+AD2﹣2AD•CD cos45°即AB2=BD2+2+2BD①AC2=CD2+2﹣2CD②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC=AB所以由(3)得2AB2=4BD2+2﹣4BD(4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2010•全国新课标)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)(2010•全国新课标)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)(2010•全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:性别是否需要志愿者男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P (K 2≥k )0.0500.0100.001k3.8416.63510.828附:K 2=.【分析】(1)由样本的频率率估计总体的概率,(2)求K 2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K 2的观测值因为9.967>6.635,且P (K 2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)(2010•全国新课标)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.(2010•全国新课标)设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(e x﹣1﹣ax),令g(x)=e x﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(e x﹣1)﹣x2,=(e x ﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得e x﹣1﹣ax≥0,即有a≤的最小值,由y=e x﹣x﹣1的导数为y′=e x﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即e x﹣x﹣1≥0,x>0时,可得≥1,则a≤1.【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)(2010•全国新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)(2010•全国新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为x sinα﹣y cosα﹣sinα=0①.则OA的方程为x cosα+y sinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)(2010•全国新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.2010年全国统一高考数学试卷(文科)(全国大纲版Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•全国大纲版Ⅰ)cos300°=()A.B.﹣C.D.2.(5分)(2010•全国大纲版Ⅰ)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}3.(5分)(2010•全国大纲版Ⅰ)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4B.3C.2D.14.(5分)(2010•全国大纲版Ⅰ)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.5.(5分)(2010•全国大纲版Ⅰ)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6B.﹣3C.0D.36.(5分)(2010•全国大纲版Ⅰ)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°7.(5分)(2010•全国大纲版Ⅰ)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)8.(5分)(2010•全国大纲版Ⅰ)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=()A.2B.4C.6D.89.(5分)(2010•全国大纲版Ⅰ)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.10.(5分)(2010•全国大纲版Ⅰ)设a=log32,b=ln2,c=,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a 11.(5分)(2010•全国大纲版Ⅰ)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B 为两切点,那么的最小值为()A.B.C.D.12.(5分)(2010•全国大纲版Ⅰ)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•全国大纲版Ⅰ)不等式的解集是.14.(5分)(2010•全国大纲版Ⅰ)已知α为第二象限角,sinα=,则tan2α=.15.(5分)(2010•全国大纲版Ⅰ)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有种.(用数字作答)16.(5分)(2010•全国大纲版Ⅰ)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为.三、解答题(共6小题,满分70分)17.(10分)(2010•全国大纲版Ⅰ)记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.18.(12分)(2010•全国大纲版Ⅰ)已知△ABC的内角A,B及其对边a,b满足a+b=a cot A+b cot B,求内角C.19.(12分)(2010•全国大纲版Ⅰ)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.20.(12分)(2010•全国大纲版Ⅰ)如图,四棱锥S﹣ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A﹣DE﹣C的大小.21.(12分)(2010•全国大纲版Ⅰ)求函数f(x)=x3﹣3x在[﹣3,3]上的最值.22.(12分)(2010•全国大纲版Ⅰ)已知抛物线C:y2=4x的焦点为F,过点K(﹣1,0)的直线l与C相交于A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求△BDK的内切圆M的方程.2010年全国统一高考数学试卷(文科)(全国大纲版Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•全国大纲版Ⅰ)cos300°=()A.B.﹣C.D.【分析】利用三角函数的诱导公式,将300°角的三角函数化成锐角三角函数求值.【解答】解:∵.故选:C.【点评】本小题主要考查诱导公式、特殊三角函数值等三角函数知识.2.(5分)(2010•全国大纲版Ⅰ)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}【分析】根据补集意义先求∁U M,再根据交集的意义求N∩(∁U M).【解答】解:(∁U M)={2,3,5},N={1,3,5},则N∩(∁U M)={1,3,5}∩{2,3,5}={3,5}.故选:C.【点评】本小题主要考查集合的概念、集合运算等集合有关知识,属容易题.3.(5分)(2010•全国大纲版Ⅰ)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4B.3C.2D.1【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x﹣2y表示直线在y 轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x﹣2y⇒y=x﹣z,由图可知,当直线l经过点A(1,﹣1)时,z最大,且最大值为z max=1﹣2×(﹣1)=3.故选:B.【点评】本小题主要考查线性规划知识、作图、识图能力及计算能力,以及利用几何意义求最值,属于基础题.4.(5分)(2010•全国大纲版Ⅰ)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.【分析】由数列{a n}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.【解答】解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选:A.【点评】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.5.(5分)(2010•全国大纲版Ⅰ)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6B.﹣3C.0D.3【分析】列举(1﹣x)4与可以出现x2的情况,通过二项式定理得到展开式x2的系数.【解答】解:将看作两部分与相乘,则出现x2的情况有:①m=1,n=2;②m=2,n=0;系数分别为:①=﹣12;②=6;x2的系数是﹣12+6=﹣6故选:A.【点评】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.6.(5分)(2010•全国大纲版Ⅰ)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°【分析】延长CA到D,根据异面直线所成角的定义可知∠DA1B就是异面直线BA1与AC1所成的角,而三角形A1DB为等边三角形,可求得此角.【解答】解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选:C.【点评】本小题主要考查直三棱柱ABC﹣A1B1C1的性质、异面直线所成的角、异面直线所成的角的求法,考查转化思想,属于基础题.7.(5分)(2010•全国大纲版Ⅰ)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【分析】由已知条件a≠b,不妨令a<b,又y=lgx是一个增函数,且f(a)=f(b),故可得,0<a<1<b,则lga=﹣lgb,再化简整理即可求解;或采用线性规划问题处理也可以.【解答】解:(方法一)因为f(a)=f(b),所以|lga|=|lgb|,不妨设0<a<b,则0<a<1<b,∴lga=﹣lgb,lga+lgb=0。
2010年普通高等学校招生全国统一考试(全国新课标卷)数学试题(文科)(解析版)
2010 年普通高等学校招生全国统一考试文科数学参考公式:样本数据 x 1, x 2x n 的标准差锥体体积公式s1( x 1x )2( x 2 x )2( x n x )2V1 s hn3其中 x 为样本平均数 其中 S 为底面面积, h 为高 柱体体积公式球的表面积,体积公式VShS4 R 2,V4 R 3 其中 S 为底面面积, h 为高其中 R 为球的半径 3第Ⅰ卷一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
( 1)已知集合 Ax x 2, x R, B x x 4, x Z ,则A B()( A )0,2 ( B )0,2 (C ) 0,2 (D )0,1,2解析: A x | 2 x 2 , B {0,1,2} , A B 0,1,2 ,选 D命题意图:本题考查集合的运算及不等式解法( 2) a ,b 为平面向量,已知 a=( 4,3),2a+b=( 3,18),则 a ,b 夹角的余弦值等于()(A )8(B )8 (C )16( D )16 65656565a b16 解析: a(4,3), b ( 5,12),cosa,ba b 65,选 C命题意图:本题考查向量数量积运算与夹角( 3)已知复数 z3 i,则 z =()(13i)2(A)1(B )1(C )1( D )242解析: z3 i 3 i4 3 4i3 i, z a 2b 21 ,选 B(1 3i )2 2 2 3i 1642命题意图:本题考查复数的代数运算及模的定义( 4)曲线 y x 32x 1在点( 1,0 )处的切线方程为()(A ) y x 1(B ) yx 1( C ) y2x 2( D ) y2x 2解析: y '3x 2 2, k1, 切线方程为 y x 1,选 A( 5)中心在原点, 焦点在 x 轴上的双曲线的一条渐近线经过点( 4,2 ),则它的离心率为 ( )(A ) 6(B )5( C )6 ( D )52 2解析:由双曲线的几何性质可得b 1即 a2b , e2c 2a2b25,e5 ,选 Da2a 2a 242命题意图:本题考查双曲线的几何性质( 6)如图,质点 p 在半径为 2 的圆周上逆时针运动,其初始位置为p 0 ( 2 ,2 ),角速度为 1,那么点 p 到 x 轴距离 d 关于时间 t 的函数图像大致为()解析:法一:排除法取点 t 0时 , d 2 , 排除 A 、 D ,又当点 P 刚从 t=0 开始运动, d 是关于 t 的减函数,所以排除 B ,选 C法二:构建关系式x 轴非负半轴到 OP 的角t ,由三角函数的定义可知4 y p 2sin( t) ,所以 d 2sin( t ),选 C44命题意图:考察三角函数的定义及图像(7) 设长方体的长、 宽、高分别为 2a 、a 、a, 其顶点都在一个球面上, 则该球的表面积为 ( )( A )3 a 2 ( B ) 6 a 2 (C ) 12 a 2 (D ) 24 a 2( 8) 解析:球心在长方体对角线交点处,球半径R 为对角线长一半6a 长方体中,由对角线定理知对角线长为6a , R2球表面积 S 4 R 2 6 a 2 ,选 B命题意图:本题以球与多面体的接切为载体考查球的表面积公式( 8)如果执行右面的框图,输入 N=5,则输出的数等于()(A ) 5(B )4(C )6(D )54556 解析:S111 1122 3 3 44 5 561(1 1) (1 1) (1 1) (11) (1 1)5所以选 D命题意图:以算法为背景考察裂项相消求和(9) 设偶函数 f(x) 满足 f(x)=2x-4 (x0),则x f x 2 0 =()( A)x x2或 x 4( B)x x0或 x 4( C)x x0或 x 6( D)x x2或 x 2解析:当x 0时,由 f ( x) 2x40得x 2 又 f ( x)为偶函数, f ( x)0时 x2或x 2f (x 2) 0x 2 2或x 22,即 x4或 x 0 ,选B 命题意图:利用函数性质解不等式( 10)若cosa = -4, a 是第三象限的角,则sin(a) =()54(A)- 7 2(B)7 2(C)-2( D)2 10101010解析: a 是第三象限的角,sin a 1 cos 235则sin( a)2cos72 (sin),选 A4210命题意图:本题考查同角三角函数关系及和角正弦公式( 11)已知ABCD的三个顶点为A( -1 ,2),B(3,4),C( 4, -2 ),点( x,y)在ABCD 的内部,则z=2x-5y 的取值范围是()(A)(-14 , 16)( B)(-14 , 20)( C)(-12 , 18)( D)(-12 , 20)解析:当直线 z=2x-5y过点 B 时,z min14当直线 z=2x-5y过点 D( 0,-4 )时,z max20所以 z=2x-5y 的取值范围为(-14 , 20),选 B点 D 的坐标亦可利用AB DC求得,进一步做出可行域命题意图:本题考查线性规划lg x ,0x10( 12)已知函数 f(x)= 1 x6, x10若 a, b, c 均不相等,2且 f(a)= f(b)= f(c),则 abc 的取值范围是()( A)(1, 10)( B) (5 , 6)( C) (10 , 12)( D)(20 , 24)解析: a,b,c 互不相等,不妨设a b c由f (a) f (b), 得lg a lg b,即 ab=1abc c ,显然 10 c 12所以选 C命题意图:考察数形结合思想,利用图像处理函数与方程问题第Ⅱ卷本卷包括必考题和选考题两部分。
2010年全国统一高考数学试卷(文科)(大纲版ⅰ)(含解析版)(附详细答案)
门,若要求两类课程中各至少选一门,则不同的选法共有
种.(用
数字作答)
16.( 5 分)已知 F 是椭圆 C 的一个焦点, B 是短轴的一个端点,线段 BF 的延长
线交 C 于点 D,且
,则 C 的离心率为
.
三、解答题(共 6 小题,满分 70 分) 17.( 10 分)记等差数列 { an} 的前 n 项和为 Sn,设 S3=12,且 2a1,a2,a3+1 成等
)
A.
B.
C.
D.
10.( 5 分)设 a=log32,b=ln2,c= ,则(
)
A.a<b<c
B.b<c< a
C.c<a<b
D.c<b<a
11.( 5 分)已知圆 O 的半径为 1,PA、PB为该圆的两条切线, A、B 为两切点,
那么
的最小值为(
)
A.
B.
C.
D.
12.( 5 分)已知在半径为 2 的球面上有 A、B、C、D 四点,若 AB=CD=2,则四面
值.
【解答】 解:∵
.
故选: C. 【点评】 本小题主要考查诱导公式、特殊三角函数值等三角函数知识.
第 5 页(共 23 页)
3.( 5 分)若变量 x,y 满足约束条件
,则 z=x﹣2y 的最大值为(
)
A.4
B.3
C.2
D.1
【考点】 7C:简单线性规划. 【专题】 11:计算题; 31:数形结合. 【分析】 先根据约束条件画出可行域,再利用几何意义求最值, z=x﹣2y 表示直
C.6
D.
5.(5 分)(1﹣x)4( 1﹣ ) 3 的展开式 x2 的系数是(
)
2010年全国统一高考数学试卷(文科)(新课标)(带答案)
2010年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2} 2.(5分)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.3.(5分)已知复数Z=,则|z|=()A.B.C.1D.24.(5分)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2 5.(5分)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.6.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.7.(5分)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa28.(5分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.9.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x >6}D.{x|x<﹣2或x>2}10.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.11.(5分)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)12.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线x+y﹣2=0相切的圆的方程为.14.(5分)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.16.(5分)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.18.(10分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:性别男女是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.0013.841 6.63510.828附:K2=.20.(10分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.21.设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【考点】1E:交集及其运算.【专题】11:计算题.【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A,B,属于基础试题2.(5分)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.【考点】9S:数量积表示两个向量的夹角.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选:C.【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.3.(5分)已知复数Z=,则|z|=()A.B.C.1D.2【考点】A5:复数的运算.【专题】11:计算题.【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===•=•=•=,故|z|==,故选:B.【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题.4.(5分)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2【考点】6H:利用导数研究曲线上某点切线方程.【专题】1:常规题型;11:计算题.【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=•4,=,a=2b,c==a,e==,即它的离心率为.故选:D.【点评】本题考查双曲线的几何性质.6.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.7.(5分)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2【考点】LG:球的体积和表面积.【专题】11:计算题.【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S球=4πR2,即可得到答案.【解答】解:根据题意球的半径R满足(2R)2=6a2,=4πR2=6πa2.所以S球故选:B.【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.【考点】EF:程序框图.【专题】28:操作型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x >6}D.{x|x<﹣2或x>2}【考点】3K:函数奇偶性的性质与判断.【专题】11:计算题.【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.10.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.【考点】GG:同角三角函数间的基本关系;GP:两角和与差的三角函数.【专题】11:计算题.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选:A.【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【考点】7C:简单线性规划.【专题】11:计算题;16:压轴题.【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【考点】3A:函数的图象与图象的变换;3B:分段函数的解析式求法及其图象的作法;4H:对数的运算性质;4N:对数函数的图象与性质.【专题】13:作图题;16:压轴题;31:数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc 的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线x+y﹣2=0相切的圆的方程为x2+y2=2.【考点】J1:圆的标准方程;J9:直线与圆的位置关系.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=2【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.【考点】CE:模拟方法估计概率;CF:几何概型.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.故答案为:.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的①②③⑤(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【考点】L7:简单空间图形的三视图.【专题】15:综合题;16:压轴题.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=2+.【考点】HR:余弦定理.【专题】11:计算题;16:压轴题.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD推断出CD=2BD,进而整理AC2=CD2+2﹣2CD 得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BDcos135°AC2=CD2+AD2﹣2AD•CDcos45°即AB2=BD2+2+2BD ①AC2=CD2+2﹣2CD ②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC=AB所以由(3)得2AB2=4BD2+2﹣4BD (4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【考点】84:等差数列的通项公式;85:等差数列的前n项和.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LY:平面与平面垂直.【专题】11:计算题;14:证明题;35:转化思想.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.0013.841 6.63510.828附:K2=.【考点】BL:独立性检验.【专题】11:计算题;5I:概率与统计.【分析】(1)由样本的频率率估计总体的概率,(2)求K2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K2的观测值因为9.967>6.635,且P(K2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【考点】K4:椭圆的性质.【专题】15:综合题.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B 两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【考点】6B:利用导数研究函数的单调性.【专题】15:综合题;53:导数的综合应用.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(e x﹣1﹣ax),令g(x)=e x﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(e x﹣1)﹣x2,=(e x ﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得e x﹣1﹣ax≥0,即有a≤的最小值,由y=e x﹣x﹣1的导数为y′=e x﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即e x﹣x﹣1≥0,x>0时,可得≥1,则a≤1.【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【考点】N9:圆的切线的判定定理的证明;NB:弦切角.【专题】14:证明题.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【考点】J3:轨迹方程;JE:直线和圆的方程的应用;Q4:简单曲线的极坐标方程;QJ:直线的参数方程;QK:圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【考点】3A:函数的图象与图象的变换;7E:其他不等式的解法;R5:绝对值不等式的解法.【专题】11:计算题;13:作图题;16:压轴题.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。
2010年高考全国数学卷(全国Ⅱ.文)(含详解答案)
2010年普通高等学校招生全国统一考试(全国卷Ⅱ)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分和第Ⅱ卷(非选择题)两部分 第Ⅰ卷1至2页,第Ⅱ卷3至4页。
考试结束后,将本试卷降答题卡一同交回,满分150分,考试用时120分钟分钟注意事项:注意事项: 1. 答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号答题卡上填写清楚,并认真找准条形码上的准考证号,姓名、考、谁座位号填写在规定的位置贴好条形码。
条形码。
2. 每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷的答案无效。
皮擦干净后,再选涂其它答案标号,答在试卷的答案无效。
第Ⅰ卷 (选择题 共50分)选择题:本大题共10小题,每小题5分,共50分。
在,每小题给出的四个选项中,分。
在,每小题给出的四个选项中, 参考公式:参考公式:如果事件A 、B 互斥,那么互斥,那么 球的表面积公式球的表面积公式球的表面积公式P (A+B A+B))=P(A)+P(B) S=4πR 2 如果事件A 、B 相互独立,那么相互独立,那么 P (A-B A-B))=P(A)-P(B)一、选择题一、选择题(A ){}1,4 (B ){}1,5 (C ){}2,4 (D ){}2,5【解析】 C :本题考查了集合的基本运算. 属于基础知识、基本运算的考查. ∵ A={1,3}。
B={3,5},∴ {1,3,5}A B = ,∴(){2,4}U C A B = 故选 C . (2)不等式32x x -+<0的解集为的解集为(A ){}23x x -<< (B ){}2x x <- (C ){}23x x x <->或 (D ){}3x x > 【解析】A :本题考查了不等式的解法∵ 32x x -<+,∴ 23x -<<,故选A (3)已知2sin 3a =,则cos(2)x a -=(A )53-(B )19-(C )19(D )5335733a +a +a +3C S E F 233 3t3t 3sty23st23st255))且斜率为,若33x。
2010年普通高等学校招生全国统一考试(全国新课标卷)数学试题 (文科)(解析版)(word版)
2010年普通高等学校招生全国统一考试文科数学参考公式:样本数据12,L n x x x 的标准差 锥体体积公式s ==13V sh其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式V Sh = 2344,3S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}2,R A x x x =≤∈,{}4,Z B x =≤∈,则A B =I ( )(A )()0,2 (B )[]0,2 (C ){}0,2 (D ){}0,1,2 解析:{}|22,{0,1,2}A x x B =-≤≤=,{}0,1,2A B =I ,选D 命题意图:本题考查集合的运算及不等式解法(2)a ,b 为平面向量,已知a=(4,3),2a+b=(3,18),则a ,b 夹角的余弦值等于( )(A )865 (B )865- (C )1665 (D )1665- 解析:16(4,3),(5,12),cos ,65a b a b a b a b ⋅==-<>==,选C 命题意图:本题考查向量数量积运算与夹角(3)已知复数z =z =( ) (A)14 (B )12(C )1 (D )2解析:z ====12z ==,选B 命题意图:本题考查复数的代数运算及模的定义(4)曲线3y 21x x =-+在点(1,0)处的切线方程为( )(A )1y x =- (B )1y x =-+ (C )22y x =- (D )22y x =-+ 解析:'2y 32,1,1x k y x =-∴==-切线方程为,选A 命题意图:本题考查导数的几何意义(5)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()(A)6(B)5(C)62(D)52解析:由双曲线的几何性质可得2222221552,242b c a ba b e ea a a+==∴====即,,选D命题意图:本题考查双曲线的几何性质(6)如图,质点p在半径为2的圆周上逆时针运动,其初始位置为0p(2,2-),角速度为1,那么点p到x轴距离d关于时间t的函数图像大致为()解析:法一:排除法取点0,2t d==时,排除A、D,又当点P刚从t=0开始运动,d是关于t的减函数,所以排除B,选C法二:构建关系式 x轴非负半轴到OP的角4tπθ=-,由三角函数的定义可知2sin()4py tπ=-,所以2sin()4d tπ=-,选C命题意图:考察三角函数的定义及图像(7) 设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()(A)3πa2 (B)6πa2 (C)12πa2 (D) 24πa2(8)解析:球心在长方体对角线交点处,球半径R为对角线长一半长方体中,由对角线定理知对角线长为6a,6aR=球表面积2246S R aππ==,选B命题意图:本题以球与多面体的接切为载体考查球的表面积公式(8)如果执行右面的框图,输入N=5,则输出的数等于()(A)54(B)45(C)65(D)56解析:1111112233445561111111115(1)()()()()2233445566S=++++⨯⨯⨯⨯⨯=-+-+-+-+-=所以选D命题意图:以算法为背景考察裂项相消求和(9)设偶函数f(x)满足f(x)=2x-4 (x ≥0),则(){}20x f x ->=( )(A ){}24x x x <->或 (B ){}04 x x x <>或(C ){}06 x x x <>或 (D ){}22 x x x <->或解析:0()2402x x f x x ≥=->>当时,由得()()022f x f x x x ∴>><-又为偶函数,时或 (2)02222,40f x x x x x ∴->⇔->-<-><或即或,选B命题意图:利用函数性质解不等式(10)若cos a = -45,a 是第三象限的角,则sin()4a π+=( )(A )-7210 (B )7210 (C )2 -10 (D )210解析:a Q 是第三象限的角,23sin 1cos 5a α∴=--=-则272sin()(sin cos )4210a παα+=+=-,选A命题意图:本题考查同角三角函数关系及和角正弦公式(11)已知ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在ABCD的内部,则z=2x-5y 的取值范围是( ) (A )(-14,16) (B )(-14,20) (C )(-12,18) (D )(-12,20) 解析:当直线z=2x-5y 过点B 时,min 14z =-当直线z=2x-5y 过点D (0,-4)时,max 20z = 所以z=2x-5y 的取值范围为(-14,20),选B 点D 的坐标亦可利用AB DC =u u u r u u u r求得,进一步做出可行域命题意图:本题考查线性规划(12)已知函数f(x)=lg ,01016,102x x x x <≤-+>⎧⎨⎩ 若a ,b ,c 均不相等,且f(a)= f(b)= f(c),则abc 的取值范围是( ) (A )(1,10) (B )(5,6) (C )(10,12) (D )(20,24) 解析: ,,a b c 互不相等,不妨设a b c <<()(),lg lg f a f b a b =-=由得,即ab=1 abc c ∴=,显然1012c <<所以选C命题意图:考察数形结合思想,利用图像处理函数与方程问题第Ⅱ卷本卷包括必考题和选考题两部分。
2010年北京市高考数学试卷(文科)答案与解析
2010年北京市高考数学试卷(文科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2010•北京)(北京卷理1)集合P={x∈Z|0≤x<3},M={x∈Z|x2<9},则P∩M=()A.{1,2} B.{0,1,2} C.{x|0≤x<3} D.{x|0≤x≤3}【考点】交集及其运算.【专题】集合.【分析】由题意集合P={x∈Z|0≤x<3},M={x∈Z|x2<9},分别解出集合P,M,从而求出P∩M.【解答】解:∵集合P={x∈Z|0≤x<3},∴P={0,1,2},∵M={x∈Z|x2<9},∴M={﹣2,﹣1,0,1,2},∴P∩M={0,1,2},故选B.【点评】此题考查简单的集合的运算,集合在高考的考查是以基础题为主,题目比较容易,复习中我们应从基础出发.2.(5分)(2010•北京)在复平面内,复数6+5i,﹣2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是()A.4+8i B.8+2i C.2+4i D.4+i【考点】向量的线性运算性质及几何意义.【专题】平面向量及应用.【分析】根据两个复数对应的点的坐标分别为A(6,5),B(﹣2,3),确定中点坐标为C (2,4)得到答案.【解答】解:两个复数对应的点的坐标分别为A(6,5),B(﹣2,3),则其中点的坐标为C(2,4),故其对应的复数为2+4i.故选C.【点评】本题考查复平面的基本知识及中点坐标公式.求解此类问题要能够灵活准确的对复平面内的点的坐标与复数进行相互转化.3.(5分)(2010•北京)从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是()A.B.C.D.【考点】等可能事件的概率.【专题】概率与统计.【分析】由题意知本题是一个古典概型,试验包含的所有事件根据分步计数原理知共有5×3种结果,而满足条件的事件是a=1,b=2;a=1,b=3;a=2,b=3共有3种结果.【解答】解:由题意知本题是一个古典概型,∵试验包含的所有事件根据分步计数原理知共有5×3种结果,而满足条件的事件是a=1,b=2;a=1,b=3;a=2,b=3共有3种结果,∴由古典概型公式得到P==,故选D.【点评】本题考查离散型随机变量的概率问题,先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.4.(5分)(2010•北京)若,是非零向量,且⊥,||≠||,则函数f(x)=(x+)(x﹣)是()A.一次函数且是奇函数B.一次函数但不是奇函数C.二次函数且是偶函数D.二次函数但不是偶函数【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】f(x)=x﹣x,因为||≠||,所以f(x)=()x,所以函数f(x)是一次函数且是奇函数.【解答】解:∵⊥,∴•=0∴f(x)=(x+)(xb﹣)=x﹣x,∵||≠||,∴所以f(x)=()x所以函数f(x)是一次函数且是奇函数故选A.【点评】本题主要考查平面向量的数量积运算和函数的奇偶性.求解中要明确两向量互相垂直等价于二者点乘等于0.5.(5分)(2010•北京)一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A. B.C. D.【考点】简单空间图形的三视图.【专题】立体几何.【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形.【解答】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.6.(5分)(2010•北京)给定函数①,②,③y=|x﹣1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是()A.①②B.②③C.③④D.①④【考点】函数单调性的判断与证明.【专题】函数的性质及应用.【分析】本题所给的四个函数分别是幂函数型,对数函数型,指数函数型,含绝对值函数型,在解答时需要熟悉这些函数类型的图象和性质;①为增函数,②为定义域上的减函数,③y=|x﹣1|有两个单调区间,一增区间一个减区间,④y=2x+1为增函数.【解答】解:①是幂函数,其在(0,+∞)上即第一象限内为增函数,故此项不符合要求;②中的函数是由函数向左平移1个单位长度得到的,因为原函数在(0,+∞)内为减函数,故此项符合要求;③中的函数图象是由函数y=x﹣1的图象保留x轴上方,下方图象翻折到x轴上方而得到的,故由其图象可知该项符合要求;④中的函数图象为指数函数,因其底数大于1,故其在R上单调递增,不合题意.故选B.【点评】本题考查了函数的单调性,要注意每类函数中决定单调性的元素所满足的条件.7.(5分)(2010•北京)某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为()A.2sinα﹣2cosα+2 B.sinα﹣cosα+3C.3sinα﹣cosα+1 D.2sinα﹣cosα+1【考点】解三角形.【专题】解三角形.【分析】根据正弦定理可先求出4个三角形的面积,再由三角面积公式可求出正方形的边长进而得到面积,最后得到答案.【解答】解:由正弦定理可得4个等腰三角形的面积和为:4××1×1×sinα=2sinα由余弦定理可得正方形边长为:故正方形面积为:2﹣2cosα所以所求八边形的面积为:2sinα﹣2cosα+2故选A.【点评】本题考查了三角面积公式的应用和余弦定理的应用.正、余弦定理是考查解三角形的重点,是必考内容.8.(5分)(2010•北京)如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F在棱A1B1上.点Q是CD的中点,动点P在棱AD上,若EF=1,DP=x,A1E=y(x,y大于零),则三棱锥P﹣EFQ的体积()A.与x,y都有关B.与x,y都无关C.与x有关,与y无关D.与y有关,与x无关【考点】棱柱、棱锥、棱台的体积.【专题】立体几何.【分析】通过观察,发现点P到平面EFQ的距离是P到平面CDA1B1的距离,此距离只与x有关,面积EFQ为定值,推出结果.【解答】解:三棱锥P﹣EFQ的体积与点P到平面EFQ的距离和三角形EFQ的面积有关,由图形可知,平面EFQ与平面CDA1B1是同一平面,故点P到平面EFQ的距离是P到平面CDA1B1的距离,且该距离就是P到线段A1D的距离,此距离只与x有关,因为EF=1,点Q到EF 的距离为线段B1C的长度,为定值,综上可知所求三棱锥的体积只与x有关,与y无关.故选:C.【点评】本题考查空间几何体的结构特征和棱锥的体积问题,同时考查学生分析问题的能力以及空间想象能力.二、填空题(共6小题,每小题5分,满分30分)9.(5分)(2010•北京)已知函数y=,如图表示的是给定x的值,求其对应的函数值y的程序框图,①处应填写x<2;②处应填写y=log2x.【考点】设计程序框图解决实际问题.【专题】算法和程序框图.【分析】由题目可知:该程序的作用是计算分段函数y=的值,由于分段函数的分类标准是x是否大于2,而满足条件时执行的语句为y=2﹣x,易得条件语句中的条件①,及不满足条件时②中的语句.【解答】解:由题目可知:该程序的作用是计算分段函数y=的值,由于分段函数的分类标准是x是否大于2,而满足条件时执行的语句为y=2﹣x,易得条件语句中的条件为x<2不满足条件时②中的语句为y=log2x故答案为:x<2,y=log2x.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.10.(5分)(2010•北京)在△ABC中,若b=1,c=,∠C=,则a=1.【考点】三角形中的几何计算.【专题】解三角形.【分析】先根据b,c,∠c,由正弦定理可得sinB,进而求得B,再根据正弦定理求得a.【解答】解:在△ABC中由正弦定理得,∴sinB=,∵b<c,故B=,则A=由正弦定理得∴a==1故答案为:1【点评】本题考查了应用正弦定理求解三角形问题.属基础题.11.(5分)(2010•北京)若点p(m,3)到直线4x﹣3y+1=0的距离为4,且点p在不等式2x+y<3表示的平面区域内,则m=﹣3.【考点】二元一次不等式(组)与平面区域.【专题】不等式的解法及应用.【分析】由点M到直线4x﹣3y+1=0的距离等于4求得m的值,代入不等式2x+y<3验证后得答案.【解答】解:∵点M(m,3)到直线4x﹣3y+1=0的距离为4,∴,解得:m=7或m=﹣3.当m=7时,2×7+3<3不成立;当m=﹣3时,2×(﹣3)+3<3成立.综上:m=﹣3.故答案为:﹣3.【点评】本题考查了点到直线的距离公式,考查了二元一次不等式表示的平面区域,是基础题.12.(5分)(2010•北京)从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=0.03.若要从身高在[120,130﹚,[130,140﹚,[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为3.【考点】频率分布直方图.【专题】概率与统计.【分析】欲求a,可根据直方图中各个矩形的面积之和为1,列得一元一次方程,解出a,欲求选取的人数,可先由直方图找出三个区域内的学生总数,及其中身高在[140,150]内的学生人数,再根据分层抽样的特点,代入其公式求解.【解答】解:∵直方图中各个矩形的面积之和为1,∴10×(0.005+0.035+a+0.02+0.01)=1,解得a=0.03.由直方图可知三个区域内的学生总数为100×10×(0.03+0.02+0.01)=60人.其中身高在[140,150]内的学生人数为10人,所以身高在[140,150]范围内抽取的学生人数为×10=3人.故答案为:0.03,3.【点评】本题考查频率分布直方图的相关知识.直方图中的各个矩形的面积代表了频率,所以各个矩形面积之和为1.同时也考查了分层抽样的特点,即每个层次中抽取的个体的概率都是相等的,都等于.13.(5分)(2010•北京)已知双曲线的离心率为2,焦点与椭圆的焦点相同,那么双曲线的焦点坐标为(4,0),(﹣4,0);渐近线方程为y=x.【考点】双曲线的简单性质;椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】先根据椭圆的方程求出焦点坐标,得到双曲线的c值,再由离心率求出a的值,最后根据b=得到b的值,可得到渐近线的方程.【解答】解:∵椭圆的焦点为(4,0)(﹣4,0),故双曲线中的c=4,且满足=2,故a=2,b=,所以双曲线的渐近线方程为y=±=±x故答案为:(4,0),(﹣4,0);y=x【点评】本题主要考查圆锥曲线的基本元素之间的关系问题,同时双曲线、椭圆的相应知识也进行了综合性考查.14.(5分)(2010•北京)(北京卷理14)如图放置的边长为1的正方形PABC沿x轴滚动.设顶点P(x,y)的轨迹方程是y=f(x),则f(x)的最小正周期为4;y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为π+1说明:“正方形PABC沿X轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续.类似地,正方形PABC可以沿x轴负方向滚动.【考点】轨迹方程;函数的周期性.【专题】函数的性质及应用;直线与圆.【分析】由题中信息可知无论正方形是沿着x轴的正方向还是负方向滚动,再次使用点P与x轴接触的x轴方向的路程是4,故其最小正期为4,在正方形的翻滚过程中,函数y=f (x)的两个相邻零点间点P的轨迹如图所示,可得其面积.【解答】解:不难想象,从某一个顶点(比如A)落在x轴上的时候开始计算,到下一次A 点落在x轴上,这个过程中四个顶点依次落在了x轴上,而每两个顶点间距离为正方形的边长1,因此该函数的周期为4.下面考察P点的运动轨迹,不妨考察正方形向右滚动,P点从x轴上开始运动的时候,首先是围绕A点运动个圆,该圆半径为1,然后以B点为中心,滚动到C点落地,其间是以BP为半径,旋转90°,然后以C为圆心,再旋转90°,这时候以CP为半径,因此最终构成图象如下:故其与x轴所围成的图形面积为.故答案为:4,π+1.【点评】考查了数形结合的思想,以及函数零点的概念和零点的判断,本题是一道信息题,考查学生的分析问题能力、阅读能力、推理能力和应用知识解决问题的能力.三、解答题(共6小题,满分70分)15.(13分)(2010•北京)已知函数f(x)=2cos2x+sin2x﹣4cosx.(Ⅰ)求的值;(Ⅱ)求f(x)的最大值和最小值.【考点】三角函数的最值;二倍角的余弦.【专题】三角函数的求值.【分析】(Ⅰ)把x=代入到f(x)中,利用特殊角的三角函数值求出即可;(Ⅱ)利用同角三角函数间的基本关系把sin2x变为1﹣cos2x,然后利用二倍角的余弦函数公式把cos2x变为2cos2x﹣1,得到f(x)是关于cosx的二次函数,利用配方法把f(x)变成二次函数的顶点式,根据cosx的值域,利用二次函数求最值的方法求出f(x)的最大值和最小值即可.【解答】解:(Ⅰ)=;(Ⅱ)f(x)=2(2cos2x﹣1)+(1﹣cos2x)﹣4cosx=3cos2x﹣4cosx﹣1=,因为cosx∈[﹣1,1],所以当cosx=﹣1时,f(x)取最大值6;当时,取最小值﹣.【点评】考查学生灵活运用同角三角函数间的基本关系及二倍角的余弦函数公式化间求值,此题以三角函数为平台,考查二次函数求最值的方法.16.(3分)(2010•北京)已知{a n}为等差数列,且a3=﹣6,a6=0.(Ⅰ)求{a n}的通项公式;(Ⅱ)若等比数列{b n}满足b1=﹣8,b2=a1+a2+a3,求数列{b n}的前n项和公式.【考点】等比数列的前n项和;等差数列的通项公式.【专题】等差数列与等比数列.【分析】(Ⅰ)设出等差数列的公差为d,然后根据第三项为﹣6,第六项为0利用等差数列的通项公式列出方程解出a1和d即可得到数列的通项公式;(Ⅱ)根据b2=a1+a2+a3和a n的通项公式求出b2,因为{b n}为等比数列,可用求出公比,然后利用首项和公比写出等比数列的前n项和的公式.【解答】解:(Ⅰ)设等差数列{a n}的公差d.因为a3=﹣6,a6=0所以解得a1=﹣10,d=2所以a n=﹣10+(n﹣1)•2=2n﹣12(Ⅱ)设等比数列{b n}的公比为q因为b2=a1+a2+a3=﹣24,b1=﹣8,所以﹣8q=﹣24,即q=3,所以{b n}的前n项和公式为【点评】考查学生会根据条件求出等差数列的通项公式和等比数列的前n项和的公式,此题是一道基础题.17.(13分)(2010•北京)如图,正方形ABCD和四边形ACEF所在的平面互相垂直.EF∥AC,AB=,CE=EF=1.(Ⅰ)求证:AF∥平面BDE;(Ⅱ)求证:CF⊥平面BDE.【考点】直线与平面垂直的判定;直线与平面平行的判定.【专题】证明题;综合题;空间位置关系与距离.【分析】(Ⅰ)证明平面BDE外的直线AF平行平面BDE内的直线GE,即可证明AF∥平面BDE;(Ⅱ)证明CF垂直平面BDF内的两条相交直线:BD、EG,即可证明求CF⊥平面BDF;【解答】证明:(Ⅰ)设AC于BD交于点G.因为EF∥AG,且EF=1,AG=AC=1,所以四边形AGEF为平行四边形,所以AF∥EG,因为EG⊂平面BDE,AF⊄平面BDE,所以AF∥平面BDE.(Ⅱ)连接FG.因为EF∥CG,EF=CG=1,且CE=1,所以平行四边形CEFG为菱形.所以CF⊥EG.因为四边形ABCD为正方形,所以BD⊥AC.又因为平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF.所以CF⊥BD.又BD∩EG=G,所以CF⊥平面BDE.【点评】本题考查直线与平面垂直的判定,直线与平面平行的判定,考查空间想象能力,逻辑思维能力,是中档题.18.(14分)(2010•北京)设定函数f(x)=x3+bx2+cx+d(a>0),且方程f′(x)﹣9x=0的两个根分别为1,4.(Ⅰ)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;(Ⅱ)若f(x)在(﹣∞,+∞)无极值点,求a的取值范围.【考点】利用导数研究函数的极值;一元二次方程的根的分布与系数的关系.【专题】导数的概念及应用.【分析】先对函数f(x)进行求导,然后代入f′(x)﹣9x=0中,再由方程有两根1、4可得两等式;(1)将a的值代入即可求出b,c的值,再由f(0)=0可求d的值,进而确定函数解析式.(2)f(x)在(﹣∞,+∞)无极值点即函数f(x)是单调函数,且可判断是单调增函数,再由导函数大于等于0在R上恒成立可解.【解答】解:由得f′(x)=ax2+2bx+c因为f′(x)﹣9x=ax2+2bx+c﹣9x=0的两个根分别为1,4,所以(*)(Ⅰ)当a=3时,又由(*)式得解得b=﹣3,c=12又因为曲线y=f(x)过原点,所以d=0,故f(x)=x3﹣3x2+12x.(Ⅱ)由于a>0,所以“在(﹣∞,+∞)内无极值点”等价于“f′(x)=ax2+2bx+c≥0在(﹣∞,+∞)内恒成立”.由(*)式得2b=9﹣5a,c=4a.又△=(2b)2﹣4ac=9(a﹣1)(a﹣9)解得a∈[1,9]即a的取值范围[1,9]【点评】本题主要考查函数的单调性、极值点与其导函数之间的关系.属基础题.19.(14分)(2010•北京)已知椭圆C的左、右焦点坐标分别是,,离心率是,直线y=t椭圆C交与不同的两点M,N,以线段为直径作圆P,圆心为P.(Ⅰ)求椭圆C的方程;(Ⅱ)若圆P与x轴相切,求圆心P的坐标;(Ⅲ)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值.【考点】直线与圆锥曲线的综合问题;圆的标准方程;椭圆的应用.【专题】压轴题;圆锥曲线中的最值与范围问题.【分析】(Ⅰ)先根据离心率和焦半径求得a,进而根据a,b和c的关系求得c,则椭圆方程可得.(Ⅱ)根据题意可知P的坐标,根据圆P与x轴相切求得x,则圆的半径的表达式可得,进而求得t,则点P的坐标可得.(Ⅲ)由(2)知圆P的方程,把点Q代入圆的方程,求得y和t的关系,设t=cosθ,利用两角和公式化简整理根据正弦函数的性质求得y的最大值.【解答】解:(Ⅰ)因为,且,所以所以椭圆C的方程为(Ⅱ)由题意知p(0,t)(﹣1<t<1)由得所以圆P的半径为,则有t2=3(1﹣t2),解得所以点P的坐标是(0,)(Ⅲ)由(Ⅱ)知,圆P的方程x2+(y﹣t)2=3(1﹣t2).因为点Q(x,y)在圆P上.所以设t=cosθ,θ∈(0,π),则当,即,且x=0,y取最大值2.【点评】本题主要考查了直线与圆锥曲线的综合问题.考查了学生综合分析问题和解决问题的能力.20.(13分)(2010•北京)已知集合S n={X|X=(x1,x2,…,x n),x i∈{0,1},i=1,2,…,n}(n≥2)对于A=(a1,a2,…a n,),B=(b1,b2,…b n,)∈S n,定义A与B的差为A﹣B=(|a1﹣b1|,|a2﹣b2|,…,|a n﹣b n|);A与B之间的距离为.(Ⅰ)当n=5时,设A=(0,1,0,0,1),B=(1,1,1,0,0),求d(A,B);(Ⅱ)证明:∀A,B,C∈S n,有A﹣B∈S n,且d(A﹣C,B﹣C)=d(A,B);(Ⅲ)证明:∀A,B,C∈S n,d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数.【考点】交、并、补集的混合运算;子集与交集、并集运算的转换.【专题】证明题;综合题;压轴题;集合.【分析】(Ⅰ)由题意中的定义和集合A、B求出A﹣B,再由A与B之间的距离公式,求出d(A,B);(Ⅱ)根据题意设出集合A、B、C,则a i,b i,c i∈{0,1}(i=1,2,n),故得A﹣B∈S n,再分c i=0和c i=1两种情况求出d(A﹣C,B﹣C)和d(A,B);(Ⅲ)根据题意设出集合A、B、C,再根据(Ⅱ)的结论,表示出d(A,B),d(A,C),d(B,C),再根据集合的元素为“0,1”,确定所求三个数中至少有一个是偶数.【解答】解:(Ⅰ)由题意得,A﹣B=(|0﹣1|,|1﹣1|,|0﹣1|,|0﹣0|,|1﹣0|)=(1,0,1,0,1),d(A,B)=|0﹣1|+|1﹣1|+|0﹣1|+|0﹣0|+|1﹣0|=3(Ⅱ)证明:设A=(a1,a2,…,a n),B=(b1,b2,…,b n),C=(c1,c2,…,c n)∈S n因为a i,b i∈{0,1},所以|a i﹣b i|∈{0,1}(i=1,2,n)从而A﹣B=(|a1﹣b1|,|a2﹣b2|,…,|a n﹣b n|)∈S n由题意知a i,b i,c i∈{0,1}(i=1,2,n)当c i=0时,||a i﹣c i|﹣|b i﹣c i||=|a i﹣b i|当c i=1时,||a i﹣c i|﹣|b i﹣c i||=|(1﹣a i)﹣(1﹣b i)|=|a i﹣b i|所以(Ⅲ)证明:设A=(a1,a2,…,a n),B=(b1,b2,…,b n),C=(c1,c2,…,c n)∈S n,d(A,B)=k,d(A,C)=l,d(B,C)=h,记0=(0,0,…,0)∈S n,由(Ⅱ)可知因为|a i﹣b i|∈{0,1},=k,所以|b i﹣a i|(i=1,2,n)中1的个数为k,|c i﹣a i|(i=1,2,n)中1的个数为l,设t是使|b i﹣a i|=|c i﹣a i|=1成立的i的个数.则h=l+k﹣2t,由此可知,k,l,h三个数不可能都是奇数,即d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数.【点评】本题考查了利用新定义和集合的运算性质综合应用的能力,属于高难度题,需要认真审题,抓住新定义的本质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密 使用完毕前2010年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷1至2页、第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效,考试结束后,将本试卷和答题卡。
第Ⅰ卷(选择题 共140分)一、 本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
⑴ 集合2{03},{9}P x Z x M x Z x =∈≤<=∈≤,则P M I =(A) {1,2} (B) {0,1,2} (C){1,2,3} (D){0,1,2,3}⑵在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是(A )4+8i (B)8+2i (C )2+4i (D)4+i⑶从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是(A )45 (B)35 (C )25 (D)15⑷若a,b 是非零向量,且a b ⊥,a b ≠,则函数()()()f x xa b xb a =+⋅-是(A )一次函数且是奇函数 (B )一次函数但不是奇函数(C )二次函数且是偶函数 (D )二次函数但不是偶函数(5)一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如右图所示,则该集合体的俯视图为:(6)给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,期中在区间(0,1)上单调递减的函数序号是(A )①② (B )②③ (C )③④ (D )①④(7)某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为(A )2sin 2cos 2αα-+; (B )sin 3αα+(C )3sin 1αα+ (D )2sin cos 1αα-+(8)如图,正方体1111ABCD-A B C D 的棱长为2,动点E 、F 在棱11A B 上。
点Q 是CD 的中点,动点P 在棱AD 上,若EF=1,DP=x ,1A E=y(x,y 大于零),则三棱锥P-EFQ 的体积:(A )与x ,y 都有关; (B )与x ,y 都无关; (C )与x 有关,与y 无关; (D )与y 有关,与x 无关;第Ⅱ卷(共110分)二、 填空题:本大题共6小题,每小题5分,共30分(9)已知函数2log ,2,2, 2.{x x x x y ≥-= 右图表示的是给定x 的值,求其对应的函数值y 的程序框图,①处应填写 ;②处应填写 。
(10)在ABC ∆中。
若1b =,c =23c π∠=,则a= 。
(11)若点p (m ,3)到直线4310x y -+=的距离为4,且点p 在不等式2x y +<3表示的平面区域内,则m= 。
(12)从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图)。
由图中数据可知a= 。
若要从身高在[120,130﹚,[130,140﹚,[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为 。
(13)已知双曲线22221x y a b-=的离心率为2,焦点与椭圆221259x y -=的焦点相同,那么双曲线的焦点坐标为 ;渐近线方程为 。
(14)如图放置的边长为1的正方形PABC 沿x 轴滚动。
设顶点p (x ,y )的纵坐标与横坐标的函数关系是()y f x =,则()f x 的最小正周期为 ;()y f x =在其两个相邻零点间的图像与x 轴所围区域的面积为 。
说明:“正方形PABC 沿x 轴滚动”包含沿x 轴正方向和沿x 轴负方向滚动。
沿x 轴正方向滚动是指以顶点A 为中心顺时针旋转,当顶点B 落在x 轴上时,再以顶点B 为中心顺时针旋转,如此继续,类似地,正方形PABC 可以沿着x 轴负方向滚动。
三、 解答:本大题共6小题,共80分。
解答应写出文字说明,演算步骤或证明过程。
(15)(本小题共13分)已知函数2()2cos2sin f x x x =+(Ⅰ)求()3f π的值; (Ⅱ)求()f x 的最大值和最小值(16)(本小题共13分)已知||n a 为等差数列,且36a =-,60a =。
(Ⅰ)求||n a 的通项公式;(Ⅱ)若等差数列||n b 满足18b =-,2123b a a a =++,求||n b 的前n 项和公式(17)(本小题共13分)如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直。
EF//AC ,(Ⅰ)求证:AF//平面BDE ;(Ⅱ)求证:CF ⊥平面BDF;(18) (本小题共14分)设定函数32()(0)3a f x x bx cx d a =+++ ,且方程'()90f x x -=的两个根分别为1,4。
(Ⅰ)当a=3且曲线()y f x =过原点时,求()f x 的解析式;(Ⅱ)若()f x 在(,)-∞+∞无极值点,求a 的取值范围。
(19)(本小题共14分)已知椭圆C 的左、右焦点坐标分别是(,,直线椭圆C 交与不同的两点M ,N ,以线段为直径作圆P,圆心为P 。
(Ⅰ)求椭圆C 的方程;(Ⅱ)若圆P 与x 轴相切,求圆心P 的坐标;(Ⅲ)设Q (x ,y )是圆P 上的动点,当变化时,求y 的最大值。
(20)(本小题共13分)已知集合121{|(,,),{0,1},1,2,n n S X X x x x x i n n ==∈=≥…,…对于12(,,,)n A a a a =…,12(,,,)n n B b b b S =∈…,定义A 与B 的差为1122(||,||,||);n n A B a b a b a b -=---…A 与B 之间的距离为111(,)||i d A B a b -=-∑(Ⅰ)当n=5时,设(0,1,0,0,1),(1,1,1,0,0)A B ==,求A B -,(,)d A B ;(Ⅱ)证明:,,,n n A B C S A B S ∀∈-∈有,且(,)(,)d A C B C d A B --=;(Ⅲ) 证明:,,,(,),(,),(,)n A B C S d A B d A C d B C ∀∈三个数中至少有一个是偶数绝密 使用完毕前2010年普通高等学校招生全国统一考试数学(文)(北京卷)一、选择题(本大题共8小题,每小题5分,共40分)⑴ B ⑵ C ⑶ D ⑷ A⑸ C ⑹ B ⑺ A ⑻ C二、提空题(本大题共6小题,每小题5分,共30分)⑼ 2x < 2log y x = ⑽ 1 ⑾ -3 ⑿ 0.030 3⒀ (4,0±) 0y += ⒁ 4 1π+三、解答题(本大题共6小题,共80分)⒂(共13分)解:(Ⅰ)22()2cos sin 333f πππ=+=31144-+=- (Ⅱ)22()2(2cos 1)(1cos )f x x x =-+-23cos 1,x x R =-∈因为[]cos 1,1x ∈-,所以,当cos 1x =±时()f x 取最大值2;当cos 0x =时,()f x 去最小值-1。
⒃(共13分)解:(Ⅰ)设等差数列{}n a 的公差d 。
因为366,0a a =-=所以112650a d a d +=-⎧⎨+=⎩ 解得110,2a d =-= 所以10(1)2212n a n n =-+-⋅=-(Ⅱ)设等比数列{}n b 的公比为q因为212324,8b a a a b =++=-=-所以824q -=- 即q =3所以{}n b 的前n 项和公式为1(1)4(13)1n n n b q S q-==-- ⒄(共13分)证明:(Ⅰ)设AC 于BD 交于点G 。
因为EF ∥AG,且EF=1,AG=2AG=1 所以四边形AGEF 为平行四边形所以AF ∥EG因为EG ⊂平面BDE,AF ⊄平面BDE,所以AF ∥平面BDE(Ⅱ)连接FG 。
因为EF ∥CG,EF=CG=1,且CE=1,所以平行四边形CEFG 为菱形。
所以CF ⊥EG.因为四边形ABCD 为正方形,所以BD ⊥AC.又因为平面ACEF ⊥平面ABCD,且平面ACEF ∩平面ABCD=AC,所以BD ⊥平面ACEF.所以CF ⊥BD.又BD ∩EG=G,所以CF ⊥平面BDE.(18)(共14分)解:由32()3a f x x bx cx d =+++ 得 2()2f x ax bx c '=++ 因为2()9290f x x ax bx c x '-=++-=的两个根分别为1,4,所以290168360a b c a b c ++-=⎧⎨++-=⎩ (*) (Ⅰ)当3a =时,又由(*)式得2608120b c b c +-=⎧⎨++=⎩解得3,12b c =-=又因为曲线()y f x =过原点,所以0d =故32()312f x x x x =-+(Ⅱ)由于a>0,所以“32()3a f x x bx cx d =+++在(-∞,+∞)内无极值点”等价于“2()20f x ax bx c '=++≥在(-∞,+∞)内恒成立”。
由(*)式得295,4b a c a =-=。
又2(2)49(1)(9)b ac a a ∆=-=--解09(1)(9)0a a a>⎧⎨∆=--≤⎩得[]1,9a ∈ 即a 的取值范围[]1,9(19)(共14分)解:(Ⅰ)因为c a =,且c =1a b === 所以椭圆C 的方程为2213x y += (Ⅱ)由题意知(0,)(11)pt t -<<由2213y t x y=⎧⎪⎨+=⎪⎩ 得x =所以圆P解得2t =± 所以点P 的坐标是(0,2± (Ⅲ)由(Ⅱ)知,圆P 的方程222()3(1)x y t t +-=-。
因为点(,)Q x y 在圆P 上。
所以y t t =±设cos ,(0,)t θθπ=∈,则cos 2sin()6t πθθθ+=+=+当3πθ=,即12t =,且0x =,y 取最大值2. (20)(共13分)(Ⅰ)解:(01,11,01,00,10)A B -=-----=(1,0,1,0,1)(,)0111010010d A B =-+-+-+-+-=3(Ⅱ)证明:设121212(,,,),(,,,),(,,,)n n n n A a a a B b b b C c c c S =⋅⋅⋅=⋅⋅⋅=⋅⋅⋅∈因为11,{0,1}a b ∈,所以11{0,1}(1,2,,)a b i n -∈=⋅⋅⋅从而1122(,,)n n n A B a b a b a b S -=--⋅⋅⋅-∈由题意知,,{0,1}(1,2,,)i i i a b c i n ∈=⋅⋅⋅当0i c =时,i i i i i i a c b c a b ---=-当1i c =时,(1)(1)i i i i i i i i a c b c a b a b ---=---=-所以1(,)(,)n ii i d A C B C a b d A B =--=-=∑(Ⅲ)证明:设121212(,,,),(,,,),(,,,)n n n n A a a a B b b b C c c c S =⋅⋅⋅=⋅⋅⋅=⋅⋅⋅∈ (,),(,),(,)d A B k d A C l d B C h ===记0(0,0,0)n S =⋅⋅⋅∈由(Ⅱ)可知(,)(,)(0,)(,)(,)(0,)(,)(,)d A B d A A B A d B A k d A C d A A C A d C A l d B C d B A C A h=--=-==--=-==--=所以(1,2,,)i i b a i n -=⋅⋅⋅中1的个数为k,(1,2,,)i i c a i n -=⋅⋅⋅中1的个数为l 设t 是使1i i i i b a c a -=-=成立的i 的个数。