高中物理万有引力经典习题30道-带答案
(物理)物理万有引力与航天练习题20篇含解析

(物理)物理万有引力与航天练习题20篇含解析一、高中物理精讲专题测试万有引力与航天1.某星球半径为6610R m =⨯,假设该星球表面上有一倾角为30θ=︒的固定斜面体,一质量为1m kg =的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数3μ=,力F 随位移x 变化的规律如图乙所示(取沿斜面向上为正方向).已知小物块运动12m 时速度恰好为零,万有引力常量11226.6710N?m /kg G -=⨯,求(计算结果均保留一位有效数字)(1)该星球表面上的重力加速度g 的大小; (2)该星球的平均密度. 【答案】26/g m s =,【解析】 【分析】 【详解】(1)对物块受力分析如图所示;假设该星球表面的重力加速度为g ,根据动能定理,小物块在力F 1作用过程中有:211111sin 02F s fs mgs mv θ--=- N mgcos θ= f N μ=小物块在力F 2作用过程中有:222221sin 02F s fs mgs mv θ---=-由题图可知:1122156?3?6?F N s m F N s m ====,;, 整理可以得到:(2)根据万有引力等于重力:,则:,,代入数据得2.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。
这颗卫星是地球同步卫星,其运行周期与地球的自转周期T 相同。
已知地球的 半径为R ,地球表面的重力加速度为g ,求该卫星的轨道半径r 。
【答案】22324R gTr π= 【解析】 【分析】根据万有引力充当向心力即可求出轨道半径大小。
【详解】质量为m 的北斗地球同步卫星绕地球做匀速圆周运动,根据牛顿第二定律有:2224Mm G m r r Tπ=; 在地球表面:112Mm Gm g R= 联立解得:222332244GMT R gTr ππ==3.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX ﹣3双星系统,它由可见星A 和不可见的暗星B 构成.将两星视为质点,不考虑其他天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,(如图)所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T .(1)可见星A 所受暗星B 的引力FA 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m1、m2,试求m ′(用m1、m2表示); (2)求暗星B 的质量m2与可见星A 的速率v 、运行周期T 和质量m1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量ms 的2倍,它将有可能成为黑洞.若可见星A 的速率v =2.7×105 m/s ,运行周期T =4.7π×104s ,质量m1=6ms ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×10﹣11N •m 2/kg2,ms =2.0×103 kg )【答案】(1)()32212'm m m m =+()3322122m v T Gm m π=+(3)有可能是黑洞 【解析】试题分析:(1)设A 、B 圆轨道的半径分别为12r r 、,由题意知,A 、B 的角速度相等,为0ω,有:2101A F m r ω=,2202B F m r ω=,又A B F F =设A 、B 之间的距离为r ,又12r r r =+ 由以上各式得,1212m m r r m +=① 由万有引力定律得122A m m F Gr = 将①代入得()3122121A m m F G m m r =+令121'A m m F G r =,比较可得()32212'm m m m =+② (2)由牛顿第二定律有:211211'm m v G m r r =③ 又可见星的轨道半径12vT r π=④ 由②③④得()3322122m v T Gm m π=+ (3)将16s m m =代入()3322122m v T G m m π=+得()3322226s m v TGm m π=+⑤ 代入数据得()3222 3.56s s m m m m =+⑥设2s m nm =,(n >0)将其代入⑥式得,()322212 3.561s sm n m m m m n ==+⎛⎫+ ⎪⎝⎭⑦可见,()32226s m m m +的值随n 的增大而增大,令n=2时得20.125 3.561s s sn m m m n =<⎛⎫+ ⎪⎝⎭⑧要使⑦式成立,则n 必须大于2,即暗星B 的质量2m 必须大于12m ,由此得出结论,暗星B 有可能是黑洞.考点:考查了万有引力定律的应用【名师点睛】本题计算量较大,关键抓住双子星所受的万有引力相等,转动的角速度相等,根据万有引力定律和牛顿第二定律综合求解,在万有引力这一块,设计的公式和物理量非常多,在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算4.我国航天事业的了令世界瞩目的成就,其中嫦娥三号探测器与2013年12月2日凌晨1点30分在四川省西昌卫星发射中心发射,2013年12月6日傍晚17点53分,嫦娥三号成功实施近月制动顺利进入环月轨道,它绕月球运行的轨道可近似看作圆周,如图所示,设嫦娥三号运行的轨道半径为r ,周期为T ,月球半径为R .(1)嫦娥三号做匀速圆周运动的速度大小 (2)月球表面的重力加速度 (3)月球的第一宇宙速度多大.【答案】(1) 2r T π;(2) 23224r T R π;2324rT Rπ【解析】 【详解】(1)嫦娥三号做匀速圆周运动线速度:2rv r Tπω==(2)由重力等于万有引力:2GMmmg R= 对于嫦娥三号由万有引力等于向心力:2224GMm m rr T π=联立可得:23224r g T Rπ=(3)第一宇宙速度为沿月表运动的速度:22GMm mv mg R R== 可得月球的第一宇宙速度:2324r v gR T Rπ==5.我们将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,且沿半径不同的同心轨道作匀速圆周运动,设双星间距为L ,质量分别为M 1、M 2(万有引力常量为G)试计算:()1双星的轨道半径 ()2双星运动的周期.【答案】()2112121?M M L L M M M M ++,;()()122?2LL G M M π+;【解析】设行星转动的角速度为ω,周期为T .()1如图,对星球1M ,由向心力公式可得: 212112M M GM R ωL=同理对星2M ,有:212222M M G M R ωL= 两式相除得:1221R M (R M ,=即轨道半径与质量成反比) 又因为12L R R =+ 所以得:21121212M M R L R L M M M M ==++,()2有上式得到:()12G M M 1ωLL+=因为2πT ω=,所以有:()12L T 2πL G M M =+答:()1双星的轨道半径分别是211212M M L L M M M M ++,;()2双星的运行周期是()12L2πLG M M +点睛:双星靠相互间的万有引力提供向心力,抓住角速度相等,向心力相等求出轨道半径之比,进一步计算轨道半径大小;根据万有引力提供向心力计算出周期.6.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v=- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用7.设想若干年后宇航员登上了火星,他在火星表面将质量为m 的物体挂在竖直的轻质弹簧下端,静止时弹簧的伸长量为x ,已知弹簧的劲度系数为k ,火星的半径为R ,万有引力常量为G ,忽略火星自转的影响。
物理万有引力定律的应用题20套(带答案)

mg
对于嫦娥三号由万有引力等于向心力:
联立可得:
GMm r2
m4 T2
2r
g
4 2r3 T 2R2
(3)第一宇宙速度为沿月表运动的速度:
GMm mg mv2
R2
R
可得月球的第一宇宙速度:
v
gR
4 2r3 T 2R
9.2019 年 4 月 20 日 22 时 41 分,我国在西昌卫星发射中心用“长征三号”乙运载火箭,成 功发射第四十四颗北斗导航卫星,卫星入轨后绕地球做半径为 r 的匀速圆周运动。卫星的 质量为 m,地球的半径为 R,地球表面的重力加速度大小为 g,不计地球自转的影响。 求:
4 (4000 103 )2 6.67 1011
kg
11024 kg
6.2018 年 11 月,我国成功发射第 41 颗北斗导航卫星,被称为“最强北斗”。这颗卫星是 地球同步卫星,其运行周期与地球的自转周期 T 相同。已知地球的 半径为 R,地球表面的 重力加速度为 g,求该卫星的轨道半径 r。
(1)A 星体所受合力的大小 FA; (2)B 星体所受合力的大小 FB; (3)C 星体的轨道半径 RC; (4)三星体做圆周运动的周期 T.
【答案】(1) 2
Gm2 3
a2
(2)
7Gm2 a2
(3) 7 a (4)T π 4
a3 Gm
【解析】
【分析】
【详解】
(1)由万有引力定律,A 星体所受 B、C 星体引力大小为
则合力大小为
FR 4
G
mAmB r2
G
2m2 a2
FCA ,
FA 2
3G
m2 a2
(2)同上,B 星体所受 A、C 星体引力大小分别为
高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析

高考物理万有引力定律的应用的技巧及练习题及练习题( 含答案 ) 及分析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地址与抛出点的水平距离为x 和落地时间为 R,己知万有引力常量为G,求:t,又已知该星球的半径(1)小球抛出的初速度 v o(2)该星球表面的重力加快度g(3)该星球的质量 M(4)该星球的第一宇宙速度 v(最后结果一定用题中己知物理量表示)【答案】 (1) v0=x/t (2) g=2h/t 2(3) 2hR2/(Gt 2) (4)2hRt【分析】(1)小球做平抛运动,在水平方向: x=vt,解得从抛出到落地时间为: v0=x/t(2)小球做平抛运动时在竖直方向上有:1h= gt2,2解得该星球表面的重力加快度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m,由万有引力等于物体的重力得:mg= GMmR2所以该星球的质量为:M= gR2= 2hR2/(Gt 2);G(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v,由牛顿第二定律得:G Mm m v2R2R重力等于万有引力,即mg= G MmR2,解得该星球的第一宇宙速度为:v2hR gRt2.一名宇航员抵达半径为R、密度均匀的某星球表面,做以下实验:用不行伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕 O 点在竖直面内做圆周运动,测得绳的拉力大小 F 随时间 t 的变化规律如图乙所示. F1、F2已知,引力常量为G,忽视各样阻力.求:(1)星球表面的重力加快度;(2)卫星绕该星的第一宇宙速度;(3)星球的密度.F1F2( 2)(F1 F2)R F1 F2【答案】(1)g6m (3)6m8 GmR【分析】【剖析】【详解】(1)由图知:小球做圆周运动在最高点拉力为 F2,在最低点拉力为 F1设最高点速度为 v2,最低点速度为 v1,绳长为l在最高点:F2mv22mg①l在最低点:F1mv12mg②l由机械能守恒定律,得1mv12mg 2l 1mv22③22由①②③,解得F1 F2 g6m(2)GMmmg R2GMm mv2R2=R两式联立得:v=(F1F2)R6mGMm(3)在星球表面:R2mg④M星球密度:⑤V由④⑤,解得F1F2 8 GmR点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳索的拉力与重力的协力供给向心力,由牛顿第二定律能够求出重力加快度;万有引力等于重力,等于在星球表面飞翔的卫星的向心力,求出星球的第一宇宙速度;而后由密度公式求出星球的密度.3.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为常量为 G,行星半径为求:r,周期为T,引力(1)行星的质量M;(2)行星表面的重力加快度g ;(3)行星的第一宇宙速度v.【答案】(1)( 2)( 3)【分析】【详解】(1)设宇宙飞船的质量为m,依据万有引力定律求出行星质量(2)内行星表面求出 :(3)内行星表面求出 :【点睛】此题重点抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.4.已知某半径与地球相等的星球的第一宇宙速度是地球的1倍.地球表面的重力加快度2为 g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加快度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能蒙受的最大拉力?【答案】1s 2 g0(3)T1s2(1) g星= g0 (2) v04H[1] mg0 4L42(H L)L【分析】【剖析】【详解】(1)由万有引力等于向心力可知G Mm m v2R2R G Mm mgR2v2可得gR则 g星=1g0 4(2)由平抛运动的规律: H L 1g星t 22s v0ts2g0解得v0H L4v2(3)由牛顿定律,在最低点时:T mg星= mL1s2解得:T1mg042( H L)L【点睛】此题考察了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度 g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的根源是解决此题的重点.5.在地球大将一轻弹簧竖直固定在水平桌面上,把质量为m 的物体 P 置于弹簧上端,用力压到弹簧形变量为3x0 处后由静止开释,从开释点上涨的最大高度为4.5x0,上涨过程中物体 P 的加快度 a 与弹簧的压缩量 x 间的关系如图中实线所示。
高考物理万有引力定律应用真题汇编(含答案)含解析

高考物理万有引力定律的应用真题汇编( 含答案 ) 含分析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地址与抛出点的水平距离为x 和落地时间为 R,己知万有引力常量为G,求:t,又已知该星球的半径(1)小球抛出的初速度 v o(2)该星球表面的重力加快度g(3)该星球的质量 M(4)该星球的第一宇宙速度 v(最后结果一定用题中己知物理量表示)【答案】 (1) v0=x/t (2) g=2h/t 2(3) 2hR2/(Gt 2) (4)2hRt【分析】(1)小球做平抛运动,在水平方向: x=vt,解得从抛出到落地时间为: v0=x/t(2)小球做平抛运动时在竖直方向上有:1h= gt2,2解得该星球表面的重力加快度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m,由万有引力等于物体的重力得:mg= GMmR2所以该星球的质量为:M= gR2= 2hR2/(Gt 2);G(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v,由牛顿第二定律得:G Mm m v2R2R重力等于万有引力,即mg= G MmR2,解得该星球的第一宇宙速度为:v2hR gRt2.“天宫一号”是我国自主研发的目标飞翔器,是中国空间实验室的雏形.2013 年 6 月,“神舟十号”与“天宫一号”成功对接, 6 月 20 日 3 位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞翔器运转周期T,地球半径为R,地球表面的重力加快度为g,“天宫一号”围绕地球做匀速圆周运动,万有引力常量为G.求:(1)地球的密度;(2)地球的第一宇宙速度v;(3)天“宫一号”距离地球表面的高度.【答案】 (1)3g (2) vgR (3) h3gT 2 R 2 R4 GR42【分析】(1)在地球表面重力与万有引力相等:GMmmg ,R 2M M 地球密度:V4 R 33解得:3g4 GR(2)第一宇宙速度是近地卫星运转的速度,mgmvgRv 2R(3)天宫一号的轨道半径 r Rh ,Mmm R h42据万有引力供给圆周运动向心力有:G 22,R hT解得: h3gT 2 R 2 R243.以下图 ,P 、 Q 为某地域水平川面上的两点 ,在 P 点正下方一球形地区内储蓄有石油 .假定地区四周岩石均匀散布 ,密度为 ρ;石油密度远小于 ρ,可将上述球形地区视为空腔 .假如没有这一空腔 ,则该地域重力加快度 (正常值 )沿竖直方向 ;当存在空腔时 ,该地域重力加快度的大小和方向会与正常状况有细小偏离 .重力加快度在原竖直方向 (即 PO 方向 )上的投影相关于正常值的偏离叫做 “重力加快度失常 ”为.了探访石油地区的地点和石油储量,常利用 P 点邻近重力加快度失常现象 .已知引力常数为 G.(1)设球形空腔体积为 V,球心深度为 d(远小于地球半径 ), PQ x, 求空腔所惹起的 Q 点处的重力加快度失常 ;(2)若在水平川面上半径为 L 的范围内发现 :重力加快度失常值在δ与 k δ (k>1)之间变化 ,且重力加快度失常的最大值出此刻半径为 L 的范围的中心 .假如这类失常是因为地下存在某一球形空腔造成的 ,试求此球形空腔球心的深度和空腔的体积.G Vd(2) VL 2 k .【答案】(1)x 2 )3/2 G( k 2/31)( d 2【分析】【详解】(1)假如快要地表的球形空腔填满密度为 ρ的岩石 ,则该地域重力加快度便回到正常值.所以 ,重力加快度失常可经过填补后的球形地区产生的附带引力来计算,Mm Gr2m g ①式中 m 是 Q 点处某质点的质量 ,M 是填补后球形地区的质量 .M=ρV ②而 r 是球形空腔中心O 至 Q 点的距离 r= d 2 x2③Δg 在数值上等于因为存在球形空腔所惹起的Q 点处重力加快度改变的大小 ?Q 点处重力加 速度改变的方向沿 OQ ,g ′ 方向 重力加快度失常是这一改变在竖直方向上的投影dg ′= g ④rG Vd联立 ①②③④ 式得g ′=22 )3/2 ⑤(dx(2) 由 ⑤ 式得 ,重力加快度失常g 的′最大值和最小值分别为(G Vg max ′)=d2⑥(minG Vd 3/2⑦g ′)=22( d L )由题设有 ( g max ′)=k δ ,(min g=′)δ⑧联立 ⑥⑦⑧式得 ,地下球形空腔球心的深度和空腔的体积分别为LV L 2 k .dG ( k 2/3k 2/311)4. 一宇航员登上某星球表面,在高为 2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为 5m ,且物体只受该星球引力作用求:( 1 )该星球表面重力加快度( 2 )已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】( 1 ) 4m/s 2;( 2) 1;10【分析】(1)依据平抛运动的规律:x =v 0t得t = x = 5s =1s v 0 5由 h = 1gt 22得: g = 22h = 2 2 2m / s 2=4m / s 2t1G M 星 m(2)依据星球表面物体重力等于万有引力:mg =R 星2G M 地 m地球表面物体重力等于万有引力:mg =R 地22=4( 1 )2则 M 星 = gR 星21 M 地 g R 地 10210点睛:本题是平抛运动与万有引力定律的综合题,重力加快度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.5. 以下图,质量分别为m 和M的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 二者中心之间距离为L .已知A 、B 的中心和O 三点一直共线,A 和B 分别在 O 的双侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ;(2)两星球做圆周运动的周期.M L,m L,( 2) 2πL 3【答案】 (1) R=r=m Mm MG M m【分析】(1)令 A 星的轨道半径为R , B 星的轨道半径为 r ,则由题意有 L r R两星做圆周运动时的向心力由万有引力供给,则有:G mMmR 4 2 Mr 4 2L 2T 2T 2可得R=M,又因为 LRrrm所以能够解得: M L , r m L ;RmMmM(2)依据( 1)能够获得 : GmM4 24 2 M 2m2Rm2LLTTMm4 2L32L 3则: Tm GG m MM点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不可以把它们的距离当作轨道半径 .6. 以下图,返回式月球软着陆器在达成了对月球表面的观察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加快度为 g ,月球的半径为月球中心的距离为 r ,引力常量为 G ,不考虑月球的自转.求:R ,轨道舱到( 1)月球的质量 M ;( 2)轨道舱绕月飞翔的周期 T .gR 22 r r【答案】 (1) M( 2) TgGR【分析】【剖析】月球表面上质量为m 1 的物体 ,依据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞翔的周期 ;【详解】解: (1)设月球表面上质量为m 1 的物体 ,其在月球表面有 : GMm 1 m 1g GMm 1 m 1gR2R2gR 2 月球质量 : MG(2)轨道舱绕月球做圆周运动,设轨道舱的质量为mMm2π 2Mm 2 2由牛顿运动定律得:rG r 2m TrG2m() rT2 r r解得: TgR7.“嫦娥一号 ”在西昌卫星发射中心发射升空,正确进入预约轨道.随后, “嫦娥一号 ”经过变轨和制动成功进入环月轨道.以下图,暗影部分表示月球,假想飞船在圆形轨道 Ⅰ 上作匀速圆周运动,在圆轨道Ⅰ 上飞翔 n 圈所用时间为 t ,抵达 A 点时经过暂短的点火变速,进入椭圆轨道 Ⅱ,在抵达轨道 Ⅱ 近月点 B 点时再次点火变速,进入近月圆形轨道 Ⅲ,尔后飞船在轨道 Ⅲ 上绕月球作匀速圆周运动,在圆轨道 Ⅲ 上飞翔 n 圈所用时间为 .不考虑其余星体对飞船的影响,求:( 1)月球的均匀密度是多少?( 2)假如在 Ⅰ 、 Ⅲ 轨道上有两只飞船,它们绕月球飞翔方向同样,某时辰两飞船相距近来(两飞船在月球球心的同侧,且两飞船与月球球心在同向来线上),则经过多长时间,他们又会相距近来?2mt【答案】( 1) 192n;( 2) t1,2,3 )( mGt 27n【分析】试题剖析:( 1)在圆轨道 Ⅲ 上的周期: T 3t,由万有引力供给向心力有:8nG Mmm22RR 2T又: M4 33 192 n 2 .R ,联立得:GT 32Gt 23(2)设飞船在轨道I 上的角速度为1 、在轨道 III 上的角速度为23 ,有:1T 1所以32设飞飞船再经过t 时间相距近来,有:3t ﹣ 1t2m 所以有:T 3tmtm ,, ).(7n 1 2 3考点:人造卫星的加快度、周期和轨道的关系【名师点睛】本题主要观察万有引力定律的应用,开普勒定律的应用.同时依据万有引力供给向心力列式计算.8. 我国科学家正在研究设计返回式月球软着陆器,计划在 2030 年前后实现航天员登月,对月球进行科学探测。
高中物理万有引力定律的应用题20套(带答案)及解析

高中物理万有引力定律的应用题20套(带答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g;(3)行星的第一宇宙速度v.【答案】(1)(2)(3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.土星是太阳系最大的行星,也是一个气态巨行星。
图示为2017年7月13日朱诺号飞行器近距离拍摄的土星表面的气体涡旋(大红斑),假设朱诺号绕土星做匀速圆周运动,距离土星表面高度为h。
土星视为球体,已知土星质量为M,半径为R,万有引力常量为.G求:()1土星表面的重力加速度g;()2朱诺号的运行速度v;()3朱诺号的运行周期T 。
【答案】()()()()21?2?3?2GM GM R h R h R R h GM π+++ 【解析】【分析】土星表面的重力等于万有引力可求得重力加速度;由万有引力提供向心力并分别用速度与周期表示向心力可求得速度与周期。
【详解】(1)土星表面的重力等于万有引力:2Mm Gmg R = 可得2GM g R = (2)由万有引力提供向心力:22()Mm mv G R h R h=++ 可得:GM v R h=+ (3)由万有引力提供向心力:()222()()GMm m R h R h Tπ=++ 可得:()2R h T R h GMπ+=+3.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G )【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有w 1=w 2 ① (1分)r 1+r 2=r ② (1分)根据万有引力定律和牛顿定律,有G③ (3分) G ④ (3分) 联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解4.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间. 【答案】203t gR r ω=-或者202t gR r ω=- 【解析】【分析】【详解】试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,比地球多转动一圈.解:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有 22Mm G mr rω= 航天飞机在地面上,有2mM GR mg = 联立解得22gR rω= 若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π 所以202t gR r ω=- 若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π 所以202t gR r ω=-. 点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.5.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g s v H L=-201[1]42()s T mg H L L =+- 【解析】【分析】【详解】 (1)由万有引力等于向心力可知22Mm v G m R R= 2Mm G mg R= 可得2v g R= 则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t = 解得0024g sv H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.6.为了探测月球的详细情况,我国发射了一颗绕月球表面飞行的科学实验卫星.假设卫星绕月球做圆 周运动,月球绕地球也做圆周运动.已知卫星绕月球运行的周期为 T0,地球表面重力加速度为 g ,地球半径为 R0,月心到地心间的距离为 r0,引力常量为 G ,求: (1)月球的平均密度;(2)月球绕地球运行的周期.【答案】(1)203GT π(2) T = 【解析】【详解】(1)月球的半径为R ,月球质量为M ,卫星质量为m 由于在月球表面飞行,万有引力提供向心力:22204mM G m R R T π= 得23204R M GT π= 且月球的体积V =43πR 3 根据密度的定义式 M V ρ=得232023043 43R GT GT R ππρπ== (2)地球质量为M 0,月球质量为M ,月球绕地球运转周期为T 由万有引力提供向心力2202004 r GM M M r Tπ= 根据黄金代换GM 0=gR 02得T =7.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。
高中物理高考题解析-认识万有引力定律-考题及答案

课时分层作业(九) 认识万有引力定律题组一 太阳与行星间引力1.若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律,在已知月地距离约为地球半径60倍的情况下,需要验证( )A .地球吸引月球的力约为地球吸引苹果的力的1602 B .月球公转的加速度约为苹果落向地面加速度的1602C .自由落体在月球表面的加速度约为地球表面的16D .苹果在月球表面受到的引力约为在地球表面的160B [若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律——万有引力定律,则应满足G Mmr 2=ma ,即加速度a 与距离r 的平方成反比,由题中数据知,选项B 正确。
]题组二 万有引力定律2.设地球是半径为R 的均匀球体,质量为M ,若把质量为m 的物体放在地球的中心,则物体受到的地球的万有引力大小为( )A .零B .无穷大C .GMmR 2D .无法确定A [有的同学认为:由万有引力公式F =Gm 1m 2r 2,由于r →0,故F 为无穷大,从而错选B 。
设想把物体放到地球的中心,此时F =G m 1m 2r 2已不适用,地球的各部分对物体的吸引力是对称的,故物体受到的地球的万有引力是零,故A 正确。
]3.在某次测定引力常量的实验中,两金属球的质量分别为m 1和m 2,球心间的距离为r ,若测得两金属球间的万有引力大小为F ,则此次实验得到的引力常量为( )A .Fr m 1m 2B .Fr 2m 1m 2C .m 1m 2FrD .m 1m 2Fr 2B [由万有引力定律F =G m 1m 2r 2得G =Fr 2m 1m 2,所以B 项正确。
]4.2019年1月,我国“嫦娥四号”探测器成功在月球背面软着陆。
在探测器“奔向”月球的过程中,用h 表示探测器与地球表面的距离,F 表示它所受的地球引力,能够描述F 随h 变化关系的图像是( )A B C DD [在“嫦娥四号”探测器“奔向”月球的过程中,根据万有引力定律,可知随着h 的增大,探测器所受的地球引力逐渐减小但并不是均匀减小的,故能够描述F 随h 变化关系的图像是D ,D 正确。
高考物理万有引力定律的应用题20套(带答案)含解析

高考物理万有引力定律的应用题20套(带答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远?【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π= 解得2a RT gπ= b 卫星2224·4(4)bGMm m R R T π= 解得16b RT gπ= (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a GMv R=b 卫星b 卫星22(4)4Mm v G m R R= 解得v 4b GM R=所以 2abV V = (3)最远的条件22a bT T πππ-= 解得87R t gπ=3.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.4.双星系统由两颗彼此相距很近的两个恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的共同质量中心做周期相同的匀速圆周运动。
人教版(2019)高中物理选择性必修二 7 万有引力定律 试题(含答案)

7.2 万有引力定律1.关于万有引力定律的数学表达式F =G 122m m r ,下列说法中正确的是( ) A .公式中的G 为引力常量,其数值首先由英国物理学家卡文迪什测定,G 没有单位B .当r 趋近于零时,万有引力趋近于无穷大C .m 1、m 2受到的对方给予的万有引力总是大小相等,是一对作用力与反作用力D .m 1、m 2受到的对方给予的万有引力总是大小相等,方向相反,是一对平衡力2.下列关于万有引力定律的说法中,正确的是( )①万有引力定律是卡文迪许在实验室中发现的①对于相距很远、可以看成质点的两个物体,万有引力定律2Mm F Gr 中的r 是两质点间的距离 ①对于质量分布均匀的球体,公式中的r 是两球心间的距离①质量大的物体对质量小的物体的引力大于质量小的物体对质量大的物体的引力。
A .①①①B .①①C .①①①D .①①3.下列实验用到与“探究加速度与力、质量的关系”相同实验方法的是( )A .甲图斜面理想实验B .乙图卡文迪什扭秤实验C .丙图共点力合成实验D .丁图“探究向心力大小”实验4.地球对月球具有相当大的万有引力,但月球却没有向下掉落回地面的原因是( )A .不仅地球对月球有万有引力,而且月球对地球也有万有引力,这两个力合力为零B .地球对月球的引力还不算大C .不仅地球对月球有万有引力,而且太阳系里其他星球对月球也有万有引力D .地球对月球的万有引力不断改变月球的运动方向,使得月球绕地球运动5.“月一地检验”为万有引力定律的发现提供了事实依据.已知地球半径为R ,地球中心与月球中心的距离r = 60R ,下列说法正确的是 ( )A .“月一地检验”表明地面物体所受地球的引力与月球所受地球的引力是不同性质的力B .苹果在月球表面受到的引力约为在地球表面的160C .月球由于受到地球对它的万有引力而产生的加速度与月球绕地球做近似圆周运动的向心加速度相等D .由万有引力定律可知,月球绕地球做近似圆周运动的向心加速度是地面重力加速度的160 6.假设地球是一个均匀球体,其半径为R 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题(共30小题)1.(2014•浙江)长期以来“卡戎星(Charon)”被认为是冥王星唯一的卫星,它的公转轨道半径r1=19600km,公转周期T1=6.39天.2006年3月,天文学家发现两颗冥王星的小卫星,其中一颗的公转半径r2=48000km,则它的公转周期T2,最接近于()A.15天B.25天C.35天D.45天2.(2014•海南)设地球自转周期为T,质量为M,引力常量为G,假设地球可视为质量均匀分布的球体,半径为R.同一物体在南极和赤道水平面上静止时所受到的支持力之比为()A.B.C.D.3.(2014•广东)如图所示,飞行器P绕某星球做匀速圆周运动,星球相对飞行器的张角为θ,下列说法正确的是()A.轨道半径越大,周期越长B.轨道半径越大,速度越大C.若测得周期和张角,可得到星球的平均密度D.若测得周期和轨道半径,可得到星球的平均密度4.(2014•江苏)已知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为()A.3.5km/s B.5.0km/s C.17.7km/s D.35.2km/s 5.(2014•福建)若有一颗“宜居”行星,其质量为地球的p倍,半径为地球的q倍,则该行星卫星的环绕速度是地球卫星环绕速度的()A.倍B.倍C.倍D.倍6.(2014•天津)研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时,假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比()A.距地面的高度变大B.向心加速度变大C.线速度变大D.角速度变大7.(2013•安徽)质量为m的人造地球卫星与地心的距离为r时,引力势能可表示为E p=﹣,其中G为引力常量,M为地球质量.该卫星原来在半径为R1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R2,此过程中因摩擦而产生的热量为()A.GMm(﹣)B.GMm(﹣)C.(﹣)D.(﹣)8.(2013•江苏)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A.太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积9.(2013•山东)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,DC运动的周期为()A.B.C.D.10.(2013•四川)迄今发现的二百余颗太阳系外行星大多不适宜人类居住,绕恒星“Gliese581”运行的行星“G1﹣58lc”却很值得我们期待.该行星的温度在O℃到40℃之间、质量是地球的6倍、直径是地球的1.5倍、公转周期为13个地球日.“Gliese581”的质量是太阳质量的0.31倍.设该行星与地球均视为质量分布均匀的球体,绕其中心天体做匀速圆周运动,则()A.在该行星和地球上发射卫星的第一宇宙速度相同B.如果人到了该行星,其体重是地球上的倍C.该行星与“Gliese581”的距离是日地距离的倍D.由于该行星公转速率比地球大,地球上的米尺如果被带上该行星,其长度一定会变短11.(2013•上海)小行星绕恒星运动,恒星均匀地向四周辐射能量,质量缓慢减小,可认为小行星在绕恒星运动一周的过程中近似做圆周运动.则经过足够长的时间后,小行星运动的()A.半径变大B.速率变大C.角速度变大D.加速度变大12.(2013•浙江)如图所示,三颗质量均为m的地球同步卫星等间隔分布在半径为r的圆轨道上,设地球质量为M,半径为R.下列说法正确的是()A.地球对一颗卫星的引力大小为B.一颗卫星对地球的引力大小为C.两颗卫星之间的引力大小为D.三颗卫星对地球引力的合力大小为13.(2013•海南)“北斗”卫星导航定位系统由地球静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.地球静止轨道卫星和中轨道卫星都在圆轨道上运行,它们距地面的高度分别约为地球半径的6倍和3.4倍,下列说法中正确的是()A.静止轨道卫星的周期约为中轨道卫星的2倍B.静止轨道卫星的线速度大小约为中轨道卫星的2倍C.静止轨道卫星的角速度大小约为中轨道卫星的D.静止轨道卫星的向心加速度大小约为中轨道卫星的14.(2012•浙江)如图所示,在火星与木星轨道之间有一小行星带.假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动.下列说法正确的是()A.太阳对各小行星的引力相同B.各小行星绕太阳运动的周期均小于一年C.小行星带内侧小行星的向心加速度大于外侧小行星的向心加速度值D.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值15.(2012•重庆)冥王星与其附近的另一星体卡戎可视为双星系统.质量比约为7:1,同时绕它们连线上某点O做匀速圆周运动.由此可知,冥王星绕O点运动的()A.轨道半径约为卡戎的B.角速度大小约为卡戎的C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍16.(2012•山东)2011年11月3日,“神舟八号”飞船与“天宫一号”目标飞行器成功实施了首次交会对接.任务完成后“天宫一号”经变轨升到更高的轨道,等待与“神舟九号”交会对接.变轨前和变轨完成后“天宫一号”的运行轨道均可视为圆轨道,对应的轨道半径分别为R1、R2,线速度大小分别为v1、v2.则等于()A.B.C.D.17.(2012•福建)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v.假设宇航员在该行星表面上用弹簧测力计测量一质量为m的物体重力,物体静止时,弹簧测力计的示数为N.已知引力常量为G,则这颗行星的质量为()A.B.C.D.18.(2012•江苏)2011年8月,“嫦娥二号”成功进入了环绕“日地拉格朗日点”的轨道,我国成为世界上第三个造访该点的国家.如图所示,该拉格朗日点位于太阳和地球连线的延长线上,一飞行器处于该点,在几乎不消耗燃料的情况下与地球同步绕太阳做圆周运动.则此飞行器的()A.线速度大于地球的线速度B.向心加速度大于地球的向心加速度C.向心力仅有太阳的引力提供D.向心力仅由地球的引力提供19.(2012•天津)一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,动能减小为原来的,不考虑卫星质量的变化,则变轨前后卫星的()A.向心加速度大小之比为4:1 B.角速度大小之比为2:1C.周期之比为1:8 D.轨道半径之比为1:220.(2012•北京)关于环绕地球运动的卫星,下列说法中正确的是()A.分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期B.沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率C.在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同D.沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合21.(2012•广东)如图所示,飞船从轨道1变轨至轨道2.若飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的()A.动能大B.向心加速度大C.运行周期长D.角速度小22.(2012•四川)今年4月30日,西昌卫星发射中心发射的中圆轨道卫星,其轨道半径为2.8×l07m.它与另一颗同质量的同步轨道卫星(轨道半径为4.2×l07m)相比()A.向心力较小B.动能较大C.发射速度都是第一宇宙速度D.角速度较小23.(2011•重庆)某行星和地球绕太阳公转的轨道均可视为圆.每过N年,该行星会运行到日地连线的延长线上,如图所示.该行星与地球的公转半径比为()A.()B.()C.()D.()24.(2011•广东)已知地球质量为M,半径为R,自转周期为T,地球同步卫星质量为m,引力常量为G,有关同步卫星,下列表述正确的是()A.卫星距地面的高度为B.卫星的运行速度小于第一宇宙速度C.卫星运行时受到的向心力大小为D.卫星运行的向心加速度小于地球表面的重力加速度25.(2011•天津)质量为m的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动.已知月球质量为M,月球半径为R,月球表面重力加速度为g,引力常量为G,不考虑月球自转的影响,则航天器的()A.线速度v=B.角速度ω=C.运行周期T=2πD.向心加速度a=26.(2011•浙江)为了探测X星球,载着登陆舱的探测飞船在以该星球中心为圆心,半径为r1的圆轨道上运动,周期为T1.总质量为m1.随后登陆舱脱离飞船,变轨到离星球更近的半径为r2的圆轨道上运动,此时登陆舱的质量为m2则()A.X星球的质量为M=B.X星球表面的重力加速度为g X=C.登陆舱在r1与r2轨道上运动时的速度大小之比为=D.登陆舱在半径为r2轨道上做圆周运动的周期为T2=T127.(2011•江苏)一行星绕恒星作圆周运动.由天文观测可得,其运动周期为T,速度为v,引力常量为G,则()A.恒星的质量为B.行星的质量为C.行星运动的轨道半径为D.行星运动的加速度为28.(2011•山东)甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是()A.甲的周期大于乙的周期B.乙的速度大于第一宇宙速度C.甲的加速度小于乙的加速度D.甲在运行时能经过北极的正上方29.(2011•北京)由于通讯和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的()A.质量可以不同B.轨道半径可以不同C.轨道平面可以不同D.速率可以不同30.(2010•福建)火星探测项目是我国继神舟载人航天工程、嫦娥探月工程之后又一个重大太空探索项目.假设火星探测器在火星表面附近圆形轨道运行的周期T1,神舟飞船在地球表面附近的圆形轨道运行周期为T2,火星质量与地球质量之比为p,火星半径与地球半径之比为q,则T1与T2之比为()A.B.C.D.一.选择题(共30小题)1.B 2.A 3.AC 4.A 5.C 6.A 7.C 8.C 9.B 10.B 11.A 12.BC 13.A 14.C 15.A 16.B 17.B 18.AB 19.C 20.B 21.CD 22.B 23.B 24.BD 25.AC 26.AD 27.ACD 28.AC 29.A 30.D。