主动悬架安全控制技术
浅析汽车底盘主动悬架控制方法
浅析汽车底盘主动悬架控制方法汽车底盘主动悬架控制方法是指通过车辆悬架系统中的传感器、执行器和控制单元等设备,实现对悬架系统的主动调节和控制,以提高车辆操控性能、乘坐舒适性和安全性。
随着汽车科技的不断发展,底盘主动悬架控制技术已经成为了现代汽车的标配之一。
本文将从工作原理、控制方式和应用范围等方面逐一进行深入分析,以便读者更好地理解和掌握这一重要的汽车技术。
一、工作原理底盘主动悬架控制系统的工作原理主要通过悬架系统中的传感器实时感知车辆行驶状况和路况,将这些信息传输到控制单元,然后由控制单元根据预设的控制策略来调节悬架系统的工作状态,从而实现对车辆悬架系统的主动控制。
具体来说,底盘主动悬架控制系统通常包括以下几个基本组成部分:1.传感器:一般包括车辆姿态传感器、悬架行程传感器、车速传感器、路面传感器等,用于感知车辆行驶状况和路况。
2.执行器:一般包括气压悬架、电磁悬架、液压悬架等,用于根据控制单元的指令对车辆悬架系统进行动态调节。
3.控制单元:一般包括主控制器和执行控制器等,用于接收传感器的信号、根据预设的控制策略生成控制指令,并将控制指令发送给执行器。
通过这些组成部分的协同工作,底盘主动悬架控制系统可以实现对车辆姿态、悬架刚度、悬架高度等参数的主动调节,从而实现对车辆悬架系统的主动控制。
这样一来,车辆可以根据不同的行驶状况和路况,自动调整悬架系统的工作状态,以提高车辆的操控性能、乘坐舒适性和安全性。
二、控制方式底盘主动悬架控制系统的控制方式主要包括主动悬架控制、半主动悬架控制和预测悬架控制等几种基本方式。
2.半主动悬架控制:半主动悬架控制是指控制单元根据传感器感知到的车辆行驶状况和路况,通过执行器对悬架系统进行动态调节,但是在这种方式下,悬架系统的动态调节范围和速度相对较小,不能完全实现对车辆悬架系统的主动控制。
3.预测悬架控制:预测悬架控制是指控制单元通过对路况和行驶状况进行预测,提前生成控制指令,并将控制指令发送给执行器,以预测性地对悬架系统进行动态调节,从而提高车辆的操控性能和乘坐舒适性。
主动悬架安全控制技术
主动悬架安全控制技术【引言】主动控制悬架可使汽车乘坐舒适性和操纵安全性同时得到改善。
介绍了国内外汽车主动悬架系统的现状及发展,重点介绍了几种常见的控制方法。
简介:悬架系统的主要作用是有效地减缓路面不平而引起的车体振动(乘坐舒适性)以及操纵安全性。
随着汽车性能的不断完善与发展,对悬架也提出了更高的要求。
为了满足现代汽车对悬架提出的各种性能要求,悬架的结构形式一直在不断地更新和完善,尽管这样,传统的被动悬架依然受到许多限制,主要是难于同时改善在不平路面上高速行驶车辆的稳定性和行驶平顺性,即使采用优化设计也只能保证悬架在特定的激励发生变化后,悬架的性能亦随之发生变化。
事实上,被动悬架的潜力在目前已接近极限,为了克服传统的被动悬架对汽车性能改善的限制,近年来,汽车工业中出现的主动悬架成为了一条改善汽车悬架性能的新途径。
主动悬架控制系统是一个闭环控制系统,它能根据系统的运动状态和当前的激励情况,主动做出反应来控制系统的振动,在控制过程中,可以根据外界输入。
与系统状态的变化实时调节控制系统参数,以获得最好的减振效果。
主动悬架通常可分为:有源主动悬架和无源主动悬架两大类。
有源主动悬架一般又简称为主动悬架,主动悬架一般由执行机构和控制决策部分构成。
其基本原理是根据被控系统的动态特性,采用由外部输入能量的控制方法使被控系统实现减振。
主动悬架系统的执行部分一般包括液压执行机构、动力源等,执行机构上装有控制器,它执行决策部分的命令。
一般用力发生器完全地或部分地代替被动悬架中的弹簧和阻尼器。
力的大小由控制规律决定。
决策部分为一车载微机系统,包含各种传装置、测量仪器和信号反馈处理等系统。
微机接收来自传感器的信号,经预定控制程序处理后,由控制器发出命令,决定执行机构所需的动作,从而形成闭环控制。
主动悬架具有如下显著优点:(1)在悬架静扰度较小的前提下,能获得较低的固有频率和动扰度。
(2)悬架的动力学特性,不随汽车的载荷变化而改变。
《基于智能控制的汽车主动悬架控制策略研究》范文
《基于智能控制的汽车主动悬架控制策略研究》篇一一、引言随着汽车工业的快速发展,人们对汽车行驶的平稳性、安全性和舒适性要求越来越高。
汽车主动悬架系统作为提高汽车行驶性能的关键技术之一,其控制策略的研究显得尤为重要。
传统的被动悬架系统已经无法满足现代汽车的需求,而基于智能控制的主动悬架系统则能够更好地适应复杂的道路环境,提高汽车的行驶性能。
本文旨在研究基于智能控制的汽车主动悬架控制策略,为汽车悬架系统的设计和优化提供理论依据。
二、智能控制技术概述智能控制技术是一种基于人工智能、计算机技术和控制理论的技术,具有自适应、自学习和优化的特点。
在汽车主动悬架系统中,智能控制技术可以实现对车辆行驶状态的实时监测和调整,提高车辆的行驶稳定性和舒适性。
目前,常见的智能控制技术包括模糊控制、神经网络控制、遗传算法控制等。
三、汽车主动悬架系统概述汽车主动悬架系统是一种能够根据道路条件和车辆行驶状态实时调整悬架参数的系统。
与传统的被动悬架系统相比,主动悬架系统具有更好的适应性和控制性,能够更好地提高车辆的行驶性能。
主动悬架系统主要由传感器、控制器和执行器等部分组成,其中控制器是整个系统的核心。
四、基于智能控制的汽车主动悬架控制策略研究4.1 模糊控制策略模糊控制是一种基于模糊逻辑的控制方法,具有较好的鲁棒性和适应性。
在汽车主动悬架系统中,模糊控制可以根据传感器采集的车辆状态信息,通过模糊推理方法对悬架参数进行调整,实现对车辆行驶状态的优化。
研究表模糊控制策略可以有效地提高车辆的平稳性和安全性。
4.2 神经网络控制策略神经网络是一种模拟人脑神经元工作的计算模型,具有自学习和自适应的能力。
在汽车主动悬架系统中,神经网络控制可以通过学习大量的驾驶数据,自动调整悬架参数,实现对车辆行驶状态的优化。
研究表明,神经网络控制策略可以更好地适应不同的道路环境和驾驶需求。
4.3 遗传算法控制策略遗传算法是一种模拟自然进化过程的优化算法,具有全局搜索和优化能力。
汽车底盘悬挂系统的主动与半主动控制技术应用
汽车底盘悬挂系统的主动与半主动控制技术应用汽车底盘悬挂系统对于汽车的行驶稳定性和舒适性起着至关重要的作用。
而主动和半主动控制技术的应用,则进一步提升了汽车底盘悬挂系统的性能和效果。
本文将就汽车底盘悬挂系统的主动与半主动控制技术应用进行探讨。
一、主动控制技术的应用主动悬挂系统是指能够主动感知和调节车辆悬挂状态的技术。
通过传感器实时监测路况和车辆行驶状态,再通过控制器对悬挂系统进行调节,使车辆在行驶过程中更加稳定和舒适。
主动悬挂系统的应用,可以使车辆在急转弯、爬坡、减速等情况下更加稳定,有效减少了悬挂系统对车身的影响,提高了行驶安全性。
同时,主动悬挂系统也可以根据路面的不同情况主动进行调节,保证乘坐者在不同路况下的舒适性。
二、半主动控制技术的应用半主动悬挂系统是指能够根据司机的行驶习惯和需要主动进行调节的技术。
通过预设的程序和模式,半主动悬挂系统可以智能地根据司机的驾驶习惯和路况变化进行调节,提供更加个性化的驾驶体验。
半主动悬挂系统的应用,可以根据不同的驾驶模式提供不同的悬挂调节效果,使驾驶员更加舒适地应对不同的路况和驾驶需求。
同时,半主动悬挂系统也可以根据车辆的载重情况和行驶速度进行智能调节,保证车辆行驶的稳定性和安全性。
总结汽车底盘悬挂系统的主动与半主动控制技术应用,为汽车的行驶稳定性和舒适性提供了更加完善的解决方案。
主动悬挂系统可以根据路况变化主动调节悬挂系统,提高了行驶的安全性;半主动悬挂系统则可以根据驾驶员的行驶习惯提供个性化的悬挂调节效果,提高了驾驶的舒适性和便利性。
随着科技的不断发展和汽车工业的进步,主动与半主动悬挂控制技术必将在未来的汽车行业中发挥着更加重要的作用。
汽车电子控制主动悬架系统有哪些安全控制方法和技术?
汽车电子控制主动悬架系统有哪些安全控制方法和技术?通常来讲,主动悬架性能明显优于被动悬架。
特别是随着微型电路技术的发展,使主动悬架的发展前景更为广阔。
主动悬架安全控制技术的理念、功能及方法,对于保证汽车行驶的安全性与舒适性有着非常重要意义。
电子控制主动悬架系统的安全控制要求其带有自诊断功能:自诊断功能大致可以分为三块:①监测系统的工作状况:当系统产生故障,装在仪表板上的车高控制指示灯就被通电闪亮,因而可以提醒驾驶员立即检修;②存储故障码:当系统产生故障时,系统能够将产生的故障以故障码的形式存放在悬架ECU的随机存储器中;③失效保护:当某一个传感器或执行器产生故障时,自诊断系统将以预先设定的参数取代有故障的传感器或执行器工作。
比如,加速度(G)传感器失效时,产生的失效保护就是禁止汽车行驶控制(车身扭转、跳动控制),车速传感器和车身高度传感器故障时,失效保护方法就是禁止汽车稳定性控制(抗侧倾、高度感应控制),禁止汽车姿态控制(抗点头、抗后坐),减振器阻尼力固定在中间状态等。
一般采用的安全控制方法为预见控制方法:对即将出现的情况加以考虑以求进一步来提高系统的控制性能。
通过某种方法提前检测到前方道路的状态和变化,迫使系统采取相应的措施。
根据预见信息的获取及利用方法的不同,可形成两种不同的预见控制系统:①对四轮全进行预见控制;②利用前轮信息对后轮进行预见控制。
预见控制方法可以有效降低系统的能量消耗且大幅度改善系统控制性能,一举两得。
控制技术一般有两大类:①自适应与自校正控制技术:是一个可以自动改变其控制参数以适应于汽车当前的工况的控制系统。
其基本思想就是由系统当前输入的相关信息,从预先计算并存储的参数中选取最合适当前工况的控制参数。
②神经网络控制技术:近年来, 神经网络的控制方法已日益引起人们的极大关注。
神经网络具有自适应学习,并行分布处理和较强的鲁棒性,容错性等特点。
因此适合于对复杂系统进行建模和控制。
《2024年基于智能控制的汽车主动悬架控制策略研究》范文
《基于智能控制的汽车主动悬架控制策略研究》篇一一、引言随着汽车工业的快速发展,汽车主动悬架系统已经成为现代汽车安全与舒适性的重要组成部分。
通过采用先进的控制策略,主动悬架系统可以有效地提高车辆的行驶稳定性、乘坐舒适性以及操控性能。
本文将重点研究基于智能控制的汽车主动悬架控制策略,旨在为汽车悬架系统的优化设计提供理论依据和技术支持。
二、汽车主动悬架系统概述汽车主动悬架系统是一种具有自适应能力的悬架系统,通过传感器实时监测路面状况和车辆运动状态,采用先进的控制算法对悬架进行实时调整,以实现最佳的行驶性能。
与传统的被动悬架系统相比,主动悬架系统具有更高的灵活性和适应性。
三、智能控制在汽车主动悬架系统中的应用智能控制技术在汽车主动悬架系统中发挥着重要作用。
通过采用先进的控制算法和传感器技术,实现对车辆运动状态的实时监测和调整。
常见的智能控制策略包括模糊控制、神经网络控制、遗传算法等。
这些控制策略可以根据不同的道路条件和驾驶需求,对悬架系统进行实时调整,以实现最佳的行驶性能。
四、基于智能控制的汽车主动悬架控制策略研究(一)控制策略设计本文提出一种基于模糊控制的汽车主动悬架控制策略。
该策略通过建立模糊控制器,实现对车辆运动状态的实时监测和调整。
模糊控制器采用输入输出映射的方法,将传感器采集的信号进行模糊化处理,然后根据预设的规则进行决策,最后输出控制信号对悬架系统进行调整。
(二)仿真分析为了验证所提出的控制策略的有效性,本文采用仿真分析的方法。
通过建立车辆动力学模型和主动悬架系统模型,对所提出的控制策略进行仿真测试。
仿真结果表明,该控制策略可以有效地提高车辆的行驶稳定性、乘坐舒适性以及操控性能。
五、实验验证与结果分析为了进一步验证所提出的控制策略的实用性,本文进行了实验验证。
通过在实车上进行实验测试,对比传统被动悬架系统和所提出的主动悬架控制策略在不同道路条件下的性能表现。
实验结果表明,所提出的基于智能控制的汽车主动悬架控制策略在提高车辆行驶稳定性、乘坐舒适性以及操控性能方面具有显著优势。
主动悬架技术的分析
主动悬架技术的分析主动悬架技术(Active Suspension System)是一种通过控制车辆悬挂系统来适应路面状况和车辆动态特性的先进技术。
这种技术通过感知路面情况,对悬挂系统进行实时调节,从而提高车辆的乘坐舒适性、稳定性和操控性能。
本文将对主动悬架技术的原理、优势、应用以及发展方向进行分析。
首先,主动悬架技术的原理是通过传感器感知车辆运动状态和路面情况,然后将这些信息发送给控制器。
控制器根据接收到的信息实时计算出最佳悬挂特性,并通过液压、电动或者电磁力等方式对悬挂系统进行调节。
这种实时调节能够使车辆的悬挂系统更好地适应路面情况,保持车身平衡,减少车身摇晃和侧倾,提高乘坐舒适性和操控性能。
相比于传统悬挂系统,主动悬架技术具有以下几个优势。
首先,它能够大幅度提升乘坐舒适性。
传统悬挂系统在通过减震器提供悬挂刚度时,需要在舒适性和操控性之间找到一个平衡点。
而主动悬架技术通过实时调节悬挂特性,可以根据路面状况和车速自动调整刚度,使乘坐更加平稳舒适。
其次,主动悬架技术能够提高车辆的稳定性和操控性能。
主动悬架系统可以根据车速、转向角度、加速度等参数来实时调节悬挂刚度和阻尼,从而减少车身的侧倾和悬挂系统的回弹,提高车辆的稳定性和操控性能。
尤其在高速行驶和急转弯等情况下,能够更好地保持车辆的平衡和稳定。
此外,主动悬架技术还具有适应性强和可调节性好的特点。
悬挂系统可以根据路面状况的变化实时调整刚度和阻尼,因此可以适应各种路况和行车状态。
而且,主动悬架系统通常可以提供多种不同的悬挂模式,驾驶员可以根据自己的需求选择不同的模式,如舒适模式、运动模式等,从而调节悬挂特性,以适应不同的行车场景。
主动悬架技术在汽车行业的应用前景广阔。
目前,该技术已经在一些高端汽车中得到应用,如宝马、奔驰等。
随着技术的发展和成本的降低,预计主动悬架技术将逐渐普及到中低端汽车中。
尤其在城市交通日益拥堵的情况下,乘坐舒适性和操控性能将成为消费者购车的重要考虑因素,从而推动了主动悬架技术的市场需求。
井下车辆主动悬架控制技术研究的开题报告
井下车辆主动悬架控制技术研究的开题报告一、研究背景和意义井下车辆是矿井的主要输送工具,它们需要在极其恶劣的井下环境条件下运行,并且需要承受大量的重载、长时间运行、频繁的加速和减速等工况。
而井下道路的路面不平坦,路面状况不良也大大影响车辆的性能和寿命。
因此,对于井下车辆主动悬架控制技术的研究具有重要的现实意义。
主动悬架控制技术可以通过对车辆悬架系统的实时控制,改变悬挂系统的刚度、阻尼、高度等参数,以适应不同的路面条件。
这种技术可以在不降低车辆载荷情况下,大大提高车辆行驶的平稳性和舒适性,同时延长车辆寿命,降低维护成本,提高生产效率。
二、研究内容和目标本次研究将聚焦于井下车辆主动悬架控制技术的研究,包括以下内容:1.主动悬架系统模型建立:建立车辆主动悬架系统的数学模型,包括车辆、干扰源和路面等因素,进行仿真模拟和优化设计。
2.主动悬架控制策略设计:设计车辆主动悬架控制策略,结合路面状况、车速、载荷等多个因素进行控制。
3.实验验证和评估:在井下车辆上进行主动悬架控制系统的实验验证和评估,评估其对行驶平稳性、舒适性以及车辆寿命的影响。
三、研究方法1.文献调研法:对井下车辆主动悬架控制技术相关领域的文献进行深入调研和综述分析,获取相关技术背景和前沿进展,为研究提供参考和依据。
2.理论分析法:根据井下车辆运行环境和工况,建立车辆主动悬架系统模型,分析和优化悬挂系统的控制参数和算法。
3.实验验证法:在井下车辆上进行主动悬架控制系统的实验验证,测试主动悬架系统对车辆行驶的平稳性、舒适性和寿命等指标的影响。
四、研究进度计划第一年:1.进行相关领域文献调研和综述分析;2.建立井下车辆主动悬架系统模型,并进行仿真优化;3.初步设计主动悬架控制策略;第二年:1.设计主动悬架控制系统的硬件组成;2.编写悬架控制系统的控制软件;3.进行实验验证和评估,并对实验结果进行分析和总结;第三年:1.根据实验结果优化悬架控制策略;2.进行深入分析和优化悬挂系统参数和算法;3.进行系统整合和优化;五、预期成果和影响本研究将完成井下车辆主动悬架控制技术的研究,建立完整的悬架系统模型,设计有效的主动悬架控制策略,并在实验中进行验证和评估。
车辆主动悬架系统控制方案设计
车辆主动悬架系统控制方案设计车辆主动悬架系统是一种利用电子控制和传感器技术来调节车辆悬挂系统的功能。
通过检测车辆的动态状况和路况情况,主动悬架系统能够实时调节悬挂的刚度和阻尼,提升车辆的稳定性和行驶舒适性。
本文将针对车辆主动悬架系统的控制方案进行设计,共分为传感器模块、控制模块和执行模块三个部分。
传感器模块是主动悬架系统的基础,负责采集车辆的动态信息和路况情况。
常用的传感器包括加速度传感器、角度传感器、车速传感器和路况传感器等。
加速度传感器用于检测车辆的加速度和减速度,角度传感器用于检测车辆的倾斜角度,车速传感器用于检测车辆的速度,路况传感器用于检测路面的平整度和颠簸程度。
传感器采集到的数据需要经过滤波和处理后方能使用。
控制模块是主动悬架系统的核心,负责根据传感器模块采集到的数据,进行实时的控制和调节。
控制模块包括控制算法和控制器两部分。
控制算法通常采用PID控制算法,即比例、积分、微分控制算法。
PID控制算法能够根据车辆的动态状况和路况情况,计算出合适的悬挂刚度和阻尼,以提升车辆的稳定性和行驶舒适性。
控制器通常采用微控制器或程序控制器,用于控制悬挂系统的执行器。
执行模块是主动悬架系统的实施部分,负责根据控制模块的指令,实时地调节悬挂的刚度和阻尼。
执行模块包括悬挂系统的执行器和悬挂系统的控制阀。
悬挂系统的执行器通常为液压或电液混合执行器,用于实现悬挂系统的加压或减压。
悬挂系统的控制阀用于控制液压或电液混合执行器的操作,根据控制模块的指令,调节液压或电液混合执行器的工作状态。
在车辆主动悬架系统的控制方案设计中,传感器模块负责采集车辆的动态信息和路况情况,控制模块负责根据传感器模块采集到的数据,进行实时的控制和调节,执行模块负责根据控制模块的指令,实时地调节悬挂的刚度和阻尼。
三个模块之间需要进行信息的传递和交互,以实现整个系统的协调工作。
在实际应用中,车辆主动悬架系统的设计还需要考虑到成本、可靠性和安全性等因素。
汽车底盘悬挂系统的主动与半主动控制方法
汽车底盘悬挂系统的主动与半主动控制方法汽车底盘悬挂系统是整个汽车的重要组成部分,它直接影响着行车的舒适性、稳定性和安全性。
随着科技的不断进步,底盘悬挂系统的控制方式也得到了不断的优化和创新,其中主动与半主动控制方法成为当前研究的热点。
本文将重点介绍汽车底盘悬挂系统的主动与半主动控制方法。
一、主动控制方法主动悬挂系统是指可以主动调节悬挂刚度、高度和阻尼等参数的系统。
主动控制方法通过悬挂系统自身的传感器获取道路情况和车辆状态,再通过电子控制单元(ECU)对悬挂系统进行实时调节,从而保证车辆在不同道路和行驶状态下的稳定性和舒适性。
主动控制方法的优点在于可以根据实际情况主动作出调整,保持车辆在最佳状态下行驶。
例如,当车辆行驶在颠簸路面时,主动悬挂系统会加大阻尼力和提高悬挂高度,从而减小车身的颠簸感;当车辆高速行驶时,主动悬挂系统会降低悬挂高度和减小阻尼力,提高车辆的稳定性。
二、半主动控制方法半主动悬挂系统是指在主动悬挂系统的基础上进行改进,可以根据预设的控制算法主动调节悬挂参数。
与主动悬挂系统相比,半主动悬挂系统需要更少的电子控制单元和传感器,成本较低,但调节效果也相对有限。
半主动控制方法通过预设的控制算法对悬挂系统进行调节,例如将车辆的行驶状态、车速和转向角度等信息输入到控制算法中,再根据算法输出的结果对悬挂系统进行调节。
虽然半主动控制方法的调节精度不如主动控制方法准确,但在提升车辆性能和舒适性方面也有一定的作用。
三、主动与半主动控制方法的比较主动悬挂系统和半主动悬挂系统各有其优缺点。
主动悬挂系统可以实现更精确的调节,适应性更强,但成本相对较高;而半主动悬挂系统成本更低,适用性更广,但调节精度有所不足。
在实际应用中,需要根据车辆的具体情况和需求选择适合的悬挂控制方法。
综上所述,汽车底盘悬挂系统的主动与半主动控制方法在提升车辆性能和舒适性方面发挥着重要作用。
随着科技的不断发展和进步,相信底盘悬挂系统的控制方法会越来越完善,为驾驶员提供更加安全、舒适的行车体验。
汽车主动悬架技术的研究现状
汽车主动悬架技术的研究现状汽车主动悬架技术是指车辆悬架系统能根据实时道路条件和驾驶需求主动调节悬架硬度、高度、稳定性等参数的技术。
通过主动悬架技术,可以使车辆在不同的路况和驾驶模式下获得更好的悬架性能,提供更舒适、稳定和安全的驾驶体验。
在近年来,随着科技的不断进步和需求的不断增加,汽车主动悬架技术得到了广泛的研究和应用。
本文将重点介绍主动悬架技术的研究现状并对其进行探索。
主动悬架技术的研究主要涉及到悬架系统的硬件结构和控制算法两个方面。
在硬件结构方面,主要研究了可变硬度悬架、可变高度悬架和可变稳定性悬架等。
这些悬架系统通过改变悬架中的弹簧、减振器和支撑点等部分的性能参数来实现悬架的主动调节。
例如,可变硬度悬架可以根据驾驶模式和道路条件实时调整悬架的硬度,提供更好的舒适性和操控性。
可变高度悬架可以根据路况调整车身的高度,提高通过性和稳定性。
可变稳定性悬架则可以根据车辆的动力状态实时调节悬架的稳定性,提高车辆的操控性。
目前,在这些硬件结构方面的研究已经取得了一定的成果,许多汽车企业已经开始在高端车型上应用了这些技术。
在控制算法方面,主要研究了悬架系统的控制策略和调节算法。
悬架系统的控制策略主要包括主动悬架控制和协调悬架控制两种。
主动悬架控制是通过传感器实时采集车辆和道路的信息,然后根据预设的控制算法计算出悬架的调节参数来实现主动调节的目的。
协调悬架控制则是通过车辆的电子控制单元(ECU)实时协调悬架系统和其它部分的工作,以提升整车的性能。
在调节算法方面,主要应用了模糊逻辑控制、神经网络控制和最优控制等方法。
这些算法通过将悬架系统的调节过程建模为一个最优化问题,并根据具体的需求和约束条件求解最优解,从而实现对悬架系统的精确调节。
目前,这些控制算法在实际应用中已经取得了较好的效果,但仍然存在一些问题需要进一步研究和解决。
除了硬件结构和控制算法方面的研究,主动悬架技术还需要解决一些实际应用中的问题。
首先是成本问题,主动悬架技术的研发和生产成本较高,导致其在市场上的价格较高,限制了其推广和应用。
浅析汽车底盘主动悬架控制方法
浅析汽车底盘主动悬架控制方法【摘要】汽车底盘主动悬架控制方法是指通过各种技术手段对汽车底盘悬架系统进行控制,以实现更好的悬架性能和车辆稳定性。
本文从主动悬架的概念入手,介绍了电磁悬架、空气悬架、液压悬架以及综合控制方法。
电磁悬架通过调节电磁感应力来实现悬架调节,空气悬架利用空气压力来调节悬架高度,液压悬架则通过液压系统来实现悬架调节。
综合控制方法则结合多种技术手段,以实现更为精准和稳定的悬架控制。
通过对这些方法的分析和比较,可以为汽车底盘主动悬架控制提供更深入的理解和研究方向。
结论部分总结了各种方法的优缺点,为未来的研究和应用提供了一定的借鉴价值。
【关键词】汽车底盘,主动悬架,控制方法,电磁悬架,空气悬架,液压悬架,综合控制,引言,结论1. 引言1.1 引言车辆底盘主动悬架控制技术是现代汽车行业中的一个重要发展方向。
随着科技的进步和人们对车辆操控性能的要求不断提高,主动悬架技术被广泛应用于各种车型中。
主动悬架通过对悬架系统的实时监测和调节,能够有效地提升车辆的稳定性、舒适性和操控性能,从而提升整个车辆的性能水平。
在本文中,我们将从主动悬架的概念出发,对主动悬架的控制方法进行详细的分析和探讨。
首先我们会介绍主动悬架的基本概念和原理,以便更好地理解后续的控制方法。
然后我们将详细介绍电磁悬架、空气悬架、液压悬架等不同类型的主动悬架控制方法,探讨它们的优缺点和适用范围。
我们将介绍一些综合控制方法,即将多种控制方法结合起来,以达到更好的效果。
通过本文的阐述,相信读者能够更全面地了解汽车底盘主动悬架控制方法的原理和应用,为未来的研究和实践提供参考和借鉴。
2. 正文2.1 主动悬架的概念主动悬架是一种能够主动调整车辆悬挂系统的技术,在汽车行驶过程中可以根据道路和驾驶状况的变化,实时调整悬挂系统的硬度和高度,提高车辆的稳定性和舒适性。
主动悬架通过使用电磁、空气、液压等技术,可以实现对悬挂系统的精确控制,从而提供更加舒适和安全的驾驶体验。
浅析汽车底盘主动悬架控制方法
浅析汽车底盘主动悬架控制方法
汽车底盘主动悬架控制方法是指通过电子控制技术和传感器对车辆底盘悬架系统进行实时监测和控制,以改善车辆的行驶稳定性、舒适性和安全性。
目前主要的控制方法包括主动悬架控制、主动悬架与驱动控制的协同控制以及基于模型的预测控制。
主动悬架控制是通过控制电磁阀调节悬架的阻尼力和刚度,实现对车辆减振和悬架的主动调节。
具体来说,当车辆行驶在平稳的路面上时,主动悬架会根据传感器获取的数据调整阻尼和刚度,以提高车辆的悬挂舒适性;当车辆遇到颠簸路面时,主动悬架会根据传感器的数据,及时调整阻尼和刚度,以使车辆保持较好的行驶稳定性。
主动悬架与驱动控制的协同控制是指将悬架系统和车辆动力系统联合起来控制,以实现更好的车辆操控性能。
具体来说,当车辆行驶过程中需要进行加速、转向或制动时,主动悬架系统会根据传感器的数据对悬架进行调节,同时将调节后的数据传输给动力系统,动力系统会相应地调整发动机输出的扭矩和刹车压力,以提高车辆的操控性能和安全性能。
基于模型的预测控制是指通过建立数学模型对车辆底盘和悬架系统进行预测,并根据预测结果对悬架系统进行控制。
具体来说,基于模型的预测控制会根据车辆的行驶状态和路面状况,使用数学模型预测车辆的悬架响应,并根据预测结果对悬架系统的阻尼和刚度进行调整,以使车辆保持较好的行驶稳定性和舒适性。
主动悬架控制方法
主动悬架控制方法悬架系统是汽车底盘的重要组成部分,其主要功能是减震和支撑车身,以提供舒适性和稳定性。
传统的悬架系统通常采用被动控制方式,即减震器根据车身运动来调节阻尼力。
然而,随着科技的进步,主动悬架控制方法逐渐受到关注和应用。
主动悬架控制方法通过传感器和执行器实时监测和调整悬架系统的工作状态,以提供更好的悬架性能和驾驶体验。
主动悬架控制方法的核心是实时监测车身姿态和路面信息,并根据这些信息调整悬架系统的工作状态。
为了实现这一目标,悬架系统通常配备多个传感器,如加速度计、倾斜传感器、行程传感器等,用于监测车身的加速度、倾斜角度、行程等参数。
这些传感器将采集到的数据传输给控制单元,控制单元根据预设的控制算法计算出相应的控制信号,并通过执行器来调整减震器的阻尼力或悬架系统的高度。
主动悬架控制方法可以根据车辆的运行状态和路面的不同情况来调整悬架系统的工作状态。
例如,在高速行驶时,为了提供更好的稳定性和操控性,控制单元可以增加减震器的阻尼力,降低车身的倾斜角度。
而在通过颠簸路面时,控制单元可以减小减震器的阻尼力,提高悬架系统的行程,以提供更好的舒适性和减震效果。
此外,主动悬架控制方法还可以根据驾驶者的需求进行个性化调节,提供不同的驾驶模式选择,如舒适模式、运动模式等。
主动悬架控制方法的应用可以带来多种好处。
首先,它可以提供更好的悬架性能和驾驶体验。
通过实时调整悬架系统的工作状态,主动悬架控制方法可以使车辆更加稳定、舒适和操控性更好。
其次,它可以提高车辆的安全性。
通过根据路面情况调整悬架系统的工作状态,主动悬架控制方法可以减少因颠簸路面或急转弯等情况造成的车辆失控风险。
最后,它可以提高燃油经济性。
通过优化悬架系统的工作状态,主动悬架控制方法可以减少车辆的能耗,提高燃油经济性。
虽然主动悬架控制方法在提供悬架性能和驾驶体验方面具有显著优势,但也存在一些挑战和限制。
首先,主动悬架控制方法的成本较高。
相比传统的被动悬架系统,主动悬架控制方法需要更多的传感器和执行器,并且需要复杂的控制算法和计算单元,导致成本上升。
汽车悬架振动主动控制技术
汽车悬架振动主动控制技术主动悬架控制技术的目的是为了使得汽车车身与车轮之间弹性连接和正常运行,减少荷载、缓和冲击力、使车身尽量保持稳定,主要阐述的内容就是探讨汽车悬架振动主动控制技术的类型、原理以及方法。
标签:汽车悬架;振动主动;控制技术TB汽车悬架振动主动控制技术对于提高汽车的性能有着至关重要的作用。
根据汽车行驶过程中路面的实际情况,汽车可以及时的产生所需要的控制力,使达到控制车身震动和最优减震的状态。
汽车的悬架主动控制系统能够提高汽车在行驶过程中的稳定性,改善乘客乘坐汽车的舒适度。
而且随着汽车主动悬架控制技术的发展,节约能源减少噪音也成为该技术一项新的目标。
1悬架振动主动控制技术的类型和原理由于现代科学技术的高速发展,现代汽车对于主动悬架的性能提出了更高的技术性要求,这就需要应用现代科学技术不断地完善和更新悬架的振动控制方法和结构形式来配合新技术的发展,悬架的分类方式和结构形式有很多,我们主要介绍根据控制力的分类,将主动悬架系统分为被动、主动和半主动三种类型的悬架。
被动悬架系统在确定之后,汽车在行驶过程中就不能随着外界条件的改变而改变,由于不能够随意改变和选择参数,使得被动悬架系统的性能受到了限制,因此被动悬架的缺点就在于它的减振性能较差。
半主动悬架采用了可变性的弹簧和减震器,它在生产力方面类似于以往的被动悬架,进步的地方在于半主动悬架的减振性有所提高,主要工作原理是通过切换空气来改变弹簧的刚度。
主动悬架系统主要由执行机构和控制系统构成,它可以通过传感器来检测汽车的运行情况、道路目前的状况,这种悬架系统的减震性非常好,通常具有两种悬架形式,一种是通过电机驱动的空气式主动悬架,另一种是日产和丰田部分高档汽车所应用的电磁阀驱动的油气式主动悬架,油气式主动悬架利用与油压缸相连通的弹簧来吸收振动产生的能量,从而实现减震的目的。
2悬架振动主动控制技术的特点悬架振动主动控制技术主要是利用现代汽车科技新技术,提高汽车的减振性能,减少车轮与车身之间的摩擦,降低能源消耗,减少噪音污染,保护环境。
浅析汽车底盘主动悬架控制方法
浅析汽车底盘主动悬架控制方法1. 引言1.1 概述汽车底盘主动悬架控制方法是一种能够提高车辆悬挂系统性能和舒适性的技术。
随着汽车工业的发展和人们对行车舒适性和安全性要求的提高,底盘主动悬架控制方法逐渐受到重视。
底盘主动悬架控制方法通过感知路况和车辆运动状态,采取相应的控制策略来调节悬架系统的工作状态,以提高车辆的操控性、稳定性和舒适性。
不同类型的底盘主动悬架控制方法采用不同的技术手段和控制算法,如电磁悬架、液压悬架、空气悬架等。
本文将重点介绍各种主动悬架控制方法的原理、特点和应用领域,以及不同方法之间的优缺点比较。
通过对底盘主动悬架控制方法的深入研究和分析,可以为汽车制造商和研发人员提供参考,促进底盘主动悬架技术的进一步发展和应用。
在未来,底盘主动悬架控制方法将在汽车行业发挥越来越重要的作用,为驾驶员提供更安全、舒适的驾驶体验。
1.2 研究背景汽车底盘主动悬架控制方法作为汽车底盘控制技术的一种重要手段,具有极其重要的应用价值和发展前景。
随着汽车工业的飞速发展,人们对汽车的舒适性、安全性和性能要求越来越高,传统的被动悬架系统已经不能满足人们的需求。
研究和开发底盘主动悬架控制方法成为了当前汽车工程领域的热点之一。
底盘主动悬架控制方法的研究背景主要包括以下几个方面。
随着汽车性能的提升,底盘控制技术对于提高汽车的行驶稳定性、通过性和舒适性等方面起到了至关重要的作用。
随着电子技术的不断发展和应用,底盘主动悬架控制方法可以通过精确控制悬架系统的工作状态,提高汽车的行驶性能和安全性。
底盘主动悬架控制方法可以实现不同路况下的智能调节,提高汽车通过不同路面时的适应能力和稳定性。
底盘主动悬架控制方法的研究还可以促进汽车工业的发展,推动汽车制造技术的进步,为人类社会的可持续发展做出积极贡献。
深入研究和开发底盘主动悬架控制方法具有重要的现实意义和理论意义。
1.3 研究目的研究目的是为了深入了解汽车底盘主动悬架控制方法的原理和应用,探讨不同类型的悬架控制方法的优缺点,为汽车制造商和工程师提供有效的参考和指导。
主动悬架安全控制技术
主动悬架安全控制技术摘要:本文通过查阅相关文献,简单介绍了各类主动悬架安全控制技术特点,总结了主动悬架安全控制技术主要优势,对比了各大车企主动悬架安全控制技术的应用情况。
关键词:主动悬架控制技术前言现今,人们对汽车的要求不再仅仅是一个代步工具,更注重汽车的安全性和乘坐舒适性。
车辆行驶时,由路面不平等因素引起振动,影响乘坐舒适性和操纵稳定性,甚至影响行驶速度,损坏车辆的零部件和运载的货物。
同时车辆振动也是车内噪声的主要来源。
车辆减振主要是通过使用车辆悬架系统来完成。
传统的被动悬架的阻尼和刚度参数一般按经验设计或优化设计方法选择。
一经选定,在车辆行驶过程中就无法进行调节,因而不能适应车辆参数、运行工况等的复杂多变。
在某个特定工况下按目标优化出的悬架系统,一旦载荷、车速和路况等发生变化,悬架在新的工况下便不再是最优[1]。
为了克服这个缺陷,国外在50年代就提出了主动悬架的概念。
主动悬架采用有源或无源可控元件组成一个闭环或开环的控制系统,根据车辆系统的运动状态和外部输入的变化(路面激励或驾驶员方向盘操作)作出反应,主动地调整和产生所需的控制力,使悬架始终处于最佳减振状态。
主动悬架由控制系统和执行机构组成,执行机构为有源液压系统的主动悬架简称全主动悬架,而无源主动悬架刚简称半主动悬架[2-4]。
半主动悬架由可调弹簧或可调阻尼器构成,与全主动悬架相比,最大优点是工作几乎不消耗发动机的功率,结构简单,造价较低,因此受到广泛重视。
1.主动悬架系统和被动悬架系统主动动悬架的控制环节中安装了能够产生抽动的装置,采用一种以力抑力的方式来抑制路面对车身的冲击力及车身的倾斜力。
由于这种悬架能够自行产生作用力,因此称为主动悬架。
被动悬架即传统式的悬架,是由弹簧、减振器(减振筒)、导向机构等组成,它的功能是减弱路面传给车身的冲击力,衰减由冲击力而引起的承载系统的振动。
其中弹簧主要起减缓冲击力的作用,减振器的主要作用是衰减振动[5]。
汽车悬挂系统的主动控制研究
汽车悬挂系统的主动控制研究随着汽车工业的不断发展,汽车悬挂系统的研究和改进也成为了汽车工程领域的热门话题之一。
汽车悬挂系统对于汽车行驶性能、舒适性以及安全性都起着至关重要的作用,因此如何通过主动控制技术来提高汽车悬挂系统的性能已经成为一个备受关注的话题。
本文将重点探讨汽车悬挂系统的主动控制研究,并对该领域的发展现状和未来趋势进行分析。
1. 汽车悬挂系统的作用和结构汽车悬挂系统是汽车的重要组成部分之一,它对汽车的行驶性能、舒适性以及安全性都有着直接影响。
汽车悬挂系统的主要作用包括:1)吸收和减震道路不平时所产生的冲击力,保证车辆的稳定性和舒适性;2)保持车身与车轮之间的合适位置关系,确保车辆在颠簸道路上有良好的抓地力和操控性。
汽车悬挂系统通常由减震器、弹簧、控制臂、横向稳定杆等组成。
其中减震器主要用于减少车身的颠簸和摇晃,弹簧则用于支撑车身重量并保持车身姿态,而控制臂和横向稳定杆则用于控制车轮和车身的运动,从而提高车辆的操控性能和稳定性。
2. 汽车悬挂系统的主动控制技术主动悬挂系统是指利用先进的传感器、执行器和控制系统来感知、分析和响应道路和车辆状态变化,从而及时调节悬挂系统的工作状态和性能。
通过主动悬挂系统,可以实现对车辆悬挂系统的实时控制,以提高车辆的行驶性能、舒适性和安全性。
主动悬挂系统的主要技术包括主动减震控制、主动悬架高度控制、主动抗侧倾控制等。
其中主动减震控制是目前应用最为广泛的一种主动悬挂技术,它通过感知车辆的速度、加速度、横向加速度、车身姿态等参数,并根据这些参数实时调节减震器的阻尼力,从而实现对车辆行驶过程中的颠簸和摇晃的抑制,提高车辆的舒适性和操控性。
目前,各大汽车厂商和研究机构都在积极开展汽车悬挂系统的主动控制研究。
主动减震控制技术已经在一些高端汽车上得到了应用,如奔驰的ABC主动悬挂系统、宝马的EDC主动减震系统等。
这些系统都采用了先进的传感器、控制器以及可调节减震器来实现对车辆悬挂系统的主动控制,从而提高了车辆的操控性能和舒适性。
汽车悬挂系统的主动控制研究
汽车悬挂系统的主动控制研究随着汽车行业的不断发展,汽车悬挂系统的主动控制技术也越来越受到关注。
汽车悬挂系统是汽车的重要部件之一,对车辆的操控性、舒适性和安全性影响极大。
传统的汽车悬挂系统是被动式的,只能被动地适应道路状况和车辆负荷变化。
随着先进的电子控制技术的应用,汽车悬挂系统的主动控制技术不断成熟,为汽车提供了更优越的悬挂性能。
汽车悬挂系统的主动控制技术是指通过传感器获取车辆状态信息,然后由电子控制单元对悬挂系统进行实时调节,以提高车辆的操控性、舒适性和安全性。
目前,主动悬挂系统主要有主动悬挂系统、主动稳定悬挂系统和半主动悬挂系统等。
主动悬挂系统的研究可以分为两个方面,一是传感器技术的研究,二是电子控制单元的研究。
在传感器技术方面,目前广泛应用的有加速度传感器、位移传感器、压力传感器等,这些传感器可以用于获取车辆的加速度、姿态、悬挂位移、悬挂压力等信息,为电子控制单元提供数据支持。
在电子控制单元方面,研究重点是如何利用这些传感器获取的信息,实现对悬挂系统的精准控制。
需要考虑的因素包括悬挂系统的调节速度、精度、可靠性等。
在实际的汽车悬挂系统主动控制研究中,有几个关键技术问题需要解决。
首先是传感器技术的研究和应用。
传感器的准确性、稳定性和适应性将直接影响到悬挂系统的主动控制效果。
其次是电子控制单元的性能要求。
电子控制单元需要对传感器获取的信息进行快速准确的处理,并且生成合理的控制指令,以实现对悬挂系统的精准控制。
还需要考虑悬挂系统的机械结构,以确保悬挂系统的可调节性和可靠性。
在汽车悬挂系统的主动控制研究中,国内外都进行了大量的研究工作,并取得了一些进展。
在国外,许多汽车厂商和研究机构都对汽车悬挂系统的主动控制技术进行了研究和应用。
梅赛德斯-奔驰的Magic Body Control技术,通过使用立体摄像头和路面扫描技术,实现了对车辆悬挂系统的主动控制。
在国内,一些汽车厂商也开始重视汽车悬挂系统的主动控制技术研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主动悬架安全控制技术【引言】主动控制悬架可使汽车乘坐舒适性和操纵安全性同时得到改善。
介绍了国内外汽车主动悬架系统的现状及发展,重点介绍了几种常见的控制方法。
简介:悬架系统的主要作用是有效地减缓路面不平而引起的车体振动(乘坐舒适性)以及操纵安全性。
随着汽车性能的不断完善与发展,对悬架也提出了更高的要求。
为了满足现代汽车对悬架提出的各种性能要求,悬架的结构形式一直在不断地更新和完善,尽管这样,传统的被动悬架依然受到许多限制,主要是难于同时改善在不平路面上高速行驶车辆的稳定性和行驶平顺性,即使采用优化设计也只能保证悬架在特定的激励发生变化后,悬架的性能亦随之发生变化。
事实上,被动悬架的潜力在目前已接近极限,为了克服传统的被动悬架对汽车性能改善的限制,近年来,汽车工业中出现的主动悬架成为了一条改善汽车悬架性能的新途径。
主动悬架控制系统是一个闭环控制系统,它能根据系统的运动状态和当前的激励情况,主动做出反应来控制系统的振动,在控制过程中,可以根据外界输入。
与系统状态的变化实时调节控制系统参数,以获得最好的减振效果。
主动悬架通常可分为:有源主动悬架和无源主动悬架两大类。
有源主动悬架一般又简称为主动悬架,主动悬架一般由执行机构和控制决策部分构成。
其基本原理是根据被控系统的动态特性,采用由外部输入能量的控制方法使被控系统实现减振。
主动悬架系统的执行部分一般包括液压执行机构、动力源等,执行机构上装有控制器,它执行决策部分的命令。
一般用力发生器完全地或部分地代替被动悬架中的弹簧和阻尼器。
力的大小由控制规律决定。
决策部分为一车载微机系统,包含各种传装置、测量仪器和信号反馈处理等系统。
微机接收来自传感器的信号,经预定控制程序处理后,由控制器发出命令,决定执行机构所需的动作,从而形成闭环控制。
主动悬架具有如下显著优点:(1)在悬架静扰度较小的前提下,能获得较低的固有频率和动扰度。
(2)悬架的动力学特性,不随汽车的载荷变化而改变。
`(3)对任何形式的激励均能做出快速的反应,并能根据激励的变化而使悬架变“硬”或变“软"。
无源主动悬架又称为半主动悬架,它由一个弹性元件和一个系数能在较大范围内调节的阻尼器构成。
悬架的减振方式和工作原理与被动悬架相近。
不同的是悬架参数在一定的范围内可以调节,以获得最佳减振性能。
在车辆悬架中,弹性元件除了用于吸收和存储能量外,还得承受车体的静止质量,所以,在无源条件下,改变刚度要比改变阻尼困难得多。
所以目前大部分无源主动悬架实际上仅讨论阻尼的控制。
与有源主动悬架相比,无源主动悬架的最大优点是工作是几乎不消耗动力,因此越来越受到人们的重视。
本文中所述主动悬架均指有源主动悬架。
主动悬架的出现已成为车辆工程理论和实践中的重大改革,它同时改善了车辆的舒适性和安全性。
但是主动悬架的执行机构需要选用高精度的伺服缸(如液压缸、油气缸),需要复杂的传感器和仪器设备,需要较多的外部动力来控制执行机构。
这就决定了主动悬架系统的结构复杂、研制成本较高,而且系统可靠性始终是值得研究提高的一个问题。
但考虑到主动悬架具有的多种其他悬架系统所无法比拟的优点,主动悬架将是今后车辆悬架系统发展的重要方向,因此对主动悬架控制进行研究具有很大的实际意义。
车辆主动悬架的研究在国内外,尤其在国外得到了广泛的开展,许多大学与汽车大公司对主动悬架进行了理论与实践的研究,并取得了很好的效果。
对主动悬架的研究主要从两个方面展开:一是各种可能模型的主动悬架及其控制规律的特性研究与被动悬架相比较。
二是控制规律的设计。
采用不同的控制规律和数学模型,所获得的悬架特性是不一样的,因此采用什么样的模型和控制规律以及与之对应的悬架特性是什么,是主动悬架研究的一个重要方面。
常见控制方法1自适应与自校正控制方法自适应与自校正悬架系统可看作一个可自动改变其控制律参数以适应于车辆当前的工作条件的控制系统。
自适应一般发生在车辆行驶过程中的,具有较慢统计特性变化的干扰,即路面输入干扰。
自校正是指对运行初始的静态干扰,如车身质量的变化。
自适应与自控制方法的基本思想是根据系统当前输入的相关信息,从预先计算并存储的参数中选取当前最合适的控制参数。
其设计关键的选择能准确,可靠地反映输入变化的参考变量。
只要变量选择得当,控制器即可快速,方便地相应改变控制参数以适应当前输入变化。
车辆参数变化可能显著影响系统的输出,这将会使控制器难以区别系统输出的变化是来自于路面输入的变化或是来自于车辆参数的变化,从而选择不到真正合适的控制参数。
考虑车辆参数变化较大的情况,可采用自适应于路面输入和车辆参数的变化的自校正控制系统。
2天棚阻尼器控制方法天棚阻尼器控制理论是由美国的 D.KARNOPP教授提出,在主动控制悬架的控制中被广泛采用。
天棚阻尼器控制设想将系统中的阻尼器移至车体与某固定的天棚之间。
就主动悬架而言,也就是要求有执行机构产生一个与车体的上下振动绝对速度成比例的控制力来衰减车体的振动。
传统的被动悬架可以认为是带阻尼器的双质量振动系统,当考虑到带宽和系统的共振特性时,传统被动悬架性能不能令人满意。
但带天棚阻尼器的汽车悬架,只要合理选择参数,可彻底消除系统共振现象。
3最优控制方法、鲁棒控制方法通过建立系统的状态方程式提出控制目标及加权系数,然后应用控制理论求解出所设目标下的最优控制方案。
较天棚阻尼器控制方法而言,它对系统中更多的变量的影响加以考虑,因而控制效果更好。
而且现代控制方式的应用,主要是在系统的控制软件方面做一些改善,并不增加系统的复杂性。
根据最优控制理论设计出的主动悬架,只对数学模型保证预期的性能。
但是对于实际的车辆系统,存在着各种不满足理想条件下的不确定因素。
首先实际的车辆系统都是非线性的和时变的系统。
其次实际系统是一个复杂的高维系统,建模时忽略了系统的高阶动态环节,如车架,轮胎的高阶模态,传感器,作动器的动态特性等。
所有这些因素的存在,都是实际系统偏离理论模型,从而使实际系统达不到理论所预言的性能。
因此有必要对系统作鲁棒性分析,即在各种模型误差及不确定扰动的情况下,研究系统的稳定性问题,并且研究系统在受到多大的扰动时仍能保持稳定,即系统的鲁棒性。
研究表明:指标的权重系数,状态测量方式,簧上质量和悬架刚度对系统的鲁棒稳定性有重要影响,而作动器和传感器的动态环节对其影响不大。
利用LTR方法可以对LQG系统进行鲁棒稳定性恢复,同时使系统的性能损失减到最低限度。
4预见控制方法天棚阻尼器控制方法和最优控制都是根据当时道路和车辆的状态反馈而决定控制力,而预见控制方法却对即将出现的情况加以考虑以求进一步提高系统的控制性能。
当遇到较大或突变干扰时,由于系统的能量供应峰值和元件响应速度的限制,很可能无法输出所需的控制力而达不到希望的控制效果。
而预见控制方法,由于通过某种方法提前检测到前方道路的状态和变化,使系统有余的采取相应的措施,有可能降低系统的能量消耗且大幅度改善系统控制性能,取得一举两得的效果。
根据预见信息的获取及利用方法的不同,可构成不同的预见控制系统,大致有如下两种:(1)对四轮全进行预见控制。
这种预见控制系统在车的前部设置有特制的预见传感器以测试前方道路的凹凸情况,然后将这些信息传至控制器。
控制器根据这些信息计算出控制指令,并将相应信号送至四个车轮中的每一个悬架机构。
从理论上看,这种系统应取得最为理想的控制效果,但需要设置特殊的传感器。
目前未见有批量实用车上市。
(2)利用前轮信息对后轮进行预见控制。
在这种控制方式中,两个前轮采用的仅为反馈控制,但通过前轮部分各种传感器所获得的信息,都被作为预见信息而送至控制器。
在决定后轮的控制指令时,控制器不仅考虑当时后轮传感器得到的各种信息,而且也根据当时的车速和前后轮间的跨距,并考虑前轮各传感器所获得的信息。
因此,在后轮的执行机构上,实行的是反馈加前向反馈的双作用控制。
这样一来无须增设特制的预见传感器,只须对控制系统软件作些修改,便可对后轮实施预见控制,从而提高后轮的减振效果,同时就整车而言可以减小车体的摆动,因而控制效果得到改善。
5神经网络控制近年来,采用神经网络的控制方法已日益引起人们的重视,神经网络具有自适应学习,并行分布处理和较强的鲁棒性,容错性等特点,因此适合于对复杂系统进行建模和控制。
可以建立一种神经网络自适应控制结构,有两个子神经网络,其中一个神经网络对于系统进行在线辩识。
在对被控对象进行在线辩识的基础上,应用另一个具有控制作用的神经网络,通过对控制网络的权系数进行在线调整,控制器经过学习,对悬架系统进行在线控制,使系统输出逐渐向期望值接近。
通过仿真计算可知,具有神经网络自适应控制的主动悬架能很好地减小汽车振动,提高行驶平顺性和稳定性。
2结论主动控制悬架能根据检测到的环境与车体状况,主动地调整和产生所需的控制力,从而可使乘坐舒适性和操纵安全性同时得到改善。
随着汽车技术的发展,特别是随着新的微型电路技术的发展,主动控制悬架的应用和研究也得到很快的发展。
主动悬架是今后汽车悬架发展的方向。
但由于系统复杂性和额外的能耗以及成本太高,主动悬架在商业上的应用还需要时间。
目前需要解决的技术问题主要有简化系统结构,提高可靠性,适应性和采用新型控制策略等。
随着主动悬架理论的成熟,执行机构,传感器和微处理器等硬件的发展,主动悬架会得到普遍的推广与应用。