高中物理_经典题库-热学试题49个
高中物理《热力学定律》练习题(附答案解析)

高中物理《热力学定律》练习题(附答案解析)学校:___________姓名:___________班级:___________一、单选题1.关于物体内能的变化,下列说法中正确的是( )A .物体吸收了热量,它的内能可以减小B .物体的机械能变化时,它的内能也一定随着变化C .外界对物体做功,它的内能一定增加D .物体既吸收热量,又对外界做功,它的内能一定不变2.一定质量的理想气体在某一过程中,外界对气体做了4810J ⨯的功,气体的内能减少了51.210J ⨯,则下列各式中正确的是( )A .454810J 1.210J 410J W U Q =⨯∆=⨯=⨯,,B . 455810J 1.210J 210J W U Q =⨯∆=-⨯=-⨯,,C . 454810J 1.210J 210J W U Q =-⨯∆=⨯=⨯,,D . 454810J 1.210J 410J W U Q =-⨯∆=-⨯=-⨯,,3.关于两类永动机和热力学的两个定律,下列说法正确的是( )A .第二类永动机不可能制成是因为违反了热力学第一定律B .第一类永动机不可能制成是因为违反了热力学第二定律C .由热力学第一定律可知做功不一定改变内能,热传递也不一定改变内能,但同时做功和热传递一定会改变内能D .由热力学第二定律可知从单一热源吸收热量,完全变成功是可能的4.关于固体、液体和气体,下列说法正确的是( )A .晶体一定有规则的几何形状,形状不规则的金属一定是非晶体B .把一枚针轻放在水面上,它会浮在水面,这是由于水表面存在表面张力的缘故C .木船浮在水面上是由于表面张力D .外界对物体做功,物体的内能一定增加5.下列说法正确的是( )A .α射线、β射线和γ射线是三种波长不同的电磁波B .根据玻尔理论可知,氢原子核外电子跃迁过程中电子的电势能和动能之和不守恒C.分子势能随着分子间距离的增大,可能先增大后减小D.只要对物体进行不断的冷却,就可以把物体的温度降为绝对零度6.关于能源,下列说法正确的是()A.根据能量守恒定律,我们不需要节约能源B.化石能源、水能和风能都是不可再生的能源C.华龙一号(核电技术电站)工作时,它能把核能转化为电能D.能量的转化、转移没有方向性7.关于热现象,下列说法正确的是()A.固体很难被压缩,是因为分子间存在斥力B.液体分子的无规则运动称为布朗运动C.气体吸热,其内能一定增加D.0°C水结成冰的过程中,其分子势能增加8.加气站储气罐中天然气的温度随气温升高的过程中,若储气罐内气体体积及质量均不变,则罐内气体(可视为理想气体)()A.压强增大,内能减小B.压强减小,分子热运动的平均动能增大C.吸收热量,内能增大D.对外做功,分子热运动的平均动能减小二、多选题9.下列关于热力学第二定律的理解正确的是()A.一切与热现象有关的宏观自然过程都是不可逆的B.空调既能制热又能制冷,说明热传递不存在方向性C.从微观的角度看,热力学第二定律表明一个孤立系统总是向无序度更大的方向发展D.没有漏气、摩擦、不必要的散热等损失,热机可以把燃料产生的内能全部转化为机械能10.一定质量的理想气体,其状态变化过程的p-V图像如图所示。
通用版高中物理热学分子动理论经典知识题库

(每日一练)通用版高中物理热学分子动理论经典知识题库单选题1、为了防止新型冠状病毒传播,许多公共场所使用乙醇喷雾消毒液和免洗洗手液进行手部消毒,两者的主要成分都是酒精,则下列说法正确的是()A.在手上喷洒乙醇消毒液后,会闻到淡淡的酒味,这是酒精分子做布朗运动的结果B.在手上喷洒乙醇消毒液后,会闻到淡淡的酒味,与分子运动无关C.使用免洗洗手液洗手后,洗手液中的酒精由液体变为同温度的气体的过程中,需要吸收热量D.使用免洗洗手液洗手后,洗手液中的酒精由液体变为同温度的气体的过程中,分子间距不变答案:C解析:AB.在手上喷洒乙醇消毒液后,会闻到淡淡的酒味,这是由于酒精分子的扩散运动的结果,证明了酒精分子在不停地运动,AB错误;CD.使用免洗洗手液时,洗手液中的酒精由液态变为同温度的气体的过程中,温度不变,分子的平均动能不变,但是分子之间的距离变大,分子势能增大,需要吸收热量,D错误C正确。
故选C。
2、关于分子动理论,下列说法中正确的是()A.图甲“用油膜法估测油酸分子的大小”实验中,应先滴油酸酒精溶液,再撒痱子粉B.图乙为水中某花粉颗粒每隔一定时间位置的折线图,表明该花粉颗粒在每段时间内做直线运动C.图丙为分子力F与其间距r的图像,分子间距从r0开始增大时,分子力先变小后变大D.图丁为大量气体分子热运动的速率分布图,曲线②对应的温度较高答案:D解析:A.“用油膜法估测油酸分子的大小”实验中,应先撒痱子粉,再滴油酸酒精溶液,否则很难形成单分子油膜,故A错误;B.图中的折线是炭粒在不同时刻的位置的连线,并不是固体小颗粒的运动轨迹,也不是分子的运动轨迹,由图可以看出小炭粒在不停地做无规则运动,故B错误;C.根据分子力与分子间距的关系图,可知分子间距从r0增大时,分子力表现为引力,分子力先变大后变小,故C错误;D.由图可知,②中速率大分子占据的比例较大,则说明②对应的平均动能较大,故②对应的温度较高,即T1<T2故D正确。
热学专题(2024高考真题及解析)

热学专题1.[2024·安徽卷] 某人驾驶汽车,从北京到哈尔滨.在哈尔滨发现汽车的某个轮胎内气体的压强有所下降(假设轮胎内气体的体积不变,且没有漏气,可视为理想气体),于是在哈尔滨给该轮胎充入压强与大气压相同的空气,使其内部气体的压强恢复到出发时的压强(假设充气过程中,轮胎内气体的温度与环境温度相同,且保持不变).已知该轮胎内气体的体积V0=30 L,从北京出发时,该轮胎内气体的温度t1=-3 ℃,压强p1=2.7×105 Pa.哈尔滨的环境温度t2=-23 ℃,大气压强p0取1.0×105 Pa.求:(1)在哈尔滨时,充气前该轮胎内气体压强的大小;(2)充进该轮胎的空气体积.1.(1)2.5×105 Pa(2)6 L[解析] (1)在哈尔滨时,设充气前该轮胎内气体压强的大小为p2.由查理定律可得p1T1=p2 T2其中p1=2.7×105 Pa,T1=(273-3) K=270 K,T2=(273-23) K=250 K解得p2=2.5×105 Pa(2)设充进该轮胎的空气体积为V.以充进的空气和该轮胎内原有的气体整体为研究对象,由玻意耳定律可得p2V0+p0V=p1V0解得V=6 L2.[2024·北京卷] 一个气泡从恒温水槽的底部缓慢上浮,将气泡内的气体视为理想气体,且气体分子个数不变,外界大气压不变.在上浮过程中气泡内气体 ()A.内能变大B.压强变大C.体积不变D.从水中吸热2.D[解析] 上浮过程气泡内气体的温度不变,内能不变,故A错误;气泡内气体压强p=p0+ρ水gh,故上浮过程气泡内气体的压强减小,故B错误;由玻意耳定律pV=C知,气体的体积变大,故C错误;上浮过程气体体积变大,气体对外做功,由热力学第一定律ΔU=Q+W 知,气体从水中吸热,故D正确.3.[2024·甘肃卷] 如图所示,刚性容器内壁光滑、盛有一定量的气体,被隔板分成A 、B 两部分,隔板与容器右侧用一根轻质弹簧相连(忽略隔板厚度和弹簧体积).容器横截面积为S 、长为2l.开始时系统处于平衡态,A 、B 体积均为Sl ,压强均为p 0,弹簧为原长.现将B 中气体抽出一半,B 的体积变为原来的34.整个过程系统温度保持不变,气体视为理想气体.求: (1)抽气之后A 、B 的压强p A 、p B . (2)弹簧的劲度系数k.3.(1)45p 0 23p 0 (2)8p 0S15l[解析] (1)抽气前两部分的体积为V =Sl ,对A 分析,抽气后V A =2V -34V =54Sl 根据玻意耳定律得p 0V =p A ·54V 解得p A =45p 0对B 分析,若压强不变的情况下抽去一半的气体,则体积变为原来的一半,即V B =12V ,则根据玻意耳定律得p 0·12V =p B ·34V 解得p B =23p 0(2)由题意可知,弹簧的压缩量为l4,对活塞受力分析有p A S =p B S +F 根据胡克定律得F =k l4联立得k =8p 0S15l4.[2024·广东卷] 差压阀可控制气体进行单向流动,广泛应用于减震系统.如图所示,A、B 两个导热良好的汽缸通过差压阀连接,A内轻质活塞的上方与大气连通,B的体积不变.当A内气体压强减去B内气体压强大于Δp时差压阀打开,A内气体缓慢进入B中;当该差值小于或等于Δp时差压阀关闭.当环境温度T1=300 K时,A内气体体积V A1=4.0×10-2 m3;B 内气体压强p B1等于大气压强p0.已知活塞的横截面积S=0.10 m2,Δp=0.11p0,p0=1.0×105 Pa.重力加速度大小g取10 m/s2.A、B内的气体可视为理想气体,忽略活塞与汽缸间的摩擦,差压阀与连接管道内的气体体积不计.当环境温度降低到T2=270 K时:(1)求B内气体压强p B2;(2)求A内气体体积V A2;(3)在活塞上缓慢倒入铁砂,若B内气体压强回到p0并保持不变,求已倒入铁砂的质量m.4.(1)9×104 Pa(2)3.6×10-2 m3(3)110 kg[解析] (1)当环境温度降低到T2=270 K时,B内气体压强降低.若此时差压阀没打开,设p B2'为差压阀未打开时B内气体的压强,B内气体体积不变,由查理定律得p0 T1=p B2' T2解得p B2'=9×104 Pa由于A、B内气体压强差p0-p B2'<Δp,故差压阀未打开,则p B2=p B2'即p B2=9×104 Pa(2)差压阀未打开时,A内气体的压强不变,由盖-吕萨克定律得V A1 T1=V A2 T2解得V A2=3.6×10-2 m3(3)倒入铁砂后,B内气体的温度和体积都不变,但压强增加,故可知A中气体通过差压阀进入B中,当B内气体压强为p0时,A内气体压强比B内气体压强高Δp,再根据A的活塞受力平衡可知(p0+Δp)S=p0S+mg解得m=110 kg5.[2024·广西卷] 如图甲,圆柱形管内封装一定质量的理想气体,水平固定放置,横截面积S =500 mm 2的活塞与一光滑轻杆相连,活塞与管壁之间无摩擦.静止时活塞位于圆管的b 处,此时封闭气体的长度l 0=200 mm .推动轻杆先使活塞从b 处缓慢移动到离圆柱形管最右侧距离为5 mm 的a 处,再使封闭气体缓慢膨胀,直至活塞回到b 处.设活塞从a 处向左移动的距离为x ,封闭气体对活塞的压力大小为F ,膨胀过程F -15+x曲线如图乙.大气压强p 0=1×105 Pa .(1)求活塞位于b 处时,封闭气体对活塞的压力大小; (2)推导活塞从a 处到b 处封闭气体经历了等温变化;(3)画出封闭气体等温变化的p -V 图像,并通过计算标出a 、b 处坐标值.5.(1)50 N (2)见解析 (3)如图所示[解析] (1)活塞位于b 处时,根据平衡条件可知此时气体压强等于大气压强p 0,故此时封闭气体对活塞的压力大小为 F =p 0S =1×105×500×10-6 N=50 N (2)根据题意可知F -15+x 图线为一条过原点的直线,设斜率为k ,可得F =k ·15+x 根据F =pS 可得气体压强为p =k(5+x )S故可知活塞从a 处到b 处对封闭气体由玻意耳定律得 pV =k(5+x )S·S ·(x +5)×10-3=k ·10-3故可知该过程中封闭气体的pV 值恒定不变,故可知a →b 过程封闭气体做等温变化.(3)分析可知全过程中气体做等温变化,开始在b 处时,有 p b V b =p 0Sl 0在b 处时气体体积为 V b =Sl 0=10×10-5 m 3 在a 处时气体体积为 V a =Sl a =0.25×10-5 m 3 根据玻意耳定律有 p a V a =p b V b =p 0Sl 0解得p a=40×105 Pa故封闭气体等温变化的p-V图像如图6.[2024·海南卷] 用铝制易拉罐制作温度计,一透明薄吸管里有一段油柱(长度不计)粗细均匀,吸管与罐密封性良好,罐内气体可视为理想气体,已知罐体积为330 cm3,薄吸管底面积为0.5 cm2,罐外吸管总长度为20 cm,当温度为27 ℃时,油柱离罐口10 cm,不考虑大气压强变化,下列说法正确的是()A.若在吸管上标注等差温度值,则刻度左密右疏B.该装置所测温度不高于31.5 ℃C.该装置所测温度不低于23.5 ℃D.其他条件不变,缓慢把吸管拉出来一点,则油柱离罐口距离增大6.B[解析] 设油柱离罐口的距离为x,由盖-吕萨克定律得V1T1=VT,其中V1=V0+Sl1=335cm3,T1=(273+27)K=300 K,V=V0+Sl=(330+0.5x)cm3,代入解得T=(3067x+1980067)K,根据T=(t+273) K可知t=(3067x+150967)℃,故若在吸管上标注等差温度值,则刻度均匀,故A错误;当x=20 cm时,该装置所测的温度最高,代入解得t max≈31.5 ℃,故该装置所测温度不高于31.5 ℃,当x=0时,该装置所测的温度最低,代入解得t min≈22.5 ℃,故该装置所测温度不低于22.5 ℃,故B正确,C错误;其他条件不变,缓慢把吸管拉出来一点,由盖-吕萨克定律可知,油柱离罐口距离不变,故D错误.7.(多选)[2024·海南卷] 一定质量的理想气体从状态a 开始经ab 、bc 、ca 三个过程回到原状态,已知ab 垂直于T 轴,bc 延长线过O 点,下列说法正确的是 ( )A .bc 过程外界对气体做功B .ca 过程气体压强不变C .ab 过程气体放出热量D .ca 过程气体内能减小7.AC [解析] 由理想气体状态方程pVT =C ,化简可得V =Cp ·T ,V -T 图线中,各点与原点连线的斜率的倒数表示气体的压强,则图线的斜率越大,压强越小,故p a <p b =p c ,bc 过程为等压变化,气体体积减小,外界对气体做功,故A 正确;由A 选项可知,ca 过程气体压强减小,故B 错误;ab 过程为等温变化,故气体内能不变,即ΔU =0,气体体积减小,外界对气体做功,故W >0,根据热力学第一定律ΔU =Q +W ,解得Q <0,故ab 过程气体放出热量,故C 正确;ca 过程,气体温度升高,内能增大,故D 错误.8.(多选)[2024·河北卷] 如图所示,水平放置的密闭绝热汽缸被导热活塞分成左右两部分,左侧封闭一定质量的理想气体,右侧为真空,活塞与汽缸右壁中央用一根轻质弹簧水平连接.汽缸内壁光滑且水平长度大于弹簧自然长度,弹簧的形变始终在弹性限度内且体积忽略不计.活塞初始时静止在汽缸正中间,后因活塞密封不严发生缓慢移动,活塞重新静止后 ( )A .弹簧恢复至自然长度B .活塞两侧气体质量相等C .与初始时相比,汽缸内气体的内能增加D .与初始时相比,活塞左侧单位体积内气体分子数减少8.ACD [解析] 初始状态活塞受到左侧气体向右的压力和弹簧向左的弹力而处于平衡状态,弹簧处于压缩状态.因活塞密封不严,可知左侧气体向右侧真空散逸,左侧气体压强变小,右侧出现气体,对活塞有向左的压力,由于最终左、右两侧气体相通,故两侧气体压强相等,因此弹簧恢复原长,A 正确;由于活塞向左移动,最终两侧气体压强相等,左侧气体体积小于右侧气体体积,所以左侧气体质量小于右侧气体质量,B 错误;密闭的汽缸绝热,与外界没有能量交换,与初始时相比,弹簧弹性势能减少了,所以气缸内气体的内能增加,C 正确;初始时气体都在活塞左侧,最终气体充满整个汽缸,所以初始时活塞左侧单位体积内气体分子数应该是最终的两倍,D 正确.9.[2024·湖北卷] 如图所示,在竖直放置、开口向上的圆柱形容器内用质量为m 的活塞密封一部分理想气体,活塞横截面积为S ,能无摩擦地滑动.初始时容器内气体的温度为T 0,气柱的高度为h.当容器内气体从外界吸收一定热量后,活塞缓慢上升15h 再次平衡.已知容器内气体内能变化量ΔU 与温度变化量ΔT 的关系式为ΔU =C ΔT ,C 为已知常数,大气压强恒为p 0,重力加速度大小为g ,所有温度都为热力学温度.求: (1)再次平衡时容器内气体的温度. (2)此过程中容器内气体吸收的热量.9.(1)65T 0 (2)15h (p 0S +mg )+15CT 0[解析] (1)容器内气体进行等压变化,则由盖-吕萨克定律得V 0T 0=V1T 1即ℎS T 0=(ℎ+15ℎ)S T 1解得T 1=65T 0(2)此过程中容器内气体内能增加量ΔU =C (T 1-T 0) 容器内气体压强p =p 0+mgS气体体积增大,则气体对外做功,W =-pS ·15h 根据热力学第一定律得ΔU =W +Q 联立解得Q =15h (p 0S +mg )+15CT 010.[2024·湖南卷] 一个充有空气的薄壁气球,气球内气体压强为p 、体积为V.气球内空气可视为理想气体.(1)若将气球内气体等温膨胀至大气压强p 0,求此时气体的体积V 0(用p 0、p 和V 表示); (2)小赞同学想测量该气球内气体体积V 的大小,但身边仅有一个电子天平.将气球置于电子天平上,示数为m =8.66×10-3 kg(此时须考虑空气浮力对该示数的影响).小赞同学查阅资料发现,此时气球内气体压强p 和体积V 还满足:(p -p 0)(V -V B 0)=C ,其中p 0=1.0×105 Pa 为大气压强,V B 0=0.5×10-3 m 3为气球无张力时的最大容积,C =18 J 为常数.已知该气球自身质量为m 0=8.40×10-3 kg,外界空气密度为ρ0=1.3 kg/m 3,g 取10 m/s 2.求气球内气体体积V 的大小.10.(1)pVp0(2)5×10-3 m3[解析] (1)理想气体做等温变化,根据玻意耳定律有pV=p0V0解得V0=pVp0(2)设气球内气体质量为m气,则m气=ρ0V0对气球进行受力分析如图所示根据平衡条件有mg+ρ0gV=m气g+m0g结合题中p和V满足的关系(p-p0)(V-V B0)=C联立解得V=5×10-3 m311.[2024·江苏卷] 某科研实验站有一个密闭容器,容器内有温度为300 K、压强为105 Pa 的气体,容器内有一个面积为0.06 m2的观测台.现将这个容器移动到月球,容器内的温度变成240 K.整个过程可认为气体的体积不变,月球表面为真空状态.求:(1)气体现在的压强;(2)观测台对气体的压力.11.(1)8×104 Pa(2)4.8×103 N[解析] (1)由题知,整个过程可认为气体的体积不变,则根据查理定律得p1T1=p2 T2解得p2=8×104 Pa(2)根据压强的定义,观测台对气体的压力F=p2S=4.8×103 N12.[2024·江西卷] 可逆斯特林热机的工作循环如图所示.一定质量的理想气体经ABCDA 完成循环过程,AB和CD均为等温过程,BC和DA均为等容过程.已知T1=1200 K,T2=300 K,气体在状态A的压强p A=8.0×105 Pa,体积V1=1.0 m3,气体在状态C的压强p C=1.0×105 Pa.求:(1)气体在状态D的压强p D;(2)气体在状态B的体积V2.12.(1)2.0×105 Pa(2)2.0 m3[解析] (1)气体从状态D到状态A的过程发生等容变化,根据查理定律有p DT2=p A T1解得p D=2.0×105 Pa(2)气体从状态C到状态D的过程发生等温变化,根据玻意耳定律有p C V2=p D V1解得V2=2.0 m3气体从状态B到状态C发生等容变化,因此气体在状态B的体积也为V2=2.0 m313.[2024·山东卷] 一定质量理想气体经历如图所示的循环过程,a→b过程是等压过程,b→c过程中气体与外界无热量交换,c→a过程是等温过程.下列说法正确的是 ()A.a→b过程,气体从外界吸收的热量全部用于对外做功B.b→c过程,气体对外做功,内能增加C.a→b→c过程,气体从外界吸收的热量全部用于对外做功D.a→b过程,气体从外界吸收的热量等于c→a过程放出的热量13.C[解析] a→b过程是等压过程且体积增大,则W ab<0,由盖-吕萨克定律可知T b>T a,则ΔU ab>0,根据热力学第一定律ΔU=Q+W可知,气体从外界吸收的热量一部分用于对外做功,另一部分用于增加内能,A错误;b→c过程中气体与外界无热量交换,即Q bc=0,由于气体体积增大,则W bc<0,由热力学第一定律ΔU=Q+W可知,ΔU bc<0,即气体内能减少,B错误;c→a过程是等温过程,即T c=T a,则ΔU ac=0,根据热力学第一定律可知a→b→c过程,气体从外界吸收的热量全部用于对外做功,C正确;由A项分析可知Q ab=ΔU ab-W ab,由B项分析可知W bc=ΔU bc,由C项分析可知0=W ca+Q ca,又ΔU ab+ΔU bc=0,联立解得Q ab-(-Q ca)=(-W ab-W bc)-W ca,根据p-V图像与坐标轴所围图形的面积表示外界与气体之间做的功,结合题图可知a→b→c过程气体对外界做的功大于c→a过程外界对气体做的功,即-W ab-W bc>W ca,则Q ab-(-Q ca)>0,即a→b过程气体从外界吸收的热量Q ab大于c→a过程放出的热量-Q ca,D错误.14.[2024·山东卷] 图甲为战国时期青铜汲酒器,根据其原理制作了由中空圆柱形长柄和储液罐组成的汲液器,如图乙所示.长柄顶部封闭,横截面积S1=1.0 cm2,长度H=100.0 cm,侧壁有一小孔A.储液罐的横截面积S2=90.0 cm2、高度h=20.0 cm,罐底有一小孔B.汲液时,将汲液器竖直浸入液体,液体从孔B进入,空气由孔A排出;当内外液面相平时,长柄浸入液面部分的长度为x;堵住孔A,缓慢地将汲液器竖直提出液面,储液罐内刚好储满液体.已知液体密度ρ=1.0×103 kg/m3,重力加速度大小g取10 m/s2,大气压p0=1.0×105 Pa.整个过程温度保持不变,空气可视为理想气体,忽略器壁厚度.(1)求x;(2)松开孔A,从外界进入压强为p0、体积为V的空气,使满储液罐中液体缓缓流出,堵住孔A,稳定后罐中恰好剩余一半的液体,求V.14.(1)2 cm(2)8.92×10-4 m3[解析] (1)在缓慢地将汲液器竖直提出液面的过程中,封闭气体发生等温变化,根据玻意耳定律有p1(H-x)S1=p2HS1根据题意可知p1=p0,p2+ρgh=p0联立解得x=2 cm(2)对新进入的气体和原有的气体整体分析,由玻意耳定律有S2)p0V+p2HS1=p3(HS1+ℎ2=p0又p3+ρg·ℎ2联立解得V=8.92×10-4 m315.(多选)[2024·新课标卷] 如图所示,一定量理想气体的循环由下面4个过程组成:1→2为绝热过程(过程中气体不与外界交换热量),2→3为等压过程,3→4为绝热过程,4→1为等容过程.上述四个过程是四冲程柴油机工作循环的主要过程.下列说法正确的是()A.1→2过程中,气体内能增加B.2→3过程中,气体向外放热C.3→4过程中,气体内能不变D.4→1过程中,气体向外放热15.AD[解析] 1→2为绝热过程,则Q=0,由于气体体积减小,则外界对气体做功,即W>0,根据热力学第一定律ΔU=Q+W可知ΔU>0,即气体内能增加,故A正确;2→3为等压过程,气体体积增大,根据盖-吕萨克定律可知,气体温度升高,则气体内能增大,即ΔU>0,由于气体体积增大,则气体对外界做功,即W<0,根据热力学第一定律ΔU=Q+W可知Q>0,即气体从外界吸热,故B错误;3→4为绝热过程,则Q=0,由于气体体积增大,则气体对外界做功,即W<0,根据热力学第一定律ΔU=Q+W可知ΔU<0,即气体内能减小,故C错误;4→1为等容过程,压强减小,根据查理定律可知,气体温度降低,则气体内能减小,即ΔU<0,由于体积不变,则W=0,根据热力学第一定律ΔU=Q+W可知Q<0,即气体向外放热,故D正确.16.[2024·浙江6月选考] 如图所示,测定一个形状不规则小块固体体积,将此小块固体放入已知容积为V0的导热效果良好的容器中,开口处竖直插入两端开口的薄玻璃管,其横截面积为S,接口用蜡密封.容器内充入一定质量的理想气体,并用质量为m的活塞封闭,活塞能无摩擦滑动,稳定后测出气柱长度为l1.将此容器放入热水中,活塞缓慢竖直向上移动,再次稳定后气柱长度为l2、温度为T2.已知S=4.0×10-4 m2,m=0.1 kg,l1=0.2 m,l2=0.3 m,T2=350 K,V0=2.0×10-4 m3.大气压强p0=1.0×105 Pa,环境温度T1=300 K,g取10 m/s2.(1)在此过程中器壁单位面积所受气体分子的平均作用力(选填“变大”“变小”或“不变”),气体分子的数密度(选填“变大”“变小”或“不变”);(2)求此不规则小块固体的体积V;(3)若此过程中气体内能增加10.3 J,求吸收的热量Q.16.(1)不变 变小 (2)4×10-5 m 3 (3)14.4 J[解析] (1)温度升高时,活塞缓慢上升,受力不变,故封闭气体压强不变,由p =F S 知器壁单位面积所受气体分子的平均作用力不变;由于气体体积变大,所以气体分子的数密度变小.(2)气体发生等压变化,有V 0-V+l 1S T 1=V 0-V+l 2S T 2 解得V =4×10-5 m 3(3)此过程中,外界对气体做功为W =-p 1S (l 2-l 1)对活塞受力分析,有p 1S =mg +p 0S由热力学第一定律得ΔU =W +Q其中ΔU =10.3 J联立解得Q =14.4 J。
46道高中物理33题热学热门大题整理大全

1\如图5所示,厚度和质量不计、横截面积为S=10 cm2的绝热汽缸倒扣在水平桌面上,汽缸内有一绝热的“T”形活塞固定在桌面上,活塞与汽缸封闭一定质量的理想气体,开始时,气体的温度为T0=300 K,压强为p=0.5×105 Pa,活塞与汽缸底的距离为h=10 cm,活塞与汽缸可无摩擦滑动且不漏气,大气压强为p0=1.0×105 Pa。
图5(1)求此时桌面对汽缸的作用力F N;(2)现通过电热丝将气体缓慢加热到T,此过程中气体吸收热量为Q=7 J,内能增加了ΔU=5 J,整个过程活塞都在汽缸内,求T的值。
解析(1)对汽缸受力分析,由平衡条件有F N+pS=p0S,解得F N=(p0-p)S=(1.0×105 Pa-0.5×105 Pa)×10×10-4 m2=50 N。
(2)设温度升高至T时活塞距离汽缸底距离为H,则气体对外界做功W=p0ΔV=p0S(H-h),由热力学第一定律得ΔU=Q-W,解得H=12 cm。
气体温度从T0升高到T的过程,由理想气体状态方程得pShT0=p0SHT,解得T=p0Hph T0=105×0.120.5×105×0.10×300 K=720 K。
答案(1)50 N(2)720 K(等压变化,W=pΔV;只要温度发生变化,其内能就发生变化。
(4)结合热力学第一定律ΔU=W+Q求解问题。
2.如图8所示,用轻质活塞在汽缸内封闭一定质量的理想气体,活塞与汽缸壁间摩擦忽略不计,开始时活塞距离汽缸底部高度h 1=0.50 m ,气体的温度t 1=27 ℃。
给汽缸缓慢加热至t 2=207 ℃,活塞缓慢上升到距离汽缸底某一高度h 2处,此过程中缸内气体增加的内能ΔU =300 J ,已知大气压强p 0=1.0×105 Pa ,活塞横截面积S =5.0×10-3 m 2。
高中物理热学试题 及答案

热学试题一选择题:1.只知道下列那一组物理量,就可以估算出气体中分子间的平均距离A.阿伏加徳罗常数,该气体的摩尔质量和质量B.阿伏加徳罗常数,该气体的摩尔质量和密度C.阿伏加徳罗常数,该气体的质量和体积D.该气体的质量、体积、和摩尔质量2.关于布朗运动下列说法正确的是A.布朗运动是液体分子的运动B.布朗运动是悬浮微粒分子的运动C.布朗微粒做无规则运动的原因是由于它受到水分子有时吸引、有时排斥的结果D.温度越高,布朗运动越显著3.铜的摩尔质量为μ(kg/ mol),密度为ρ(kg/m3),若阿伏加徳罗常数为N A,则下列说法中哪个是错误..的A.1m3铜所含的原子数目是ρN A/μ B.1kg铜所含的原子数目是ρN AC.一个铜原子的质量是(μ / N A)kg D.一个铜原子占有的体积是(μ / ρN A)m3 4.分子间同时存在引力和斥力,下列说法正确的是A.固体分子间的引力总是大于斥力B.气体能充满任何仪器是因为分子间的斥力大于引力C.分子间的引力和斥力都随着分子间的距离增大而减小D.分子间的引力随着分子间距离增大而增大,而斥力随着距离增大而减小5.关于物体内能,下列说法正确的是A.相同质量的两种物体,升高相同温度,内能增量相同B.一定量0℃的水结成0℃的冰,内能一定减少C.一定质量的气体体积增大,既不吸热也不放热,内能减少D.一定质量的气体吸热,而保持体积不变,内能一定减少6.质量是18g的水,18g的水蒸气,32g的氧气,在它们的温度都是100℃时A.它们的分子数目相同,分子的平均动能相同B.它们的分子数目相同,分子的平均动能不相同,氧气的分子平均动能大C.它们的分子数目相同,它们的内能不相同,水蒸气的内能比水大D.它们的分子数目不相同,分子的平均动能相同7.有一桶水温度是均匀的,在桶底部水中有一个小气泡缓缓浮至水面,气泡上升过程中逐渐变大,若不计气泡中空气分子的势能变化,则A.气泡中的空气对外做功,吸收热量 B.气泡中的空气对外做功,放出热量C.气泡中的空气内能增加,吸收热量 D.气泡中的空气内能不变,放出热量8.关于气体压强,以下理解不正确的是A.从宏观上讲,气体的压强就是单位面积的器壁所受压力的大小B.从微观上讲,气体的压强是大量的气体分子无规则运动不断撞击器壁产生的C.容器内气体的压强是由气体的重力所产生的D.压强的国际单位是帕,1Pa=1N/m29.一定质量的理想气体处于平衡状态Ⅰ,现设法使其温度降低而压强升高,达到平衡状态Ⅱ,则( )A .状态Ⅰ时气体的密度比状态Ⅱ时的大B .状态Ⅰ时分子的平均动能比状态Ⅱ时的大C .状态Ⅰ时分子的平均距离比状态Ⅱ时的大D .状态Ⅰ时每个分子的动能都比状态Ⅱ时分子平均动能大10.如图所示,气缸内装有一定质量的气体,气缸的截面积为S ,其活塞为梯形,它的一个面与气缸成θ角,活塞与器壁间的摩擦忽略不计,现用一水平力F 推活塞,汽缸不动,此时大气压强为P 0,则气缸内气体的压强P 为A .P=P 0+θcos S F B .P=P 0+S FC .P=P 0+S F θcosD .P=P 0+SF θsin11.如图所示,活塞质量为m ,缸套质量为M ,通过弹簧吊在天花板上,气缸内封住一定质量的空气 ,缸套与活塞无摩擦,活塞截面积为S ,大气压强为p 0,则 A. 气缸内空气的压强为p 0-Mg /S B .气缸内空气的压强为p 0+mg /SC .内外空气对缸套的作用力为(M +m )gD .内外空气对活塞的作用力为Mg12.关于热力学温度的下列说法中, 不正确的是( ) A. B.热力学温度的零度等于-273.15 C. D.气体温度趋近于绝对零度时,13.若在水银气压计上端混入少量空气, 气压计的示数与实际大气压就不一致, 在这种情况下( )A.气压计的读数可能大于外界大B.C.只要外界大气压不变,D.14、根据分子动理论,下列关于气体的说法中正确的是 A .气体的温度越高,气体分子无规则运动越剧烈 B .气体的压强越大,气体分子的平均动能越大 C .气体分子的平均动能越大,气体的温度越高D .气体的体积越大,气体分子之间的相互作用力越大15. .如图所示,绝热隔板K 把绝热的气缸分隔成体积相等的两部分,K 与气缸壁的接触是光滑的。
高中物理【热学】专题分类典型题(带解析)

高中物理热学专题分类题型一、【分子动理论内能】典型题1.(多选)下列有关热现象和内能的说法中正确的是()A.把物体缓慢举高,其机械能增加,内能不变B.盛有气体的容器做加速运动时,容器中气体的内能必定会随之增大C.电流通过电阻后电阻发热,它的内能增加是通过“做功”方式实现的D.分子间引力和斥力相等时,分子势能最大解析:选AC.把物体缓慢举高,外力做功,其机械能增加,由于温度不变,物体内能不变,选项A正确;物体的内能与物体做什么性质的运动没有直接关系,选项B错误;电流通过电阻后电阻发热,是通过电流“做功”的方式改变电阻内能的,选项C正确;根据分子间作用力的特点,当分子间距离等于r0时,引力和斥力相等,不管分子间距离从r0增大还是减小,分子间作用力都做负功,分子势能都增大,故分子间距离等于r0时分子势能最小,选项D错误.2.(多选)下列关于布朗运动的说法中正确的是()A.布朗运动是微观粒子的运动,其运动规律遵循牛顿第二定律B.布朗运动是组成固体微粒的分子无规则运动的反映C.布朗运动是液体分子与固体分子的共同运动D.布朗运动是永不停息的,反映了系统的能量是守恒的解析:选AD.布朗运动是悬浮的固体小颗粒不停地做无规则的宏观的机械运动,故符合牛顿第二定律,它反映了液体分子永不停息地做无规则运动,A正确,B、C错误;微粒运动过程中,速度的大小与方向不断发生改变,与接触的微粒进行能量交换,D正确.3.(多选)下列说法正确的是()A.气体扩散现象表明了气体分子的无规则运动B.气体温度升高,分子的平均动能一定增大C.布朗运动的实质就是分子的热运动D.当分子间作用力表现为斥力时,分子势能随分子间距离的减小而减小解析:选AB.扩散现象是分子运动的结果,一切物质的分子都在不停地做无规则运动,故A正确;分子的平均动能只与温度有关,温度越高,分子的平均动能越大,故B正确;布朗运动是悬浮在液体中微粒的运动,它是液体分子无规则热运动的反映,选项C错误;当分子间作用力表现为斥力时,分子势能随分子间距离的减小而增大,选项D错误.4.(多选)我国已开展空气中PM2.5浓度的监测工作.PM2.5是指空气中直径等于或小于2.5 μm 的悬浮颗粒物,其飘浮在空中做无规则运动,很难自然沉降到地面,吸入后对人体形成危害.矿物燃料燃烧的排放物是形成PM2.5的主要原因.下列关于PM2.5的说法中正确的是()A.PM2.5的尺寸与空气中氧分子的尺寸的数量级相当B.PM2.5在空气中的运动属于分子热运动C.PM2.5的运动轨迹是由大量空气分子对PM2.5无规则碰撞的不平衡和气流运动决定的D.倡导低碳生活,减少煤和石油等燃料的使用,能有效减小PM2.5在空气中的浓度解析:选CD.“PM2.5”是指直径小于或等于2.5 μm的颗粒物,大于氧分子尺寸的数量级,A错误;PM2.5在空气中的运动是固体颗粒的运动,不是分子的运动,B错误;PM2.5的运动轨迹是由大量空气分子碰撞的不平衡和气流运动共同决定的,C正确;减少矿物燃料燃烧的排放,能有效减小PM2.5在空气中的浓度,D正确.5.(多选)运用分子动理论的相关知识,判断下列说法正确的是()A.气体分子单位时间内与单位面积器壁碰撞的次数仅与单位体积内的分子数有关B.某气体的摩尔体积为V,每个分子的体积为V0,则阿伏加德罗常数可表示为N A=VV0 C.阳光从缝隙射入教室,从阳光中看到的尘埃运动不是布朗运动D.生产半导体器件时需要在纯净的半导体材料中掺入其他元素,这可以在高温条件下利用分子的扩散来完成解析:选CD.气体分子单位时间内与单位面积器壁碰撞的次数,与单位体积内的分子数有关,还与分子平均速率有关,选项A错;由于分子的无规则运动,气体的体积可以占据很大的空间,故不能用摩尔体积除以分子体积得到阿伏加德罗常数,选项B错;布朗运动的微粒非常小,肉眼是看不到的,阳光从缝隙射入教室,从阳光中看到的尘埃运动是机械运动,不是布朗运动,选项C对;扩散可以在固体中进行,生产半导体器件时需要在纯净的半导体材料中掺入其他元素,这可以在高温条件下利用分子的扩散来完成,选项D对.6.(多选)某气体的摩尔质量为M mol,摩尔体积为V mol,密度为ρ,每个分子的质量和体积分别为m和V0,则阿伏加德罗常数N A可表示为()A.N A=M molm B.N A=ρV molmC .N A =V mol V 0D .N A =M mol ρV 0解析:选AB .阿伏加德罗常数N A =M mol m =ρV mol m =V mol V,其中V 为每个气体分子所占有的体积,而V 0是气体分子的体积,故C 错误;D 中ρV 0不是气体分子的质量,因而也是错误的.故选A 、B .7.很多轿车为了改善夜间行驶时的照明问题,在车灯的设计上选择了氙气灯,因为氙气灯灯光的亮度是普通灯灯光亮度的3倍,但是耗电量仅是普通灯的一半,氙气灯使用寿命则是普通灯的5倍,很多车主会选择含有氙气灯的汽车.若氙气充入灯头后的容积V =1.6 L ,氙气密度ρ=6.0 kg/m 3,氙气摩尔质量M =0.131 kg/mol ,阿伏加德罗常数N A =6×1023 mol -1 .试估算:(结果均保留一位有效数字)(1)灯头中氙气分子的总个数N ;(2)灯头中氙气分子间的平均距离.解析:(1)设氙气的物质的量为n ,则n =ρV M, 氙气分子的总个数N =ρV MN A ≈4×1022个. (2)每个分子所占的空间为V 0=V N设分子间平均距离为a ,则有V 0=a 3,则a = 3V N≈3×10-9 m. 答案:(1)4×1022个 (2)3×10-9 m8.(多选)用显微镜观察水中的花粉,追踪某一个花粉颗粒,每隔10 s 记下它的位置,得到了a 、b 、c 、d 、e 、f 、g 等点,再用直线依次连接这些点,如图所示.则下列说法中正确的是( )A .花粉颗粒的运动就是热运动B .这些点连接的折线就是这一花粉颗粒运动的轨迹C .在这六段时间内花粉颗粒运动的平均速度大小不等D .从花粉颗粒处于a 点开始计时,经过36 s ,花粉颗粒可能不在de 连线上解析:选CD .热运动是分子的运动,而不是固体颗粒的运动,故A 项错误;既然无规则,微粒在每个10 s内也是做无规则运动,并不是沿连线运动,故B错误;在这六段时间内的位移大小并不相同,故平均速度大小不等,故C正确;由运动的无规则性知,D正确.9.如图所示,甲分子固定在坐标原点O,乙分子位于x轴上,甲分子对乙分子的作用力与两分子间距离的关系如图中曲线所示.F>0为斥力,F<0为引力.A、B、C、D为x 轴上四个特定的位置.现把乙分子从A处由静止释放,下列A、B、C、D四个图分别表示乙分子的速度、加速度、势能、动能与两分子间距离的关系,其中大致正确的是()解析:选B.乙分子从A处释放受甲分子引力作用,一直到C点都是加速运动,而后受斥力作用而减速,所以乙到C点时速度最大而不是零.A项错误;加速度与力成正比,方向相同,故B项正确;从C图中可知,在A点静止释放乙分子时,分子势能为负值,动能为零,乙分子总能量为负值,在以后的运动过程中动能不可能小于零,则分子势能不可能大于零,所以C图中不可能出现横轴上方的那部分,故C项错误;乙分子动能不可能为负值,故D项错误.10.(多选)下列说法正确的是()A.只要知道水的摩尔质量和水分子的质量,就可以计算出阿伏加德罗常数B.悬浮微粒越大,在某一瞬间撞击它的液体分子数就越多,布朗运动越明显C.在使两个分子间的距离由很远(r>10-9m)减小到很难再靠近的过程中,分子间作用力先减小后增大;分子势能不断增大D.温度升高,分子热运动的平均动能一定增大,但并非所有分子的速率都增大解析:选AD.悬浮微粒越大,在某一瞬间撞击它的液体分子数越多,受力越趋于平衡,布朗运动越不明显,选项B 错误;在使两个分子间的距离由很远(r >10-9 m)减小到很难再靠近的过程中,分子间作用力先增大后减小再增大,分子势能先减小后增大,选项C 错误.11.(多选)下列说法正确的是( )A .分析布朗运动会发现,悬浮的颗粒越小,温度越高,布朗运动越剧烈B .一定质量的气体,温度升高时,分子间的平均距离增大C .分子间的距离r 存在某一值r 0,当r 大于r 0时,分子间引力大于斥力,当r 小于r 0时,分子间斥力大于引力D .已知铜的摩尔质量为M (kg/mol),铜的密度为ρ(kg/m 3),阿伏加德罗常数为N A (mol -1),体积为V (m 3)的铜所含的原子数为N =ρVN A M解析:选ACD .悬浮的颗粒越小,液体分子撞击的不平衡越明显,温度越高,液体分子撞击固体颗粒的作用越强,故A 正确;一定质量的气体,温度升高时,体积不一定增大,分子间的平均距离不一定增大,故B 错误;分子间的距离r 存在某一值r 0,当r 大于r 0时,分子间斥力小于引力,整体表现为引力;当r 小于r 0时,分子间斥力大于引力,整体表现为斥力,故C 正确;体积为V (m 3)的铜所含的原子数N =ρV M N A,故选项D 正确. 12.(多选)一般情况下,分子间同时存在分子引力和分子斥力.若在外力作用下两分子的间距达到不能再靠近时,固定甲分子不动,乙分子可自由移动,则去掉外力后,当乙分子运动到很远时,速度为v ,则在乙分子的运动过程中(乙分子的质量为m )( )A .乙分子的动能变化量为12m v 2 B .分子力对乙分子做的功为12m v 2 C .分子引力比分子斥力多做的功为12m v 2 D .分子斥力比分子引力多做的功为12m v 2 解析:选ABD .当甲、乙两分子间距离最小时,两者都处于静止状态,当乙分子运动到分子力的作用范围之外时,乙分子不再受力,此时速度为v ,故在此过程中乙分子的动能变化量为12m v 2,选项A 正确;在此过程中,分子斥力始终做正功,分子引力始终做负功,即W 合=W 斥-W 引,由动能定理得W 合=W 斥-W 引=12m v 2,故分子斥力比分子引力多做的功为12m v 2,分子力做正功,选项B 、D 正确,C 错误.13.(2020·江西联考)下列说法正确的是()A.只要知道气体的摩尔体积和阿伏加德罗常数,就可以算出气体分子的体积B.一定温度时,悬浮在液体中的固体微粒越小,布朗运动就越明显C.密封在体积不变的容器中的气体,温度升高,气体分子对器壁单位面积上碰撞的平均作用力增大D.用打气筒的活塞压缩气体很费力,说明分子间有斥力解析:选BC.只要知道气体的摩尔体积和阿伏加德罗常数,可以算出气体分子所占空间的大小,不能算出气体分子的体积,故A错误;颗粒越小、温度越高,布朗运动越明显,故B正确;容积一定,当温度升高时,气体分子运动越剧烈,在单位时间内对单位面积的容器壁的撞击次数越多,故C正确;用打气筒打气时,里面的气体因体积变小,压强变大,所以再压缩时就费力,与分子之间的斥力无关,故D错误.14.已知地球大气层的厚度h远小于地球半径R,空气平均摩尔质量为M,阿伏加德罗常数为N A,地面大气压强为p0,重力加速度大小为g.由此可估算得,地球大气层空气分子总数为________________,空气分子之间的平均距离为____________.解析:可认为地球大气对地球表面的压力是由其重力引起的,即mg=p0S=p0×4πR2,故大气层的空气总质量m=4πp0R2g,空气分子总数N=mM N A=4πp0N A R2Mg.由于h≪R,则大气层的总体积V=4πR2h,每个分子所占空间设为一个棱长为a的正方体,则有Na3=V,可得分子间的平均距离a=3Mghp0N A.答案:4πp0N A R2Mg3Mghp0N A二、【固体、液体和气体的性质】典型题1.下列说法正确的是()A.温度标志着物体内大量分子热运动的剧烈程度B.内能是物体中所有分子热运动所具有的动能的总和C.气体压强仅与气体分子的平均动能有关D.气体膨胀对外做功且温度降低,分子的平均动能可能不变解析:选A.温度是分子平均动能的量度(标志),A对.内能是物体内所有分子的分子动能和分子势能的总和,B错.气体压强不仅与分子的平均动能有关,还与分子的密集程度有关,C错.温度降低,则分子的平均动能变小,D错.2.如图所示,把玻璃管的裂口放在火焰上烧熔,它的尖端就变钝了.产生这一现象的原因是()A.玻璃是非晶体,熔化再凝固后变成晶体B.玻璃是晶体,熔化再凝固后变成非晶体C.熔化的玻璃表面分子间表现为引力使其表面绷紧D.熔化的玻璃表面分子间表现为斥力使其表面扩张解析:选C.玻璃是非晶体,熔化再凝固后仍然是非晶体,故A、B错误;玻璃裂口尖端放在火焰上烧熔后尖端变钝,是表面张力的作用,因为表面张力具有减小表面积的作用即使液体表面绷紧,故C正确,D错误.3.(多选)下列说法正确的是()A.竖直玻璃管里的水银面不是平面,而是“上凸”的,这是表面张力所致B.物理性质表现为各向同性的固体一定是非晶体C.压缩气体需要用力,这是气体分子间有斥力的表现D.汽缸里一定质量的理想气体发生等压膨胀时,单位时间碰撞器壁单位面积的气体分子数一定减少解析:选AD.竖直玻璃管里的水银面不是平面,而是“上凸”的,这是表面张力所致,选项A正确;物理性质表现为各向同性的固体可能是多晶体,不一定是非晶体,选项B错误;气体之间分子距离很大,分子力近似为零,用力才能压缩气体是由于气体内部与容器外之间的压强差造成的,并非由于分子之间的斥力造成,选项C错误;汽缸里一定质量的理=C可知,压强不变而体积增大,则气想气体发生等压膨胀时,根据理想气体状态方程pVT体的温度一定升高,温度是分子平均动能的标志,温度升高则分子的平均动能增大,分子对器壁的平均撞击力增大,则单位时间碰撞器壁单位面积的气体分子数一定减少,选项D正确.4.(多选)下列说法正确的是()A .理想气体由状态1变化到状态2时,一定满足p 1V 1T 1=p 2V 2T 2B .随着分子间距离增加,分子间的引力和斥力都减小,分子间距小于r 0(分子力为零时分子间的距离)时,距离越小,分子势能越大C .悬浮在液体中的固体微粒做布朗运动,充分说明了固体微粒内部分子运动的无规则性D .如果液体不浸润某种固体,则在液体与固体接触的附着层内,分子分布比液体内部稀疏,分子间的作用力表现为引力解析:选BD .理想气体状态方程成立的条件为气体质量不变,A 错误;由分子力变化特点知,r <r 0,分子力表现为斥力,距离减小,分子力做负功,分子势能增大,B 正确;悬浮在液体中的固体微粒的布朗运动间接反映了液体分子运动的无规则性,C 错误;液体不浸润某种固体,如水银对玻璃,当水银与玻璃接触时,附着层中的水银分子受玻璃分子的吸引比内部水银分子弱,附着层中的水银分子比水银内部稀疏,附着层中的分子间的作用力表现为引力,使跟玻璃接触的水银表面有缩小的趋势,因而形成不浸润现象,D 正确.5.(多选)对下列几种固体物质的认识,正确的有( )A .食盐熔化过程中,温度保持不变,说明食盐是晶体B .烧热的针尖接触涂有蜂蜡薄层的云母片背面,熔化的蜂蜡呈椭圆形,说明蜂蜡是晶体C .天然石英表现为各向异性,是由于该物质的微粒在空间的排列不规则D .石墨和金刚石的物理性质不同,是由于组成它们的物质微粒排列结构不同解析:选AD .晶体在熔化过程中温度保持不变,食盐具有这样的特点,则说明食盐是晶体,选项A 正确;蜂蜡的导热特点是各向同性的,烧热的针尖使蜂蜡熔化后呈椭圆形,说明云母片的导热特点是各向异性的,故云母片是晶体,选项B 错误;天然石英表现为各向异性,则该物质微粒在空间的排列是规则的,选项C 错误;石墨与金刚石皆由碳原子组成,但它们的物质微粒排列结构是不同的,选项D 正确.6. (多选)固体甲和固体乙在一定压强下的熔化曲线如图所示,横轴表示时间t ,纵轴表示温度T .下列判断正确的有( )A.固体甲一定是晶体,固体乙一定是非晶体B.固体甲不一定有确定的几何外形,固体乙一定没有确定的几何外形C.在热传导方面固体甲一定表现出各向异性,固体乙一定表现出各向同性D.固体甲和固体乙的化学成分有可能相同解析:选ABD.晶体具有固定的熔点,非晶体则没有固定的熔点,所以固体甲一定是晶体,固体乙一定是非晶体,故A正确;固体甲若是多晶体,则不一定有确定的几何外形,固体乙是非晶体,一定没有确定的几何外形,故B正确;在热传导方面固体甲若是多晶体,则不一定表现出各向异性,固体乙一定表现出各向同性,故C错误;固体甲一定是晶体,固体乙一定是非晶体,但是固体甲和固体乙的化学成分有可能相同,故D正确.7.(多选)下列说法中正确的是()A.在较暗的房间里,看到透过窗户的“阳光柱”里粉尘的运动不是布朗运动B.气体分子速率呈现出“中间多,两头少”的分布规律C.随着分子间距离增大,分子间作用力减小,分子势能也减小D.一定量的理想气体发生绝热膨胀时,其内能不变解析:选AB.布朗运动是悬浮在液体或气体中固体小颗粒的无规则运动,在较暗的房间里可以观察到射入屋内的阳光中有悬浮在空气里的小颗粒在飞舞,是由于气体的流动造成的,这不是布朗运动,故A正确;麦克斯韦提出了气体分子速率分布的规律,即“中间多,两头少”,故B正确;分子力的变化比较特殊,随着分子间距离的增大,分子间作用力不一定减小,当分子表现为引力时,分子力做负功,分子势能增大,故C错误;一定量理想气体发生绝热膨胀时,不吸收热量,同时对外做功,其内能减小,故D错误.8.(多选)下列说法正确的是()A.气体的内能是分子热运动的平均动能与分子间势能之和B.气体的温度变化时,气体分子的平均动能一定改变C.晶体有固定的熔点且物理性质各向异性D.在完全失重的环境中,空中的水滴是个标准的球体解析:选BD.由热力学知识知:气体的内能是所有分子热运动的动能与分子间势能之和,A错误;气体的温度变化时,气体分子的平均动能变化,B正确;晶体分为单晶体和多晶体,单晶体具有各向异性,多晶体是各向同性的,C错误;完全失重情况下,液体各方向的力都一样,由于表面张力所以会成为一个标准的球形,D正确.9.如图所示,一开口向下导热均匀的直玻璃管,通过细绳悬挂在天花板上,玻璃管下端浸没在固定水银槽中,管内外水银面高度差为h,下列情况中能使细绳拉力增大的是()A.大气压强增加B.环境温度升高C.向水银槽内注入水银D.略微增加细绳长度,使玻璃管位置相对水银槽下移解析:选A.根据题意,设玻璃管内的封闭气体的压强为p,玻璃管质量为m,对玻璃管受力分析,由平衡条件可得:F+pS=mg+p0S.解得:F=(p0-p)S+mg=ρghS+mg,即绳的拉力等于玻璃管的重力和管中高出液面部分水银的重力.选项A中,大气压强增加时,水银柱上移,h增大,所以拉力F增加,A正确;选项B中,环境温度升高,封闭气体压强增加,水银柱高度h减小,故拉力F减小,B错误;选项C中,向水银槽内注入水银,封闭气体的压强增大,平衡时水银柱高度h减小,故拉力减小,C错误;选项D中,略微增加细绳长度,使玻璃管位置相对水银槽下移,封闭气体的体积减小、压强增大,平衡时水银柱高度h减小,故细绳拉力F减小,故D错误.10.(多选)下列说法正确的是()A.悬浮在液体中的微粒越小,在液体分子的撞击下越容易保持平衡B.荷叶上的小水珠呈球形是由于液体表面张力的作用C.物体内所有分子的热运动动能之和叫做物体的内能D.一定质量的理想气体先经等容降温,再经等温压缩,压强可以回到初始的数值解析:选BD.做布朗运动的微粒越小,在液体分子的撞击下越不容易保持平衡,故A 错误;荷叶上的小水珠呈球形是由于液体表面张力的作用,故B正确;物体内所有分子的热运动动能之和与分子势能的总和叫做物体的内能,故C错误;根据理想气体的状态方程pVT =C可知,一定质量的理想气体先经等容降温,压强减小;再经等温压缩,压强又增大,所以压强可以回到初始的数值,故D正确.11.(多选)下列说法正确的是()A.毛细现象是液体的表面张力作用的结果B.晶体在熔化时要吸热,说明晶体在熔化过程中分子动能增加C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体D.液晶像液体一样具有流动性,而其光学性质和非晶体相似,具有各向同性解析:选AC.毛细现象是液体的表面张力作用的结果,A正确;晶体在熔化时要吸热,温度不变,分子平均动能不变,则晶体在熔化过程中分子势能增加,B错误;由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体,如金刚石和石墨,C正确;液晶像液体一样具有流动性,而其光学性质和某些晶体相似,具有各向异性,D错误.12.(多选)下列说法正确的是()A.液面上方的蒸汽达到饱和时就不会有液体分子从液面飞出B.萘的熔点为80 ℃,质量相等的80 ℃的液态萘和80 ℃的固态萘具有不同的分子势能C.车轮在潮湿的地面上滚过后,车辙中会渗出水,属于毛细现象D.液体表面层的分子势能比液体内部的分子势能大解析:选BCD.液面上方的蒸汽达到饱和时,液体分子从液面飞出,同时有蒸汽分子进入液体中,从宏观上看,液体不再蒸发,故选项A错误;80 ℃时,液态萘凝固成固态萘的过程中放出热量,温度不变,则分子的平均动能不变,萘放出热量的过程中内能减小,所以一定是分子势能减小,故选项B正确;由毛细现象的定义可知,选项C正确;液体表面层的分子间距离比液体内部的分子间距离大,故液体表面层分子之间的作用力表现为引力,分子间距变大时,克服分子间引力做功,分子势能增大.所以液体表面层的分子比液体内部的分子有更大的分子势能,故选项D正确.13.(多选)下列说法正确的是()A.不同温度下,理想气体分子平均动能可能相同B.在分子间距离增大的过程中,分子间的作用力可能增加也可能减小C.自然发生的热传递过程是向着分子热运动无序性增大的方向进行的D.气体的温度升高时,分子的热运动变得剧烈,分子的平均动能增大,撞击器壁时对器壁的作用力增大,从而气体的压强一定增大解析:选BC.不同温度下,理想气体分子平均动能不相同,故A错误;分子间距离小于r0时,在分子间距离增大的过程中,分子间的作用力减小,分子间距离大于r0时,在分子间距离增大的过程中,分子间的作用力先增大后减小,故B正确;根据热力学第二定。
高考物理热学大题专题训练专用(带答案)

高考物理热学大题常考题型专项练习题型一:单缸单活塞问题 题型二:单缸双活塞问题 题型三:双缸单活塞 题型四:双缸双活塞 题型五:单汞柱问题 题型六:双汞柱问题 题型七:变质量问题 题型八:非活塞汞柱问题题型一:单缸单活塞问题1.(2014年全国卷1)一定质量的理想气体被活塞封闭在竖直放置的圆柱形气缸内,气缸壁导热良好,活塞可沿气缸壁无摩擦地滑动。
开始时气体压强为P ,活塞下表面相对于气缸底部的高度为h ,外界的温度为To 。
现取质量为m 的沙子缓慢地倒在活塞的上表面,沙子倒完时,活塞下降了h/4.若此后外界的温度变为T ,求重新达到平衡后气体的体积。
已知外界大气的压强始终保持不变,重力加速度大小为g 。
【答案】94mghTpT2.(2018年全国卷I ,33,15分★★★)如图,容积为V 的汽缸由导热材料制成,面积为S 的活塞将汽缸分成容积相等的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K 。
开始时,K 关闭,汽缸内上下两部分气体的压强均为p 0, 现将K 打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为8V时,将K 关闭,活塞平衡时其下方气体的体积减小了6V,不计活塞的质量和体积,外界温度保持不变,重力加速度大小为g 。
求流入汽缸内液体的质量。
答案:01526p Sm g3.(2018年全国卷II ,33,10分★★★★★)如图,一竖直放置的气缸上端开口,气缸壁内有卡口a和b,a、b间距为h,a距缸底的高度为H;活塞只能在a、b间移动,其下方密封有一定质量的理想气体.已知活塞质量为m,面积为S,厚度可忽略;活塞和汽缸壁均绝热,不计他们之间的摩擦.开始时活塞处于静止状态,上、下方气体压强均为p0,温度均为T0.现用电热丝缓慢加热气缸中的气体,直至活塞刚好到达b处.求此时气缸内气体的温度以及在此过程中气体对外所做的功.重力加速度大小为g.答案.T2 =(1 + hH)(1 +mgp0S)T0W = (p0S + mg)h4.[2018东北三校联考,33(2),10分]一端开口且导热性能良好的汽缸固定在水平面上,如图所示,用质量和厚度均可忽略不计的活塞封闭一定质量的理想气体。
高三物理热学全部题型练习题

高三物理热学全部题型练习题1. 题目:热量和功的关系题目描述:做功时,系统释放了20 J的热量,求该系统的净功。
解答:根据热力学第一定律可知,系统净功等于系统所做的功减去释放的热量。
所以,净功 = 做的功 - 释放的热量。
净功 = 0 J - 20 J = -20 J。
因此,该系统的净功为-20 J。
2. 题目:温度和热量的转移题目描述:一杯水的温度为20℃,将放在室温为25℃的房间内,经过一段时间,杯中水的温度变为22℃。
求该过程中水释放了多少热量。
解答:根据热力学第一定律可知,传热时系统释放的热量等于所吸收的热量。
所以,所释放的热量 = 所吸收的热量。
根据温度的变化可知,水从20℃降到22℃,吸收了25℃的热量。
所释放的热量 = 25 J。
因此,该过程中水释放了25 J的热量。
3. 题目:理想气体的升压等温过程题目描述:一摩尔理想气体初时体积为1 L,压强为1 atm,最后体积变为2 L,求该过程中系统吸收的热量。
解答:根据理想气体的状态方程 PV = nRT,其中P为压强,V为体积,n为物质的摩尔数,R为气体常数,T为温度。
由于该过程为等温过程,所以温度保持不变。
即T1 = T2。
根据理想气体的状态方程可得,P1V1 = P2V2。
代入已知数据可得,1 atm × 1 L = P2 × 2 L。
解得P2 = 0.5 atm。
由于等温过程中吸收的热量等于外界对系统所做的功,而理想气体的等温过程的功为:W = nRT × ln(V2/V1)。
代入已知数据可得,W = (1 mol × 0.0821 atm L/mol K × T) × ln(2/1)。
由于T1 = T2,所以T取任意值均可。
假设T = 300 K,代入可得W ≈ 0.08 J/mol。
因此,该过程中系统吸收的热量约为0.08 J/mol。
4. 题目:热机的效率题目描述:一台热机从高温热源吸收300 J的热量,向低温热源释放150 J的热量。