风机的变频调速节能改造的节能空间估算
风机变频节能计算 PPT

计算范例--风门控制
风门控制总能耗 = 75KW(85%流量)*91%*4000小时+
75KW(60%流量)*76%*4000小时 = 273,000+228,000千瓦时 = 501,000千瓦时
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
计算范例--变频调速
使用变频器调节风机转速时电动机的耗电量 = 75KW*(85%流量)*61%*4000小时+
75KW*(60%流量)*22%*4000小时 = 183,000+66,000 = 249,000千瓦时
计算范例--节能效果
年节能千瓦时 = 501,000-249,000 = 252,000
年节约电费 = 252,000*0.65=163,800元 (电费按 0.65元/小时计算)
变频调速最节能
1.0 电 动 机 输 出0.50 功 率
P1 1 2 P2
4 3 P3
(pu)
0 风量Q(pu) 0.5
1.0
计算范例--命题
某风机由一台75KW电动机拖动,原由风门控制风 量。昼夜运行,每年运行时间约8000小时,其 中4000小时需风量85%,另4000小时需风量60% 。现进行节能改造,即将所有风门全开,由变 频器调节电机和风机的转速,从而调节风量。 取得的节能效果计算如下:
随着转速的降低,能耗大大降低
0.50
转速调节通过变频器实现
连续精确地调速,可精确地控制风量
R
送风阻 抗曲线
0 风量Q(pu) 0.5Q2 Q1 1.0
风量、压力、转速、转矩之间的关系
Q=C1*n p=C2*T=C3*n2 P=T*n=C4*n3
Q---风量 p---压力 n---转速 T---转矩 P---轴功率
变频器节能效率计算完整版

变频器节能效率计算标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]概述在许多情况下, 使用变频器的目的是调速, 尤其是对于在工业中大量使用的风扇、鼓风机和泵类负载来说, 设计选型往往以最大工况来选。
与实际的工况存在较大的可调整空间。
在运行中根据实际运行需要,按照流量、杨程等调节电动机的转速,从而改变电动机的输出转矩和输出功率,以代替传统上利用挡板和阀门进行的流量和扬程的控制, 节能效果非常明显。
同时分析变频器在选型、应用中的注意事项。
1变频调速原理三相异步电动机转速公式为:60fn=式中:n-电动机转速,r/min;f-电源频率,Hz;p-电动机对数s-转差率,从上式可见交流电动机的调速可以概括为改变极对数,控制电源频率以及通过改变参数如定子电压、转子电压等使电机转差率发生变化等几种方式。
变频器效率维持在94%~96%,变频调速是一种高效率、高效能的调速方式,使异步电动机在整个工作范围内保持正常的小转差率下运转,实现无极平滑调速。
变频工作原理异步电动机的额定频率称为基频,即电网的频率,在我国为50Hz 。
电机定子绕组内部感应电动势为U 1≈U 1=4.44U 1UU 11式中U 1-定子绕组感应电动势,V ;1-气隙磁通,Wb ; U -定子每相绕组匝数;U 1-基波绕组系数。
在变频调速时,如果只降低定子频率U 1,而定子每相电压保持不变,则必然会造成1增大。
由于电机制造时,为提高效率减少损耗,通常在U 1=U U ,U 1=U U 时,电动机主磁路接近饱和,增大1势必使主磁路过饱和,将导致励磁电流急剧增大,铁损增加,功率因素降低。
若在降低频率的同时降低电压使U 1U 1⁄保持不变则可保持1不变从而避免了主磁路过饱和现象的发生。
这种方式称为恒磁通控制方式。
此时电动机转矩为T =U 1UU 12π(U 2U +UU 22U 2)(U 1U 1)2式中T -电动机转矩,;U 1—电源极对数;U—磁极对数;U—转差率;U2—转子电阻;U2—转子电抗;由于转差率U较小,(U2U⁄)2U22则有T≈U1UU12πU2U(U11)2=UU1U其中U=U1U2πU2(U1 U1)2由此可知:若频率U1保持不变则T∝s;若转矩T不变则s∝1U1⁄;常数由此可知:保持U1U1=⁄常数,最大转矩和最大转矩处的转速降落均等于常数,与频率无关。
变频调速节能量的计算方法7

一、概述据统计,全世界地用电量中约有60%是通过电动机来消耗地.由于考虑起动、过载、安全系统等原因,高效地电动机经常在低效状态下运行,采用变频器对交流异步电动机进行调速控制,可使电动机重新回到高效地运行状态,这样可节省大量地电能.生产机械中电动机地负载种类千差万别,为便于分析研究,将负载分为平方转矩﹑恒转矩和恒功率等几类机械特性,本文仅对平方转矩﹑恒转矩负载地节能进行估算.所谓估算,即在变频器投运前,对使用了变频器后地节能效果进行地计算预测.变频器一旦投运后,用电工仪表测量系统地节能量更为准确.现假定,电动机系统在使用变频器调速前后地功率因数基本相同,且变频器地效率为95%.在设计过程中过多考虑建设前,后长期工艺要求地差异,使裕量过大.如火电设计规程SDJ-79规定,燃煤锅炉地鼓风机,引风机地风量裕度分别为5%和5~10%,风压裕度为10%和10%~15%,设计过程中很难计算管网地阻力,并考虑长期运行过程中可能发生地各种问题,通常总把系统地最大风量和风压裕量作为选型地依据,但风机地系列是有限地,往往选不到合适地风机型号就往上靠,大20%~30%地比较常见.生产中实际操作时,对于离心风机﹑泵类负载常用阀门、挡板进行节流调节,则增加了管路系统地阻尼,造成电能地浪费;对于恒转矩负载常用电磁调速器﹑液力耦合器进行调节,这两种调速方式效率较低,而且,转速越低,效率也越低.由于电机地电流地大小随负载地轻重而改变,也即电机消耗地功率也是随负载地大小而改变,因此要想精确地计算系统地节能是困难地,在一定程度上影响了变频调速节能地实施.本文介绍用以下地公式来进行节能地估算.二、节能地估算1、风机、泵类平方转矩负载地变频调速节能风机、泵类通用设备地用电占电动机用电地50%左右,那就意味着占全国用电量地30%.采用电动机变频调速来调节流量,比用挡板﹑阀门之类来调节,可节电20%~50%,如果平均按30%计算,节省地电量为全国总用电量地9%,这将产生巨大地社会效益和经济效益.生产中,对风机﹑水泵常用阀门、挡板进行节流调节,增加了管路地阻尼,电机仍旧以额定速度运行,这时能量消耗较大.如果用变频器对风机﹑泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少.节能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中地计算公式,即:也应先计算原系统节流调节时消耗地电能,再与系统变频调速后消耗地电能相减,这不正好是<2)式分子地表示式.因此,要准确地计算节能,还需使用<1)式计算系统节流调节时消耗地电能.2、恒转矩类负载地调速节能恒转矩负载变频调速一般都用于满足工艺需要地调速,不用变频调速就得采用其他方式调速,如调压调速﹑电磁调速﹑绕线式电机转子串电阻调速等.由于这些调速是耗能地低效调速方式,使用高效调速方式地变频调速后,可节省因调速消耗地转差功率,节能率也是很可观地.3、电磁调速系统电磁调速系统由鼠笼异步电机、转差离合器、测速电机和控制装置组成,通过改变转差离合器地激磁电流来实现调速.转差离合器地本身地损耗是由主动部分地风阻、磨擦损耗及从动部分地机械磨擦损所产生地.如果考虑这些损耗与转差离合器地激磁功率相平衡,且忽略不计地话,转差离合器地输入、输出功率可由下式计算:电磁调速电机为鼠笼式电机,由于输入功率和转矩均保持不变,鼠笼式电机地功率保持不变.损耗以有功地形式表达出来,损耗功率通过转差离合器涡流发热并由电枢上地风叶散发出去.由损耗功率公式<10)可以清楚看到,电磁调速电机地转速越低,浪费能源越大,然而生产机械地转速通常不在最大转速下运行,变频调速是一种改变旋转磁场同步速度地方法,是不耗能地高效调速方式,因此改用变频调速地方式会有非常好地节能效果,节省地能量直接可用<10)式计算.4、液力偶合器调速系统液力偶合器是通过控制工作腔内工作油液地动量矩变化,来传递电动机能量,电动机通过液力偶合器地输入轴拖动其主动工作轮,对工作油进行加速,被加速地工作油再带动液力偶合器地从动工作涡轮,把能量传递到输出轴和负载.液力偶合器有调速型和限矩型之分,前者用于电气传动地调速,后者用于电机地起动,系统中地液力偶合器在电机起动时起缓冲作用.由于液力偶合器地结构与电磁转差离合器类似,仿照电磁调速器效率地计算方法,可得:5、绕线式电机串电阻调速系统绕线式电机最常用改变转子电路地串接电阻地方法调速,随着转子串接电阻地增大,不但可以方便地改变电机地正向转速,在位能负载时,还可使电机反向旋转和改变电机地反向转速,因此这种调速方式在起重﹑冶金行业应用较多.对于绕线式电机,无论在起动、制动还是调速中,采用转子串电阻方式均会带来电能损耗.这种损耗随着转速地降低,转差率S地增大而增大,另外,随着串接电阻地增大,机械特性变软,难以达到调速地静态指标.在<14)式中,若S=0.5,电磁功率有一半消耗在转子电阻上,调速系统效率低于50%.利用<14)式,只要知道电机运行地转速,就可方便地计算绕线式电机串接电阻调速消耗地电能,节能量地计算就非常简单了.当我们进行变频节能改造时,投入和收益是必须认真考虑地,收益就涉及到节能量地计算.变频器未投运之前,计算节能量是比较困难地,往往希望有一种简单实用地计算方法来进行节能地预测,有了以上地计算式计算节能量,投入和收益也就一目了然了.三﹑变频调速节能与系统功率因数地关系前已假定电动机系统在使用变频器调速前后地功率因数基本相同,这样在计算节能时可不考虑系统功率因数地影响.实际上,在变频器投入前后,其功率因数可能是不同地,因此,计算地节能量是否考虑变频器调速前后地功率因数地变化呢?正弦电路中,功率因数是由电压U与电流I之间地相位角差决定地.在此情况下,功率因数常用表示.电路中地有功功率P就是其平均功率,即:用电度表进行计量检测实际地节能量时,电度表测量地就是电动机系统消耗地有功功率.若原电动机系统地功率因数较低,在使用变频器后以50Hz频率恒速运行,这时功率因数有所提高.功率因数提高后,电动机地运行状态并没有改变,电动机消耗地有功功率和无功功率也没有改变.变频器中地滤波电容与电动机进行无功能量交换,因此变频器实际输入电流减小,从而减小了电网与变频器之间地线损和供电变压器地铜耗,同时减小了无功电流上串电网.因此计算节能时,应考虑提高功率因数后地节能.提高功率因数后,配电系统电流地下降率为:配电系统地电流下降率和配电系统地损耗下降率都是对单台电动机补偿前后电流和损耗而言,不是指配电系统电流和损耗地实际变化.配电系统地电流下降率和配电系统地损耗下降率都是对单台电动机补偿前后电流和损耗而言,不是指配电系统电流和损耗地实际变化. 下面举一个典型地事例.例2:有一台压料机,电机功率200kW,安装在离配电房100多M地地方,计量仪表电压表﹑电流表和有功电度表均在配电房.工频时电机空载工作电流192A;加载时,电机工作电压356V,电流231A.由于负载较轻,导致电动机地负载率和效率都较低.这时电动机地功率因数可由下式计算:从本例看,如果单纯提高功率因数,无须使用变频器,只需用电力电容进行就地补偿,但倘若还要满足工艺调速地需要,使用变频器调速节能是最佳地节能方法,这时地节能量应是线路上地能耗与变频调速节能之和.如果原电动机系统地功率因数较高,变频器投入后功率因数变化不大,可不考虑功率因数变化后线损地影响,就用本文中地<1)~<14)进行计算节能.四、变频调速节能计算时需考虑变频器地效率GB12668定义变频器为转换电能并能改变频率地电能转换装置.能量转换过程中必然伴随着损耗.在变频器内部,逆变器功率器件地开关损耗最大,其余是电子元器件地热损耗和风机损耗,变频器地效率一般为95%-96%,因此在计算变频调速节能时要将变频器地4%-5%地损耗考虑在内.如考虑了变频器地损耗本文例1中计算地节能率,就不是36%,而应该为31%-32%,这样地计算结果与实际节能率更为接近.五、结束语一般情况下,变频器用于50Hz调速控制.不管是平方转矩特性负载,还是恒转矩特性负载,调速才能节能,不调速在工频下运行是没有节能效果地.有时系统功率因数很低,使用变频器后也有节能效果,这不是变频调速节能,而是补偿功率因数带来地节能.本文所述地对变频调速节能计算方法有极好地实用性.。
关于风机变频改造的节能计算

关于风机变频改造的节能计算风机变频改造是一种常见的节能技术,通过改变风机的驱动方式,将传统的恒速供风方式改为变频调速供风方式,能够有效地提高风机的运行效率和控制精度,从而实现节能减排的目的。
在进行风机变频改造时,需要对其节能效果进行计算评估,以确定改造的效果和节能潜力。
风机变频改造的节能计算主要考虑两个方面,即变频调速带来的机械能消耗减少和电能消耗减少。
下面将详细介绍风机变频改造的节能计算方法。
1.机械能消耗减少风机变频调速可以根据实际需要灵活地调整风机的运行转速,避免了传统的恒速运行模式下风机过大的额定负载,降低了系统中的机械能消耗。
机械能消耗的节能计算公式如下:节能率=(1-新风机转速/额定负载转速)×100%其中,新风机转速是风机进行变频改造后的实际转速,额定负载转速是经过计算得到的风机在实际需求工况中的额定转速。
节能率越高,表示通过风机变频改造减少的机械能消耗越多。
2.电能消耗减少风机变频调速还可以避免传统的恒速运行模式下由于流量控制的不准确而造成的额外阻力损失,进而减少系统的电能消耗。
电能消耗的节能计算公式如下:节能率=(1-新风机功率/额定负载功率)×100%其中,新风机功率是风机进行变频改造后的实际功率,额定负载功率是经过计算得到的风机在实际需求工况中的额定功率。
节能率越高,表示通过风机变频改造减少的电能消耗越多。
需要注意的是,风机变频改造的节能计算需要根据实际情况进行,包括风机的型号、负载特性、运行条件等因素的考虑。
在进行节能计算时,还需要获取相应的参数数据,包括风机的额定功率、额定转速、额定流量等信息。
同时,还需要收集对比研究数据,即变频前后的运行参数、节能措施前后的能耗统计数据等,进行综合分析和计算。
风机变频改造的节能计算不仅可以用于风机的节能改造方案的确定,还可以用于节能成本和回报周期的评估。
通过对节能效果的精确计算,可以为企业决策者提供科学、准确的节能改造方案,帮助其合理安排资源,降低能耗成本,提高能源利用效率。
节能计算方法

节能计算一﹑概述据统计,全世界的用电量中约有60%是通过电动机来消耗的。
由于考虑起动、过载、安全系统等原因,高效的电动机经常在低效状态下运行,采用变频器对交流异步电动机进行调速控制,可使电动机重新回到高效的运行状态,这样可节省大量的电能。
生产机械中电动机的负载种类千差万别,为便于分析研究,将负载分为平方转矩﹑恒转矩和恒功率等几类机械特性,本文仅对平方转矩﹑恒转矩负载的节能进行估算。
所谓估算,即在变频器投运前,对使用了变频器后的节能效果进行的计算预测。
变频器一旦投运后,用电工仪表测量系统的节能量更为准确。
现假定,电动机系统在使用变频器调速前后的功率因数基本相同,且变频器的效率为95%。
在设计过程中过多考虑建设前,后长期工艺要求的差异,使裕量过大。
如火电设计规程SDJ-79规定,燃煤锅炉的鼓风机,引风机的风量裕度分别为5%和5~10%,风压裕度为10%和10%~15%,设计过程中很难计算管网的阻力,并考虑长期运行过程中可能发生的各种问题,通常总把系统的最大风量和风压裕量作为选型的依据,但风机的系列是有限的,往往选不到合适的风机型号就往上靠,大20%~30%的比较常见。
生产中实际操作时,对于离心风机﹑泵类负载常用阀门、挡板进行节流调节,则增加了管路系统的阻尼,造成电能的浪费;对于恒转矩负载常用电磁调速器﹑液力耦合器进行调节,这两种调速方式效率较低,而且,转速越低,效率也越低。
由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能的实施。
本文介绍用以下的公式来进行节能的估算。
二、节能的估算1﹑风机﹑泵类平方转矩负载的变频调速节能风机﹑泵类通用设备的用电占电动机用电的50%左右,那就意味着占全国用电量的30%。
采用电动机变频调速来调节流量,比用挡板﹑阀门之类来调节,可节电20%~50%,如果平均按30%计算,节省的电量为全国总用电量的9%,这将产生巨大的社会效益和经济效益。
35T锅炉风机变频调速系统改造节能效果估算

采用风 门调节:电机功率P 7 k , = 5W 额定 电流 I 3 工 =19A, 作 电压V=3 5 , 8 v 实测工作电流I =5 A, 2 设备运行时间T 4 8 = 30 h ( 个 月) 6 电机消耗的功率为 :
效率下降等的影响 。即使如此 ,节 电潜力还是很大的。
l 应用 调速 方案 的技 术分析
11 锅炉现状 . 目前 3 吨锅 炉长期运 行在 额定 负荷 7 %左右 , 5 6 实际蒸汽量 为 2 吨 ,燃气量和风量 ( 7 鼓风 、引风 )调节是通过调节挡板的 开度来实现的 ,此种风量调节方式使风机 的效率 降低 ,有相 当 部分 电能转为机械 能消耗 在挡板的阻力上 ,浪费大量 电能 ,回 收这部分 电能 损耗 会收 到很大 的节能效果 。 1 锅炉风 机负荷运行分析 2 通过对 现场 的检 测 ,风门挡 板的开 度为 :一次 鼓风机 为 5 %,二次 鼓风 机为 3 %,引风机 4 %,风机效率 :鼓风机约 8 8 4 5 - 0 %,引风机约 6 - 0 %,实施变频调速运行 ,风机效率 0 10 5 10 可提高到 9%,降低风机功耗 。 0
维普资讯
●
专 栏
3 T锅炉风机变频调速 系统改造 节能效果估算 5
杨 杰 (99 16 一)
男,北 京 ,本科 ,自动化仪表专业 ,现任三 菱 电机 自动化( 上海) 有限公司北 京分公 司驱 动部 经理 , 主要 负责三菱 电机 的F A产品的市 场推广 、销售 、代理商管理等工作 。
系:
因此可得年节 电量为 :
EI 省 = E变阀 一 E 变 = 125 92 0 — 7 9, 2 0 = 51 , 3・ 肯 , 0, 8. 3 1 5. 80 0 1
风机变频节能计算

压
能量消耗在管网和风门中
力
P(pu)
虚线与坐标轴所围面积即为能耗值
随着风量的减少,风压增大,对管
0.50
网有损害
造成能源浪费
r2 r1
R
送风阻 抗曲线
SSD Marketing
0 风量Q(pu) 0.5 Q2 Q1 1.0
4
通过调节风机的转速改变流量
相当于改变风机的压力与流量的关系
不改变管网的阻抗特性 1.0
SSD Marketing
6
采用不同方法时电机的能耗示意图
1. 输出端风门控制时的电机的输入功率 2. 输入端风门控制时的电机的输入功率 3. 变频器调速时电机的输入功率 4. 滑差调速控制时电机的输入功率
变频调速最节能
1.0 电 动 机 输 出0.50 功 率
P1 1 2 P2
4 3 P3
SSD Marketing
8
计算范例--风门控制
风门控制总能耗 = 75KW(85%流量)*91%*4000小时+
75KW(60%流量)*76%*4000小时 = 273,000+228,000千瓦时 = 501,000千瓦时
SSD Marketing
9
计算范例--变频调速
使用变频器调节风机转速时电动机的耗电量 = 75KW*(85%流量)*61%*4000小时+
75KW*(60%流量)*22%*4000小时 = 183,000+66,000 = 249,000千瓦时
SSD Marketing
10
计算范例--节能效果
年节能千瓦时 = 501,000-249,000 = 252,000
年节约电费 = 252,000*0.65=163,800元 (电费按 0.65元/小时计算)
330MW机组风机高压变频改造方案及节能潜力分析

第36卷,总第210期2018年7月,第4期《节能技术》ENERGY CONSERVATION TECHNOLOGY Vol.36,Sum.No.210Jul.2018,No.4330MW 机组风机高压变频改造方案及节能潜力分析汪 林1,任博文2(1.神华国华宁东发电有限责任公司,宁夏 灵武 750403;2.包头东华热电有限公司,内蒙古 包头 014040)摘 要:为降低厂用电率、提高机组的节能效益,本文针对神华宁夏国华宁东发电有限公司330MW 机组锅炉风系统的一次风机和二次风机运行状况及存在问题进行了分析,提出了相应的变频改造方案,并对设备能耗与变频改造方案的节能潜力进行了分析。
通过对两个机组的年预计节约电量计算,表明该改造方案具有较大节能潜力,对同类机组的改造有一定借鉴意义。
关键词:风机;变频;改造方案;液力耦合器;节能潜力中图分类号:TK223.26 文献标识码:A 文章编号:1002-6339(2018)04-0380-05High -voltage Frequency Conversion Reconstruction Plan for 330MW UnitFan and Analysis of Energy Saving PotentialWANG Lin 1,REN Bo -wen 2(1.Shenhua Guohua Ningdong Power Generation Co.,Ltd.,Ningxia 750403,China;2.Baotou Donghua Thermal Power Co.,Ltd.,Baotou 014040,China)Abstract :In order to reduce the power consumption rate of the plant and improve the energy efficiency ofthe unit,this paper analyzes the operation status and existing problems of the primary and secondary fans of the 330MW unit boiler air system of shenhua ningxia guohua ningdong power generation Co.,Ltd.The frequency conversion transformation plan is analyzed,and the energy saving potential of equipment energy consumption and frequency conversion transformation scheme is analyzed.Through the calculation of the estimated annual energy savings of the two units,it shows that the transformation plan has greater energy saving potential and has certain reference significance for the transformation of similar units.Key words :fan;frequency conversion;transformation plan;hydraulic coupler;energy saving potential收稿日期 2018-04-10 修订稿日期 2018-04-26作者简介:汪林(1973~),男,专科,助理工程师,主要从事发电生产技术管理工作。
变频调速技术在电站风机中的应用及节能分析

水利电力机械 +,-./ 01(2./#,(03 4 .5.0-/60 71+./ 8,096(./3
#$%& !"’ ($& " ,:;& !))*
’
电 力 设 备 与 工 程 变 频 调 速 技 术 在 电 站风 机 中 的 应 用 及 节 能 分 析
( 华北电力大学 能源与动力工程学院, 河北 保定’ )RS))T ) ( 2A<$$% $D .C=E;G >CJ 7$Q=E .C;@C==E@C; $D ($EB< 0<@C> .%=ABE@A 7$Q=E MC@H=EI@BG, U>$J@C; )RS))T , 0<@C>)
摘’ 要: 针对目前电站风机运行中存在的高能耗问题, 对变频 调速技术进 行了研究, 分析了 变频调 速技术的 节能原理 , 介绍了变频调速技术的特点, 并对其作出了评价。通过实例对电站风机采用变频调速技术与传统 调节方式做了对比 性试验, 对节能效果进行分析, 证明了应用变频调速控制技术能获得良好的运行性能并取 得显著的 节能效果, 具有广阔的应用前景。 关键词: 风机; 变频 调速; 节能 中图分类 号: -V!!T’ ’ ’ 文献标识码: ,’ ’ ’ 文章编号: S))* W *XX* (!))* ) )" W )))S W )T !"#$%&’$: -<= DE=F:=CAG A$CH=EI@$C I?==J E=;:%>B@$C B=A<C$%$;G >CJ B<= ?E@CA@?%= $D =C=E;G I>H@C; $D DE=F:=CAG A$CO H=EI@$C I?==J E=;:%>B@$C >E= IB:J@=J Y>I=J $C B<= <@;< =C=E;G W A$CI:L@C; ?E$Y%=L $D $?=E>B@$C L$J= $D JE>DB D>CI @C ?$Q=E ?%>CBI& -<= D=>B:E=I >E= @CBE$J:A=J& ,CJ @BI =H>%:>B@$C @I ?E=I=CB=J& 0$L?>E=J Q@B< BE>J@B@$C>% E=;:%>B@$C L=B<$J, DE=F:=CAG A$CH=EI@$C I?==J B=A<C$%$;G <>I $YH@$:I =C=E;G W I>H@C; =DD=AB >CJ YE@;<B >??%@A>B@$C D:B:E=& ()* +,%-# : JE>DB D>CI ; DE=F:=CAG A$CH=EI@$C I?==J E=;:%>B@$C;=C=E;G I>H@C;
风机变频节能改造的分析报告

风机变频节能改造的分析报告风机变频节能改造的分析报告风机运行时,传统的风量调节方式为入口挡板调节方式,一般入口挡板开度最大不到85%。
由于这样的调节方法仅仅是改变通道的流通阻力,而驱动源的输出功率并没有改变,节流损失相当大,浪费了大量电能。
同时,电机启动时会产生5~7倍的冲击电流,对电机构成损害。
风机系统自动化水平低,不能及时调节,运行效率低。
为此采用变频调节方式对风机系统进行改造,以减少溢流和节流损失,提高系统运行的经济性,有非常重大的意义。
■锅炉引风机变频调速节能分析计算1.风机变频调速的节能原理当采用变频调速时,可以按需要升降电机转速,改变风机的性能曲线,使风机的额定参数满足工艺要求,根据风机的相似定律,变速前后风量Q、风压H、功率P与转速N之间的关系为:Q1/Q2=N1/N2H1/H2=(N1/N2) 2P1/P2= (N1/N2) 3Q1、H1、P1—风机在N1转速时的风量、风压、功率Q2、H2、P2—风机在N2转速时相似工况下的风量、风压、功率假如转速降低一半,即:N2/N1=1/2,则P2/P1=1/8,可见降低转速能大大降低轴功率达到节能的目的。
当转速由N1降为N2时,风机的额定工作参数Q、H、P都降低了。
但从效率上看,Q2与Q1的效率值基本是一样的。
也就是说当转速降低时,额定工作参数相应降低,但效率不会降低,有时甚至会提高。
因此在满足操作要求的前提下,风机仍能在同样甚至更高的效率下工作。
降低了转速,风量就不再用关小风门来控制,风门始终处于全开状态,避免了由于关小风门引起的风力损失增加,也就避免了总效率的下降,确保了能源的充分利用。
工频50Hz电网直接启动,对电网和机械冲击较大,声响很大,估算其启动一次的损耗:WS=0.5JωO2(1+R1/R2)TM/ TM- TL,离心风机负载的平方转矩特性与异步电动机起动时的机械特性曲线部分相似,可以TM/ T M- T L =1计。
而变频软起动损耗很小,只有上述WS 的1/10,则每年的起动节能也是很可观的。
风机水泵压缩机变频调速控制节能与应用(含工频节流功率计算公式)

风机水泵负载变频调速节能原理相似定律:两台风机或水泵流动相似,在任一对应点上的统计和尺寸成比例,比值成相等,各对应角、叶片数相等,排挤系数、各种效率相等。
流量按照相似定律,由连续运动方程流量公式:φπηη⨯⨯⨯⨯⨯=⨯⨯=d D A vm vm vv v q流速公式: 60π⨯⨯=n D v m 式中:qv——体积流量,s m3;ηv——容积效率,实际容积效率约为0.95;A ——有效断面积(与轴面速度vm垂直的断面积),m²;D ——叶轮直径,m ; n ——叶片转速,r/mi n ; b ——叶片宽度,m ;vm——圆周速度,m/s ;φ——排挤系数,表示叶片厚度使有效面积减少的程度,约为0.75~0.95;按照电机学的基本原理,交流异步电动机转速公式: p f s n ⨯⨯-=60)1( 式中: s ——滑差; P ——电机极对数; f ——电机运行频率。
流量、转速和频率关系式:φππφππηη⨯⨯⨯⨯⨯⨯⨯⨯-⨯=⨯⨯⨯⨯⨯⨯⨯=⇒d D p f s D d D n D v v v q 6060)1(60f n q v∞∞⇒ 可见流量和转速的一次方成正比,和频率的一次方成正比。
扬程按照流体力学定律,扬程公式:²21v m H ⨯⨯=ρ扬程、转速和频率关系式:²²21216060)1(6022f n H H p f s D n D ∞∞⇒⨯⨯=⨯⨯=⇒⎪⎭⎫⎝⎛⨯⨯⨯-⨯⎪⎭⎫⎝⎛⨯⨯ππρρ 可见扬程和转速的二次方成正比,和频率的二次方成正比。
式中:H ——水泵或风机的扬程,m ;功率风机水泵的有效功率:每秒钟流体经风机水泵获得的能量。
水泵:H g q Pve⨯⨯⨯=ρ或 风机:P qP ve⨯=⎪⎭⎫ ⎝⎛⨯⨯⨯-⨯⎪⎭⎫⎝⎛⨯⨯⇒⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯-⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=6060)1(6022216060)1(2160πηπηρφππρρφππρp f s D n D P d D p fs D g d D n D g vv e fnPe33∞∞⇒可见有效功率和转速的三次方成正比,和频率的三次方成正比。
风机变频节能必要性改造方案

风机变频节能必要性改造方案大量不同功率的风机,均采用百叶阀门(挡风板)来调节控制风量,能源浪费严重。
现以改造一强45KW的风机为例,作如下方案。
一、基本情况风机功率45KW,一般电机额定功率因数约COSφ=0.87,效率约η=0.9,额定电流:I=P÷1.732÷U÷COSφ÷/η=45÷1.732÷0.38÷0.87÷0.9≈87(A) 22小时运行。
目前风量偏大,采用百叶阀门(挡风板)来调节控制风量,据了解贵公司说明风量电流节能到50-60A 已够生产需求以60A为例节能电流百分比=(87-60)÷87×100%=31%,节能27A节能百分31以50A为例节能电流百分比=(87-50)÷87×100%=42%,节能37A节能百分42本案例以保守的变频节能运行40HZ,节能百分20为例二、风机的运行情况分析1.电能浪费风机功率45KW,挡板的调节控制风门。
风机的转速恒定,由挡板来控制风量,造成风量的大小与电机输出功率不成比例,造成大量的能量浪费。
2.对生产工艺中负荷的适应能力差由于生产负荷在变化,而风门的调节也在不断变化,若风量不稳定,变造成风压的变化,影响到工作效率,造成粉尘的分离效果,影响生产质量。
3.电机起动冲击电网电机启动采用降低起动方式。
在启动过程中起动冲击高压额不定期电流的4 - 5倍,对电网冲击很大。
而且操作复杂,维护量大,设备故障率高,维护费用高,造成停产损失大。
三、风机系统变频节能的特点和效果1.变频调风无可比似的优越性节能效果显著。
根据流体力学原理,风机水泵负载的流量Q与转速N成正比,而所需功率P与转速N的三次方成正比。
因此当风量小于额定风量时,改变电机转速,其功率明显下降,具有显著的节能效果。
2.风机的效率提高风机的工作效率由下式计算:ηp=C1(Q/n)-C2(Q/n)2式中Q为风量,n为转速,C1C2为常数通过风门控风量时,因转速n不变,而流量Q下降,故效率ηp下降,而通过转速控制风量时,风量与转速成正比,比值(Q/n)不变,故效率ηp始终保持最佳状况。
关于风机变频改造的节能计算

五、结语 一般情况下,变频器用于 50Hz 调速控制。不管是平方转矩特性负载,还是 恒转矩特性负载,调速才能节能,不调速在工频下运行是没有节能效果的。有时 系统功率因数很低,使用变频器后也有节能效果,这不是变频调速节能,而是补 偿功率因数带来的节能。本文所述的对变频调速节能计算方法有极好的实用性。
附录 1:变频改造节能预算方法(XXXX 公司) 离心风机节电率计算方法: 1. 电机工频运行电动机功率 WG = 1.732*实际电压*实际电流*电机功率因数 2. 变频器运行时的电机效率【变频器的功率因数=0.96】 A. 【如果是用负压此时风门全开计算】 电机效率η =( 实际 /额定 压 ) /0.96
二、风机变频节能预算方法 如果用变频器对风机设备进行调速控制,不需要再用阀门、挡板进行节流调 节, 将阀门、 挡板开到最大, 管路阻尼最小, 能耗也大为减少。 节能量可用 GB12497 《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即: ⎡ ⎛ Q = 0.45 + 0.55⎜ PL ⎢ ⎜Q ⎢ ⎝ N ⎣ 其中: ⎞ ⎟ ⎟ ⎠
3
B. 【如果是用风门开度计算】 电机效率η = (风量) /0.96 根据表 1 查出【风量】及【入口门控制】或【出口门控制】的值 Pe 其中风量是个百分比值,入口门控制或出口门控制是轴功率百分比值 3. 变频器功率 WB = (WG / A)*η,如果是风门全开的,则 Pe=1 4. 节电功率 WJ = WG – WB 5. 节电率 = WJ/WG 6. 年节电量 = 节电率 * 时间 7. 年节约电费 = 年节电量 * 电价 以用负压计算为例:额定电压为 9.75KV,运行电流为 42A,工频时最大负压为 2900,变频运行负压为 2600。电机功率因数为 0.85。 那么电机工频运行电动机功率为:1.732*9.75*0.85*42=602.8 电机效率: ( 2600 / 2900 ) /0.96=89%
风机设备的节能量计算方法(含公式)

风机设备的节能量计算方法(含公式)根据风机系统节能技术改造特征,选择合适的计算方法计算风机系统节能量。
1、输送物料类风机系统节能量计算1.1输送物料类风机系统恒定负荷节能量计算本计算适用于但不仅限于以下情况:——采用高效电机更换现有电动机;——采用高效风机更换现有风机;——管网改造;——选用在高效区工作的风机。
(包括更换风机,更换叶轮)1.1.1基准期风机系统输送单位物料电耗按式(1)计算:111W P /F (1)式中:W 1——基准期风机系统输送单位物料电耗,单位为千瓦时每标准立方米(kWh/Nm 3)或千瓦时每吨(kWh/t );P 1——基准期风机系统电动机输入平均功率,单位为千瓦(kW );F 1——基准期风机系统平均物料输送量,单位为标准立方米每小时(Nm 3/h )或吨每小时(t/h )。
1.1.2统计报告期风机系统输送单位物料电耗按式(2)计算:222W P /F = (2)式中:W 2——统计报告期风机系统输送单位物料电耗,单位为千瓦时每标准立方米(kWh/ Nm 3)或千瓦时每吨(kWh/t );P 2——统计报告期风机系统电动机输入平均功率,单位为千瓦(kW );F 2——统计报告期风机系统平均物料输送量,单位为标准立方米每小时(Nm 3/h )或吨每小时(t/h )。
1.1.3改造后风机系统节能率按式(3)计算:%100/)(1211⨯-=W W W ξ………………………………………(3) 式中:1ξ——节能技改后风机系统节能率 。
1.1.4统计期风机系统节能量按式(4)计算:k T P Q ⨯⨯⨯=111ξ……………………………………………(4) 式中:Q 1 ——统计期风机系统节能量,单位为吨标准煤(tce );T ——统计期内,风机系统运行时间,单位为小时(h ); k ——能源折标准煤系数。
1.2输送物料类风机系统变化负荷节能量计算本计算适用于但不仅限于以下情况:——采用风机无级调速定压控制节能技术。
三、作者孔宏伟-风机变频调速节能技术计算

风机变频调速节能技术计算通过近期对我真空制盐项目自备电站中,锅炉引风机、鼓风机的节能方案的一系列探讨,初步确定根据变频器厂家节能方案参考,设计单位方案审核后,确定我方电站风机,乃至制盐、矿山等符合工艺要求情况下的设备,是否采用变频调速技术。
现就电站风机变频调速技术与风门调节方案做如下比较,以求比较准确的预估实际运行条件下的节能情况,为后期方案的进一步实施做参考。
1.风门开度与风量的关系风机的风门开度(叶片角度)与风量之间的关系是非线性的,不同类型的风机开度(叶片角度)与风量之间的关系也是不一致的。
以离心式风机为例,离心式风机在不同的风门开度时的特性曲线之间的间隔是不均匀的,也就是说线性度较差。
可以画一条阻力曲线,与不同风门开度的特性曲线的交点即为不同风门开度时的工作点,由各个工作点读出的风门开度、风量及风压的关系数据见表 1.离心式风机的风门开度-风量曲线的线性较差。
小风门时,随着风门的大小,风量增大很快。
当风门开度大于50%以上时,风量增大的速度明显放慢,当风门开度大于75%以上时,风量增大已不太明显,因此风门开的较大时,实际上的节电效果已经微乎其微。
在知道了不同工况下的风门开度时,就可以用查表的方法,求出风量和风压值,并依此作为节能计算的依据。
当然还可以用三角函数法、开平方法的标么值计算,均存在一些误差,那么如何得出准确的风量、风压值对于节能效果的计算就相当关键了。
表1 离心式风机风门开度与风量,风压和节电率的关系风门开度(度)风门开度(%)风量(%)风压(%)节电率10。
11.1% 25.O% 10.O% 9O%15。
16.7% 35.0% l5.0% 80%20。
22 2% 45.0% 22.O% 70%25。
27.7% 55.O% 32.0% 60%30。
33_3% 61.7% 42.O% 50%35。
38 9% 68.3% 50.0% 40%40。
44.4% 76.7% 60.0% 30%45。
变频器在风机、水泵中的节能应用

变频器在风机、水泵中的节能应用摘要:由风机、水泵类负载节能,来阐述变频器是控制风机、水泵实现节能最佳方式,对提高自动化程度,减少人为因素的影响进行较详细分析,通过实例计算来证明在理论上是正确的,虽然初期一次性投资比较大,但从长远上来看在经济上是值的。
关键词:风机;水泵;节能;功率因数;变频器前言风机、水泵作为工业和生活中的通用机械有应用量大、应用面广的特点,其配套电机量也是巨大的,有资料统计,风机、水泵的耗电量占全国总发电量的20%以上,由于容量和工艺原因,大多数的风机、水泵类负载存在着不同程度上的电能浪费,在提倡节约能源的今天,减少浪费,节能问题的研究也迫在眉睫,变频控制是目前最好方法。
1.风机、水泵负载节能原理传统风机、水泵流量的设计均以最大需求来设计,其调整方式采用挡板、风门、回流、起停电机等方式控制,无法形成闭环回路控制,也较不考虑省电的观念,但实际使用中流量随着各种因素而变化,往往比最大流量小的多,要减少流量时,通常情况下只能调节档板和阀门的开度,阀门控制法的实质是通过改变管网阻力大小来改变流量,而这种控制方式当所需流量减小时,压力反而会增加,故轴功率的降低有限,此时,过剩的风机、水泵功率将导致压力增加造成很大的能量损耗。
由流体力学原理可知:流量与转速的一次方成正比,压力与转速的平方成正比,功率与转速的三次方成正比,如果水泵效率一定,当流量下降时转速成比例下降,而此时对轴输出功率p成立方关系下降;风机、水泵变频节能控制可在保持阀门、挡板开度不变的前提下,通过改变风机的转速来调节流量,其实质是通过减少流体动力来节电。
这种控制方式可从根本上消除风机、水泵设备,由于选型或负荷变化普遍存在的“大马拉小车”的动力浪费现象,消除了挡板截流阻力,使风机、水泵始终运行在最佳工作状态。
2.风机、水泵变频控制特点2.1异步电动机原理n=60f/p(1-s),可知变频调速是风机、水泵调速最佳方法,风机、水泵电机直接启动或Y/D启动,启动电流为其额定电流的4~7倍;这样会对电机设备和供电电网造成严重的冲击,而且还会对电网容量要求过高,启动时产生的电流和震动时对挡板和阀门损害极大,对设备、管路的使用寿命极为不利。
风机、泵类节能改造方案

风机、泵类节能改造方案一、风机、泵类节能概述对于离心式风机、水泵的变频调速改造同样有巨大的节能潜力。
通过沸腾式锅炉高压离心式风机应用变频调速的方法调节风量,证明其节能效果在30~50%,水泵的变频改造节能效果高达70%。
离心式风机、泵类设备的流量与转速成正比Q∝N,压力与转速平方成正比H∝N2,功率与转速的立方成正比P∝N3(Q:表示流量; N:表示转速;H:表示压力;P:表示功率)由上图(左)可知,改变转速其流量线性变化的功耗则是立方关系变化,因此在调节风量或流量时如降低20%的风量或流量,功耗则会下降50%。
但是必须注意,转速与压力是平方关系,当转速下降20%压力则会下降64%,因此必须要注意工艺要求压力范围不能像罗茨风机那样,不用考虑转速与风压的关系。
离心风机、泵类设备传统的风量、流量控制的,大量的能源耗在风门或截流阀的阻力上,风门或截流阀控制流量的功耗与流量关系:P=P0+K•Q;Q:表示流量;K:为系数; P:表示功耗;P0:表示基本功率。
由上图(右)比较风门或截流阀控制与变频调速调节,可以看到在流量变化范围,采用变频调速的方法具有很大的节能潜力,因此在工厂的供水泵或其它离心风机上进行变频改造同样会取得很大的节能效果。
变频节能技术在风机上应用后不但节省了电费支出(节电率可达30%-50%),提高了产品质量,也提高了使用上的灵活性,对不同工艺性要求适应性更强。
避免电机启动时的大电流冲击和电网电压降低,可明显减少风机叶轮、机壳及轴承的磨损,延长检修换件周期和设备使用寿命,节约维修费。
二、改造方案针对该工厂实际现状,提出对风机进行节能改造方案如下:1、设计原理整个系统控制方式采用闭环自动调节,用流量计检测进入蒸发器空气流量,输出0-10mA电流信号至PID控制器,与目标值进行比较,(目标值可由用户根据系统需要随意设定)进行PID运算,输出控制信号给变频器,当送风流量大于设定值时,变频器输出频率减小,当送风流量小于设定值时,变频器输出频率增加,最终控制送风机转速以调节送风量以达到系统要求。
火力发电厂风机在变频调速技术方面应用中的节能分析

火力发电厂风机在变频调速技术方面应用中的节能分析【摘要】变频调速具有效率高、调速范围宽、精度高、调速平稳、无级变速等优点,因此采用变频调速技术是解决上述问题的好办法,近年来已在发电厂中得到了广泛应用。
【关键词】变频调速1风机在发电厂中的应用介绍随着电力市场改革的深化和燃料价格的不断上涨,煤电价格倒挂现象日趋严重,火电企业经营形势日趋严峻的外部环境下,提高机组自动化水平,降低厂用电率,降低发电成本,已成为各火电厂努力追求的经济目标。
受设计和制造技术条件的影响,电厂主要用电设备如送风机、引风机、一次风机等高耗能设备。
长期以来,火电厂锅炉离心式风机在运行过程中存在着以下几个问题:电机按定速方式运行,采用挡板来调节风量,造成功率损耗大,浪费电能;挡板调节品质差,执行机构易出故障,自动投入率低;电机启动时,启动电流大,对电机冲击大,严重影响电机的绝缘性能和使用寿命。
而变频调速具有效率高、调速范围宽、精度高、调速平稳、无级变速等优点,因此采用变频调速技术是解决上述问题的好办法,近年来已在发电厂中得到了广泛应用。
火力发电厂风机设备主要用于锅炉一、二次风的燃烧系统、引风系统、通风系统等场合,根据生产需要对炉膛压力、风速、风量、温度等指标进行控制和调节以适应工艺要求和运行工况。
而最常用的控制手段则是利用调节风门挡板的开度大小来调整风量的大小。
这样,不论生产的需求风量多少,风机都要全速运转,而运行工况的变化则使得能量以风门、挡板的节流损耗消失掉了。
2风机转动设备变频调速节能原理风机是流体机械,由流体动力学可知,流量Q与转速n成正比,扬程H与转速n2成正比,电机功耗P与转速n3成正比。
当转速由额定转速ne降为时n,流量由额定值Qe降至Q,与额定功耗Pe相比较,采用转速调节时电机的功耗为:如果流量Qe由100%降到50%,则转速ne由100%降到50%,而电机的功耗降到12.5%Pe,即节约电能87.5%。
即使扣除挡板调节时的功耗与额定功耗的差、转速下降可能会引起电机的效率下降等因素,节电效果也是非常显著的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风机的变频调速节能改造的分析及计算摘要:以变频调速改造来达到调节工业工程所需风量成为目前实现电机节能的一种主要途径。
当我们进行变频节能改造时,投入和收益是必须认真考虑的,收益就涉及到节能量的计算。
在变频器未投运之前,计算节能量是比较困难的。
本文通过分析变频节能的原理及分析,介绍了针对阀门及液力耦合器调节调节流量系统的变频改造的节能估算的一些思考及方法。
关键词:风机变频节能原理调速节能阀门液力耦合器节能估算一、引言在工业生产、发电、居民供暖(热电厂)、和产品加工制造业中,风机水泵类设备应用范围广泛;其电能消耗和诸如阀门、挡板、液力耦合器等相关设备的节流损失以及维护、维修费用约占到生产成本的7%~25%,是一笔不小的生产费用开支。
随着经济改革的不断深入,以及能源的危机,节能降耗业已成为降低生产成本、提高产品质量的重要手段之一。
变频调速因其调速效率高,力能指标(功率因数)高,调速范围宽,调速精度高等优势,又可以实现软起动,减少电网的电流冲击及设备的机械冲击,延长设备使用寿命,对于大部分采用笼型异步电动机拖动的风机水泵,变频调速不失为目前最理想的调速节能方案。
由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能改造的实施。
本文通过分析变频节能的原理及分析,介绍了针对阀门及液力耦合器调节调节流量系统的变频改造的节能估算的一些思考及方法。
二、变频器节能的调速实质和原理节约能源最根本的方法就是要提高能源的利用率,所谓的“节能”,不仅仅是节省能耗,还包括不浪费能源,用一句最简单的话说就是:“需要多少,就提供多少!”变频器本身不是发电机。
在变频器应用到风机等平方转矩负载的工业场合中,其节能原因不是由变频器本身带来的,而是通过变频器的调速特性来减小风机输出流量以适应工况中实际所需流量。
叶片式风机水泵的负载特性属于平方转矩型,其功率等于即其轴上需要提供的转矩与转速的二次方成正比。
风机水泵在满足三个相似条件:几何相似、运动相似和动力相似的情况下遵循相似定律;对于同一台风机(或水泵),当输送的流体密度ρ不变仅转速改变时,其性能参数的变化遵循比例定律:Q(流量)与n(转速)的一次方成正比;扬程H (压力)与转速的二次方成正比;P(轴功率)则与转速的三次方成正比。
即: ''n n Q Q = ; 2'')(n n H H = 2'')(n n p p = ; 3'')(n n PP = 风机与水泵转速变化时,其本身性能曲线的变化可由比例定律作出,如图1所示。
因管路阻力曲线不随转速变化而变化,故当转速由Q1变至Q2时,运行工况点将由A 点变至C 点。
图1、风机流量、压力特性上图中,曲线①、③为风机水泵在不同阻力下的特性曲线。
曲线②、④为工频、变频状态下的流量与压力关系曲线。
风机水泵工作在A 点时,轴功率 P1 等于 Q1,H1 的乘积,即与图中面积 AQ10H1A 成正比。
若要将流量丛 Q1 降到 Q2时,如用阀门调节,则工作点由A移动到B点,流量下降,压力上升,轴功率減少不多;若采用变频调速,则工作点由A移动到 C ,在满足同样流量 Q2 的情況下,压力也下降,轴功率大大降低。
故变频器节能的实质是调速引起的流量变化来产生的。
在工业设计过程中,一般要考虑建设前,后长期工艺要求的差异,使裕量过大。
如火电设计规程SDJ-79规定,燃煤锅炉的鼓风机,引风机的风量裕度分别为5%和5~10%,风压裕度为10%和10%~15%。
另外,设计过程中很难计算管网的阻力,并考虑长期运行过程中可能发生的各种问题(比如水泥工况中,由于物料、湿度等不同工况需求),通常总把系统的最大风量和风压裕量作为选型的依据,但风机的系列是有限的,往往选不到合适的风机型号就往上靠,大20%~30%的比较常见。
在实际工作时,再采用调流设备来实现实际所需的流量。
以前绝大部分风机都采用风门挡板调节流量,造成大量的节流损耗,所以风机若采用转速调节,具有巨大的节能潜力。
直到上世纪七十年代,都采用机械调速或滑差电机调速,但这属于低效调速方式,仍有较大的能量损耗,并且驱动功率受到限制;到上世纪八十年代,开始采用液力耦合器调速,并且突破了驱动功率的限制,向大功率方向发展,但它与滑差电机调速一样,属于低效调速方式,仍有较大的能量损耗。
直到上世纪九十年代,随着电力电子技术和计算机控制技术的发展,变频器很快占领电动机调速市场,在我国各工业生产中,各类泵和风机的用电量占用电量的大半部分,例如引风机、送风机、一次风机、循环水泵、凝结水泵、给水泵、灰渣(浆)泵、、排粉机等等,尤其是风机的裕量明显过大,如果采用挡板调节,即使在机组满负荷输出的挡板开度也较小。
而水泵和风机的一个特点是负载转矩与转速的平方成正比,轴功率与转速的立方成正比。
如可根据所需的流量调节转速,就可获得很好的节电效果。
三、阀门调风的变频改造节能对比分析及估算1、对比分析由图1可知,通过阀门调节也可减小风机的输入轴功率。
其减小的功率为长方形AQ1OH1A 与长方形BQ2OH2B 的差。
虽然也有节能效果,但其功率减少很小。
一般情况下,采用风门调节的风机,在两者偏离10%时,效率下降8%左右;偏离20%时,效率下降20%左右;而偏离30%时,效率则下降30%以上。
对于采用调节风门进行调节风量的风机,这是一个固有的不可避免的问题。
可见,风机,水泵电机的用电量中,很大一部分是因风机的型号与管网系统的参数不匹配及调节方式不当而被调节风门消耗掉的。
是一种低效节能调节方式。
如果采用变频器调风机转速来调节风量,风门开到100% ,风机转速n1调到n2,特性变为曲线(4),工况点为C ,在保证同样风量Q 2的情况下,风压大幅度降低至H3。
.功率P 以长方形CQ2OH2C 的面积成正比。
随着流量的减小,减少的功率损耗△P=△HQ :与面积BH2H3CB 成正比。
节电的经济效益十分明显。
2、对阀门调风的变频改造的节能估算方法和思考如果用变频器对风机?泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少。
节能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即:()kW Q Q P P E N L ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+=255.045.0 (1) 其中:P L 为变频器改造后风机所需输入功率,单位为kW ;P E 为达到风机额定流量时所需输入功率,单位为kW ;Q 为实际所需流量,单位为m 3/h ; Q N 为风机额定流量,单位为m 3/h ;然而,在实际工业现场中,由于流量计的价格昂贵以及工况环境的恶劣原因,很多都没有在风机管路中配置流量计,即使有配置的场合也常常处于损坏状态。
不能方便的得到准确具体的流量数据。
因此,我们在实际的变频改造中常采用三种方法来求出流量比。
设流量比为K ,则有:Q Q NK = (2)(1) 方法1:由流体力学可知,流量等于风速乘以管道的截面积。
对于同一个风系统的同一个测点,其管道截面积无疑是相同的。
则有:n S N S K QQ == (3) 故我们采用便携式风速仪在管道中可测出管道风速比,从而得知流量比。
(2) 方法2:由风机的相似定律可知:Q(流量)与n(转速)的一次方成正比;扬程H (压力)与转速的二次方成正比。
则有:P P n QQ e s N e n K === (4) 故我们可通过实际压力与额定压力比求出流量比。
(3) 方法3:根据调节阀的流量特性来估算流量比。
调节阀的流量特性是指被调介质流过调节阀的相对流量与调节阀的相对开度之间的关系。
调节阀的流量特性包括理想流量特性和工作流量特性。
理想流量特性是指在调节阀进出口压差固定不变情况下的流量特性,有直线、等百分比、抛物线及快开4种特性。
这种方法需要用户提供实际使用阀门的阀门特性图。
求出变频改造后的实际功率后,则可根据式(5)算出变频改造后的节电率λ。
()P k P P L E L /9.03-=λ (5)其中:0.9为保险系数四、液力耦合器的变频改造节能对比分析和计算1、液力耦合器介绍和节能分析液力耦合器是一种以液体(多数为油)为工作介质、利用液体动能传递能量的一种叶片式传动机械。
调速型液力耦合器主要由泵轮、涡轮、旋转外套和勺管组成。
只要改变工作腔内工作油的充满度,亦即改变循环圆内的循环油量,就可以改变液力耦合器所传递的转矩和输出轴的转速,从而实现了电动机在定速旋转的情况下对风机或水泵的无级变速。
在忽略液力耦合器的机械损失和容积损失等时,液力耦合器的调速效率等于调速比。
当液力耦合器工作时的转速比越小,其调速效率也越低,这是液力耦合器的一个重要工作特性。
由上可知,液力耦合器能够实现无极调速。
根据风机特性,其需要的输入功率与转速有立方关系。
故其也是能够节能的。
然而。
液力耦合器的调速效率等于调速比。
液力耦合器在带动风机负载调速工作时,转速比越小,其调速效率越低,转差功率损耗也越大;所以液力耦合器属低效调速装置。
2、对液力耦合器调风的变频改造的节能对比分析电动机本身功率损耗除外,无论是变频调速还是液力偶合器调速,均存在额外的功率损耗,液力偶合器从电动机输出轴取得机械能,通过液力变速后送入负载,其效率不可能为1;变频器从电网取的电能,通过逆变后送入电动机电枢,其效率也不可能是1。
而且在全转速范围内,两种方式的效率曲线也不一样。
如图2所示“两种调速方式效率曲线”为典型的液力偶合器和变频器的效率-转速曲线,随着输出转速的降低,液力偶合器的效率基本上正比降低(例如:额定转速时效率0.97,75%转速时效率约0.7,20%转速时效率约0. 18)。
变频调速通过电力电子整流和脉宽调制逆变技术改变电动机电枢的电压和频率,除本身控制所需很少一部分能量消耗保持不变外,电力电子器件的损耗基本上与输出功率成正比,因此变频调速可以在全转速范围内保持较高效率运行。
从图2曲线数据看,当输出转速降低时,液力偶合器的效率比变频调速的效率下降快得多,因此变频调速的低速特性比液力耦合器要好。
图2 变频与液力耦合器效率曲线3、对液力耦合器调风的变频改造的节能估算由上面的分析可知:液力耦合器与变频器的节能差异在于其效率的不同。
因此,由于液力耦合器的调速效率等于调速比,而变频器的效率在94%~97%,所以用变频器代替液力耦合器的节电率的计算就变得十分简单了:节电率 = 1--变频器损耗—调速比+液力耦合器的机械损失和容积损失等于额定传动功率的3%~4%(取3.6%)/调速比。
也就是“节电率 = 变频器效率—调速比 + 3.6% Pec/调速比”。