最新万有引力定律·典型例题解析
高考物理万有引力定律的应用题20套(带答案)及解析

高考物理万有引力定律的应用题20套(带答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示) 【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) 2hRt【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR, 解得该星球的第一宇宙速度为:2hRv gR ==2.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R=3310m/s v ==⨯3.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】(1)02v g t = (2) 032πv RGt ρ=(3)v = 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度v ==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.4.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMm mv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GMv v R h R=+-+; (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R = 则探测器离开飞船时的速度(相对于地心)至少是:32GMv R=. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.5.如图所示是一种测量重力加速度g 的装置。
高考物理万有引力定律的应用解题技巧讲解及练习题(含答案)

高考物理万有引力定律的应用解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试万有引力定律的应用1.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R= 3310m/s v gR ==⨯2.如图所示,P 、Q 为某地区水平地面上的两点,在P 点正下方一球形区域内储藏有石油.假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏离.重力加速度在原竖直方向(即PO 方向)上的投影相对于正常值的偏离叫做“重力加速度反常”.为了探寻石油区域的位置和石油储量,常利用P 点附近重力加速度反常现象.已知引力常数为G.(1)设球形空腔体积为V,球心深度为d(远小于地球半径),,PQ x =求空腔所引起的Q 点处的重力加速度反常;(2)若在水平地面上半径为L 的范围内发现:重力加速度反常值在δ与kδ(k>1)之间变化,且重力加速度反常的最大值出现在半径为L 的范围的中心.如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积.【答案】(1)223/2()G Vd d x ρ+(2)22/3.(1)L k V G k δρ=- 【解析】 【详解】(1)如果将近地表的球形空腔填满密度为ρ的岩石,则该地区重力加速度便回到正常值.因此,重力加速度反常可通过填充后的球形区域产生的附加引力来计算,2MmGr=mΔg① 式中m 是Q 点处某质点的质量,M 是填充后球形区域的质量.M=ρV②而r 是球形空腔中心O 至Q 点的距离Δg 在数值上等于由于存在球形空腔所引起的Q 点处重力加速度改变的大小。Q 点处重力加速度改变的方向沿OQ 方向,重力加速度反常Δg′是这一改变在竖直方向上的投影 Δg′=drΔg④ 联立①②③④式得Δg′=223/2()G Vdd x ρ+⑤(2)由⑤式得,重力加速度反常Δg′的最大值和最小值分别为 (Δg′)max =2G Vd ρ⑥ (Δg′)min =223/2()G Vdd L ρ+⑦由题设有(Δg′)max =kδ,(Δg′)min =δ⑧联立⑥⑦⑧式得,地下球形空腔球心的深度和空腔的体积分别为22/3d .(1)L k G k δρ==-3.一颗在赤道平面内飞行的人造地球卫星,其轨道半径为3R .已知R 为地球半径,地球表面处重力加速度为g. (1)求该卫星的运行周期.(2)若卫星在运动方向与地球自转方向相同,且卫星角速度大于地球自转的角速度ω0.某时刻该卫星出现在赤道上某建筑物的正上方,问:至少经过多长时间,它会再一次出现在该建筑物的正上方?【答案】(1)36R T g π=(2)0133t gRω-V =【解析】 【分析】 【详解】(1)对卫星运用万有引力定律和牛顿运动定律可得()222433MmG m R T R π⋅= 地球表面的物体受到重力等于万有引力2Mmmg G R = 联立解得36R T gπ= ; (2)以地面为参照物,卫星再次出现在建筑物上方时,建筑物随地球转过的弧度比卫星转过弧度少2π. ω1△t -ω0△t =2π, 所以1000222133t gT RV ===πππωωωω---;4.为了测量某行星的质量和半径,宇航员记录了登陆舱在该行星表面做圆周运动的周期T,登陆舱在行星表面着陆后,用弹簧测力计称量一个质量为m 的砝码,读数为F. 已知引力常量为G.求该行星的半径R 和质量M 。
高考物理万有引力定律的应用题20套(带答案)及解析

高考物理万有引力定律的应用题20套(带答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g;(3)行星的第一宇宙速度v.【答案】(1)(2)(3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.如图所示,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油.假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏离.重力加速度在原竖直方向(即PO方向)上的投影相对于正常值的偏离叫做“重力加速度反常”.为了探寻石油区域的位置和石油储量,常利用P点附近重力加速度反常现象.已知引力常数为G.(1)设球形空腔体积为V,球心深度为d(远小于地球半径),,PQ x =求空腔所引起的Q 点处的重力加速度反常;(2)若在水平地面上半径为L 的范围内发现:重力加速度反常值在δ与kδ(k>1)之间变化,且重力加速度反常的最大值出现在半径为L 的范围的中心.如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积.【答案】(1)223/2()G Vd d x ρ+(2)22/3.(1)L k V G k δρ=- 【解析】 【详解】(1)如果将近地表的球形空腔填满密度为ρ的岩石,则该地区重力加速度便回到正常值.因此,重力加速度反常可通过填充后的球形区域产生的附加引力来计算,2MmGr=mΔg① 式中m 是Q 点处某质点的质量,M 是填充后球形区域的质量.M=ρV② 而r 是球形空腔中心O 至Q 点的距离22d x +Δg 在数值上等于由于存在球形空腔所引起的Q 点处重力加速度改变的大小。Q 点处重力加速度改变的方向沿OQ 方向,重力加速度反常Δg′是这一改变在竖直方向上的投影 Δg′=drΔg④ 联立①②③④式得Δg′=223/2()G Vdd x ρ+⑤ (2)由⑤式得,重力加速度反常Δg′的最大值和最小值分别为 (Δg′)max =2G Vd ρ⑥ (Δg′)min =223/2()G Vdd L ρ+⑦由题设有(Δg′)max =kδ,(Δg′)min =δ⑧联立⑥⑦⑧式得,地下球形空腔球心的深度和空腔的体积分别为22/32/3d .(1)1L k G k k δρ==--3.对某行星的一颗卫星进行观测,运行的轨迹是半径为r 的圆周,周期为T ,已知万有引力常量为G .求: (1)该行星的质量.(2)测得行星的半径为卫星轨道半径的十分之一,则此行星的表面重力加速度有多大?【答案】(1)2324r M GT π=(2)22400rg T π=【解析】(1)卫星围绕地球做匀速圆周运动,由地球对卫星的万有引力提供卫星所需的向心力.则有:2224Mm G m r r T π=,可得2324r M GTπ= (2)由21()10MmGmg r =,则得:222400100GM r g r T π==4.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.5.为了测量某行星的质量和半径,宇航员记录了登陆舱在该行星表面做圆周运动的周期T,登陆舱在行星表面着陆后,用弹簧测力计称量一个质量为m 的砝码,读数为F. 已知引力常量为G.求该行星的半径R 和质量M 。
万有引力习题及答案

【典型例题】例1、海王星的公转周期约为5.19×109s,地球的公转周期为3.16×107s,则海王星与太阳的平均距离约为地球与太阳的平均距离的多少倍?例2、有一颗太阳的小行星,质量是1.0×1021kg,它的轨道半径是地球绕太阳运动半径的2.77倍,求这颗小行星绕太阳一周所需要的时间。
例3、16世纪,哥白尼根据天文观测的大量资料,经过40多年的天文观测和潜心研究,提出了“日心说”的如下四个观点,这四个论点目前看存在缺陷的是()A、宇宙的中心是太阳,所有行星都在绕太阳做匀速圆周运动。
B、地球是绕太阳做匀速圆周运动的行星,月球是绕地球做匀速圆周运动的卫星,它绕地球运转的同时还跟地球一起绕太阳运动。
C、天穹不转动,因为地球每天自西向东自转一周,造成天体每天东升西落的现象。
D、与日地距离相比,恒星离地球都十分遥远,比日地间的距离大得多。
例4.假设已知月球绕地球做匀速圆周运动,万有引力提供向心力,假如地球对月球的万有引力突然消失,则月球的运动情况如何?若地球对月球的万有引力突然增加或减少,月球又如何运动呢?【针对训练】1、某一人造卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球轨道半径的1/3则此卫星运行的周期大约是:()A.1-4天之间 B.4-8天之间 C.8-16天之间 D.16-20天之间2、两行星运行周期之比为1:2,其运行轨道的半长轴之比为:()A.1/2B.C.D.3、地球到太阳的距离是水星到太阳距离的2.6倍,那么地球和水星绕太阳运转的线速度之比是多少?(设地球和水星绕太阳运转的轨道是圆轨道)4.关于日心说被人们所接受的原因是()A.以地球为中心来研究天体的运动有很多无法解决的问题B.以太阳为中心,许多问题都可以解决,行星的运动的描述也变得简单了C.地球是围绕太阳转的 D.太阳总是从东面升起从西面落下5、考察太阳M的卫星甲和地球m(m<M)的卫星乙,甲到太阳中心的距离为r1,乙到地球中心的距离为r2,若甲和乙的周期相同,则:()A、r1>r2B、r1<r2C、r1=r2D、无法比较6、设月球绕地球运动的周期为27天,则地球的同步卫星到地球中心的距离r与月球中心到地球中心的距离R之比r/R为()A. 1/3B. 1/9C. 1/27D. 1/18【能力训练】1、关于公式R3 / T2=k,下列说法中正确的是()A.公式只适用于围绕太阳运行的行星B.不同星球的行星或卫星,k 值均相等C.围绕同一星球运行的行星或卫星,k值不相等D.以上说法均错2、地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为()A. 1:27B. 1:9C. 1:3D. 9:13、两颗小行星都绕太阳做圆周运动,它们的周期分别是T和3T,则()A、它们绕太阳运转的轨道半径之比是1:3B、它们绕太阳运转的轨道半径之比是1:C、它们绕太阳运转的速度之比是:1:4D、它们受太阳的引力之比是9:74、开普勒关于行星运动规律的表达式为,以下理解正确的是()A.k是一个与行星无关的常量B.R代表行星运动的轨道半径C.T代表行星运动的自传周期D.T代表行星绕太阳运动的公转周期5、关于天体的运动,以下说法正确的是()A.天体的运动与地面上物体的运动遵循不同的规律B.天体的运动是最完美、和谐的匀速圆周运动C.太阳从东边升起,从西边落下,所以太阳绕地球运动D.太阳系中所有行星都绕太阳运动6、关于太阳系中各行星的轨道,以下说法正确的是:()A.所有行星绕太阳运动的轨道都是椭圆B.所有行星绕太阳运动的轨道都是圆C.不同行星绕太阳运动的椭圆轨道的半长轴是不同的D.不同的行星绕太阳运动的轨道各不相同7、如果某恒星有一颗卫星,此卫星沿非常靠近此恒星的表面做匀速圆周运动的周期为T,则可估算此恒星的平均密度ρ=_________(万有引力常量为G)8、两颗行星的质量分别是m1,m2,它们绕太阳运转轨道的半长轴分别为R1、R2,如果m1=2m2,R1=4R2,那么,它们的运行周期之比T1:T2= 9、已知两行星绕太阳运动的半长轴之比为b,则它们的公转周期之比为多少?10、有一行星,距离太阳的平均距离是地球到太阳平均距离的8倍,则该行星绕太阳公转周期是多少年?11、地球公转运行的轨道半径R=1.49×1011m,若把地球的公转周期称为1年,土星运行的轨道半径是r=1.43×1012m,那么土星的公转周期多长?参考答案:例1. 646倍例2. 4.61年例3. ABC 例4. 略。
高中物理万有引力定律 例题解析 鲁科版 必修2

万有引力定律 例题解析1.万有引力定律: F=Gm m r122在天体上的应用:(M---天体质量 R---天体半径 g--天体表面重力加速度)a 、万有引力=向G Mm R h m ()+=2)(4)(4)()(2222222h R f m h R Tm h R m h R V +=+=+=+ππω b 、在地球表面附近,重力=万有引力 mg = GMmR 2g = G M R 22.第一宇宙速度:mg = m V R 2 v =gR G m RMm=2V R 2 R GM v /=一、重力加速度g 和重力G 地随离地面高度h 的变化情况。
物体的重力近似为地球对物体的引力,即mg=G2)(h R Mm+。
所以重力加速度g= G2)(h R M+,可见,g 随h 的增大而减小。
例1:设地球表面的重力加速度为g,物体在距地心4R (R 是地球半径)处,由于地球的引力作用而产生的重力加速度g ,,则g/g ,为A 、1;B 、1/9;C 、1/4;D 、1/16。
解析:因为g= G2R M ,g , = G 2)3(R R M +,所以g/g ,=1/16,即D 选项正确。
二、求天体的质量。
通过观天体卫星运动的周期T 和轨道半径r 或天体表面的重力加速度g 和天体的半径R ,就可以求出天体的质量M 。
例2:已知万有引力常量G ,地球半径R ,月球和地球之间的距离r ,同步卫星距地面的高度h ,月球绕地球的运转周期T 1,地球的自转周期T 2,地球表面的重力加速度g 。
某同学根据以上条件,提出一种估算地球质量M 的方法:(05广东)同步卫星绕地球作圆周运动,由h T m h Mm G 222⎪⎭⎫ ⎝⎛=π得2324GT h M π=⑴请判断上面的结果是否正确,并说明理由。
如不正确,请给出正确的解法和结果。
⑵请根据已知条件再提出两种估算地球质量的方法并解得结果。
解:(1)上面结果是错误的,地球的半径R 在计算过程中不能忽略。
最新万有引力定律应用的12种典型案例

万有引力定律应用的12种典型案例万有引力定律应用的12种典型案例万有引力定律不仅是高考的一个大重点,而且是自然科学的一个重大课题,也是同学们最感兴趣的科学论题之一。
特别是我国“神州五号”载人飞船的发射成功,更激发了同学们研究卫星,探索宇宙的信心。
下面我们就来探讨一下万有引力定律在天文学上应用的12个典型案例:【案例1】天体的质量与密度的估算 下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度解析:人造地球卫星环绕地球做匀速圆周运动。
月球也是地球的一颗卫星。
设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r根据万有引力定律:r T 4m r Mm G 222π=……①得: 232G T r 4M π=……②可见A 正确而Tr2v π=……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3R 4M3π=ρ……⑤结合②④⑤得: G3T 2π=ρ 可见D 错误地球表面的物体,其重力近似等于地球对物体的引力由2RMmG mg =得:G g R M 2=可见B 正确【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。
总之,牛顿万有引力定律是解决天体运动问题的关键。
【案例2】普通卫星的运动问题我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。
“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h 。
问:哪颗卫星的向心加速度大?哪颗卫星的线速度大?若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少?解析:本题主要考察普通卫星的运动特点及其规律由开普勒第三定律T 2∝r 3知:“风云二号”卫星的轨道半径较大又根据牛顿万有引力定律r v m ma rMm G 22==得:2r MG a =,可见“风云一号”卫星的向心加速度大, rGMv =,可见“风云一号”卫星的线速度大, “风云一号”下次通过该岛上空,地球正好自转一周,故需要时间24h ,即第二天上午8点钟。
(完整版)万有引力定律经典例题

盘中心尺体査页成ftl 垃鰭藕吋’万科可力班*1那『史Jf骨=呼「黄金代樓*,其%表乐天弹表面的匪力加連讎2.中心天体质量和密度的估算⑴已知天体表面的重力加速度g 和天体半径R(2)已知卫星绕天体做圆周运动的周期 T 和轨道半径rMm 4 n4 n r 3① G ~^2 =吓r? M =苛 M 3 n 3 ② 尸4 3=乔R 33n Ri •火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知 ( )A •太阳位于木星运行轨道的中心B •火星和木星绕太阳运行速度的大小始终相等C •火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积解析:由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上, A错误;火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B 错误;根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的 比值是一个常数,C 正确;对于某一个行星来说,其与太阳连线在相同的时间内扫过的面 积相等,不同行星在相同的时间内扫过的面积不相等,D 错误.答案:C2. (2016郑州二检)据报道,目前我国正在研制“萤火二号”火星探测器•探测器升空1 .天体运动的分析方法G MR m= mg?天体质量:天体密度:“ gR 2M=旨3g 尸 4T GR③卫星在天体表面附近飞行时,r= R ,贝 y p=GT nN0.2题组训嫌提升能力天弹苕动的向心力来壽于天之间的万有引力 4^r-f后,先在近地轨道上以线速度 v 环绕地球飞行,再调整速度进入地火转移轨道,最后再一次调整速度以线速度 v '在火星表面附近环绕飞行•若认为地球和火星都是质量分布均匀 的球体,已知火星与地球的半径之比为 1 : 2,密度之比为5 : 7,设火星与地球表面重力加速度分别为g '和g ,下列结论正确的是()项正确,D 项错.答案:C3•嫦娥三号”探月卫星于 2013年12月2日1点30分在西昌卫星发射中心发射,将实 现“落月”的新阶段•若已知引力常量G ,月球绕地球做圆周运动的半径「1、周期T 1,“嫦娥三号”探月卫星绕月球做圆周运动的环月轨道(见图)半径 匕、周期T 2,不计其他天体的影响,则根据题目条件可以( )A •求出“嫦娥三号”探月卫星的质量B .求出地球与月球之间的万有引力C .求出地球的密度 门3 r 23D.^=T 22不知道地球半径 r ,无法求出地球密度, C 错误;对4式得 g = 3G npR ,所以g ' : g = 5 : 14, A 、B 项错;探测器在大体表面飞行时,万有引力解析:在天体表面附近,重力与万有引力近似相等,由 GMRRm = mg , M = P 3 n R 3,解两G M R m - = mR , M = P 4 泯3,解两式得 v = 2^y G 3np,所以 v ' : v=\f28, C充当向心力,由 解析:绕地球转动的月球受力为 誉=M ' r 1 T 2 = ,已知 嫦娥三号”的周期和半径,可求出月球质量M ',但是所有的卫星A • g: g=4: 1B • g ': g = 10 : 7在万有引力提供向心力的运动学公式中卫星质量都约掉了,无法求出卫星质量,因此探月 卫星质量无法求出, A 错误;已经求出地球和月球质量,而且知道月球绕地球做圆周运动 的半径r i ,根据F =可求出地球和月球之间的引力,B 正确;由开普勒第三定律即半长轴三次方与公转周期二次方成正比,前提是对同一中心天体而言,但是两个圆周运动 的中心天体一个是地球一个是月球,D 错误.答案:B Ir 反忠捉升j ---------------------------------------------------------------------------------------------------估算天体质量和密度时应注意的问题(1) 利用万有引力提供天体做圆周运动的向心力估算天体质量时,估算的只是中心天 体的质量,并非环绕天体的质量.(2) 区别天体半径 R 和卫星轨道半径r ,只有在天体表面附近的卫星才有r - R ;计算4天体密度时,V=:T R 3中的R 只能是中心天体的半径. L3______ 丿考点二人造卫星的运行 授课提示:对应学生用书第57页1. 人造卫星的a 、3、v 、T 与r 的关系1. 地球同步卫星的特点(1)轨道平面一定:轨道平面和赤道平面重合.N0.1梳理主干填准记牢GMm2.近地时GMm mg = -R2-ma > a = G r > a ’ 22 m w 2r m^2»GM = gR 2.⑵周期一定:与地球自转周期相同,即 T = 24 h = 86 400 s.(3) 角速度一定:与地球自转的角速度相同. (4) 高度一定:根据 = m 4T r 得r= 4,23x 104km ,卫星离地面高度 h =r - R ~ 6R(为恒量).(5) 绕行方向一定:与地球自转的方向一致. 2. 极地卫星和近地卫星(1) 极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2) 近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可 近似认为等于地球的半径,其运行线速度约为7.9 km/s.(3) 两种卫星的轨道平面一定通过地球的球心.题组训嫌提升能力 运州I1.(2015高考福建卷)如图,若两颗人造卫星 a 和b 均绕地球做匀速圆周运动, a 、b 到地心O 的距离分别为「1、「2,线速度大小分别为 V 1、V 2,则()项正确,B 、C 、D 项错误.答案:A2. 2015年3月30号晚上9点52分,我国在西昌卫星发射中心用长征三号丙运载火箭, 将我国首颗新一代北斗导航卫星发射升空,于 31号凌晨3点34分顺利进入预定轨道.这 次发射的新一代北斗导航卫星,是我国发射的第17颗北斗导航卫星.北斗卫星导航系统空间段计划由35颗卫星组成,包括 5颗静止轨道卫星、27颗中地球轨道卫星、3颗倾斜同步 轨道卫星•中地球轨道卫星和静止轨道卫星都绕地球球心做圆周运动,中地球轨道卫星离 地面高度低,则中地球轨道卫星与静止轨道卫星相比,做圆周运动的( )B .线速度小 D .向心加速度大N0.2解析:根据万有引力定律可得A .周期大 C .角速度小V 1 A.— V 2G 呼 r 2V 1 V 2,所以A解析:卫星离地面的高度越低,则运动半径越小•根据万有引力提供圆周运动向心力 24 2 ; 4 2 3得 G M$ = m* = m w 2r = m-T ^^ = ma ,则周期 T ="'‘石Mr ,知半径 r 越小,周期越小,故 A知半径r 越小,角速度越大,故 C 错误;向心加速度 a =学寻,知半径r 越小,向心加速度 越大,故D 正确.答案:D3•“空间站”是科学家进行天文探测和科学试验的特殊而又重要的场所•假设“空间 站”正在地球赤道平面内的圆周轨道上运行,其离地球表面的高度为同步卫星离地球表面 高度的十分之一,且运行方向与地球自转方向一致.下列说法正确的有( )A •“空间站”运行时的加速度小于同步卫星运行的加速度B •“空间站”运行时的速度等于同步卫星运行速度的 ,10倍C .站在地球赤道上的人观察到“空间站”向东运动D •在“空间站”工作的宇航员因不受重力而可在舱中悬浮速度,故A 错误;根据 G^Mm = m*得v =. GM ,离地球表面的高度不是其运动半径,所以线速度之比不是.10 : 1,故B 错误;轨道半径越大,角速度越小,同步卫星和地球自转 的角速度相同,所以空间站的角速度大于地球自转的角速度,所以站在地球赤道上的人观 察到空间站向东运动,故 C 正确;在“空间站”工作的宇航员处于完全失重状态,重力充 当向心力和空间站一起做圆周运动,故D 错误.答案:C—r 辰忠提升j -------------------------------------------------人造卫星问题的解题技巧,知半径r 越小,线速度越大,故 B 错误;角速度 3=解析:根据G Mm Gm “yr = ma 得 a =~rr ,知 空间站”运行的加速度大于同步卫星运行的加 错误;线速度 v =GMGM戸,(1) 利用万有引力提供向心力的不同表达式 2 2GMm v24 n r—== mr 3= m=^ = ma n r r T(2) 解决力与运动关系的思想还是动力学思想,解决力与运动的关系的桥梁还是牛顿 第二定律.①卫星的a n 、V 、3、T 是相互联系的,其中一个量发生变化,其他各量也随之发生 变化.⑶要熟记经常用到的常数,如地球自转一周为一天,绕太阳公转一周为一年,月球 绕地球公转一周为一月(27.3天)等.考点三卫星的发射和变轨问题 授课提示:对应学生用书第57页梳理主干填准记牢叩己|1. 第一宇宙速度(环绕速度)v i = 79 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度, 还是绕地面附近环绕地球做匀速圆周运动时具有的速度.2. 第二宇宙速度(脱离速度)V 2 = 11.2 km/s ,使卫星挣脱地球引力束缚的最小发射速度. 3. 第三宇宙速度(逃逸速度)V 3= 16! km/s ,使卫星挣脱太阳引力束缚的最小发射速度.-------------------------------------------1. 第一宇宙速度的两种计算方法 ^Mm. m vf 得 v 叫 /GM (1) 由 GR 2 = % 得 v = R.2(2) 由 mg = mR 得 v = . g R . 2. 卫星变轨的分析(1)变轨原因:当卫星由于某种原因速度突然改变时 (开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行.②a n 、 V 、 3、 T 均与卫星的质量无关,只由轨道半径r 和中心天体质量共同决定.2Mm v o 2 n o ⑵变轨分析:卫星在圆轨道上稳定时,G-^r = m? = m w 2r = m 〒2r.2①当卫星的速度突然增大时,vm*,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大•当卫星进入新的轨道稳定运行时,由GM 可知其运行速度比原轨道时减小,但重力势能、机械能均增加;②当卫星的速度突然减小时,> 疋,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小•当卫星进入新的轨道稳定运行时,由GM可知其运行速度比原轨道时增大,但重力势能、机械能均减小.1.(多选)(2015高考广东卷)在星球表面发射探测器,当发射速度为v 时,探测器可绕星球表面做匀速圆周运动;当发射速度达到 2v 时,可摆脱星球引力束缚脱离该星球•已知地球、火星两星球的质量比约为10 : 1,半径比约为2:1•下列说法正确的有( )A •探测器的质量越大,脱离星球所需要的发射速度越大B •探测器在地球表面受到的引力比在火星表面的大C .探测器分别脱离两星球所需要的发射速度相等D •探测器脱离星球的过程中,势能逐渐增大 解析:由GMRm = mvR 得,v = ;GRM , 2v = ',,2GM ,可知探测器脱离星球所需要的发射速度与探测器的质量无关, A 项错误;由F = GMm 及地球、火星的质量、半径之比可 做负功,引力势能增大, D 项正确.答案:BD 2.(多选)2013年12月2日我国探月探测器“嫦娥三号”在西昌卫星发射中心成功发射升空,此飞行轨道示意图如图所示,地面发射后奔向月球,在P 点从圆形轨道I 进入椭圆轨道n, Q 为轨道H 上的近月点•下列关于“嫦娥三号”的运动,正确的说法是 ( )N0.2報组训竦提升能力远川知,探测器在地球表面受到的引力比在火星表面的大, 探测器脱离两星球所需的发射速度不同,C 项错误;探测器在脱离两星球的过程中,引力B 项正确;由2GM” 盲可知,A •发射速度一定大于 7.9 km/sB •在轨道n 上从 P 到Q 的过程中速率不断增大C •在轨道n 上经过 P 的速度小于在轨道I 上经过 P 的速度D •在轨道n 上经过 P 的加速度小于在轨道I 上经过 P 的加速度 解析:“嫦娥三号”探测器的发射速度一定大于 7.9 km/s , A 正确•在轨道n 上从P到Q 的过程中速率不断增大,选项B 正确.“嫦娥三号”从轨道I 上运动到轨道n 上要减速,故在轨道n 上经过 P 的速度小于在轨道I 上经过 P 的速度,选项 C 正确.在轨道n 上经过P 的加速度等于在轨道I 上经过P 的加速度,D 错.答案:ABC3.(2016成都石室中学二诊)如图所示,在同一轨道平面上的三个人造地球卫星 A 、B 、C ,在某一时刻恰好在同一条直线上•它们的轨道半径之比为 说法中正确的是()B .三颗卫星具有机械能的大小关系为 E A V E B V E CC • B 卫星加速后可与 A 卫星相遇D • A 卫星运动27周后,C 卫星也恰回到原地点 解析: 根据万有引力提供向心力G M ^p = ma ,得 a = G r ,故 a A : a B : a c=2 :」2 :」2r r r A r B r c1 1 1=* :歹:32= 36 : 9 : 4,故A 错误;卫星发射的越高,需要克服地球引力做功越多,故机 械能越大,故 E A V E B V E C ,故B 正确;B 卫星加速后做离心运动,轨道半径要变大,不可C 的周期应为A 的周期的27倍,故D 错误.答案:B1 :2 : 3,质量相等,则下列能与A 卫星相遇,故 C 错误;根据万有引力提供向心力 _Mm 4 n= m*27周后, C 卫星也恰回到原地点,则A •三颗卫星的加速度之比为r ,得 T = 2 所以T C即T C = ■.27T A 若 A 卫星运动反忠捉升」航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新轨道上的运行速度变化由v=、代皿判断.(2) 航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大.航天器经过不同轨道相交的同一点时加速度相等,外轨道的速度大于内轨道的速考点四天体运动中的双星或多星模型授课提示:对应学生用书第58页N0.1梳理主干牢固记忆1•模型构建片巾“ —GY绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.2. 模型条件(1) 两颗星彼此相距较近.(2) 两颗星靠相互之间的万有引力做匀速圆周运动.⑶两颗星绕同一圆心做圆周运动.3. 模型特点(1) “向心力等大反向”一一两颗星做匀速圆周运动的向心力由它们之间的万有引力提供,故F1 = F2,且方向相反,分别作用在两颗行星上,是一对作用力和反作用力.(2) “周期、角速度相同”一一两颗行星做匀速圆周运动的周期、角速度相等.(3) “半径反比” 一一圆心在两颗行星的连线上,且「1 + r2= L,两颗行星做匀速圆周运动的半径与行星的质量成反比.题组训练提升能力运用|1 •双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一 点做周期相同的匀速圆周运动•研究发现,双星系统演化过程中,两星的总质量、距离和 周期均可能发生变化•若某双星系统中两星做圆周运动的周期为 T ,经过一段时间演化后,两星总质量变为原来的 k 倍,两星之间的距离变为原来的 n 倍,则此时圆周运动的周期为( )解析:设两颗双星的质量分别为m i 、m 2,做圆周运动的半径分别为 r i 、「2,根据万有 m i m 24 nm i m 24 n引力提供向心力可得G ----------- = m i r i 2 , G ---------------- = m 2「2 2,联立两式解得 m i + m 2 =r i + r 22 1 r i + r 22 1变为原来的n 倍时,两星圆周运动的周期为T ' B 正确,A 、C 、D 错误.答案:B2.(多选)宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常 可忽略其他星体对它们的引力作用•设四星系统中每个星体的质量均为 四颗星稳定分布在边长为 a 的正方形的四个顶点上•已知引力常量为 G.关于四星系统,下列说法正确的是()A •四颗星围绕正方形对角线的交点做匀速圆周运动B •四颗星的轨道半径均为aC ・四颗星表面的重力加速度均为 罟解析:其中一颗星体在其他三颗星体的万有引力作用下,合力方向指向对角线的交点, 围绕正方形对角线的交点做匀速圆周运动,由几何知识可得轨道半径均为 B 错误;在星体表面,根据万有引力等于重力,可得 G m m _= m ' g ,解得g =罟,故C故D 正确.4 n r i + r 24 n r i + r 2 GT 2,即T 2=,因此,当两星总质量变为原来的 k 倍,两星之间的距离G m i + m 2m ,半径均为 R , 正确;由万有引力定律和向心力公式得D •答案:ACD3•如图所示,双星系统中的星球 A 、B 都可视为质点.A 、B 绕两者连线上的 0点做匀 速圆周运动,A 、B 之间距离不变,引力常量为 G ,观测到A 的速率为v 、运行周期为T ,A 、B 的质量分别为m i 、m 2.⑴求B 的周期和速率.⑵A 受B 的引力F A 可等效为位于0点处质量为 m '的星体对它的引力,试求m '.(用 m i 、m 2 表示)解析:(1)设A 、B 的轨道半径分别为r i 、r 2,它们做圆周运动的周期 T 、角速度3都相同,根据牛顿第二定律有F A = m i 32r i , F B = m 2w 2r 2,即三=需故B 的周期和速率分别为:十 十 十m i r i m i vT B =T A =T,VB=3r= 3韦2 =石2m i + m 2⑵A 、B 之间的距离r = r i +「2= 匚厂r i ,根据万有引力定律有Gm i m 2 Gm i m 'F A=,m 23 2.m i + m 23答案:⑴T mv ⑵右辰忠捉升」解答双星问题应注意 “两等”“两不等”(1)双星问题的“两等” ①它们的角速度相等.②双星做匀速圆周运动的向心力由它们之间的万有引力提供,即它们受到的向心力 大小总是相等的.⑵双星问题的“两不等” ①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半 径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离.所以m '[随堂反馈]授课提示:对应学生用书第59页1. (2015高考重庆卷)宇航员王亚平在“天宫 1号”飞船内进行了我国首次太空授课, 演示了一些完全失重状态下的物理现象.若飞船质量为m ,距地面高度为 h ,地球质量为M ,半径为R ,引力常量为 G ,则飞船所在处的重力加速度大小为( )GMm , /口GM解析:由 2= mg '得g ' =2, B 项正确.R +h 2 R +h 2答案:B2. (2015高考北京卷)假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距 离小于火星到太阳的距离,那么( )A .地球公转周期大于火星的公转周期B .地球公转的线速度小于火星公转的线速度C .地球公转的加速度小于火星公转的加速度D .地球公转的角速度大于火星公转的角速度解析:地球的公转半径比火星的公转半径小,由知能TftHINO YAN|Ll>ANB.GM R + hC.GMm R + hD. GM T 2 GMm 2 n _尹=m — 2r ,可知地球的周期比火星的周期小,故 A 项错误;由響=m可知地球公转的线速度大,故B 项错误;由G%m = ma ,可知地球公转的加速度大,项错误;由G^^m = m w 2r ,可知地球公转的角速度大,故D 项正确.答案:D3 .已知地球质量为 M ,半径为 为G.有关同步卫星,下列表述正确的是R , 自转周期为 T ,地球同步卫星质量为 m ,引力常量A .卫星距离地面的高度为GM②由m i 32r i = m 232r 2知,由于 m i 与m 2一般不相等,故 r i 与「2 —般也不相等.B •卫星的运行速度等于第一宇宙速度C .卫星运行时受到的向心力大小为G M R2rD .卫星运行的向心加速度小于地球表面的重力加速度等于第一宇宙速度,同步卫星的运行速度小于第一宇宙速度,B 错误;同步卫星运行时的向心力大小为F 向=GMm C 错误;由G M?m = mg 得地球表面的重力加速度 g = G^,而R +h 2RR同步卫星所在处的向心加速度g ' =-GM -, D 正确.R + h 2答案:D4. (2015成都七中二诊)2013年12月2日,嫦娥三号探测器由长征三号乙运载火箭从西 昌卫星发射中心发射,首次实现月球软着陆和月面巡视勘察.假设嫦娥三号在环月圆轨道 和椭圆轨道上运动时,只受到月球的万有引力.则( )A .若已知嫦娥三号环月圆轨道的半径、运动周期和引力常量,则可以计算出月球的 密度B .嫦娥三号由环月圆轨道变轨进入环月椭圆轨道时,应让发动机点火使其加速C .嫦娥三号在环月椭圆轨道上P 点的速度大于 Q 点的速度D .嫦娥三号在环月圆轨道上的运行速率比月球的第一宇宙速度小解析:根据万有引力提供向心力 G Mm = m^r ,可以解出月球的质量 M = ^7"2,由于 r I GI 不知道月球的半径,无法知道月球的体积,故无法计算月球的密度,故A 错误;嫦娥三号在环月段圆轨道上 P 点减速,使万有引力大于向心力做近心运动,才能进入环月段椭圆轨 道,故B 错误;嫦娥三号从环月椭圆轨道上P 点向Q 点运动过程中,距离月球越来越近,月球对其引力做正功,故速度增大,即嫦娥三号在环月段椭圆轨道上P 点的速度小于 Q 点的速度,故 C 错误;卫星越高越慢,第一宇宙速度是星球表面近地卫星的环绕速度,故嫦解析:GMm2 n 2 ,口 2= m(R + h) ~T 2得 R + h 2 13GMT 2h= j ZT - R ,A 项错误;近地卫星的运行速度娥三号在环月圆轨道上的运行速率比月球的第一宇宙速度小,故答案:D 5.—物体在距某一行星表面某一高度处由静止开始做自由落体运动,依次通过A 、B 、C 三点,已知 AB 段与BC 段的距离均为0.06 m ,通过AB 段与BC 段的时间分为0.2 s 与0.1 s ,求:(1)该星球表面重力加速度值;⑵若该星球的半径为 180 km ,则环绕该行星的卫星做圆周运动的最小周期为多少? 解析:(1)根据运动学公式,由题意可得 1x = V 1t 1 + 2gt代入数值可求得g = 2 m/s 2.Mm 2 n _⑵对质量为 m 的卫星有 = m — 2r可知当R = r 时卫星做圆周运动的最小周期为代入数据解得 T 最小=600 n . 答案:(1)2 m/s 2(2)600 n s[课时作业]授课提示:对应学生用书第243页一、单项选择题1. (2016成都市石室中学一诊)下列说法正确的是( )A •洗衣机脱水桶脱水时利用了离心运动B •牛顿、千克、秒为力学单位制中的基本单位C .牛顿提出了万有引力定律,并通过实验测出了万有引力常量D •理想实验是把实验的情况外推到一种理想状态,所以是不可靠的解析:洗衣机脱水时利用离心运动将附着在衣服上的水分甩掉,水做离心运动•故 A正确;米、千克、秒为力学单位制中的基本单位,而牛顿不是基本单位,故B 错误;牛顿D 正确.2x = V 1 t 1 + t 2 + 2g t 1+ t 2星球表面有Mm=m ' g提出了万有引力定律,卡文迪许通过实验测出了万有引力常量,故 C 错误;理想实验是把实验的情况外推到一种理想状态,是可靠的,故D 错误.答案:A2•欧洲天文学家在太阳系之外发现了一颗可能适合人类居住的行星,命名为“格利斯 581c ”.该行星的质量是地球的5倍,直径是地球的 1.5倍.设想在该行星表面附近绕行星圆轨道运行的人造卫星的动能为 E k1,在地球表面附近绕地球沿圆轨道运行的相冋质量的 人造卫星的动能为 E k2,则学为(E k2)A . 0.13B . 0.3C . 3.33D . 7.5解析:在行星表面运行的卫星其做圆周运动的向心力由万有引力提供 Mm v 2故有 G~r = m~,r r1所以卫星的动能为 E k = 2mv 2 = GMm =2rGM 地m故在地球表面运行的卫星的动能E k2 =2R 地答案:C 3.(2015高考天津卷)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状 态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示•当旋 转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表 面时相同大小的支持力•为达到上述目的,下列说法正确的是( )A .旋转舱的半径越大,转动的角速度就应越大在“格利斯”行星表面运行的卫星的动能GM 行m E k1 =E k1所以有E 2GM 行m2R 行GM 地m 2R 地M 行R 地 5 1• = — XM 地 R 行 11.51033.33.B .旋转舱的半径越大,转动的角速度就应越小C .宇航员质量越大,旋转舱的角速度就应越大D •宇航员质量越大,旋转舱的角速度就应越小解析:宇航员站在旋转舱内圆柱形侧壁上,受到的侧壁对他的支持力等于他站在地球越大,需要的角速度越小, A 项错误,B 项正确.答案:B4. 一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,速 1度大小减小为原来的2则变轨前后卫星的()A .轨道半径之比为 1 : 2B .向心加速度大小之比为 4 : 1C .角速度大小之比为 2 : 1D .周期之比为1 : 8解析:卫星绕地球做圆周运动过程中,万有引力充当向心力,严=2?豊=4,A 项错;6节平=ma? a =号単,所以鲁=16, B 项错;由开普勒第三T 4QT" = & D项正确;因为 T =」,角速度与周期成反比,故 号=8, C 项 12 8 GG 2错.答案:D5•美国宇航局2011年12月5日宣布,他们发现了太阳系外第一颗类似地球的、可适 合居住的行星“开普勒-226”,它每290天环绕着一颗类似于太阳的恒星运转一周,距离 地球约600光年,体积是地球的 2.4倍.已知万有引力常量和地球表面的重力加速度.根 据以上信息,下列推理中正确的是( )A •若能观测到该行星的轨道半径,可求出该行星所受的万有引力B .若该行星的密度与地球的密度相等,可求出该行星表面的重力加速度C .根据地球的公转周期与轨道半径,可求出该行星的轨道半径D •若已知该行星的密度和半径,可求出该行星的轨道半径 解析:根据万有引力公式 F =,由于不知道中心天体的质量,无法算出向心力,故A 错误;根据万有引力提供向心力公式 G^Mm = mg ,有g = G%,若该行星的密度与地球表面时的支持力,则mg = mr GJ ,C 、D 项错误;半径V 1 V 2G 132因此角速度与质量无=m^? v =。
万有引力定律·典型例题解析

万有引力定律·典型例题解析【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下:(1)g (2)(3)r 60R 地面上物体的重力加速度=;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值;GMR GMrg 22αα(4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ;(5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果,求的值.αg解析:(1)略;(2)略; (3)2.77×10-4; (4)2.70×10-3m/s 2 (5)2.75×10-4点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力GMmr mg G Mmrm 22α的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目的条件可以用、ω或来表示.v r r T2224r 2π【例】月球质量是地球质量的,月球半径是地球半径的,在2181138.距月球表面14m 高处,有一质量m =60kg 的物体自由下落.(1)它落到月球表面需用多少时间?(2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力加速度g 地=9.8m/s 2)?解析:(1)4s (2)588N点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设mg GM m R mg GM m R 22月月月地地地=.同理,物体在地球上的“重力”等于地球对物体的万有引力,设=.以上两式相除得=,根据=可得物体落到月球表面需用时间为==×=.月月g 1.75m /s S gt t 4s 22122214175S g .(2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N .跟踪反馈1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量分布均匀,大小分别为m 1、m 2,则两球间的万有引力大小为:[ ]A .Gm 1m 2/r 2B .Gm 1m 2/r 12C .Gm 1m 2/(r 1+r 2)2D .Gm 1m 2/(r 1+r 2+r)22.下列说法正确的是[ ] A.地球是宇宙的中心,太阳、月亮及其他行星都绕地球运动B.太阳是静止不动的,地球和其他行星都绕太阳运动C.地球是绕太阳运动的一颗行星D.日心说和地心说都是错误的3.已知太阳质量是1.97×1030kg,地球质量是5.98×1024kg,太阳和地球间的平均距离1.49×1011m,太阳和地球间的万有引力是_______N.已知拉断截面积为1cm2的钢棒力4.86×104N,那么,地球和太阳间的万有引力可以拉断截面积是_______m2的钢棒.4.下列说法正确的是[ ] A.行星绕太阳的椭圆轨道可以近似地看作圆形轨道,其向心力来源于太阳对行星的引力B.太阳对行星的引力大于行星对太阳的引力,所以行星绕太阳运转而不是太阳绕行星运转C.万有引力定律适用于天体,不适用于地面上的物体D.行星与卫星之间的引力,地面上的物体所受的重力和太阳对行星的引力,性质相同,规律也相同参考答案1.D 2.CD 3.3.54×1022;7.28×134.A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万有引力定律·典型例题解析
【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下:
(1)g (2)(3)r 60R 地面上物体的重力加速度=
;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值;
GM
R GM
r
g 22αα
(4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ;
(5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果,
求
的值.α
g
解析:
(1)略;(2)略; (3)2.77×10-4; (4)2.70×10-3m/s 2 (5)2.75×10-4
点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力
G
Mm
r mg G Mm
r
m 2
2α
的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目
的条件可以用、ω或来表示.v r r T
2224r 2
π
【例】月球质量是地球质量的
,月球半径是地球半径的,在21811
38.
距月球表面14m 高处,有一质量m =60kg 的物体自由下落.
(1)它落到月球表面需用多少时间?
(2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力
加速度g 地=9.8m/s 2)?
解析:(1)4s (2)588N
点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设
mg G
M m R mg G
M m R 22月月月
地地地
=.同理,物体在地球上的“重力”等于地球对物体的
万有引力,设=.
以上两式相除得=,根据=可得物体落到月球表
面需用时间为==×=.
月月g 1.75m /s S gt t 4s 2
2
12
2214
175S g .
(2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N .
跟踪反馈
1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量分布均匀,大小分别为m 1、m 2,则两球间的万有引力大小为:
[ ]
A .Gm 1m 2/r 2
B .Gm 1m 2/r 12
C .Gm 1m 2/(r 1+r 2)2
D .Gm 1m 2/(r 1+r 2+r)2
2.下列说法正确的是
[ ] A.地球是宇宙的中心,太阳、月亮及其他行星都绕地球运动
B.太阳是静止不动的,地球和其他行星都绕太阳运动
C.地球是绕太阳运动的一颗行星
D.日心说和地心说都是错误的
3.已知太阳质量是1.97×1030kg,地球质量是5.98×1024kg,太阳和地球间的平均距离1.49×1011m,太阳和地球间的万有引力是_______N.已知拉断截面积为1cm2的钢棒力4.86×104N,那么,地球和太阳间的万有引力可以拉断截面积是_______m2的钢棒.
4.下列说法正确的是
[ ]
A.行星绕太阳的椭圆轨道可以近似地看作圆形轨道,其向心力来源于太阳对行星的引力
B.太阳对行星的引力大于行星对太阳的引力,所以行星绕太阳运转而不是太阳绕行星运转
C.万有引力定律适用于天体,不适用于地面上的物体
D.行星与卫星之间的引力,地面上的物体所受的重力和太阳对行星的引力,性质相同,规律也相同
参考答案
1.D 2.CD 3.3.54×1022;7.28×134.A。