高一物理 万有引力定律 典型例题解析
高中“万有引力定律”习题归类例析
“万有引力定律”习题归类例析万有引力定律部分内容比较抽象,习题类型较多,不少学生做这部分习题有一种惧怕感,找不着切入点.实际上,只要掌握了每一类习题的解题技巧,困难就迎刃而解了.下面就本章的不同类型习题的解法作以归类分析.一、求天体的质量(或密度)1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量由mg=G 2RMm 得 G g R M 2=.(式中M 、g 、R 分别表示天体的质量、天体表面的重力加速度和天体的半径.)[例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t ,小球落在星球表面,测得抛出点与落地点之间的距离为L ,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为3L ,已知两落地点在同一水平面上,该星球的半径为R ,引力常量为G ,求该星球的质量M 和密度ρ.[解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度. 根据平抛运动的特点得抛出物体竖直方向上的位移为221gt y =设初始平抛小球的初速度为v ,则水平位移为x=vt .有2222)()21(L vt gt =+ ○1 当以2v 的速度平抛小球时,水平位移为x'= 2vt .所以有2222)3()2()21(L vt gt =+ ② 在星球表面上物体的重力近似等于万有引力,有mg=G 2R Mm ③ 联立以上三个方程解得22332Gt LR M = 而天体的体积为334R V π=,由密度公式V M =ρ得天体的密度为RGt L 223πρ=。
2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得222224Tmr mr r v m r Mm G πω=== 若已知卫星的轨道半径r 和卫星的运行周期T 、角速度ω或线速度v ,可求得中心天体的质量为G r GT r G rv M 3223224ωπ=== [例2]下列几组数据中能算出地球质量的是(万有引力常量G 是已知的)( )A.地球绕太阳运行的周期T 和地球中心离太阳中心的距离rB.月球绕地球运行的周期T 和地球的半径rC.月球绕地球运动的角速度和月球中心离地球中心的距离rD.月球绕地球运动的周期T 和轨道半径r[解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A 项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B 项不对.已知月球绕地球运动的角速度和轨道半径,由22ωmr rMm G =可以求出中心天体地球的质量,所以C 项正确.由2224T mr r Mm G π=求得地球质量为2324GTr M π=,所以D 项正确. 二、人造地球卫星的运动参量与轨道半径的关系问题 根据人造卫星的动力学关系ma Tmr mr r v m r Mm G ====222224πω 可得2323,4,,rGM a GM r T r GM r GM v ====πω 由此可得线速度v 与轨道半径的平方根成反比;角速度ω与轨道半径的立方的平方根成反比,周期T 与轨道半径的立方的平方根成正比;加速度a 与轨道半径的平方成反比.[例3]两颗人造卫星A 、B 绕地球做圆周运动,周期之比为8:1:=B A T T ,则轨道半径之比和运动速率之比分别为( )A. 2:1:,1:4:==B A B A v v R RB. 1:2:,1:4:==B A B A v v R RC. 1:2:,4:1:==B A B A v v R RD. 2:1:,4:1:==B A B A v v R R[解析]由GMr T 324π=可得卫星的运动周期与轨道半径的立方的平方根成正比,由8:1:=B A T T 可得轨道半径4:1:=B A R R ,然后再由rGM v =得线速度1:2:=B A v v 。
万有引力定律12种典型题
万有引力定律12种典型题【案例1】下列哪一组数据能够估算出地球的质量()A.月球绕地球运行的周期与月地之间的距离B.地球表面的重力加速度与地球的半径C.绕地球运行卫星的周期与线速度D.地球表面卫星的周期与地球的密度解析:人造地球卫星环绕地球做匀速圆周运动。
月球也是地球的一颗卫星。
设地球的质量为M,卫星的质量为m,卫星的运行周期为T,轨道半径为r根据万有引力定律:【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。
总之,牛顿万有引力定律是解决天体运动问题的关键。
【案例2】普通卫星的运动问题我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。
“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h。
问:哪颗卫星的向心加速度大哪颗卫星的线速度大若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少解析:本题主要考察普通卫星的运动特点及其规律由开普勒第三定律T2∝r3知:“风云二号”卫星的轨道半径较大⑴所有运动学量量都是r的函数。
我们应该建立函数的思想。
⑵运动学量v、a、ω、f随着r的增加而减小,只有T随着r的增加而增加。
⑶任何卫星的环绕速度不大于s,运动周期不小于85min。
⑷学会总结规律,灵活运用规律解题也是一种重要的学习方法。
【案例3】同步卫星的运动下列关于地球同步卫星的说法中正确的是:A、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上B、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24hC、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上D、不同通讯卫星运行的线速度大小是相同的,加速度的大小也是相同的。
万有引力定律的应用练习题含答案及解析
万有引力定律的应用练习题含答案及解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g;(3)行星的第一宇宙速度v.【答案】(1)(2)(3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.在地球上将一轻弹簧竖直固定在水平桌面上,把质量为m的物体P置于弹簧上端,用力压到弹簧形变量为3x0处后由静止释放,从释放点上升的最大高度为4.5x0,上升过程中物体P的加速度a与弹簧的压缩量x间的关系如图中实线所示。
若在另一星球N上把完全相同的弹簧竖直固定在水平桌面上,将物体Q在弹簧上端点由静止释放,物体Q的加速度a与弹簧的压缩量x间的关系如图中虚线所示。
两星球可视为质量分布均匀的球体,星球N半径为地球半径的3倍。
忽略两星球的自转,图中两条图线与横、纵坐标轴交点坐标为已知量。
求:(1)地球表面和星球N 表面重力加速度之比; (2)地球和星球N 的质量比;(3)在星球N 上,物体Q 向下运动过程中的最大速度。
【答案】(1)2:1(2)2:9(3)0032v a x = 【解析】 【详解】(1)由图象可知,地球表面处的重力加速度为 g 1=a 0 星球N 表面处的重力加速度为 g 2=00.5a 则地球表面和星球N 表面重力加速度之比为2∶1 (2)在星球表面,有2GMmmg R = 其中,M 表示星球的质量,g 表示星球表面的重力加速度,R 表示星球的半径。
则M =2gR G因此,地球和星球N 的质量比为2∶9(3)设物体Q 的质量为m 2,弹簧的劲度系数为k 物体的加速度为0时,对物体P :mg 1=k·x 0对物体Q :m 2g 2=k ·3x 0联立解得:m 2=6m在地球上,物体P 运动的初始位置处,弹簧的弹性势能设为E p ,整个上升过程中,弹簧和物体P 组成的系统机械能守恒。
人教版高一物理必修二 6.3 万有引力定律(含解析)
人教版高一物理必修二 6.3万有引力定律(含解析)人教版高一物理必修二第六章第三节6.3万有引力定律(含解析)一、单选题1.有关物理学史,以下说法正确的是( )A.伽利略首创了将实验和逻辑推理相结合的物理学研究方法B.卡文迪许通过库仑扭秤实验总结出点电荷相互作用规律C.法拉第不仅发现电磁感应现象,而且还总结出了电磁感应定律D.开普勒在天文观测数据的基础上,总结出行星运动的规律并发现了万有引力定律【答案】A【解析】伽利略首创了将实验和逻辑推理相结合的物理学研究方法,选项A正确;库伦通过库仑扭秤实验总结出点电荷相互作用规律,选项B错误;法拉第发现了电磁感应现象,但没有总结出了电磁感应定律,是韦伯和纽曼发现了电磁感应定律,故C错误;开普勒在天文观测数据的基础上,总结出行星运动的规律,牛顿发现了万有引力定律,选项D错误;故选A.2.2018年9月7日将发生海王星冲日现象,海王星冲日是指海王星、地球和太阳几乎排列成一线,地球位于太阳与海王星之间。
此时海王星被太阳照亮的一面完全朝向地球,所以明亮而易于观察。
地球和海王星绕太阳公转的方向相同,轨迹都可近似为圆,地球一年绕太阳一周,海王星约164.8年绕太阳一周。
则A.地球的公转轨道半径比海王星的公转轨道半径大B.地球的运行速度比海王星的运行速度小C.2019年不会出现海王星冲日现象D.2017年出现过海王星冲日现象【答案】D【解析】地球的公转周期比海王星的公转周期小,根据万有引力提供向心力1 / 122224Mm G m r r T π=,可得:2T =可知地球的公转轨道半径比海王星的公转轨道半径小,故A 错误;根据万有引力提供向心力,有22Mm v G m r r=,解得:v =可知海王星的运行速度比地球的小,故B 错误; T 地=1年,则T 木=164.8年,由(ω地-ω木)·t =2π,可得距下一次海王星冲日所需时间为: 2 1.01-t πωω=≈地火年,故C 错误、D 正确。
高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)含解析
高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F Rm-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R= 2GMm R =2mv R两式联立得:12()6F F Rm-(3)在星球表面:2GMmmg R = ④ 星球密度:MVρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.2.已知地球的自转周期和半径分别为T 和R ,地球同步卫星A 的圆轨道半径为h .卫星B 沿半径为r (r <h )的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同.求:(1)卫星B 做圆周运动的周期;(2)卫星A 和B 连续地不能直接通讯的最长时间间隔(信号传输时间可忽略).【答案】(1)3/2()r T h (2)3/23/23/2π()r h r -(arcsin R h+arcsin Rr )T 【解析】试题分析:(1)设卫星B 绕地心转动的周期为T′,地球质量为M ,卫星A 、B 的质量分别为m 、m′,根据万有引力定律和圆周运动的规律有:2Mm G h =mh 224T π① 2Mm G r '=m′r 224T π'② 联立①②两式解得:T′=3/2()rT h③(2)设卫星A 和B 连续地不能直接通讯的最长时间间隔t ,在时间间隔t 内,卫星A 和B 绕地心转过的角度分别为α和β,则:α=t T ×2π,β=tT '×2π ④ 若不考虑卫星A 的公转,两卫星不能直接通讯时,卫星B 的位置应在下图中B 点和B′点之间,图中内圆表示地球的赤道.由图中几何关系得:∠BOB′=2(arcsinR h+arcsin Rr ) ⑤由③式知,当r <h 时,卫星B 比卫星A 转得快,考虑卫星A 的公转后应有:β-α=∠BOB′ ⑥由③④⑤⑥式联立解得:t =3/23/23/2()r h r π-(arcsin R h+arcsin Rr )T 考点:本题主要考查了万有引力定律的应用和空间想象能力问题,属于中档偏高题.3.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v =- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用4.如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ; (2)两星球做圆周运动的周期.【答案】(1) R=m M M +L, r=m Mm+L,(2)()3L G M m +【解析】(1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L r R =+两星做圆周运动时的向心力由万有引力提供,则有:2222244mM G mR Mr L T Tππ==可得 R Mr m=,又因为L R r =+ 所以可以解得:M R L M m =+,mr L M m=+; (2)根据(1)可以得到:2222244mM MG m R m L L T T M m ππ==⋅+则:2T == 点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径.5.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。
高中物理万有引力定律 例题解析 鲁科版 必修2
万有引力定律 例题解析1.万有引力定律: F=Gm m r122在天体上的应用:(M---天体质量 R---天体半径 g--天体表面重力加速度)a 、万有引力=向G Mm R h m ()+=2)(4)(4)()(2222222h R f m h R Tm h R m h R V +=+=+=+ππω b 、在地球表面附近,重力=万有引力 mg = GMmR 2g = G M R 22.第一宇宙速度:mg = m V R 2 v =gR G m RMm=2V R 2 R GM v /=一、重力加速度g 和重力G 地随离地面高度h 的变化情况。
物体的重力近似为地球对物体的引力,即mg=G2)(h R Mm+。
所以重力加速度g= G2)(h R M+,可见,g 随h 的增大而减小。
例1:设地球表面的重力加速度为g,物体在距地心4R (R 是地球半径)处,由于地球的引力作用而产生的重力加速度g ,,则g/g ,为A 、1;B 、1/9;C 、1/4;D 、1/16。
解析:因为g= G2R M ,g , = G 2)3(R R M +,所以g/g ,=1/16,即D 选项正确。
二、求天体的质量。
通过观天体卫星运动的周期T 和轨道半径r 或天体表面的重力加速度g 和天体的半径R ,就可以求出天体的质量M 。
例2:已知万有引力常量G ,地球半径R ,月球和地球之间的距离r ,同步卫星距地面的高度h ,月球绕地球的运转周期T 1,地球的自转周期T 2,地球表面的重力加速度g 。
某同学根据以上条件,提出一种估算地球质量M 的方法:(05广东)同步卫星绕地球作圆周运动,由h T m h Mm G 222⎪⎭⎫ ⎝⎛=π得2324GT h M π=⑴请判断上面的结果是否正确,并说明理由。
如不正确,请给出正确的解法和结果。
⑵请根据已知条件再提出两种估算地球质量的方法并解得结果。
解:(1)上面结果是错误的,地球的半径R 在计算过程中不能忽略。
高考物理万有引力定律应用真题汇编(含答案)含解析
高考物理万有引力定律的应用真题汇编( 含答案 ) 含分析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地址与抛出点的水平距离为x 和落地时间为 R,己知万有引力常量为G,求:t,又已知该星球的半径(1)小球抛出的初速度 v o(2)该星球表面的重力加快度g(3)该星球的质量 M(4)该星球的第一宇宙速度 v(最后结果一定用题中己知物理量表示)【答案】 (1) v0=x/t (2) g=2h/t 2(3) 2hR2/(Gt 2) (4)2hRt【分析】(1)小球做平抛运动,在水平方向: x=vt,解得从抛出到落地时间为: v0=x/t(2)小球做平抛运动时在竖直方向上有:1h= gt2,2解得该星球表面的重力加快度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m,由万有引力等于物体的重力得:mg= GMmR2所以该星球的质量为:M= gR2= 2hR2/(Gt 2);G(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v,由牛顿第二定律得:G Mm m v2R2R重力等于万有引力,即mg= G MmR2,解得该星球的第一宇宙速度为:v2hR gRt2.“天宫一号”是我国自主研发的目标飞翔器,是中国空间实验室的雏形.2013 年 6 月,“神舟十号”与“天宫一号”成功对接, 6 月 20 日 3 位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞翔器运转周期T,地球半径为R,地球表面的重力加快度为g,“天宫一号”围绕地球做匀速圆周运动,万有引力常量为G.求:(1)地球的密度;(2)地球的第一宇宙速度v;(3)天“宫一号”距离地球表面的高度.【答案】 (1)3g (2) vgR (3) h3gT 2 R 2 R4 GR42【分析】(1)在地球表面重力与万有引力相等:GMmmg ,R 2M M 地球密度:V4 R 33解得:3g4 GR(2)第一宇宙速度是近地卫星运转的速度,mgmvgRv 2R(3)天宫一号的轨道半径 r Rh ,Mmm R h42据万有引力供给圆周运动向心力有:G 22,R hT解得: h3gT 2 R 2 R243.以下图 ,P 、 Q 为某地域水平川面上的两点 ,在 P 点正下方一球形地区内储蓄有石油 .假定地区四周岩石均匀散布 ,密度为 ρ;石油密度远小于 ρ,可将上述球形地区视为空腔 .假如没有这一空腔 ,则该地域重力加快度 (正常值 )沿竖直方向 ;当存在空腔时 ,该地域重力加快度的大小和方向会与正常状况有细小偏离 .重力加快度在原竖直方向 (即 PO 方向 )上的投影相关于正常值的偏离叫做 “重力加快度失常 ”为.了探访石油地区的地点和石油储量,常利用 P 点邻近重力加快度失常现象 .已知引力常数为 G.(1)设球形空腔体积为 V,球心深度为 d(远小于地球半径 ), PQ x, 求空腔所惹起的 Q 点处的重力加快度失常 ;(2)若在水平川面上半径为 L 的范围内发现 :重力加快度失常值在δ与 k δ (k>1)之间变化 ,且重力加快度失常的最大值出此刻半径为 L 的范围的中心 .假如这类失常是因为地下存在某一球形空腔造成的 ,试求此球形空腔球心的深度和空腔的体积.G Vd(2) VL 2 k .【答案】(1)x 2 )3/2 G( k 2/31)( d 2【分析】【详解】(1)假如快要地表的球形空腔填满密度为 ρ的岩石 ,则该地域重力加快度便回到正常值.所以 ,重力加快度失常可经过填补后的球形地区产生的附带引力来计算,Mm Gr2m g ①式中 m 是 Q 点处某质点的质量 ,M 是填补后球形地区的质量 .M=ρV ②而 r 是球形空腔中心O 至 Q 点的距离 r= d 2 x2③Δg 在数值上等于因为存在球形空腔所惹起的Q 点处重力加快度改变的大小 ?Q 点处重力加 速度改变的方向沿 OQ ,g ′ 方向 重力加快度失常是这一改变在竖直方向上的投影dg ′= g ④rG Vd联立 ①②③④ 式得g ′=22 )3/2 ⑤(dx(2) 由 ⑤ 式得 ,重力加快度失常g 的′最大值和最小值分别为(G Vg max ′)=d2⑥(minG Vd 3/2⑦g ′)=22( d L )由题设有 ( g max ′)=k δ ,(min g=′)δ⑧联立 ⑥⑦⑧式得 ,地下球形空腔球心的深度和空腔的体积分别为LV L 2 k .dG ( k 2/3k 2/311)4. 一宇航员登上某星球表面,在高为 2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为 5m ,且物体只受该星球引力作用求:( 1 )该星球表面重力加快度( 2 )已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】( 1 ) 4m/s 2;( 2) 1;10【分析】(1)依据平抛运动的规律:x =v 0t得t = x = 5s =1s v 0 5由 h = 1gt 22得: g = 22h = 2 2 2m / s 2=4m / s 2t1G M 星 m(2)依据星球表面物体重力等于万有引力:mg =R 星2G M 地 m地球表面物体重力等于万有引力:mg =R 地22=4( 1 )2则 M 星 = gR 星21 M 地 g R 地 10210点睛:本题是平抛运动与万有引力定律的综合题,重力加快度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.5. 以下图,质量分别为m 和M的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 二者中心之间距离为L .已知A 、B 的中心和O 三点一直共线,A 和B 分别在 O 的双侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ;(2)两星球做圆周运动的周期.M L,m L,( 2) 2πL 3【答案】 (1) R=r=m Mm MG M m【分析】(1)令 A 星的轨道半径为R , B 星的轨道半径为 r ,则由题意有 L r R两星做圆周运动时的向心力由万有引力供给,则有:G mMmR 4 2 Mr 4 2L 2T 2T 2可得R=M,又因为 LRrrm所以能够解得: M L , r m L ;RmMmM(2)依据( 1)能够获得 : GmM4 24 2 M 2m2Rm2LLTTMm4 2L32L 3则: Tm GG m MM点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不可以把它们的距离当作轨道半径 .6. 以下图,返回式月球软着陆器在达成了对月球表面的观察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加快度为 g ,月球的半径为月球中心的距离为 r ,引力常量为 G ,不考虑月球的自转.求:R ,轨道舱到( 1)月球的质量 M ;( 2)轨道舱绕月飞翔的周期 T .gR 22 r r【答案】 (1) M( 2) TgGR【分析】【剖析】月球表面上质量为m 1 的物体 ,依据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞翔的周期 ;【详解】解: (1)设月球表面上质量为m 1 的物体 ,其在月球表面有 : GMm 1 m 1g GMm 1 m 1gR2R2gR 2 月球质量 : MG(2)轨道舱绕月球做圆周运动,设轨道舱的质量为mMm2π 2Mm 2 2由牛顿运动定律得:rG r 2m TrG2m() rT2 r r解得: TgR7.“嫦娥一号 ”在西昌卫星发射中心发射升空,正确进入预约轨道.随后, “嫦娥一号 ”经过变轨和制动成功进入环月轨道.以下图,暗影部分表示月球,假想飞船在圆形轨道 Ⅰ 上作匀速圆周运动,在圆轨道Ⅰ 上飞翔 n 圈所用时间为 t ,抵达 A 点时经过暂短的点火变速,进入椭圆轨道 Ⅱ,在抵达轨道 Ⅱ 近月点 B 点时再次点火变速,进入近月圆形轨道 Ⅲ,尔后飞船在轨道 Ⅲ 上绕月球作匀速圆周运动,在圆轨道 Ⅲ 上飞翔 n 圈所用时间为 .不考虑其余星体对飞船的影响,求:( 1)月球的均匀密度是多少?( 2)假如在 Ⅰ 、 Ⅲ 轨道上有两只飞船,它们绕月球飞翔方向同样,某时辰两飞船相距近来(两飞船在月球球心的同侧,且两飞船与月球球心在同向来线上),则经过多长时间,他们又会相距近来?2mt【答案】( 1) 192n;( 2) t1,2,3 )( mGt 27n【分析】试题剖析:( 1)在圆轨道 Ⅲ 上的周期: T 3t,由万有引力供给向心力有:8nG Mmm22RR 2T又: M4 33 192 n 2 .R ,联立得:GT 32Gt 23(2)设飞船在轨道I 上的角速度为1 、在轨道 III 上的角速度为23 ,有:1T 1所以32设飞飞船再经过t 时间相距近来,有:3t ﹣ 1t2m 所以有:T 3tmtm ,, ).(7n 1 2 3考点:人造卫星的加快度、周期和轨道的关系【名师点睛】本题主要观察万有引力定律的应用,开普勒定律的应用.同时依据万有引力供给向心力列式计算.8. 我国科学家正在研究设计返回式月球软着陆器,计划在 2030 年前后实现航天员登月,对月球进行科学探测。
高一物理万有引力与航天试题答案及解析
高一物理万有引力与航天试题答案及解析1.把太阳系各行星的运动近似看做匀速圆周运动,则离太阳越远的行星A.周期越大B.线速度越小C.角速度越大D.加速度越小【答案】A【解析】设太阳的质量为M,行星的质量为m,轨道半径为r.行星绕太阳做圆周运动,万有引力提供向心力,则由牛顿第二定律得:G=m,G=mω2r,G=ma,解得:v=,ω=,a=,周期T==2π,可知,行星离太远越近,轨道半径r越小,则周期T越小,线速度、角速度、向心加速度越大,故BCD错误;故选:A.2.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示。
则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的角速度小于在轨道1上的角速度C.卫星在轨道1上运动一周的时间小于于它在轨道2上运动一周的时间D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度【答案】BCD【解析】根据公式,解得,即轨道半径越大,线速度越小,A错误;根据公式可得,即轨道半径越大,角速度越小,故B正确;根据开普勒第三定律可得轨道半径或半长轴越大,运动周期越大,故卫星在轨道1上运动一周的时间小于它在轨道2上运动一周的时间,故C正确;在轨道2和3上经过P点时卫星到地球的距离相等,根据,可得,半径相同,即加速度相等,D正确。
3.关于第一宇宙速度,下列说法正确的是A.它是人造地球卫星绕地球飞行的最小速度B.它是同步卫星的运行速度C.它是使卫星进入近地圆轨道的最大发射速度D.它是人造卫星在圆形轨道的最大运行速度【答案】D【解析】第一宇宙速度又称为环绕速度,是指在地球上发射的物体绕地球飞行作圆周运动所需的最小发射速度,为环绕地球运动的卫星的最大速度,即近地卫星的环绕速度,同步卫星轨道要比近地卫星的大,所以运行速度小于该速度,故D正确。
高一物理典型例、易错题:行星运动典型例题精析
行星运动、万有引力定律·典型例题精析[例题1]如图6-1所示,在与一质量为M,半径为R,密度均匀的球体距离为R处有一质量为m的质点,此时M对m的万有引力为F1.当从球M 中挖去一个半径为R/2的小球体时,剩下部分对m的万有引力为F2,则F1与F2的比是多少?[思路点拨] F1为一个匀质实心球对质点的万有引力,可用万有引力定律的公式直接求得,其中r为匀质球球心到质点的距离.F2是一个不规则物体对质点的万有引力,但由于挖去部分为一匀质实心球,所以可先计算挖去部分对质点的万有引力,然后根据力的叠加原理用F1减去挖去部分的万有引力即可得F2.实球M的引力F1可看成两个力的叠加:剩下的部分对m的引力F2与半径为R/2的小球对m的引力F′2的和,即F1=F2+F′2.因为半径R/2的小球体的质量[小结]万有引力定律的表达式适用于计算两质点之间的引力,若两物体不能看成质点时,应把物体进行分割,使每一小块的线度都小于两者间的距离,然后用叠加的方法求出引力的合力.需要说明的是对于两个均匀的球体来说,不管它们相距远近,万有引力定律的表达式都适用,表达式中的r 是指两个球心间的距离.的.这是因为对形状不规则物体当物体间距离较近时不可视为质点.[例题2] 月球质量是地球质量的1/81,月球半径是地球半径的1/3.8.如果分别在地球上和月球上都用同一初速度竖直向上抛出一个物体(阻力不计),求:(1)两者上升高度的比;(2)两者从抛出到落地时间的比.[思路点拨] 由于地球和月球的质量和半径的不同,而造成地球和月球表面的重力加速度的不同.因此应首先算出月球表面上的重力加速度,然后再根据运动学的公式计算.[解题过程]设质量为m的物体在月球上的重力加速度为g′,则有物体在地球上的重力加速度为g,则有(1)÷(2)得设在地球上上抛的高度为h,在月球上上抛的高度为h′.根据运动学公式可得设在地球上抛出到落地需要的时间为t,在月球上所需的时间为t′.根据运动学公式可得[小结]由于万有引力的作用,星球表面上的物体都要受到星球对物体的引力,当物体随星球转动所需要的向心力比万有引力小得多的时候,球半径的平方成反比。
高中物理万有引力定律的应用解题技巧及练习题及解析
高中物理万有引力定律的应用解题技巧及练习题及解析一、高中物理精讲专题测试万有引力定律的应用1.如图所示,P 、Q 为某地区水平地面上的两点,在P 点正下方一球形区域内储藏有石油.假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏离.重力加速度在原竖直方向(即PO 方向)上的投影相对于正常值的偏离叫做“重力加速度反常”.为了探寻石油区域的位置和石油储量,常利用P 点附近重力加速度反常现象.已知引力常数为G.(1)设球形空腔体积为V,球心深度为d(远小于地球半径),,PQ x =求空腔所引起的Q 点处的重力加速度反常;(2)若在水平地面上半径为L 的范围内发现:重力加速度反常值在δ与kδ(k>1)之间变化,且重力加速度反常的最大值出现在半径为L 的范围的中心.如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积.【答案】(1)223/2()G Vd d x ρ+(2)22/3.(1)L k V G k δρ=- 【解析】 【详解】(1)如果将近地表的球形空腔填满密度为ρ的岩石,则该地区重力加速度便回到正常值.因此,重力加速度反常可通过填充后的球形区域产生的附加引力来计算,2MmGr =mΔg① 式中m 是Q 点处某质点的质量,M 是填充后球形区域的质量.M=ρV② 而r 是球形空腔中心O 至Q 点的距离22d x +Δg 在数值上等于由于存在球形空腔所引起的Q 点处重力加速度改变的大小。Q 点处重力加速度改变的方向沿OQ 方向,重力加速度反常Δg′是这一改变在竖直方向上的投影 Δg′=drΔg④ 联立①②③④式得Δg′=223/2()G Vdd x ρ+⑤(2)由⑤式得,重力加速度反常Δg′的最大值和最小值分别为 (Δg′)max =2G Vdρ⑥(Δg′)min =223/2()G Vdd L ρ+⑦由题设有(Δg′)max =kδ,(Δg′)min =δ⑧联立⑥⑦⑧式得,地下球形空腔球心的深度和空腔的体积分别为22/32/3d .(1)1L k V G k k δρ==--2.由三颗星体构成的系统,忽略其他星体对它们的影响,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做角速度相同的圆周运动(图示为A 、B 、C 三颗星体质量不相同时的一般情况)若A 星体的质量为2m ,B 、C 两星体的质量均为m ,三角形的边长为a ,求:(1)A 星体所受合力的大小F A ; (2)B 星体所受合力的大小F B ; (3)C 星体的轨道半径R C ; (4)三星体做圆周运动的周期T .【答案】(1)2223Gm a (227Gm (37 (4)3πa T Gm= 【解析】 【分析】 【详解】(1)由万有引力定律,A 星体所受B 、C 星体引力大小为24222A B R CA m m m F G G F r a===,则合力大小为223A m F G a=(2)同上,B 星体所受A 、C 星体引力大小分别为2222222A B AB C B CBm m m F GG r am m m F G G r a==== 则合力大小为22cos 602Bx AB CB m F F F G a =︒+=22sin 603By AB m F F G a=︒=.可得22227B BxBym F F F G a=+=(3)通过分析可知,圆心O 在中垂线AD 的中点,2231742C R a a a ⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭ (4)三星体运动周期相同,对C 星体,由22227C B C m F F G m R a T π⎛⎫=== ⎪⎝⎭可得22a T Gmπ=3.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v=- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用4.2019年3月3日,中国探月工程总设计师吴伟仁宣布中国探月工程“三步走”即将收官,我国对月球的探索将进人新的征程。
高中物理万有引力定律的应用题20套(带答案)及解析
高中物理万有引力定律的应用题20套(带答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g;(3)行星的第一宇宙速度v.【答案】(1)(2)(3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.土星是太阳系最大的行星,也是一个气态巨行星。
图示为2017年7月13日朱诺号飞行器近距离拍摄的土星表面的气体涡旋(大红斑),假设朱诺号绕土星做匀速圆周运动,距离土星表面高度为h。
土星视为球体,已知土星质量为M,半径为R,万有引力常量为.G求:()1土星表面的重力加速度g;()2朱诺号的运行速度v;()3朱诺号的运行周期T 。
【答案】()()()()21?2?3?2GM GM R h R h R R h GM π+++ 【解析】【分析】土星表面的重力等于万有引力可求得重力加速度;由万有引力提供向心力并分别用速度与周期表示向心力可求得速度与周期。
【详解】(1)土星表面的重力等于万有引力:2Mm Gmg R = 可得2GM g R = (2)由万有引力提供向心力:22()Mm mv G R h R h=++ 可得:GM v R h=+ (3)由万有引力提供向心力:()222()()GMm m R h R h Tπ=++ 可得:()2R h T R h GMπ+=+3.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G )【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有w 1=w 2 ① (1分)r 1+r 2=r ② (1分)根据万有引力定律和牛顿定律,有G③ (3分) G ④ (3分) 联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解4.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间. 【答案】203t gR r ω=-或者202t gR r ω=- 【解析】【分析】【详解】试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,比地球多转动一圈.解:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有 22Mm G mr rω= 航天飞机在地面上,有2mM GR mg = 联立解得22gR rω= 若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π 所以202t gR r ω=- 若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π 所以202t gR r ω=-. 点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.5.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g s v H L=-201[1]42()s T mg H L L =+- 【解析】【分析】【详解】 (1)由万有引力等于向心力可知22Mm v G m R R= 2Mm G mg R= 可得2v g R= 则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t = 解得0024g sv H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.6.为了探测月球的详细情况,我国发射了一颗绕月球表面飞行的科学实验卫星.假设卫星绕月球做圆 周运动,月球绕地球也做圆周运动.已知卫星绕月球运行的周期为 T0,地球表面重力加速度为 g ,地球半径为 R0,月心到地心间的距离为 r0,引力常量为 G ,求: (1)月球的平均密度;(2)月球绕地球运行的周期.【答案】(1)203GT π(2) T = 【解析】【详解】(1)月球的半径为R ,月球质量为M ,卫星质量为m 由于在月球表面飞行,万有引力提供向心力:22204mM G m R R T π= 得23204R M GT π= 且月球的体积V =43πR 3 根据密度的定义式 M V ρ=得232023043 43R GT GT R ππρπ== (2)地球质量为M 0,月球质量为M ,月球绕地球运转周期为T 由万有引力提供向心力2202004 r GM M M r Tπ= 根据黄金代换GM 0=gR 02得T =7.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。
(物理)高考必刷题物理万有引力定律的应用题含解析
(物理)高考必刷题物理万有引力定律的应用题含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GMv v R h R=+-+ (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:32GMvR.【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.3.在不久的将来,我国科学家乘坐“嫦娥N号”飞上月球(可认为是均匀球体),为了研究月球,科学家在月球的“赤道”上以大小为v0的初速度竖直上抛一物体,经过时间t1,物体回到抛出点;在月球的“两极”处仍以大小为v0的初速度竖直上抛同一物体,经过时间t2,物体回到抛出点。
高中物理高考题解析-认识万有引力定律-考题及答案
课时分层作业(九) 认识万有引力定律题组一 太阳与行星间引力1.若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律,在已知月地距离约为地球半径60倍的情况下,需要验证( )A .地球吸引月球的力约为地球吸引苹果的力的1602 B .月球公转的加速度约为苹果落向地面加速度的1602C .自由落体在月球表面的加速度约为地球表面的16D .苹果在月球表面受到的引力约为在地球表面的160B [若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律——万有引力定律,则应满足G Mmr 2=ma ,即加速度a 与距离r 的平方成反比,由题中数据知,选项B 正确。
]题组二 万有引力定律2.设地球是半径为R 的均匀球体,质量为M ,若把质量为m 的物体放在地球的中心,则物体受到的地球的万有引力大小为( )A .零B .无穷大C .GMmR 2D .无法确定A [有的同学认为:由万有引力公式F =Gm 1m 2r 2,由于r →0,故F 为无穷大,从而错选B 。
设想把物体放到地球的中心,此时F =G m 1m 2r 2已不适用,地球的各部分对物体的吸引力是对称的,故物体受到的地球的万有引力是零,故A 正确。
]3.在某次测定引力常量的实验中,两金属球的质量分别为m 1和m 2,球心间的距离为r ,若测得两金属球间的万有引力大小为F ,则此次实验得到的引力常量为( )A .Fr m 1m 2B .Fr 2m 1m 2C .m 1m 2FrD .m 1m 2Fr 2B [由万有引力定律F =G m 1m 2r 2得G =Fr 2m 1m 2,所以B 项正确。
]4.2019年1月,我国“嫦娥四号”探测器成功在月球背面软着陆。
在探测器“奔向”月球的过程中,用h 表示探测器与地球表面的距离,F 表示它所受的地球引力,能够描述F 随h 变化关系的图像是( )A B C DD [在“嫦娥四号”探测器“奔向”月球的过程中,根据万有引力定律,可知随着h 的增大,探测器所受的地球引力逐渐减小但并不是均匀减小的,故能够描述F 随h 变化关系的图像是D ,D 正确。
高中物理万有引力定律的应用解析版汇编含解析
高中物理万有引力定律的应用解析版汇编含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示) 【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) 2hRt【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR, 解得该星球的第一宇宙速度为:2hRv gR ==2.土星是太阳系最大的行星,也是一个气态巨行星。
图示为2017年7月13日朱诺号飞行器近距离拍摄的土星表面的气体涡旋(大红斑),假设朱诺号绕土星做匀速圆周运动,距离土星表面高度为h 。
土星视为球体,已知土星质量为M ,半径为R ,万有引力常量为.G 求:()1土星表面的重力加速度g ; ()2朱诺号的运行速度v ; ()3朱诺号的运行周期T 。
【答案】()()()()21?2?3?2GM GM R hR h R R h GMπ+++ 【解析】 【分析】土星表面的重力等于万有引力可求得重力加速度;由万有引力提供向心力并分别用速度与周期表示向心力可求得速度与周期。
高一物理 万有引力定律 典型例题解析
万有引力定律 典型例题解析【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下:(1)g (2)(3)r 60R 地面上物体的重力加速度=;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值;GMR GMrg 22αα(4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ;(5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果,求的值.αg解析:(1)略;(2)略; (3)2.77×10-4; (4)2.70×10-3m/s 2 (5)2.75×10-4点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力GMmr mg G Mmrm 22α的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目的条件可以用、ω或来表示.v r r T2224r 2π【例】月球质量是地球质量的,月球半径是地球半径的,在2181138.距月球表面14m 高处,有一质量m =60kg 的物体自由下落.(1)它落到月球表面需用多少时间?(2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力加速度g 地=9.8m/s 2)?解析:(1)4s (2)588N点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设mg GM m R mg GM m R 22月月月地地地=.同理,物体在地球上的“重力”等于地球对物体的万有引力,设=.以上两式相除得=,根据=可得物体落到月球表面需用时间为==×=.月月g 1.75m /s S gt t 4s 22122214175S g .(2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N .跟踪反馈1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量分布均匀,大小分别为m 1、m 2,则两球间的万有引力大小为:[ ]A .Gm 1m 2/r 2B .Gm 1m 2/r 12C .Gm 1m 2/(r 1+r 2)2D .Gm 1m 2/(r 1+r 2+r)22.下列说法正确的是[ ] A.地球是宇宙的中心,太阳、月亮及其他行星都绕地球运动B.太阳是静止不动的,地球和其他行星都绕太阳运动C.地球是绕太阳运动的一颗行星D.日心说和地心说都是错误的3.已知太阳质量是1.97×1030kg,地球质量是5.98×1024kg,太阳和地球间的平均距离1.49×1011m,太阳和地球间的万有引力是_______N.已知拉断截面积为1cm2的钢棒力4.86×104N,那么,地球和太阳间的万有引力可以拉断截面积是_______m2的钢棒.4.下列说法正确的是[ ] A.行星绕太阳的椭圆轨道可以近似地看作圆形轨道,其向心力来源于太阳对行星的引力B.太阳对行星的引力大于行星对太阳的引力,所以行星绕太阳运转而不是太阳绕行星运转C.万有引力定律适用于天体,不适用于地面上的物体D.行星与卫星之间的引力,地面上的物体所受的重力和太阳对行星的引力,性质相同,规律也相同参考答案1.D 2.CD 3.3.54×1022;7.28×134.A。
(物理)物理万有引力定律的应用练习题20篇及解析
(物理)物理万有引力定律的应用练习题20篇及解析一、高中物理精讲专题测试万有引力定律的应用1.木星的卫星之一叫艾奥,它上面的珞珈火山喷出的岩块初速度为v 0时,上升的最大高度可达h .已知艾奥的半径为R ,引力常量为G ,忽略艾奥的自转及岩块运动过程中受到稀薄气体的阻力,求:(1)艾奥表面的重力加速度大小g 和艾奥的质量M ; (2)距艾奥表面高度为2R 处的重力加速度大小g '; (3)艾奥的第一宇宙速度v .【答案】(1)2202R v M hG =;(2)2018v g h'=;(3)v v =【解析】 【分析】 【详解】(1)岩块做竖直上抛运动有2002v gh -=-,解得22v g h=忽略艾奥的自转有2GMm mg R =,解得222R v M hG= (2)距艾奥表面高度为2R 处有2(2)GMm m g R R '''=+,解得20'18v g h=(3)某卫星在艾奥表面绕其做圆周运动时2v mg m R=,解得v v =【点睛】在万有引力这一块,涉及的公式和物理量非常多,掌握公式222224Mm v G m m r m r ma r r Tπω====在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算2.某宇航员驾驶宇宙飞船到达某未知星球表面,他将一个物体以010m/s v =的速度从10m h =的高度水平抛出,测得落到星球表面A 时速度与水平地面的夹角为60θ=︒。
已知该星球半径是地球半径的2倍,地球表面重力加速度210m/s g =。
则: (1)该星球表面的重力加速度'g 是多少? (2)该星球的质量是地球的几倍?【答案】(1)215m/s g '=(2)星球质量是地球质量的6倍 【解析】 【详解】(1)星球表面平拋物体,水平方向匀速运动:010m/s x v v ==竖直方向自由落体'2y v g h =2'(2)y v g h =(或y v g t =',21'2h g t =) 因为tan 3y xv v θ==解得215m/s g '=(2)对地球表面的物体m ,其重力等于万有引力:2M mmg GR =地地 对星球表面的物体m ,其重力等于万有引力:2M mmg G R '=星星6M M =星地所以星球质量是地球质量的6倍3.人类对未知事物的好奇和科学家们的不懈努力,使人类对宇宙的认识越来越丰富。
高考物理万有引力定律的应用解题技巧讲解及练习题(含答案)及解析
高考物理万有引力定律的应用解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】(1)02v g t = (2) 032πv RGt ρ=(3)v = 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度v ==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.2.我国发射的“嫦娥一号”探月卫星沿近似于圆形的轨道绕月飞行.为了获得月球表面全貌的信息,让卫星轨道平面缓慢变化.卫星将获得的信息持续用微波信号发回地球.设地球和月球的质量分别为M 和m ,地球和月球的半径分别为R 和R 1,月球绕地球的轨道半径和卫星绕月球的轨道半径分别为r 和r 1,月球绕地球转动的周期为T .假定在卫星绕月运行的一个周期内卫星轨道平面与地月连心线共面,求在该周期内卫星发射的微波信号因月球遮挡而不能到达地球的时间(用M 、m 、R 、R 1、r 、r 1和T 表示,忽略月球绕地球转动对遮挡时间的影).【答案】311131cos cos Mr R R R Tt arc arc mr r r π⎛⎫-=- ⎪⎝⎭【解析】 【分析】 【详解】如图,O 和O ′分别表示地球和月球的中心.在卫星轨道平面上,A 是地月连心线OO ′与地月球面的公切线ACD 的交点,D 、C 和B 分别是该公切线与地球表面、月球表面和卫星圆轨道的交点.根据对称性,过A 点的另一侧作地月球面的公切线,交卫星轨道于E 点.卫星在上运动时发出的信号被遮挡.设探月卫星的质量为m 0,万有引力常量为G ,根据万有引力定律有:222Mm G m r r T π⎛⎫= ⎪⎝⎭①20012112mmG m r r T π⎛⎫= ⎪⎝⎭②式中T 1是探月卫星绕月球转动的周期.由①②式得2311T r M T m r ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭③ 设卫星的微波信号被遮挡的时间为t,则由于卫星绕月做匀速圆周运动,应用1t T αβπ-=④ 式,α=∠CO ′A ,β=∠CO ′B ,由几何关系得r cos α=R -R 1⑤ r 1cos β=R 1⑥由③④⑤⑥式得311131arccos arccos Mr R R R Tt mr r r π⎛⎫-=- ⎪⎝⎭3.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.4.一颗在赤道平面内飞行的人造地球卫星,其轨道半径为3R .已知R 为地球半径,地球表面处重力加速度为g. (1)求该卫星的运行周期.(2)若卫星在运动方向与地球自转方向相同,且卫星角速度大于地球自转的角速度ω0.某时刻该卫星出现在赤道上某建筑物的正上方,问:至少经过多长时间,它会再一次出现在该建筑物的正上方?【答案】(1)36R T g =2)0133t gRω-V =【解析】【分析】【详解】(1)对卫星运用万有引力定律和牛顿运动定律可得()2 22433MmG m RTRπ⋅=地球表面的物体受到重力等于万有引力2Mmmg GR=联立解得36RTgπ=;(2)以地面为参照物,卫星再次出现在建筑物上方时,建筑物随地球转过的弧度比卫星转过弧度少2π.ω1△t-ω0△t=2π,所以1000222133tgT RV===πππωωωω---;5.宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做囿周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的囿形轨道运行,如图乙所示.设这三个星体的质量均为 m,且两种系统中各星间的距离已在图甲、图乙中标出,引力常量为 G,则:(1)直线三星系统中星体做囿周运动的周期为多少?(2)三角形三星系统中每颗星做囿周运动的角速度为多少?【答案】(1)345LGm233GmL【解析】【分析】(1)两侧的星由另外两个星的万有引力的合力提供向心力,列式求解周期;(2)对于任意一个星体,由另外两个星体的万有引力的合力提供向心力,列式求解角速度;【详解】(1)对两侧的任一颗星,其它两个星对它的万有引力的合力等于向心力,则:222222()(2)Gm Gmm LL L Tπ+=345LTGmπ∴=(2)三角形三星系统中星体受另外两个星体的引力作用,万有引力做向心力,对任一颗星,满足:2222cos30()cos30LGmmLω︒=︒解得:33=GmLω6.用弹簧秤可以称量一个相对于地球静止的小物体m所受的重力,称量结果随地理位置的变化可能会有所不同。
高考物理万有引力定律的应用解题技巧和训练方法及练习题(含答案)及解析
高考物理万有引力定律的应用解题技巧和训练方法及练习题(含答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F Rm-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R= 2GMm R =2mv R两式联立得:12()6F F Rm-(3)在星球表面:2GMmmg R = ④ 星球密度:MVρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.2.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT +=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT +=. 联立得()2πR H R HV TR++=3.对某行星的一颗卫星进行观测,运行的轨迹是半径为r的圆周,周期为T,已知万有引力常量为G.求:(1)该行星的质量.(2)测得行星的半径为卫星轨道半径的十分之一,则此行星的表面重力加速度有多大?【答案】(1)2324rMGTπ=(2)22400rgTπ=【解析】(1)卫星围绕地球做匀速圆周运动,由地球对卫星的万有引力提供卫星所需的向心力.则有:2224MmG m rr Tπ=,可得2324rMGTπ=(2)由21()10MmG mgr=,则得:222400100GM rgr Tπ==4.半径R=4500km的某星球上有一倾角为30o的固定斜面,一质量为1kg的小物块在力F 作用下从静止开始沿斜面向上运动,力F始终与斜面平行.如果物块和斜面间的摩擦因数3μ=,力F随时间变化的规律如图所示(取沿斜面向上方向为正),2s末物块速度恰好又为0,引力常量11226.6710/kgG N m-=⨯⋅.试求:(1)该星球的质量大约是多少?(2)要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果均保留二位有效数字)【答案】(1)242.410M kg=⨯(2)6.0km/s【解析】【详解】(1)假设星球表面的重力加速度为g,小物块在力F1=20N作用过程中,有:F1-mg sinθ-μmg cosθ=ma1小物块在力F2=-4N作用过程中,有:F2+mg sinθ+μmg cosθ=ma2且有1s末速度v=a1t1=a2t2联立解得:g=8m/s2.由G2MmR=mg解得M=gR2/G.代入数据得M=2.4×1024kg(2)要使抛出的物体不再落回到星球,物体的最小速度v1要满足mg=m 21vR解得v1=gR=6.0×103ms=6.0km/s即要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要6.0km/s的速度.【点睛】本题是万有引力定律与牛顿定律的综合应用,重力加速度是联系这两个问题的桥梁;第二题,由重力或万有引力提供向心力,求出该星球的第一宇宙速度.5.双星系统由两颗彼此相距很近的两个恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的共同质量中心做周期相同的匀速圆周运动。
开普勒行星运动定律 万有引力定律(解析版)--高一物理专题练习(内容+练习)
开普勒行星运动定律万有引力定律高一物理专题练习(内容+练习)一、开普勒定律1.开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.2.开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等.3.开普勒第三定律:所有行星轨道的半长轴的三次方跟它的公转周期的二次方的比都相等.其表达式为a3T2=k,其中a代表椭圆轨道的半长轴,T代表公转周期,比值k是一个对所有行星都相同的常量.二、行星运动的近似处理行星的轨道与圆十分接近,在中学阶段的研究中我们可按圆轨道处理.这样就可以说:1.行星绕太阳运动的轨道十分接近圆,太阳处在圆心.2.行星绕太阳做匀速圆周运动.3.所有行星轨道半径r的三次方跟它的公转周期T的二次方的比值都相等,即r3T2=k.三、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成正比、与它们之间距离r的二次方成反比.2.表达式:F=G m1m2r2,其中G叫作引力常量.四、引力常量牛顿得出了万有引力与物体质量及它们之间距离的关系,但没有测出引力常量G的值.英国物理学家卡文迪什通过实验推算出引力常量G的值.通常取G=6.67×10-11N·m2/kg2.一、单选题1.对于开普勒行星运动定律的理解,下列说法正确的是()A.开普勒进行了长期观测,记录了大量数据,通过对数据研究总结得出了万有引力定律B.根据开普勒第一定律,行星围绕太阳运动的轨迹是圆,太阳处于圆心位置C.根据开普勒第二定律,行星距离太阳越近,其运动速度越大:距离太阳越远,其运动速度越小D.根据开普勒第三定律,行星围绕太阳运行的轨道半径跟它公转周期成正比【答案】C【解析】A .第谷进行了长期观测,记录了大量数据,开普勒通过对数据研究总结得出了开普勒行星运动定律,故A 错误;B .根据开普勒第一定律,行星围绕太阳运动的轨迹是椭圆,太阳处于椭圆的一个焦点上,故B 错误;C .根据开普勒第二定律,行星距离太阳越近,其运动速度越大,距离太阳越远,其运动速度越小,故C 正确;D .根据开普勒第三定律,行星围绕太阳运行轨道半长轴的三次方跟它公转周期的二次方成正比,故D 错误。
高考物理万有引力定律的应用解题技巧讲解及练习题(含答案)及解析
高考物理万有引力定律的应用解题技巧解说及练习题( 含答案 ) 及分析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地址与抛出点的水平距离为x 和落地时间为 R,己知万有引力常量为G,求:t,又已知该星球的半径(1)小球抛出的初速度 v o(2)该星球表面的重力加快度g(3)该星球的质量 M(4)该星球的第一宇宙速度 v(最后结果一定用题中己知物理量表示)【答案】 (1) v0=x/t (2) g=2h/t 2(3) 2hR2/(Gt 2) (4)2hRt【分析】(1)小球做平抛运动,在水平方向: x=vt,解得从抛出到落地时间为: v0=x/t(2)小球做平抛运动时在竖直方向上有:1h= gt2,2解得该星球表面的重力加快度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m,由万有引力等于物体的重力得:mg= GMmR2因此该星球的质量为:M= gR2= 2hR2/(Gt 2);G(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v,由牛顿第二定律得:G Mm m v2R2R重力等于万有引力,即mg= G MmR2,解得该星球的第一宇宙速度为:v2hR gRt2.我国首个月球探测计划“嫦娥工程”将分三个阶段实行,大概用十年左右时间达成,这极大地提升了同学们对月球的关注程度.以下是某同学就相关月球的知识设计的两个问题,请你解答:(1)若已知地球半径为R,地球表面的重力加快度为g,月球绕地球运动的周期为T,且把月球绕地球的运动近似看做是匀速圆周运动.试求出月球绕地球运动的轨道半径.(2)若某位宇航员随登月飞船登岸月球后,在月球某水平表面上方h 高处以速度v0水平抛出一个小球,小球落回到月球表面的水平距离为s.已知月球半径为R 月,万有引力常量为 G.试求出月球的质量M 月.【答案】 (1) rgR 2T 22R 月2h 02 3(2)M 月=42Gs2【分析】此题观察天体运动,万有引力公式的应用,依据自由落体求出月球表面重力加快度再由黄金代换式求解3. 为了探测月球的详尽状况,我国发射了一颗绕月球表面飞翔的科学实验卫星.假定卫星绕月球做圆 周运动,月球绕地球也做圆周运动.已知卫星绕月球运行的周期为面重力加快度为 g ,地球半径为 R0,月心到地心间的距离为r0,引力常量为(1)月球的均匀密度;(2)月球绕地球运行的周期.T0,地球表G ,求:3 2r 0 r 0【答案】( 1)2 (2) TgGT 0R 0【分析】【详解】(1)月球的半径为 R ,月球质量为 M ,卫星质量为 m因为在月球表面飞翔,万有引力供给向心力:G mM=m 4 2RR 2 T 02 得 M =4 2R 3 GT 02且月球的体积V = 4 33 πRM42R 32依据密度的定义式得 = GT 0=3=V43GT 023 R(2)地球质量为M0 ,月球质量为M ,月球绕地球运行周期为T由万有引力供给向心力GM 0M = M 4 2r 2 T 2 r 0依据黄金代换 GM 002 = gR2r 0 r 0得 TgR 04. 为了丈量某行星的质量和半径 ,宇航员记录了登岸舱在该行星表面做圆周运动的周期 T,登岸舱内行星表面着陆后 ,用弹簧测力计称量一个质量为 m 的砝码 ,读数为 F. 已知引力常量为 G.求该行星的半径 R 和质量 M 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万有引力定律 典型例题解析
【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下:
(1)g (2)(3)r 60R 地面上物体的重力加速度=
;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值;GM R GM r
g 2
2αα (4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ;
(5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果, 求的值.αg
解析:
(1)略;(2)略;
(3)2.77×10-4;
(4)2.70×10-3m/s 2
(5)2.75×10-4
点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力G Mm r mg G Mm r
m 22α 的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目
的条件可以用、ω或来表示.v r r T
2224r 2π
【例】月球质量是地球质量的,月球半径是地球半径的,在2181138.
距月球表面14m 高处,有一质量m =60kg 的物体自由下落.
(1)它落到月球表面需用多少时间?
(2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力加速度g 地=9.8m/s 2)?
解析:(1)4s
(2)588N
点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设 mg G M m
R mg G M m
R 22月月月地地地=.同理,物体在地球上的“重力”等于地球对物体的
万有引力,设=. 以上两式相除得=,根据=可得物体落到月球表面需用时间为==×=.月月g 1.75m /s S gt t 4s 2212
2214175S g .
(2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N .
跟踪反馈
1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量
分布均匀,大小分别为m1、m2,则两球间的万有引力大小为:
[ ]
A.Gm1m2/r2
B.Gm1m2/r12
C.Gm1m2/(r1+r2)2
D.Gm1m2/(r1+r2+r)2
2.下列说法正确的是
[ ]
A.地球是宇宙的中心,太阳、月亮及其他行星都绕地球运动
B.太阳是静止不动的,地球和其他行星都绕太阳运动
C.地球是绕太阳运动的一颗行星
D.日心说和地心说都是错误的
3.已知太阳质量是1.97×1030kg,地球质量是5.98×1024kg,太阳和地球间的平均距离1.49×1011m,太阳和地球间的万有引力是_______N.已知拉断截面积为1cm2的钢棒力4.86×104N,那么,地球和太阳间的万有引力可以拉断截面积是_______m2的钢棒.
4.下列说法正确的是
[ ]
A.行星绕太阳的椭圆轨道可以近似地看作圆形轨道,其向心力来源
于太阳对行星的引力
B.太阳对行星的引力大于行星对太阳的引力,所以行星绕太阳运转而不是太阳绕行星运转
C.万有引力定律适用于天体,不适用于地面上的物体
D.行星与卫星之间的引力,地面上的物体所受的重力和太阳对行星的引力,性质相同,规律也相同
参考答案
1.D 2.CD 3.3.54×1022;7.28×13 4. A。