一次函数知识点(全)
(完整版)一次函数知识点复习总结
6、函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
7、描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);
一次函数
(1)函数
1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应
⑶当 , 时,它不是一次函数.
⑷正比例函数是一次函数的特例,一次函数包括正比例函数.
2、正比例函数及性质
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.
注:正比例函数一般形式y=kx (k不为零) k不为零 x指数为1 b取零
当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时, 直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.
k<0,y随x的增大而减小。(从左向右下降)
倾斜度
|k|越大,越接近y轴;|k|越小,越接近x轴
图像的
平 移
b>0时,将直线y=kx的图象向上平移 个单位;
b<0时,将直线y=kx的图象向下平移 个单位.
6、直线 ( )与 ( )的位置关系
(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限
一次函数的知识点
一次函数的知识点一、函数基本概念一次函数的定义:形如y = kx + b(其中k和b是常数,且k ≠ 0)的函数称为一次函数。
二、一次函数的性质1、斜率(k):当k > 0时,函数图像从左到右上升,即函数是增函数。
当k < 0时,函数图像从左到右下降,即函数是减函数。
斜率k表示函数图像与x轴正方向的夹角大小。
2、截距(b):当x = 0时,y = b,即点(0, b)为一次函数与y轴的交点,b称为y轴截距。
3、图象:一次函数的图象是一条直线。
当k > 0时,直线从左到右上升;当k < 0时,直线从左到右下降。
三、一次函数的表达式1、点斜式:y - y1 = k(x - x1),其中(x1, y1)是直线上的一点。
2、斜截式:y = kx + b,其中k是斜率,b是y轴截距。
3、两点式:当已知直线上的两点(x1, y1)和(x2, y2)时,可以使用两点式(y - y1) / (y2 - y1) = (x - x1) / (x2 - x1)。
四、一次函数的应用1、线性方程:一次函数常用于表示线性方程,如ax + by = c(其中a和b不全为0)可以转化为斜截式y = (-a/b)x + (c/b)。
2、实际问题建模:一次函数常用于建模实际问题中的线性关系,如物价增长、距离速度时间的关系等。
五、一次函数的平移和对称1、平移:2、上下平移:上加下减,即y = kx + b向上平移m个单位变为y = kx + (b + m),向下平移m个单位变为y = kx + (b - m)。
3、左右平移:左加右减,即y = kx + b向左平移m个单位变为y = k(x + m) + b,向右平移m个单位变为y = k(x - m) + b。
4、对称:一次函数图像关于x轴对称时,其解析式中的y变为-y,即y = -kx - b。
一次函数图像关于y轴对称时,其解析式中的x变为-x,即y = -kx + b。
考点10一次函数(解析版)
第四章一次函数考点类型大总结【知识点及考点类型梳理】一、正比例函数的概念一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做正比例系数.二、一次函数1.一次函数的定义一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做x的一次函数.特别地,当一次函数y=kx+b中的b=0时,y=kx(k是常数,k≠0).这时,y叫做x的正比例函数.2.一次函数的一般形式一次函数的一般形式为y=kx+b,其中k,b为常数,k≠0.一次函数的一般形式的结构特征:(1)k≠0,(2)x的次数是1;(3)常数b可以为任意实数. 3.注意(1)正比例函数是一次函数,但一次函数不一定是正比例函数.(2)一般情况下,一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数,就是判断它是否能化成y=kx+b(k≠0)的形式.三、一次函数的图象及性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线.k的符号函数图象图象的位置性质k>0图象经过第一、三象限y随x的增大而增大k<0图象经过第二、四象限y随x的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象一次函数的图象一次函数y=kx+b(k≠0)的图象是经过点(0,b)和(-bk,0)的一条直线图象关系一次函数y=kx+b(k≠0)的图象可由正比例函数y=kx(k≠0)的图象平移得到;b>0,向上平移b个单位长度;b<0,向下平移|b|个单位长度图象确定因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两点即可(2)一次函数的性质函数字母取值图象经过的象限函数性质y =kx +b (k ≠0)k >0,b >0一、二、三y 随x 的增大而增大k >0,b <0一、三、四y =kx +b (k ≠0)k <0,b >0一、二、四y 随x 的增大而减小k <0,b <0二、三、四3.k ,b 的符号与直线y =kx +b (k ≠0)的关系在直线y =kx +b (k ≠0)中,令y =0,则x =-b k ,即直线y =kx +b 与x 轴交于(–bk,0).①当–bk>0时,即k ,b 异号时,直线与x 轴交于正半轴.②当–bk=0,即b =0时,直线经过原点.③当–bk<0,即k ,b 同号时,直线与x 轴交于负半轴.4.两直线y =k 1x +b 1(k 1≠0)与y =k 2x +b 2(k 2≠0)的位置关系:①当k 1=k 2,b 1≠b 2,两直线平行;②当k 1=k 2,b 1=b 2,两直线重合;③当k 1≠k 2,b 1=b 2,两直线交于y 轴上一点;④当k 1·k 2=–1时,两直线垂直.四、待定系数法1.定义:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而得出函数解析式的方法叫做待定系数法.2.待定系数法求正比例函数解析式的一般步骤(1)设含有待定系数的函数解析式为y =kx (k ≠0).(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k 的一元一次方程.(3)解方程,求出待定系数k .(4)将求得的待定系数k的值代入解析式.3.待定系数法求一次函数解析式的一般步骤(1)设出含有待定系数k、b的函数解析式y=kx+b.(2)把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k,b的二元一次方程组.(3)解二元一次方程组,求出k,b.(4)将求得的k,b的值代入解析式.五、一次函数与正比例函数的区别与联系正比例函数一次函数区别一般形式y=kx+b(k是常数,且k≠0)y=kx+b(k,b是常数,且k≠0)图象经过原点的一条直线一条直线k,b符号的作用k的符号决定其增减性,同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k,b的符号共同决定直线经过的象限求解析式的条件只需要一对x,y的对应值或一个点的坐标需要两对x,y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样,都是过两点画直线,但画一次函数的图象需取两个不同的点,而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时,y的值随x值的增大而增大;b.当k<0时,y的值随x值的增大而减小.六、一次函数与方程(组)、不等式1.一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k,b为常数,且k≠0)的形式.从函数的角度来看,解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑,解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.2.一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a,b为常数,且a≠0)的形式.从函数的角度看,解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.3.一次函数与二元一次方程组一般地,二元一次方程mx +ny =p (m ,n ,p 是常数,且m ≠0,n ≠0)都能写成y =ax +b (a ,b 为常数,且a ≠0)的形式.因此,一个二元一次方程对应一个一次函数,又因为一个一次函数对应一条直线,所以一个二元一次方程也对应一条直线.进一步可知,一个二元一次方程对应两个一次函数,因而也对应两条直线.从数的角度看,解二元一次方程组相当于考虑自变量为何值时,两个函数的值相等,以及这两个函数值是何值;从形的角度看,解二元一次方程组相当于确定两条直线的交点坐标,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.七、一次函数图象与图形面积解决这类问题的关键是根据一次函数解析式求出一次函数图象与坐标轴的交点的坐标,或两条直线的交点坐标,进而将点的坐标转化成三角形的边长,或者三角形的高.如果围成的三角形没有边在坐标轴上或者与坐标轴平行,可以采用“割”或“补”的方法.考点类型一、一次函数与正比例函数的定义1.在下列函数中:①8y x =-;②312y x =+;③1y =;④285y x =-+;⑤0.51y x =--,一次函数有()A .1个B .2个C .3个D .4个【答案】C 【分析】一般地,形如y =kx +b (k ≠0,k 、b 是常数)的函数,叫做一次函数,据此进行判断即可.【详解】解:①8y x =-属于一次函数;②312y x =+属于一次函数;③1y =不属于一次函数;④285y x =-+属于二次函数;⑤0.51y x =--属于一次函数;∴一次函数有3个,故选:C .2.下列问题中,两个变量之间是正比例函数关系的是()A .汽车以80km/h 的速度匀速行驶,行驶路程(km)y 与行驶时间(h)x 之间的关系B .圆的面积()2cm y 与它的半径(cm)x 之间的关系C .某水池有水315m ,现打开进水管进水,进水速度35m /h ,h x 后水池有水3m yD .有一个边长为x 的正方体,则它的表面积S 与边长x 之间的函数关系【答案】A 【分析】根据正比例函数的定义逐个判断即可求解【详解】选项A:y=80x,属于正比例函数,两个变量之间成正比例函数关系,符合题意;选项B:2y x π=属于二次函数,两个变量之间不是成正比例函数关系,不合题意;选项C:y=15+5x ,属于一次函数,两个变量之间不是成正比例函数关系,不合题意;选项D:S=6x 2,属于二次函数,两个变量之间不是成正比例函数关系,不合题意;故选:A 【点睛】本题考查正比例函数的定义,正确理解正比例函数的定义是关键3.在①8y x =-;②8y x=-;③1y =;④286y x =-+;⑤0.51y x =--,一次函数有()A .1个B .2个C .3个D .4个【答案】B 【分析】一般地,形如y =kx +b (k ≠0,k 、b 是常数)的函数,叫做一次函数,据此进行判断即可.【详解】解:①y =-8x 属于一次函数;②y =8x-属于反比例函数;③y不属于一次函数;④y =-8x 2+6属于二次函数;⑤y =-0.5x -1属于一次函数,∴一次函数有2个,故选:B .举一反三4.下列函数中是一次函数的是()A .y =2x B .2y x=C .y =x 2D .y =kx +b (k ,b 为常数)【答案】A 【分析】利用一次函数定义进行解答即可.【详解】解:A 、y =2x是一次函数,故此选项符合题意;B 、y =2x是反比例函数,不是一次函数,故此选项不合题意;C 、y =x 2是二次函数,故此选项不符合题意;D 、当k =0时,y =kx +b (k ,b 为常数)不是一次函数,故此选项不合题意;故选:A .5.下列函数是正比例函数的是()A .2x y =B .2y x=C .2y x =D .2(1)y x =+【答案】A 【分析】根据用x 表示成y 的函数后,若符合()0y kx k =≠的形式,是正比例函数解答即可.【详解】A 、2xy =是正比例函数;B 、2y x=是反比例函数;C 、2y x =是二次函数;D 、()21y x =+是一次函数.故选:A .考点类型二、一次函数的图像6.函数2y x =-的图象经过的象限是()A .第一,二,三象限B .第一,二,四象限C .第一,三,四象限D .第二,三,四象限【答案】C【分析】根据一次函数k=1>0,b=-2<0,即可得到答案.【详解】y x=-中,k=1>0,b=-2<0,解:∵函数2y x=-的图象经过的象限是:第一,三,四象限,∴2故选C.【点睛】本题主要考查一次函数图像所经过的象限,掌握一次函数图像与一次函数中的系数k,b的关系,是解题的关键.7.若一次函数y=(k﹣2)x+1的函数值y随x的增大而减小,则()A.k<2B.k>2C.k<0D.k>0【答案】A【分析】根据一次函数的性质,可得答案.【详解】解:由题意,得k-2<0,解得k<2,故选:A.【点睛】本题考查了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大,当k<0时,函数值y随x 的增大而减小.8.若一次函数的y=kx+b(k<0)图象上有两点A(﹣2,y1)、B(1,y2),则下列y大小关系正确的是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【答案】B【分析】首先观察一次函数的x项的系数,当x项的系数大于0,则一次函数随着x的增大而增大,当x小于0,则一次函数随着x的减小而增大.因此只需要比较A、B点的横坐标即可.【详解】解:根据一次函数的解析式y =kx +b (k <0)可得此一次函数随着x 的增大而减小因为A (﹣2,y 1)、B (1,y 2),根据-2<1,可得12y y >故选B .9.已知直线32y x b =-+经过点A (1m ,-2),B (2m ,-1)两点,则1m ______2m 【答案】>【分析】根据一次函数增减性可得,k <0,y 随x 的增大而减小,k >0,y 随x 的增大而增大即可判断得出答案.【详解】解:∵直线的解析式为32y x b=-+∴k <0∴y 随x 的增大而减小∵直线32y x b =-+经过点A (1m ,-2),B (2m ,-1)两点,21-<-∴12m m >故答案为:>.10.在一次函数23y x =-+中,当05x ≤≤时,y 的最小值为________.【答案】-7【分析】根据一次函数的性质得y 随x 的增大而减小,则当x =5时,y 有最小值,然后计算x =-5时的函数值即可.【详解】解:∵k =-2<0,∴y 随x 的增大而减小,∴当x =5时,y 有最小值,把x =5代入y =-2x +3得y =-10+3=-7.故答案为:-7.11.关于一次函数y =﹣2x +4,下列结论正确的是()A .图象过点(0,-2)B .图象经过一、三、四象限C.y随x的增大而增大D.图象与x轴交于点(2,0)【答案】D【分析】根据一次函数的性质对各项进行逐一判断即可.【详解】A、当x=0时,y=4,过点(0,4),故A选项错误;B、因为k=-2<0,图象经过第一、二、四象限,故B错误;C、因为k=-2<0,y随x的增大而减小,故C错误;D、当y=0时,x=2,即图象与x轴交于点(2,0),故D正确.故选:D12.下图中表示一次函数y=mx+n与正比例函数y=nx(m,n是常数,且mn<0)图象的是()A.B.C.D.【答案】B解:A、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y =mx+n的图象经过第一、三、四象限;故本选项错误;B、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n 的图象经过第一、二、四象限;故本选项正确;C、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y=mx+n 的图象经过第一、三、四象限;故本选项错误;D、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n 的图象经过第一、二、四象限;故本选项错误;故选:B .【点睛】本题综合考查了正比例函数、一次函数图象与系数的关系.解题的关键是掌握一次函数(0)y kx b k =+≠的图象有四种情况:①当0k >,0b >,函数y kx b =+的图象经过第一、二、三象限;②当0k >,0b <,函数y kx b =+的图象经过第一、三、四象限;③当0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限;④当0k <,0b <时,函数y kx b =+的图象经过第二、三、四象限.13.一次函数52y x =-的图象过点()11,x y ,()()12131,,2,x y x y ++,则()A .123y y y <<B .321y y y <<C .213y y y <<D .312y y y <<【答案】A 【分析】先根据一次函数的解析式判断出函数的增减性,再根据x 1<x 1+1<x 1+2即可得出结论.【详解】解:∵一次函数52y x =-中,k =5>0,∴y 随着x 的增大而增大.∵一次函数52y x =-的图象过点()11,x y ,()()12131,,2,x y x y ++,且x 1<x 1+1<x 1+2,∴123y y y <<,故选:A .14.若直线y =kx +b 不经过第一象限,则()A .k >0,b <0B .k <0,b ≤0C .k <0,b ≥0D .k <0,b >0【答案】B 【分析】由题意,结合一次函数图象特点,直线必过第二、三、四象限或经过原点和第二、四象限,由此讨论求解即可.【详解】解:由直线y kx b =+不经过第一象限,可分两种情况:当直线经过第二、三、四象限时,∵直线必过第二、四象限,∴k <0,∵直线还经过第三象限,即直线与y 轴的交点在y 轴的负半轴,∴b <0;当直线经过原点和第二、四象限时,k <0,b =0,综上,k <0,b ≤0,故选:B .【点睛】本题主要考查了一次函数的图象,熟练掌握一次函数的图象在直角坐标系中的位置与系数k 、b 的关系是解答的关键.15.将直线23y x =-向上平移2个单位长度,所得的直线解析式为________.【答案】y =2x -1【分析】根据k 值不变,b 值加2可得出答案.【详解】解:平移后的解析式为:y =2x -3+2=2x -1.故答案为:y =2x -1.【点睛】本题考查的是关于一次函数的图象与它平移后图象的变换的题目,在解题过程中只要抓住平移后直线方程的斜率不变这一性质,就能很容易解答了.16.在平面直角坐标系中,要得到函数y =2x ﹣1的图象,只需要将函数y =2x 的图象()A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位【答案】B【分析】根据“上加下减”的原则写出新直线解析式.【详解】解:由“上加下减”的原则可知,将函数2y x =的图象向下平移1个单位长度所得函数的解析式为21y x =-.故选:B .【点睛】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.17.点P (a ,b )在函数3y x =的图象上,则代数式622021a b -+的值等于_________.【答案】2021.【分析】把点P 的坐标代入一次函数解析式,得出3b a =,将3b a =代入622021a b -+中计算即可.【详解】解:∵点P (a ,b )在函数3y x =的图象上,∴3b a =,∴62202162320212021a b a a -+=-+= 故答案为:2021.【点睛】本题主要考查了一次函数的图像性质,结合代数式求值是解题的关键.18.已知函数y 1=(m +1)x ﹣m 2+1(m 是常数).(1)m 为何值时,y 1随x 的增大而减小;(2)m 满足什么条件时,该函数是正比例函数?(3)若该函数的图象与另一个函数y 2=x +n (n 是常数)的图象相交于点(m ,3),求这两个函数的图象与y 轴围成的三角形的面积.【答案】(1)m <﹣1;(2)m =1;(3)4【分析】(1)根据题意10+<m ,解得即可;(2)根据正比例函数的定义得到10m +≠,210m -+=,解得1m =;(3)由函数()2111y m x m =+-+经过点(),3m 求得2m =,得到交点为()2,3,根据交点坐标求得函数1y 的解析式,即可求得与y 轴的交点坐标,把交点坐标代入2y x n =+,求得解析式,即可求得与y 轴的交点坐标,然后根据三角形面积公式即可求得两个函数的图象与y 轴围成的三角形的面积.【详解】解:(1)由题意:10+<m ,1m ∴<-,即1m <-时,1y 随x 的增大而减小;(2)若该函数是正比例数,则10m +≠,210m -+=,1m ∴=,即1m =时,该函数是正比例数;(3) 两个的图象相交于点(),3m ,()2113m m m ∴+-+=,2m ∴=,∴交点坐标为()2,3,∴该点到y 轴的距离为2,将2m =代入()2111y m x m =+-+,得:133y x =-,将交点坐标()2,3代入2y x n =+,得:1n =,21y x ∴=+,∴两个函数图象与y 轴的交点坐标分别为()0,3-和()0,1,∴所围成的三角形的面积为:()13224--⨯÷=⎡⎤⎣⎦.【点睛】本题考查了一次函数的性质,一次函数图象上点的坐标特征,正比例函数的定义,一次函数图象与系数的关系,三角形的面积等,熟练掌握一次函数的性质以及求得交点坐标是解题的关键.考点类型三、求一次函数表达式19.已知3y +与x 成正比例,且2x =时,1y =.求y 关于x 的函数表达式;【答案】y 关于x 的函数表达式为23y x =-.【分析】设3y kx +=(0k ≠),再把2x =,1y =代入求出y 关于x 的关系式即可.【详解】设3y kx +=(k 是常数且0k ≠),把2x =,1y =代入,得132k +=,解得2k =,所以32y x +=,所以y 关于x 的函数表达式为23y x =-.【点睛】本题考查正比例函数的定义,根据题意求出k 的值是解题的关键.20.已知y ﹣2与x +1成正比例,且x =2时,y =8(1)写出y 与x 之间的函数关系式;(2)当x =﹣4时,求y 的值.【答案】(1)y =2x +4,(2)-4【分析】(1)设y ﹣2=k (x +1)(k 为常数,k≠0),把x =2,y =8代入求出k 即可;(2)把x =﹣4代入y =2x +4计算即可求出答案.【详解】解:(1)∵y ﹣2与x +1成正比例,∴设y ﹣2=k (x +1)(k 为常数,k≠0),把x =2,y =8代入得:8﹣2=k (2+1),解得:k =2,即y ﹣2=2(x +1),即y =2x +4,∴y 与x 之间的函数关系式是y =2x +4;(2)当x =﹣4时,y =2×(﹣4)+4=﹣4.21.某物流公司引进A 、B 两种机器人用来搬运某种货物.这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运,如图,线段OG 表示A 种机器人的搬运量y A (千克)与时间x (时)的函数图象,线段EF 表示B 种机器人的搬运量y B (千克)与时间x (时)的函数图象,根据图象提供的信息,解答下列问题:(1)P 点的含义是;(2)求y B 关于x 的函数解析式;(3)如果A 、B 两种机器人连续运5小时,那么B 种机器人比A 种机器人多搬运了多少千克?【答案】(1)A 种机器人搬运3小时时,A 、B 两种机器人的搬运量相等,且都为180千克;(2)y =90x ﹣90(1≤x ≤6);(3)如果A 、B 两种机器人连续运5小时,那么B 种机器人比A 种机器人多搬运了150千克【分析】(1)观察函数图象,根据点P 为线段OG 、EF 的交点结合题意即可找出点P 的含义;(2)根据点E 、P 的坐标利用待定系数法即可求出y B 关于x 的函数解析式;(3)根据工作总量=工作效率×工作时间,分别求出A 、B 两种机器人连续运5小时的云货量,二者做差即可得出结论.【详解】解:(1)P 点的含义是:A 种机器人搬运3小时时,A 、B 两种机器人的搬运量相等,且都为180千克.故答案为:A 种机器人搬运3小时时,A 、B 两种机器人的搬运量相等,且都为180千克.(2)设y B 关于x 的函数解析式为y B =kx +b ,将(1,0)、(3,180)代入y B =kx +b ,03180k b k b +=⎧⎨+=⎩,解得:9090k b =⎧⎨=-⎩,∴y B 关于x 的函数解析式为y =90x ﹣90(1≤x ≤6).(3)连续工作5小时,A 种机器人的搬运量为(180÷3)×5=300(千克),连续工作5小时,B 种机器人的搬运量为[180÷(3﹣1)]×5=450(千克),B 种机器人比A 种机器人多搬运了450﹣300=150(千克).答:如果A 、B 两种机器人连续运5小时,那么B 种机器人比A 种机器人多搬运了150千克.22.如图,在平面直角坐标系中,一次函数y kx b =+的图象与x 轴、y 轴分别交于A ,B 两点,且经过点()2,6D -,与正比例函数3y x =的图象相交于点C ,点C 的横坐标为1.(1)求一次函数y kx b =+的解析式(2)求BOC 的面积【答案】(1)4y x =-+;(2)2【分析】(1)求出点C 的坐标,将,C D 坐标代入到y kx b =+中,求出即可;(2)求出点B 的坐标,根据三角形的面积公式即可求出;【详解】解:(1)当1x =时,3y =设直线y kx b =+过()()1,32,6-,∴623k b k b=-+⎧⎨=+⎩解得:14k b =-⎧⎨=⎩∴函数解析式为4y x =-+(2)当0x =时,4y =∴14122BOC S =⨯⨯= 考点类型四、一次函数与一元一次方程23.画出函数33y x =-+的图象,根据图象回答下列问题:求方程330x -+=的解【答案】图像见详解;1x =.【分析】利用两点法画出函数的图象,然后令0y =,即直线与x 轴的交点的横坐标就是方程330x -+=的解.【详解】解:∵函数33y x =-+,令0y =,则1x =;令0x =,则3y =,33y x =-+的图像如图所示:由图可知,方程330x -+=的解是1x =;【点睛】本题考查了画一次函数的图像,由图像求一元一次方程的解,解题的关键是掌握一次函数的性质进行解题.考点类型五、一次函数的综合24.如图,在平面直角坐标系中,一次函数6y x =-+的图象与x 轴、y 轴分别交于B 、C 两点,与正比例函数12y x =的图象交于点A .(1)求A 、B 、C 三点的坐标;(2)求OAC 的面积;(3)若动点M 在射线AC 上运动,当OMC 的面积是OAC 的面积的12时,求出此时点M 的坐标.【答案】(1)()4,2A ,()6,0B ,()0,6C ;(2)12;(3)()2,4或()2,8-.【分析】(1)在一次函数6y x =-+中,分别令0y =,0x =,即可求出B 、C 的坐标,再联立一次函数和正比例函数即可求出交点A 的坐标;(2)利用(1)中,找到OC ,A x 的长即可求出OAC 的面积;(3)根据OMC 的面积是OAC 的面积的12时,求出M 的横坐标,再分情况讨论即可找到M 的坐标.【详解】解:(1)∵一次函数6y x =-+的图象与x 轴、y 轴分别交于B 、C 两点,∴令0x =,则6y =,故()0,6C ,令0y =,则6x =,故()6,0B ,而A 为一次函数6y x =-+和正比例函数12y x =图象的交点,联立方程得:612y x y x =-+⎧⎪⎨=⎪⎩,解得:42x y =⎧⎨=⎩,∴A 的坐标为()4,2.故答案为:()4,2A ,()6,0B ,()0,6C .(2)由(1)可知:6OC =,4A x =,∴12OAC A S OC x =⨯⨯△164122=⨯⨯=.故答案为:12.(3)由题意得:12OMC OAC S S =△△11262=⨯=,而116622OMC M M S OC x x =⨯⨯=⨯⨯=△∴2M x =|,∴2M x =±,分情况讨论:①当2M x =时,6264y x =-+=-+=,故此时M 点的坐标为()2,4,②若2M x =-时,6268y x =-+=+=,故此时M 点的坐标为()2,8-,综上,M 点的坐标为()2,4或()2,8-;故答案为:()2,4或()2,8-.25.如图,直线l 分别与x 轴,y 轴相交于点A (5,0),B (0,4),点E (2.5,m )在l 上,直线y =kx +b经过点E ,并与x 轴相交于点F .若EF 将△AOB 分割为左右两部分,且四边形OFEB 与△FEA 的面积之比为3:2,则线段OF 的长为()A .0.5B .1C .1.5D .2【答案】B【分析】利用待定系数法求直线AB 的解析式,然后根据一次函数图象上点的坐标特点求得E 点坐标,从而确定点E 为AB 的中点,从而结合三角形面积比计算求解.【详解】解:设直线AB 的解析式为y kx b =+,将(5,0)A ,(0,4)B 代入,504k b b +=⎧⎨=⎩,解得:454k b ⎧=-⎪⎨⎪=⎩,∴直线AB 的解析式为:4y x 45=-+,又 点(2.5,)E m 在AB 上,4 2.5425m ∴=-⨯+=,E ∴点坐标为(2.5,2),又 50 2.52+=,0422+=,∴点E 是线段AB 的中点,FEA FEB S S ∆∆∴=,又 四边形OFEB 与FEA ∆的面积之比为3:2,FBA S ∆∴与AOB S ∆的面积之比为4:5,∴45 AF OA=4 AF∴=,1OF OA AF∴=-=,故选:B.【点睛】本题考查一次函数的应用,掌握待定系数法求函数解析式的步骤,理解一次函数的性质,利用数形结合思想解题是关键.26.如图,已知一次函数y=12x+3的图象与x轴,y轴分别交于A,B两点.点C(4,n)在该函数的图象上,连接OC.(1)直接写出点A,B的坐标;(2)求△OAC的面积.【答案】(1)A(﹣6,0),B(0,3);(2)15【分析】(1)根据一次函数y=12x+3,分别令x=0,y=0即可求出A,B的坐标;(2)根据点C(4,n)在该函数的图象上,将之代入一次函数解析式求出C点的坐标,根据三角形的面积公式即可求得三角形面积.【详解】解:(1)∵一次函数y=12x+3的图象与x轴,y轴分别交于A,B两点,令x=0,则y=3,令y=0,则x=-6,∴A(﹣6,0),B(0,3);(2)把点C (4,n )代入y =12x +3得14352n =⨯+=,∴点C 的坐标为(4,5),∴11651522AOC C S OA y ∆=⨯⨯=⨯=.【点睛】本题考查了一次函数图象上点的坐标特征,三角形的面积的计算,正确的识别图形是解题的关键.27.如图,直线6y kx =+与x 轴、y 轴分别交于点E 、点F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-.(1)求一次函数的解析式;(2)若点(),P x y 是线段EF (不与点E 、F 重合)上的一点,试写出OPA ∆的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下探究:当点P 在什么位置时,OPA ∆的面积为278,并说明理由.【答案】(1)364y x =+;(2)9184s x =+;80x -<<;(3)当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278,见解析【分析】(1)把点E 的坐标为(-8,0)代入6y kx =+求出k 即可解决问题;(2)△OPA 是以OA 长度6为底边,P 点的纵坐标为高的三角形,根据1••2PAO y S OA P =,列出函数关系式即可;(3)利用(2)的结论,列出方程即可解决问题;【详解】解:(1)把()8,0E -代入6y kx =+中有086k =-+∴34k =∴一次函数解析式为364y x =+(2)如图:∵OPA ∆是以OA 为底边,P 点的纵坐标为高的三角形∵()6,0A -∴6OA =∴1139666182244s y x x ⎛⎫=⨯⨯=⨯+=+ ⎪⎝⎭自变量x 的取值范围:80x -<<(3)当OPA ∆的面积为278时,有9271848x +=解得132x =-把132x =-代入一次函数364y x =+中,得98y =∴当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为27828.如图,直线AB 的解析式为2y x =+,直线AC 的解析式为4y x =-+,两条直线交于点A ,且分别与x 轴交于点B 、点C .(1)求ABC 的面积;(2)点D 为线段AC 上一点,连接BD ,若BD =D 的坐标.【答案】(1)9ABC S = ;(2)()3,1D .【分析】(1)过点A 作AE x ⊥轴于点E ,联立两直线解析式求交点坐标()1,3A ,可得3AE =,再求直线与x 轴两交点坐标()2,0B -,()4,0C ,可求()426BC =--=,利用三角形面积公式求即可;(2)过点D 作DF x ⊥轴于点F ,设点D 的横坐标为m ,(),4D m m -+,根据勾股定理222BD DF BF =+,即()()22242m m =-+++解方程即可.【详解】解:(1)过点A 作AE x ⊥轴于点E ,由题意联立方程组24y x y x =+⎧⎨=-+⎩,解得:13x y =⎧⎨=⎩,∴()1,3A ,∴3AE =.当0y =时,20x +=,∴2x =-,∴()2,0B -,当0y =时,40x -+=,∴4x =,∴()4,0C ,∴()426BC =--=,∴1163922ABC S BC AE =⋅=⨯⨯=△;(2)过点D 作DF x ⊥轴于点F ,设点D 的横坐标为m ,∵点D 在直线AC 上,∴4y m =-+,∴(),4D m m -+,∴4DF m =-+,∴()22BF m m =--=+,在Rt DBF △中,90DFB ∠=︒,根据勾股定理222BD DF BF =+,∴()()22242m m =-+++,整理得2230m m --=,解得:13m =,21m =-(不合题意,舍去),∴()3,1D .29.如图,在平面直角坐标系中,▱ABCD 各顶点的坐标分别为A (1,﹣1),B (2,﹣3),C (4,﹣3),D(3,﹣1),若直线y =﹣3x +b 与▱ABCD 有交点,则b 的取值范围是()A .3≤b ≤8B .2≤b ≤8C .2≤b ≤9D .﹣3≤b ≤9【答案】C【分析】根据A 、B 的坐标求出直线AB 的解析式,然后与直线3y x b =-+进行比较k 的值,最后进行分析计算即可得到答案.【详解】解:设直线AB 解析式为y mx n=+∵A 点坐标为(1,-1),B 点的坐标为(2,-3)∴132m n m n-=+⎧⎨-=+⎩∴解得21m n =-⎧⎨=⎩∴直线AB 解析式为21y x =-+∵23->-∴直线3y x b =-+的倾斜程度比直线21y x =-+的倾斜程度更厉害即为下图所示的情况时,直线3y x b =-+与平行四边ABCD 有交点当直线3y x b =-+经过A (1,-1)时∴1131b -=-⨯+,解得12b =当直线3y x b =-+经过C (4,-3)时∴2334b -=-⨯+,解得29b =综上所述29b ≤≤故选C.【点睛】本题主要考查了一次函数图像与图形的交点问题,解题的关键在于能够找到临界直线进行求解计算.30.如图,在平面直角坐标系xOy 中,直线AB 与x 轴,y 轴分别交于点30A (,),点04B (,),点D 在y 轴的负半轴上,若将DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处.(1)直接写出结果:线段AB 的长__________,点C 的坐标__________;(2)求直线CD 的函数表达式;(3)点P 在直线CD 上,使得2PAC OAB S S = ,求点P 的坐标.【答案】(1)5AB =,()80,C ;(2)直线CD 的函数表达式为364y x =-;(3)P 点坐标为7224,55⎛⎫ ⎪⎝⎭或824,55⎛⎫- ⎪⎝⎭.【分析】(1)运用勾股定理即可求出线段AB 的长;根据折叠得AC AB =,可得点C 的坐标;(2)设点D 的坐标为:()0,m ,而CD BD =,根据222OC OD CD +=,即可求出点D 的坐标,运用待定系数法设直线CD 的表达式为y kx b =+,将点C 、点D 代入即可求出答案;(3))设ACP △边AC 上的高为h ,根据2PAC OAB S S = ,求出h ,即可知道点P 的纵坐标,最后代入直线CD 的函数表示式中,即可求出答案.【详解】解:(1)()3,0A ,()0,4B ,3OA ∴=,4OB =,90AOB ∠=︒Q ,5AB ∴==;由折叠得:5AC AB ==,358OC OA AC ∴=+=+=,∴点C 的坐标为()8,0;故答案为:5AB =,80C (,);(2)设点()0,D m ,则OD m =-,由折叠可知,4CD BD m ==-,在Rt OCD △中,222=+CD OD OC ,()222(4)8m m ∴-=-+,解得:6m =-,0,6D ∴-(),设直线CD 的函数表达式为y kx b =+,将()8,0C 、0,6D -()代入,得806k b b +=⎧⎨=-⎩,解得,34k =,6b =-,∴直线CD 的函数表达式为364y x =-.(3)设ACP △边AC 上的高为h ,则1134622OAB S OA OB =⋅⋅=⨯⨯= ,1522PAC S AC h h =⋅⋅= ,且2PAC OAB S S = ,245h ∴=,因此点P的纵坐标为245或245-,当245y=时,即324645x-=,解得725x=;当245y=-时,即324645x-=-,解得85x=,因此,点P坐标为7224,55⎛⎫⎪⎝⎭或824,55⎛⎫-⎪⎝⎭.【点睛】本题考查了待定系数法求一次函数解析式,折叠的性质,勾股定理,三角形面积公式等.课后巩固1.一次函数y=﹣3x﹣2的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【分析】k<0,函数一定经过第二,四象限,b<0,直线与y轴交于负半轴,所以函数图象过第三象限,所以函数图象不过第一象限.【详解】解:∵k=﹣3<0,b=﹣2<0,∴函数的图象不经过第一象限,故选:A.2.一次函数y=﹣2x+b的图象经过点A(2,y1),B(﹣1,y2),则y1与y2的大小关系正确的是()A.y1<y2B.y1>y2C.y1=y2D.无法确定【答案】A【分析】在y=kx+b中,当k<0时,y随x的增大而减小,当k>0时,y随x的增大而增大;利用一次函数的增减性进行判断即可.【详解】解:在一次函数y=-2x+b中,。
一次函数知识点总结_高三数学知识点总结
一次函数知识点总结_高三数学知识点总结一次函数是数学中的基本概念,也是高中数学中重要的内容之一。
下面是一次函数的知识点总结:1. 一次函数的定义:一次函数是指形如y=ax+b的函数,其中a和b是常数,且a不等于0。
一次函数也叫线性函数。
2. 一次函数的图像:一次函数的图像是一条直线。
斜率a决定了直线的倾斜程度,斜率a大于0时表示直线上升,a小于0时表示直线下降。
截距b决定了直线与y轴的交点位置。
3. 一次函数的性质:- 一次函数的定义域是所有实数。
- 一次函数是一个连续函数,不存在间断点。
- 一次函数是一个线性函数,具有划分直线平行、垂直、学函数等性质。
- 当斜率a大于0时,随着x的增大,y也增大;当斜率a小于0时,随着x的增大,y减小。
- 当截距b大于0时,直线与y轴的交点在正y轴上方;当截距b小于0时,直线与y轴的交点在负y轴上方。
4. 一次函数的性质与方程:对于一次函数y=ax+b,我们可以根据已知条件推导出其它性质或求解方程。
- 两点确定一条直线:已知两个点的坐标(x₁, y₁)和(x₂, y₂),我们可以通过斜率公式a=(y₂-y₁)/(x₂-x₁)求得斜率,再利用其中一个点的坐标和斜率即可得到方程y=ax+b。
- 已知斜率和一点确定一条直线:已知直线的斜率a和经过直线的一点的坐标(x₁, y₁),我们可以利用点斜式y-y₁=a(x-x₁)得到方程,并进一步化简为一次函数的形式。
- 求直线与x轴和y轴的交点:直线与x轴的交点是方程y=ax+b中的解,即令y=0,解得x=-b/a;直线与y轴的交点是(0, b)。
- 平行和垂直直线的关系:如果两条直线的斜率相等,那么它们是平行的;如果两条直线的斜率互为倒数,那么它们是垂直的。
5. 一次函数的应用:一次函数在实际生活中有许多应用。
- 速度和时间的关系:当物体以匀速运动时,其位移与时间的关系可以用一次函数表示。
位移就是y,时间就是x,斜率就是速度。
一次函数知识点总结9篇
一次函数知识点总结9篇第1篇示例:一次函数是初中阶段数学学习的重要内容之一。
它是一种最简单的线性函数,也是数学中最基础的函数之一。
一次函数的定义是形如y=kx+b的函数,其中x为自变量,y为因变量,k和b为常数,且k≠0。
一次函数的图象是一条直线,因此也被称为线性函数。
下面将从定义、性质、图象、应用等几个方面,对一次函数进行总结。
一、定义:一次函数y=kx+b是一种形式简单的线性函数,其中k 和b是常数且k≠0。
其中k称为斜率,b称为截距。
斜率代表了函数图象的倾斜程度,正数表示向上倾斜,负数表示向下倾斜;截距表示了函数与y轴的交点位置,即当x=0时,函数值为b。
一次函数的自变量x的最高次数为1。
三、图象:一次函数的图象是一条直线,因此也称为线性函数。
直线的斜率决定了图象的倾斜方向,截距决定了图象与y轴的交点位置。
当斜率为正时,图象右上倾斜;当斜率为负时,图象右下倾斜。
当截距为正时,图象在y轴上方;当截距为负时,图象在y轴下方。
四、应用:一次函数在现实生活中有着广泛的应用。
比如工资和工作时间的关系,距离和时间的关系等等都可以用一次函数来表示。
在经济学中,一次函数也有着重要的应用,如成本和产量的关系、供求关系等。
一次函数的应用范围十分广泛,在生活中随处可见。
一次函数是数学中最基础的函数之一,了解一次函数的性质和图象能够帮助我们更好地理解和应用各种函数。
在学习数学中,学好一次函数是至关重要的一步,也为后续学习更高阶函数和解决实际问题打下了坚实基础。
希望通过本文的总结,能够对一次函数有更深入的了解和应用。
第2篇示例:一次函数是初中数学中的一个基础知识点,也是数学学习的入门部分。
对于学生来说,掌握一次函数的相关知识,不仅可以帮助他们更好地理解数学知识,更可以培养他们的逻辑思维能力和解决问题的能力。
接下来我们就来总结一下一次函数的相关知识点。
一、定义:在数学中,一次函数是指一个函数,其定义域是实数集合,且函数表达式为f(x) = kx + b,其中k和b为实数,且k不等于零。
一次函数知识点大全
一次函数知识点大全一、一次函数和正比例函数的概念1.概念:若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y 是x的正比例函数.(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b(k,b为常数,k≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数.★判断一个等式是否是一次函数先要化简(3)当b=0,k≠0时,y= kx仍是一次函数.(正比例函数)(4)当b=0,k=0时,它不是一次函数.二、函数的图象把一个函数的自变量x与所对应的y的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.一次函数的图象由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.由于两点确定一条直线,描出适合关系式的两点,再连成直线,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(-,0).画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.三、一次函数性质1. 一次函数y=kx+b(k,b为常数,k≠0)的性质(1)k的正、负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;②k﹤O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.2. 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.y=kx (k>0)y=kx (k<0)3.点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P 必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.四、一次函数与方程1. 一元一次方程、一元一次不等式及一次函数的关系一次函数及其图像与一元一次方程及一元一次不等式有着密切的关系,函数y=ax+b(a≠0,a,b为常数)中,函数的值等于0时自变量x的值就是一元一次方程ax+b=0(a≠0)的解,所对应的坐标(-,0)是直线y=ax+b与x轴的交点坐标,反过来也成立;•直线y=ax+b在x轴的上方,也就是函数的值大于零,x 的值是不等式ax+b>0(a≠0)的解;在x轴的下方也就是函数的值小于零,x的值是不等式ax+b<0(a≠0)的解.2. 坐标轴的函数表达式函数关系式x=0的图像是y轴,反之,y轴可以用函数关系式x=0表示;•函数关系式y=0的图像是x轴,反之,x轴可以用函数关系式y=0表示.3. 一次函数与二元一次方程组的关系一般地,每个二元一次方程组,都对应着两个一次函数,于是也就是对应着两条直线,从“数”的角度看,解方程相当于考虑自变量为何值时两个函数的值相等,以及这两函数值是何值;从形的角度考虑,解方程组相当于确定两条直线的交点坐标,所以一次函数及其图像与二元一次方程组有着密切的联系.4. 两条直线的位置关系与二元一次方程组的解(1)二元一次方程组有唯一的解直线y=k1x+b1不平行于直线y=k2x+b2 k1≠k2.(2)二元一次方程组无解直线y=k1x+b1∥直线y=k2x+b2 k1=k2,b1≠b2.(3)二元一次方程组有无数多个解直线y=k1x+b1与y=k2x+b2重合k1=k2,b1=b2.5. 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.用待定系数法确定一次函数表达式的一般步骤:一设,二代,三解,四代入(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值;(4)将k、b的之带入y=kx+b,得到函数表达式。
(完整版)一次函数知识点总结
一次函数(一)函数1、变量:在一个变化过程中可以取不同数值的量. 常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x 和y,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义.5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
(二)一次函数 1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
一次函数的知识点总结
一次函数的知识点总结一、一次函数的基本概念一次函数是数学中最基础的函数之一,它的表达式为y = ax + b,其中a和b是常数,a不等于0。
在这个函数中,x称为自变量,y称为因变量,a称为斜率,b称为截距。
斜率表示了函数图象的倾斜程度,而截距表示了函数图象与y轴的交点位置。
从函数的表达式中可以看出,一次函数的图象是一条直线,即直线函数。
一次函数的定义域为实数集R,值域也为实数集R。
它的图象可以延伸到整个坐标平面上。
当a大于0时,函数图象是上升的直线;当a小于0时,函数图象是下降的直线。
二、一次函数的性质1. 斜率和截距一次函数的斜率a表示了函数图象的倾斜程度,它的绝对值越大,直线的斜率越大。
当a大于0时,函数图象向右上方倾斜;当a小于0时,函数图象向右下方倾斜。
而截距b表示了函数图象与y轴的交点位置,当b大于0时,函数图象在y轴上方;当b小于0时,函数图象在y轴下方。
2. 函数值对于一次函数y = ax + b,当给定x的值时,我们可以通过代入x的值得到对应的函数值y。
一次函数的函数值可以用来描述一根直线上的点的位置。
3. 函数的奇偶性一次函数是一个奇函数,它的图象关于原点对称。
这意味着,如果(x, y)在函数的图象上,则(-x, -y)也在函数的图象上。
4. 函数的单调性当a大于0时,一次函数是递增的;当a小于0时,一次函数是递减的。
递增意味着函数图象自左向右是上升的,递减意味着函数图象自左向右是下降的。
三、一次函数的图象一次函数的图象是一条直线,在坐标平面上呈现出一种特定的形状。
它的位置、斜率、倾斜方向和截距等特征可以通过图象来直观地展现。
1. 斜率和截距斜率a决定了函数图象的倾斜程度,它的绝对值越大,直线的斜率越大。
当a大于0时,函数图象是上升的直线;当a小于0时,函数图象是下降的直线。
而截距b决定了函数图象与y轴的交点位置,它是函数图象与y轴的交点的纵坐标。
2. 基本图象y = x + 1是一次函数的基本图象,它是一条经过原点,斜率为1的直线。
关于一次函数的所有知识点
关于一次函数的所有知识点一、一次函数的定义。
1. 一般形式。
- 形如y = kx + b(k,b是常数,k≠0)的函数叫做一次函数。
当b = 0时,y=kx(k≠0),此时函数为正比例函数,正比例函数是特殊的一次函数。
2. 定义域。
- 一次函数的定义域是全体实数R。
二、一次函数的图象。
1. 图象形状。
- 一次函数y = kx + b(k≠0)的图象是一条直线。
- 例如y = 2x+1的图象是一条直线,我们可以通过取两个点来画出这条直线,一般取x = 0时,y=1;y = 0时,x=-(1)/(2),然后连接这两个点(0,1)和(-(1)/(2),0)就得到函数图象。
2. 图象与系数的关系。
- 斜率k的影响。
- 当k>0时,直线y = kx + b从左到右上升,y随x的增大而增大。
例如y = 3x+2,k = 3>0,函数图象是上升的。
- 当k<0时,直线y = kx + b从左到右下降,y随x的增大而减小。
比如y=-2x + 3,k=-2<0,函数图象是下降的。
- k的绝对值越大,直线越“陡”。
例如y = 5x+1比y = 2x+1的图象更陡。
- 截距b的影响。
- b为直线y = kx + b与y轴交点的纵坐标。
- 当b>0时,直线与y轴交于正半轴,如y = 2x + 3,直线与y轴交于点(0,3)。
- 当b<0时,直线与y轴交于负半轴,例如y=3x - 2,直线与y轴交于点(0,-2)。
- 当b = 0时,直线过原点,像y = 2x就是过原点的直线。
三、一次函数的性质。
1. 单调性。
- 由前面图象与系数关系可知,当k>0时,函数在R上单调递增;当k<0时,函数在R上单调递减。
2. 函数值的变化。
- 对于一次函数y = kx + b,当x增加Δ x时,y的变化量Δ y=kΔ x。
四、一次函数的解析式的确定。
1. 待定系数法。
- 如果已知一次函数y = kx + b的图象经过两个已知点(x_1,y_1)和(x_2,y_2),将这两个点代入函数解析式得到方程组y_1=kx_1 + b y_2=kx_2 + b,解这个方程组求出k和b的值,就得到一次函数的解析式。
一次函数知识总结归纳
一次函数知识总结归纳一次函数知识总结归纳思想方法小结(1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识点1一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.例如:y=2x+3,y=-x+2,y=11x等都是一次函数,y=x,y=-x22都是正比例函数.【说明】(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b(k,b为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k 必须是不为零的常数,b可为任意常数.(3)当b=0,k≠0时,y=kx仍是一次函数.(4)当b=0,k=0时,它不是一次函数.知识点2函数的图象把一个函数的自变量x与所对应的y的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点3一次函数的图象由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(-b,0).但也不必一定选取这两个特殊点.画正比k例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.知识点4一次函数y=kx+b(k,b为常数,k≠0)的性质(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;②kO时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图11-18(l)所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图11-18(2)所示,当k>0,bO时,直线经过第一、三、四象限(直线不经过第二象限);③如图11-18(3)所示,当kO,b >0时,直线经过第一、二、四象限(直线不经过第三象限);④如图11-18(4)所示,当kO,bO时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点5正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k <0时,图象经过第二、四象限,y随x的增大而减小.知识点6点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点7确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点8待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点8用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.知识点9x=a和y=b的图象x=a的图象是经过点(a,0)且垂直于x轴的一条直线;y=b的图象是经过点(0,b)且垂直于y轴的一条直线。
一次函数知识点总结_高三数学知识点总结
一次函数知识点总结_高三数学知识点总结一次函数是一类特殊的函数,它们具有形如 y=kx+b 的形式,其中 k 和 b 分别是函数的斜率和截距。
一次函数在数学中具有广泛的应用,如图形学、物理学和经济学等领域。
一次函数的知识点总结如下:一、函数的定义函数是一种对应关系,通常用符号 y=f(x) 表示,其中 x 叫做自变量,y 叫做因变量,f(x) 表示因变量 y 和自变量 x 之间的关系。
一次函数 y=kx+b 的定义式中,k 和b 是常数,x 是自变量,y 是因变量,因此它是一个定义在所有实数集上的函数。
二、函数的图像一次函数的图像通常是一条直线,它在平面直角坐标系上与 x 轴交点为 (-b/k,0),与 y 轴交点为 (0,b)。
当 k>0 时,图像上的点随着自变量的增大而上升;当 k<0 时,图像上的点随着自变量的增大而下降;当 k=0 时,图像是一条水平直线;当 b=0 时,图像经过坐标原点。
三、斜率的概念斜率是一条直线的倾斜程度,在数学中通常用字母 k 表示。
对于一条直线上的两个点 (x1,y1) 和 (x2,y2),斜率的定义为:k=(y2-y1)/(x2-x1)斜率可以表示直线的上升程度与水平程度的比值,即斜率越大,则直线上升得越快;斜率越小,则直线上升得越慢;当斜率为 0 时,直线是水平的;当斜率不存在时,直线是竖直的。
四、截距的概念截距是一条直线与 y 轴的交点,通常用字母 b 表示。
当直线经过点 (0,b) 时,b就是直线的截距。
五、斜截式方程斜截式方程是一种表示直线的方程形式,通常用 y=kx+b 表示。
其中 k 是斜率,b是截距。
斜截式方程可以通过给定的斜率和截距来确定一条直线。
当直线垂直于 x 轴时,斜率不存在。
斜截式方程可以通过从标准式方程 y=ax+b 中提取出斜率和截距得到。
八、函数的性质一次函数具有以下性质:1. y=kx+b 是一条直线的方程形式。
2. 对于 k 为正数的一次函数,当 x 增大时,y 也随之增大;当 k 为负数时,y 随x 的增大而减小。
一次函数知识点
一次函数知识点一次函数作为中学数学中的重要内容之一,具有广泛的应用场景。
它是代数学的基础,也是我们日常生活中遇到的最简单的函数之一。
在这篇文章中,我将介绍一次函数的定义、性质以及一些常见的应用。
一、定义和性质一次函数又称线性函数,它的定义非常简单:y = kx + b,其中 k 和b 是常数,k 表示斜率,b 表示截距。
一次函数是一条直线,可以通过两个点来确定一条直线,也可以通过一个点和斜率来确定。
1. 斜率斜率表示了直线的倾斜程度,可以看做是 y 值的变化率。
斜率的计算公式为:k = Δy / Δx,其中Δy 表示 y 坐标的增量,Δx 表示 x 坐标的增量。
当斜率为正数时,直线向右上方倾斜;当斜率为负数时,直线向右下方倾斜;当斜率为零时,直线为水平线。
2. 截距截距表示直线与 y 轴的交点的纵坐标值,也可以说是直线在 x 轴上的截点。
当 x = 0 时,y = b,即直线与 y 轴的交点的纵坐标值为 b。
3. 平行和垂直的直线两条直线平行的条件是它们的斜率相等;两条直线垂直的条件是它们的斜率的乘积为 -1。
这些性质对于解题和理解直线的关系有着重要的作用。
二、常见应用一次函数在现实生活中有着广泛的应用,例如经济学中的供求关系、物理学中的速度与时间的关系等等。
1. 货币兑换当我们去旅行或者购买跨境商品时,可能需要进行货币兑换。
一次函数可以描述不同货币之间的汇率关系,通过观察不同货币对之间的汇率,我们可以计算出需要兑换的金额。
2. 距离与时间的关系在物理学中,一次函数可以描述物体在匀速直线运动中的位置与时间的关系。
例如,当一辆汽车以恒定的速度行驶时,它的位置与时间的关系可以表示为 y = kx + b,其中 y 表示汽车所在的位置,x 表示时间,k 表示汽车的速度,b 表示初始位置。
3. 成本和收益在经济学中,一次函数可以描述成本和收益之间的关系。
例如,在一家工厂中,生产的产品数量和成本之间存在一定的关系。
一次函数的数学知识点汇总
一次函数的数学知识点汇总一次函数的数学知识点汇总一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k0时,直线必通过一、三象限,y随x的增大而增大;当k0时,直线必通过二、四象限,y随x的增大而减小。
当b0时,直线必通过一、二象限;当b=0时,直线通过原点当b0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
一次函数知识点总结
一次函数知识点总结知识点1 一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.知识点2 函数的图象由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。
.不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.知识点3一次函数y=kx+b(k,b为常数,k≠0)的性质(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;②k﹤O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图所示,当k>0,b③如图所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点4 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点5 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点6 确定正比例函数及一次函数表达式的'条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点7 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点8 用待定系数法确定一次函数表达式一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.思想方法小结 (1)函数方法.(2)数形结合法.知识规律小结 (1)常数k,b对直线y=kx+b(k≠0)位置的影响.①当b>0时,直线与y轴的正半轴相交;当b=0时,直线经过原点;当b﹤0时,直线与y轴的负半轴相交.②当k,b异号时,直线与x轴正半轴相交;当b=0时,直线经过原点;当k,b同号时,直线与x轴负半轴相交.③当k>O,b>O时,图象经过第一、二、三象限;当k>0,b=0时,图象经过第一、三象限;当b>O,b【一次函数知识点总结。
一次函数知识点(全)
一次函数知识点(全)一次函数,也称为线性函数,是数学中最简单的一类函数之一,其定义域为全体实数,函数的表达式为f(x) = ax + b,其中a和b为常数。
一次函数以一条直线表示,具有线性关系,其图像是一条直线,斜率为a,截距为b。
一次函数的基本性质及应用:1. 斜率:一次函数的斜率a代表了直线的倾斜程度,也称为直线的导数或变化率。
斜率的计算方法为:a = (y2 - y1) / (x2 - x1),其中(x1,y1)和(x2,y2)为直线上的两个点。
斜率可正可负,若a > 0,表示直线向右上方倾斜;若a < 0,表示直线向右下方倾斜;若a = 0,表示直线水平。
2. 截距:一次函数的截距b代表了直线与y轴的交点,即x = 0时对应的y值。
截距可为正、负或零,当b > 0时,直线在y轴上方与之交点在正半轴;当b < 0时,直线在y轴下方与之交点在负半轴;当b = 0时,直线通过原点。
3. 表示方式:一次函数可以通过函数表达式、函数关系式、函数图像、函数性质等多种方式进行表示和描述。
4. 对称性:一次函数的图像关于直线y = x具有对称性,即将图像沿y = x对称后,两者完全重合。
5. 平行和垂直:两条直线平行的情况是它们的斜率相等,即a1 = a2;两条直线垂直的情况是它们的斜率之积等于-1,即a1 * a2 = -1。
6. 定义域和值域:一次函数的定义域为全体实数,即(-∞, +∞);值域为全体实数,即(-∞, +∞)。
7. 函数运算:一次函数可以进行相加、相减、相乘、相除等运算,运算结果仍为一次函数。
8. 应用:一次函数广泛应用于经济学、物理学、工程学等领域。
在经济学中,一次函数常用来描述成本、收入、利润等与产量的关系。
在物理学中,一次函数可以描述速度、位移与时间的关系。
在工程学中,一次函数可用于线性规划、线性回归等问题的建模与解决。
综上所述,一次函数是数学中基础的一类函数,具有简单明了的性质和应用。
一次函数 知识点
一次函数 知识点1.函数的概念:在某一变化过程中,可以取不同数值的量,叫做变量.在一些变化过程中,还有一种量,它的取值始终保持不变,我们称之为常量.在某一变化过程中,有两个量,如x 和y ,对于x 的每一个值,y 都有惟一的值与之对应,其中x 是自变量,y 是因变量,此时称y 是x 的函数.注意:(1)“y 有唯一值与x 对应”是指在自变量的取值范围内,x 每取一个确定值,y 都唯一的值与之相对应,否则y 不是x 的函数.(2)判断两个变量是否有函数关系,不仅要有关系式,还要满足上述确定的对应关系.x 取不同的值,y 的取值可以相同.例如:函数2(3)y x =-中,2x =时,1y =;4x =时,1y =.(3)函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系. 例题1:下列各图给出了变量x 与y 之间的函数是:【 】例题2:若等腰三角形周长为30,一腰长为a ,底边长为L ,则L 关于a 的函数解析式为 ,它是 ,也是 . 2.数学上表示函数关系的方法通常有三种:(1)解析法:用数学式子表示函数的方法叫做解析法.如:30S t =,2S R π=. (2)列表法:通过列表表示函数的方法.(3)图象法:用图象直观、形象地表示一个函数的方法.例题3:已知y -1与x +2成正比例,且当x =1时,y =-5,求y 与x 之间的函数关系式;若点 (-2,a )在这个函数的图象上,求出a 的值.3.关于函数的关系式(解析式)的理解:(1)函数关系式是等式.例如4y x =就是一个函数关系式. (2)函数关系式中指明了那个是自变量,哪个是函数.通常等式右边代数式中的变量是自变量,等式左边的一个字母表示函数.例如:y =x 是自变量,y 是x 的函数. (3)函数关系式在书写时有顺序性.例如:31y x =-+是表示y 是x 的函数,若写成13yx -=就表示x 是y 的函数. (4)求y 与x 的函数关系时,必须是只用变量x 的代数式表示y ,得到的等式右边只含x 的代数式. 4.自变量的取值范围:很多函数中,自变量由于受到很多条件的限制,有自己的取值范围,例如y =x 受到开平方运算的限制,有10x -≥即1x ≥;当汽车行进的速度为每小时80公里时,它行进的路程s 与时间t 的关系式为80s t =;这里t 的实际意义影响t 的取值范围t 应该为非负数,即0t ≥.在初中阶段,自变量的取值范围考虑下面几个方面: (1)整式型:一切实数(2)根式型:当根指数为偶数时,被开方数为非负数. (3)分式型:分母不为0. (4)复合型:不等式组 (5)应用型:实际有意义即可例题4:函数12-+=x x y 中的自变量x 的取值范围是【 】 A 、x ≥-2 B 、x ≠1 C 、x >-2且x ≠1 D 、x ≥-2且x ≠1例题5:函数242412----=x x x y 中的自变量x 的取值范围为_________________例题6:函数748142---=x x x y 中的自变量x 的取值范围为_________________例题7:若等腰三角形周长为30,一腰长为a ,底边长为L ,则L 关于a 的函数解析式为 .5.函数图象:函数的图象是由平面直角中的一系列点组成的. 6.函数图像的位置决定两个函数的大小关系: (1)图像1y 在图像2y 的上方⇔21y y > (2)图像1y 在图像2y 的下方⇔21y y <(3)特别说明:图像y 在x 轴上方0>⇔y ;图像y 在x 轴下方0<⇔y例题8:直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为【 】A 、x >1B 、x <1C 、x >-2D 、x <-2例题9:如图,直线(0)y kx b k =+<与x 轴交于点(30),,关于x 的不等式0kx b +>的解集是【 】A .3x <B .3x >C .0x >D .0x < 7.描点法画函数图象的步骤:(1)列表; (2)描点; (3)连线. 例题10:画出函数42+=x y 的图像8.函数解析式与函数图象的关系:(1)满足函数解析式的有序实数对为坐标的点一定在函数图象上;xx(2)函数图象上点的坐标满足函数解析式.9.验证一个点是否在图像上方法:代入、求值、比较、判断 例题11:下列各点中,在反比例函数y =6x图象上的是【 】 A .(-2,3) B .(2,-3) C .(1,6) D .(-1,6) 10.一次函数及其性质 知识点一:一次函数的定义一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是前一节所学过的正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 知识点二:一次函数的图象及其画法⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取()00,,()1k ,两点; ②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0b k ⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点. ⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+.知识点三:一次函数的性质⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大; ⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小.知识点四:一次函数y kx b=+的图象、性质与k、b的符号倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴图像的平移:b>0时,将直线y=kx的图象向上平移b个单位,对应解析式为:y=kx+bb<0时,将直线y=kx的图象向下平移b个单位,对应解析式为:y=kx-b口诀:“上+下-”将直线y=kx的图象向左平移m个单位,对应解析式为:y=k(x+m)将直线y=kx的图象向右平移m个单位,对应解析式为:y=k(x-m)口诀:“左+右-”知识点五:用待定系数法求一次函数的解析式⑴定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.⑵用待定系数法求函数解析式的一般步骤:①根据已知条件写出含有待定系数的解析式;,的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方②将x y程组;③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式. 例题12:一次函数y kx b =+的图象只经过第一、二、三象限,则【 】 A .00k b <>,B .00k b >>,C .00k b ><,D .00k b <<,例题13:如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么【 】 A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <例题14:已知一次函数的图象过点(3,5)与(-4,-9),求该函数的图象与y 轴交点的坐标. 例题15:已知一次函数011)3()12(=+-+--k y k x k ,试说明:不论k 为何值,这条直线总要经过一个定点,并求出这个定点.例题16:一次函数y =ax +b 的图像关于直线y =-x 轴对称的图像的函数解析式为____ __ 例题17:某公交公司的公共汽车和出租车每天从乌鲁木齐市出发往返于乌鲁木齐市和石河子市两地,出租车比公共汽车多往返一趟,如图表示出租车距乌鲁木齐市的路程y (单位:千米)与所用时间x (单位:小时)的函数图象.已知公共汽车比出租车晚1小时出发,到达石河子市后休息2小时,然后按原路原速返回,结果比出租车最后一次返回乌鲁木齐早1小时.(1)请在图中画出公共汽车距乌鲁木齐市的路程y (千米)与所用时间x (小时)的函数图象. (2)求两车在途中相遇的次数(直接写出答案) (3)求两车最后一次相遇时,距乌鲁木齐市的路程.例题18:已知某一次函数当自变量取值范围是2≤y≤6时,函数值的取值范围是5≤x≤9.求此一次函数的解析式.例题19:已知一次函数y =ax +4与y =bx -2的图象在x 轴上相交于同一点,则ba的值是【 】 A 、4 B 、-2 C 、 12 D 、- 12例题20:求直线y =2x -1与两坐标轴所围成的三角形面积.11.直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系 (1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠(3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k例题21:已知一次函数1+=x y ,另一条直线与之平行,且与坐标轴所围成的三角形面积为8,求此一次函数解析式.12.一次函数与一元一次方程的关系:直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解.求直线y b kx =+与x 轴交点时,可令0y =,得到方程b 0kx +=,解方程得x b k =-,直线y b kx =+交x 轴于(,0)b k -,bk-就是直线y b kx =+与x 轴交点的横坐标. 13.一次函数与一元一次不等式的关系:任何一元一次不等式都可以转化为a b 0x +>或a b 0x +<(b a 、为常数,0a ≠)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围.。
一次函数知识点全
一次函数知识点全一次函数作为初中数学中最基础的函数之一,在我们的学习中扮演着非常重要的角色。
它是一个线性函数,表达式为y = kx + b,其中k和b为常数,x和y分别表示自变量和因变量。
在本文中,我们将全面介绍一次函数的各个知识点。
一、函数的定义和性质1. 函数的定义:一次函数是指自变量和因变量之间的关系能够用线性方程y = kx + b表示的函数。
其中k和b为常数,x和y分别表示自变量和因变量。
2. 定义域和值域:一次函数的定义域是所有实数集,值域也是所有实数集。
3. 单调性和增减性:一次函数的单调性取决于斜率k的正负。
当k > 0时,函数是递增的;当k < 0时,函数是递减的。
4. 零点和斜率:一次函数的零点是使得函数值为0的x值。
斜率表示函数图像的斜率,它等于函数的斜率系数k。
二、图像和性质1. 直线图像:一次函数的图像是一条直线。
当斜率k为正时,图像向上倾斜;当斜率k为负时,图像向下倾斜。
2. 截距:截距表示函数图像与坐标轴的交点。
一次函数有两个截距,分别为x轴截距和y轴截距。
x轴截距等于使得y = 0的x值,即-x轴的坐标;y轴截距等于使得x = 0的y值,即-y轴的坐标。
3. 平行和垂直:两条一次函数图像平行的条件是它们的斜率相等;两条一次函数图像垂直的条件是它们的斜率的乘积等于-1。
4. 点斜式和截距式:一次函数的点斜式表示为y - y₁ = k(x - x ₁),其中(x₁, y₁)为已知点,k为斜率;一次函数的截距式表示为y = kx + b,其中b为y轴截距。
三、应用1. 直线方程:一次函数在实际中常常用于解决直线方程的问题。
通过已知条件,可以确定一个点和斜率,从而写出一次函数的方程。
2. 性质推导:一次函数的各种性质可以通过代入特定的值来推导得出。
例如,已知两个点,可以求出斜率和截距;已知斜率和一个点,也可以确定该一次函数的方程。
3. 解方程:一次函数常用于解决实际问题中的方程。
一次函数知识点总结
一次函数知识点总结自变量x和因变量y有如下关系:y=kx (k为任意不为零实数)或y=kx+b (k为任意不为零实数,b为任意实数)则此时称y是x的一次函数。
特别的,当b=0时,y是x的正比例函数。
正比例是Y=kx+b。
即:y=kx (k为任意不为零实数)一次函数的图像及性质1.作法与图形:通过如下3个步骤(1)列表[一般取两个点,根据两点确定一条直线];(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
3.函数不是数,它是指某一变量过程中两个变量之间的关系。
4.k,b与函数图像所在象限:y=kx+b时:当k>0,b>0, 这时此函数的图象经过一,二,三象限。
当k>0,b<0, 这时此函数的图象经过一,三,四象限。
当k<0,b>0, 这时此函数的图象经过一,二,四象限。
当k<0,b<0, 这时此函数的图象经过二,三,四象限。
当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。
特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
4、特殊位置关系当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1)确定一次函数的表达式已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
一次函数知识点
一次函数基础知识点知识点1:一次函数的意义1、概念:一次函数:若两个变量x 、y 间的关系式可以表示成b kx y +=(k 、b 为常数,0≠k )的形式,称y 是x 的一次函数。
正比例函数:形如kx y =(0≠k )的函数,称y 是x 的正比例函数,此时也可说y 与x 成正比例,正比例函数是一次 函数,但一次函数并不一定是正比例函数2、说明:(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次” 意 义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y= kx 仍是一次函数;当b=0,k=0时,它不是一次函数. (4)注意自变量的取值范围3、练习1、下列函数(1)y=3πx ;(2)y=8x-6;(3)1y x =;(4)1y 8x 2=-;(5)2y 541x x =-+中,是一次函数的有( ) A 、4个 B 、3个 C 、2个 D 、1个2、当k_____________时,()2323y k x x =-++-是一次函数;当k_____________时,()212k y k x=-+是一次函数知识点2:求一次函数的解析式1、待定系数法的含义:要确定变量间的函数关系式,设出某些未知系数,然后根据所给条件利用方程或者是方程组来确定这些未知系数的方法。
2、用待定系数法确定一次函数表达式(1)规律:①确定正比例函数y=kx 的解析式:只须一个条件,求出待定系数k 即可.②确定一次函数b kx y +=的解析式:只须二个条件,求出待定系数k 、b 即可. (2)步骤: A 、设:设出一次函数解析式,即b kx y +=;B 、代:把已知条件代入b kx y +=中,得到关于k 、b 的方程(组);C 、求:解方程(组),求k 、b ;D 、写:写出一次函数解析式.3、例1:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.例2. 已知y-3与x 成正比例,且x=2时,y=7.(1)写出y 与x 之间的函数关系式;(2)当x=4时,求y 的值;(3)当y=4时,求x 的值.知识点3:一次函数的图象及其性质1、知识点(1)函数图象的画法:列表:列表给出自变量与函数的一些对应值; 描点:以表中每对对应值描点;连线:按自变量由小到大连接起来。
八年级上册数学书一次函数知识点
八年级上册数学书一次函数知识点
一次函数,又称线性函数,是指函数的自变量的最高次数是1,即一次函数的表达式为f(x) = kx + b,其中 k 和 b 分别为常数,k 称为函数的斜率,b 称为函数的截距。
一次函数的图像为一条直线,其特点是经过平面上两个不同点,且不垂直于 x 轴。
一次函数的知识点:
1. 斜率:斜率表示函数图像的倾斜程度。
对于一次函数 f(x) = kx + b,其斜率 k 表示线的倾斜程度,通过简单计算可得到。
2. 截距:截距表示函数图像与 y 轴的交点坐标。
对于一次函数 f(x) = kx + b,其截距
b 即为 y 轴的交点坐标,通过函数表达式可得到。
3. 函数图像:一次函数的图像是一条直线,通过两个不同的点即可确定一条线。
根据斜率和截距的不同取值,函数图像可能是上升的直线、下降的直线或者水平直线。
4. 解一次方程:由于一次函数的定义域和值域都是全体实数,所以解一次方程常用于求特定函数值或特定自变量的值。
5. 函数关系的确定:通过给定函数的部分信息,如斜率、截距、图像等,可以确定出函数关系的特点和形式。
这些是一次函数的主要知识点,对于八年级上册数学书中关于一次函数的学习内容,可能涉及到函数的性质、图像的分析及应用、方程的解法等。
请根据具体的教材内容进行学习和理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数知识点
一、函数与变量
常量与变量的概念:
我们在现实生活中所遇到的一些实际问题,存在一些数量关系,其中有的量永远不变,同时也出现了一些数值会发生变化的两个量,且这两个量之间相互依赖、密切相关.
在某一变化过程中,可以取不同数值的量,叫做变量.
在某一变化过程中,有两个量,例如x 和y ,对于x 的每一个值,y 都有惟一的值与之对应,其中x 是自变量,y 是因变量,此时也称y 是x 的函数.
在一些变化过程中,还有一种量,它的取值始终保持不变,我们称之为常量.例如:圆的面积S 与圆的半径r 存在相应的关系:2πS r =,这里π表示圆周率;它的数值不会变化,是常量,S 随着r 的变化而变化,r 是自变量,S 是因变量;
◆ “y 有唯一值与x 对应”是指在自变量的取值范围内,x 每取一个确定值,y 都唯一的值
与之相对应,否则y 不是x 的函数.
◆ 判断两个变量是否有函数关系,不仅要有关系式,还要满足上述确定的对应关系.x 取
不同的值,y 的取值可以相同. 例如:函数2(3)y x =-中,2x =时,1y =;4x =时,1y =.
◆ 函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对
应关系.
数学上表示函数关系的方法通常有三种:
⑴解析法:用数学式子表示函数的方法叫做解析法.譬如:30S t =,2S R π=. ⑵列表法:通过列表表示函数的方法.
⑶图象法:用图象直观、形象地表示一个函数的方法.
关于函数的关系式(即解析式)的理解:
● 函数关系式是等式. 例如4y x =就是一个函数关系式. ● 函数关系式中指明了那个是自变量,哪个是函数.
通常等式右边代数式中的变量是自变量,等式左边的一个字母表示函数. 例如:y x =是自变量,y 是x 的函数.
● 函数关系式在书写时有顺序性.
例如:31y x =-+是表示y 是x 的函数,若写成13
y
x -=就表示x 是y 的函数. ● 求y 与x 的函数关系时,必须是只用变量x 的代数式表示y ,得到的等式右边只含x 的
代数式.
自变量的取值范围:
很多函数中,自变量由于受到很多条件的限制,有自己的取值范围,例如y =
自变量x 受到开平方运算的限制,有10x -≥即1x ≥;
当汽车行进的速度为每小时80公里时,它行进的路程s 与时间t 的关系式为80s t =;这里t 的实际意义影响t 的取值范围t 应该为非负数,即0t ≥. 在初中阶段,自变量的取值范围考虑下面几个方面: ⑴根式:当根指数为偶数时,被开方数为非负数. ⑵分母中含有自变量:分母不为0. ⑶实际问题:符合实际意义.
函数图象:函数的图象是由平面直角中的一系列点组成的.
描点法画函数图象的步骤:⑴列表; ⑵描点; ⑶连线.
函数解析式与函数图象的关系:
⑴满足函数解析式的有序实数对为坐标的点一定在函数图象上; ⑵函数图象上点的坐标满足函数解析式.
二、一次函数及其性质
● 知识点一 一次函数的定义
一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是前一节所学过的正比例函数.
⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.
⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.
⑷正比例函数是一次函数的特例,一次函数包括正比例函数.
● 知识点二 一次函数的图象及其画法 ⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线.
⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.
①如果这个函数是正比例函数,通常取()00,
,()1k ,两点;
②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,
,0b k ⎛⎫
- ⎪⎝⎭
,,即直线与两坐标轴的交点.
⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线
l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,
有时直接称为直线y kx b =+.
● 知识点三 一次函数的性质
⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大;
⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小.
● 知识点四 一次函数y kx b =+的图象、性质与k 、b 的符号
⑵一次函数y kx b =+中,当0k >时,其图象一定经过一、三象限;当0k <时,其图象一定经过二、四象限.
当0b >时,图象与y 轴交点在x 轴上方,所以其图象一定经过一、二象限;当0b <时,图象与y 轴交点在x 轴下方,所以其图象一定经过三、四象限.
反之,由一次函数y kx b =+的图象的位置也可以确定其系数k 、b 的符号.
● 知识点五 用待定系数法求一次函数的解析式 ⑴定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待字系数法.
⑵用待定系数法求函数解析式的一般步骤: ①根据已知条件写出含有待定系数的解析式;
②将x y ,的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;
③解方程(组),得到待定系数的值;
④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.
1.一次函数与一元一次方程的关系:
直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。
求直线y b kx =+与x 轴交点时,可令0y =,得到方程b 0kx +=,解方程得x b
k
=-
,直线y b kx =+交x 轴于(,0)b
k
-,b k -就是直线y b kx =+与x 轴交点的横坐标。
2.一次函数与一元一次不等式的关系:
任何一元一次不等式都可以转化为a b 0x +>或a b 0x +<(b a 、为常数,0a ≠)的形式,
所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。
3.一次函数与二元一次方程(组)的关系:
一次函数的解析式y b k0
()本身就是一个二元一次方程,直线
=+≠
kx
=+≠
(),
kx
y b k0
kx
=+≠
()上有无数个点,每个点的横纵坐标都满足二元一次方程y b k0
因此二元一次方程的解也就有无数个。