智能型温度测量仪课程设计报告

合集下载

智能仪器课程设计报告---数字温度计

智能仪器课程设计报告---数字温度计

中州大学工程技术学院智能仪器课程设计报告数字温度计专业: 09 电气自动化姓名:陈丹阳学号: 200925030116 指导教师:刘喜峰老师班级:普招一班引言 (2)摘要 (4)概述 (5)第二章硬件电路设计.................................................................................. .6 硬件设计主电路图. (6)硬件的介绍与选择选择 (6)第三章软件设计 (20)概述 (20)各模块子程序设计 (22)编译软件介绍 (25)第四章系统调试 (26)心得体会和参考文献 (27)附录 (28)随着现代信息技术的飞速发展和传统工业改造的逐步实现.能够独立工作的温度检测和显示系统应用于诸多领域。

传统的温度检测以热敏电阻为温度敏感元件。

热敏电阻的成本低,但需后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差。

与传统的温度计相比,这里设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。

选用AT89C51型单片机作为主控制器件,DSl8B20作为测温传感器通过4位共阳极LED数码管串口传送数据,实现温度显示。

通过DSl8B20直接读取被测温度值,进行数据转换,该器件的物理化学性能稳定,线性度较好,在0℃~100℃最大线性偏差小于0.1℃。

该器件可直接向单片机传输数字信号,便于单片机处理及控制。

另外,该温度计还能直接采用测温器件测量温度,从而简化数据传输与处理过程。

温度计是测温仪器的总称。

根据所用测温物质的不同和测温范围的不同,有煤油温度计、酒精温度计、水银温度计、气体温度计、电阻温度计、温差电偶温度计、辐射温度计和光测温度计等。

最早的温度计是在1593年由意大利科学家伽利略(1564~1642)发明的。

他的第一只温度计是一根一端敞口的玻璃管,另一端带有核桃大的玻璃泡。

最新智能型温度监测仪课程设计

最新智能型温度监测仪课程设计

开封大学《智能仪器原理及应用》课程设计学生姓名:王明霞学号:2011061745学院:电子电气工程学院专业:应用电子技术班级:(11)应电班题目:智能型温度测量仪指导教师:董卫军职称:教师截止日期:2013.11.25~2013.12.12013 年11月27 日智能型温度测量仪一、设计目的智能仪器是一种典型的微处理器应用系统,它是计算机技术、现代测量技术和大规模集成电路相结合的产物,无论是在测量速度、精确度、灵敏度、自动化程度,还是在性价比等方面,都是传统仪器不可比拟的。

通过对本次的课程设计来使同学们掌握如何去选择元器件来适应不同的电路的设计,从而对更多的元件功能及性能有更多的了解。

更重要的是培养学生基于单片机应用系统的分析和设计能力和专业知识综合应用能力,同时提高学生分析问题和解决问题的能力以及实际动手能力,为日后工作奠定良好的基础。

二、设计任务和设计要求⑴.功能要求①.配合温度传感器,实现温度的测量;②.具有开机自检、自动调零功能;③.具有克服随机误差的数字滤波功能;④. 使用220V/50Hz交流电源,设置电源开关、电源指示灯和电源保护功能。

⑵.主要技术指标①.测量温度范围:0~150℃②.测量误差:≤1%⑥.显示方式:4位LED数码管显示被测温度值。

三、总体方案论证与选择方案一:AD590传感器→转换器→ADC0809→AT89C51→四位数码管显示方案二:热电阻温度传感器→转换器→ADC0809→AT89C51→四位数码管显示方案三:DS18B20→转换器→ADC0809→AT89C51→四位数码管显示这三种方案的不同之处主要是传感器的不同:方案一中的传感器是一种已经IC化的温度感测器,它会将温度转换为电流。

它的测温范围为-55℃~+150℃,而且精度高;方案二中的传感器是利用导体的电阻随温度变化的特性制成的测温元件。

其主要的特点为精度高、测量范围大、测温范围是-200℃~600℃;方案三的传感器为单总线技术,MAXIM 公司的2种温度传感器一个为频率输出,一个为周期输出,其本质均为数字输出,但这类器件的最大缺点是测温的范围太窄,一般只有-55~+125℃,而且温度的测量精度都不高,好的才±0.5℃,一般有±2℃左右。

智能温度测量仪表课程设计报告

智能温度测量仪表课程设计报告

智能温度测量仪表课程设计报告课程设计报告课程:智能测量仪表题目:智能测量仪表学生姓名:XXXXXX专业年级:2009 自动化指导教师:XXXXXX XXXX信息与计算科学系2013年3月25日智能测量仪表本次课程设计中智能温度测量仪表所采用的温度传感器为LM35DZ。

其输出电压与摄氏温度成线性比例关系,无需外部校准,在0℃~100℃温度范围内精度为0.4℃~±0.75℃。

,输出电压与摄氏温度对应,使用极为方便。

灵敏度为10.0mV/℃,重复性好,输出阻抗低,电路接口简单和方便,可单电源和正负电源工作。

是一种得到广泛使用的温度传感器。

本次课程设计的主要目的在于让学生把所学到的单片机原理、电子线路设计、传感器技术与原理、过程控制、智能仪器仪表、总线技术、面向对象的程序设计等相关专业课程的内容系统的总结,并能有效的使用到项目研发中来,做到学以致用。

课程设计的内容主要分为三个部分,即使用所学编程语言(C或者汇编)完成单片机方面的程序编写、使用VB或VC语言完成PC机人机界面设计(也可以用C+API实现)、按照课程设计规范完成课程设计报告。

目录1.课程设计任务和要求 (3)1.1 设计任务 (3)2.2 设计要求 (3)2.系统硬件设计 (3)2.1 STC12C5A60S2单片机A/D转换简介 (3)2.2 LM35DZ简介 (7)2.3 硬件原理图设计 (7)3.系统软件设计 (10)3.1 设计任务 (10)3.2 程序代码 (10)3.3 系统软件设计调试 (17)4.系统上位机设计 (18)4.1 设计任务 (18)4.2 程序代码 (18)4.3 系统上位机软件设计调试 (21)5.系统调试与改善 (22)5.1 系统调试 (22)5.2 系统改善 (22)6.系统设计时常见问题举例与解决办法 (24)7.总结 (25)1. 课程设计任务和要求1.1课程设计任务本次课程设计要求设计出智能化温度测量仪表,要求该测量仪表能够将所测得的温度数据和当前电机设备的运行状况远传给上位机。

智能化温度仪器课程设计

智能化温度仪器课程设计

J I A N G S U U N I V E R S I T Y现代仪器智能化温度仪器设计Design of Intellecturalized Temperature Instrument学院名称:机械工程学院专业班级:测控技术与仪器0801班学生姓名:于连河学生学号:3080302009指导教师:宋寿鹏2012年 01 月课程设计任务与技术指标:实时测量现场温度,测温范围C C 50~20-,测温精度C 5.0±,仪器采用便携式结构,能显示测量温度,并有非线性补偿与滤波功能。

摘 要本次课程设计采用铂电阻Pt100作为传感器测量外界温度,由测定结果得出Pt100 的电阻- 温度函数关系,将温度信号直接转化为电信号。

将铂电阻接入电桥测量现场温度,再经差动放大电路放大成0~5V 的电压信号。

然后通过ADC0809将运放所产生的电压进行A/D 转换,再将信号送入AT89C52单片机通过编程进行非线性补偿并将电压信号转化为温度,最后经LED 显示器显示测量温度。

关键字:铂电阻,温度测量,实时显示,A/D 转化。

AbstractThis course is designed with a PT100 platinum resistance temperature sensor outside, and then gain the relationship of temperature and resistance from the result above ,at last, turn the temperature signal into electric signal. Access to bridge the platinum resistance temperature measurement site, and then zoom through the differential amplifier circuit into a voltage signal 0 ~ 5V. Then will be collected ADC0809 analog signals into digital signals and then digital signal into the AT89C52 microcontroller programmed to non-linear compensation and turn the voltage singal into temperature, and finally through the LED display shows the temperature measurement.Keywords: platinum resistance, temperature measurement, real-time display , analog signals into digital signals.目录现代仪器 (1)引言 (4)一、总体设计方案 (5)1.1设计方案论证 (5)1.2方案的总体设计框图 (5)二、元器件选择与说明 (5)2.1铂电阻温度传感器 (5)2.2 运算放大器 (6)2.3 ADC0809模数转换器 (7)2.4 AT89C52单片机 (8)2.5 LED数码显示管 (9)2.6 7805稳压管 (10)2.7 74LS04反相器 (10)三、电路设计 (11)3.1 电源电路 (11)3.2 晶振电路 (11)3.3 电桥放大电路 (11)3.4 A/D转换器与单片机电路 (12)四、软件设计 (13)4.1 接口标定 (14)4.2 主程序 (14)4.3 中断子程序 (14)4.4 显示子程序 (15)五、课程设计心得体会 (17)参考文献 (19)引言现代科技对于温度测量与精确显示的需求越来越高,实现温度测量的方法也有很多,一般都采用铂电阻测量,具有准确度高、测量范围大、复现性和稳定性好等优点,因此铂电阻测温也被广泛使用。

智能温度测试仪的设计毕业设计

智能温度测试仪的设计毕业设计

山东职业学院毕业论文题目:智能型温度测量仪的设计系别:专业:班级:学生姓名:指导教师:完成日期:目录1 绪论 (1)2 LabVIEW与虚拟仪器简介 (2)2.1 LabVIEW的概念 (2)2.2 LabVIEW的组成及功能 (2)2.3 LabVIEW的应用现状 (3)3 温度监测系统虚拟仪表的总体设计 (4)3.1 虚拟仪表实现的功能 (4)3.2 虚拟仪表设计的原则 (4)3.3 虚拟仪表的总体设计方案 (5)4 下位机信号采集的硬件设计 (5)4.1 下位机的硬件组成 (5)4.2 单片机的基础知识 (6)4.2.1 单片机能够运行起来的最小系统 (7)4.2.2 定时器 (8)4.2.3 串口读写 (10)4.2.4 IE中断允许控制寄存器 (11)4.3 硬件输入电路 (11)4.3.1 独立式按键 (11)3.3.2 温度传感器采集 (12)4.4 电平转换电路 (12)5 温度监测系统虚拟仪表的软件设计 (13)5.1 温度监测系统寻仪表软件总体设计 (13)5.2 LabVIEW串口通信模块的设计 (14)5.2.1 LabVIEW平台上VISA常用模块简介 (14)5.2.2 LabVIEW中的VISA节点函数 (15)5.2.3 用VISA模块设计串口通讯 (16)5.3 越限报警模块设计 (18)5.4 显示模块的设计 (19)5.5 数据保存模块 (19)5.5.1 LabVIEW里的数据存储文件形式 (20)5.5.2 基本文件I/O功能函数 (20)5.5.3 数据保存模块的设计 (23)5.6 系统调试结果 (24)6 总结 (25)致谢 (26)参考文献 (27)附录A:程序代码 (28)附录B:硬件电路图 (33)附录C:程序框图 (34)1绪论温度是工业生产和科学研究实验中的一个非常重要的参数,物体的许多物理现象和化学性质都是和温度相关的,许多生产过程都是在一定的温度范围才能进行,需要测量温度和控制温度的场合极其的广泛。

智能温度测量仪的方案设计书(1)

智能温度测量仪的方案设计书(1)

华中科技大学文华学院智能仪器课程设计题目:智能型温度测量仪的设计专业: 09电信3班姓名:杨鑫学号: 0901********指导老师:夏银桥智能型温度测量仪的设计一、课程设计的目的通过本课程设计,使我们掌握智能仪器的一般设计方法,熟悉系统硬件和软件的一般开发环境和开发流程,为设计和开发智能仪器打下坚实的基础。

二、设计任务及要求设计功能要求:①.配合电阻温度传感器,实现温度的测量;②.具有开机自检、自动调零功能;③.具有克服随机误差的数字滤波功能;④. 使用220V/50Hz交流电源,设置电源开关、电源指示灯和电源保护功能设计;主要技术指标:①.测量温度范围:0~200℃②.测量误差:≤1%⑥.显示方式:4位LED数码管显示被测温度值三、总体方案论证与选择将集成温度传感器AD590(0℃时为0.2732mA)因温度变化,导致电流变化(0.001mA/℃),经OPA转换为电压变化输入ADC0804,输入电压Vin(0~5V之间)经过A/D转换之后,其值由8751处理,最后将其显示在D4,D3,D2,D1共四个七段显示器。

其中包含了时钟显示电路。

该温度测量仪可以实现温度的测量,数据的显示、储存以及日历时间的显示。

从功能要求看,系统功能并不复杂,52系列即8051单片机完全可以胜任主机的角色。

从测温范围看,电流型两线制集成温度传感器AD590可满足设计要求。

从测量误差看,普通运放和10位以上的A/D转换器可以满足精度要求。

方案1集成电路温度传感器→测量放大电路→AD转换器→单片机→DA 转换器→放大器→输出方案2热电阻传感器→电压放大电路→AD转换器→单片机→DA 转换器→滤波器→输出以上两个方案的主要区别是选用的传感器不同,两种传感器都具有测量精度较高的特点。

热电阻传感器测温范围更宽,但需要非线性校正;集成电路温度传感器测温范围较窄,但线性很好,不需要非线性校正,软、硬件设计较简单。

四、系统总体原理框图图2.6 系统总体原理框图信号输入部分总体设计五、各模块的方案设计(1)、选择温度传感器器件常用的热电传感器有热电阻、热电偶、集成温度传感器等。

智能仪器课程设计报告

智能仪器课程设计报告

天津电子信息职业技术学院传感器技能实训课题名称智能温度测温系统姓名王先民学号20班级电信S10-1专业电子信息工程技术所在系电子技术系指导教师岑永祚完成日期2011年12月11日一、 主要内容温度传感器DS18B20采集环境模拟信号,其输出送入AT89C51,单片机在程序的控制下,将处理过的数据送到移位寄存器74LS164,经74LS164输出后驱动三位数码管显示。

当被测温度高于18℃时,单片机发出控制信号使降温电扇以自然风的形式旋转,温度越高转速越快,温度36℃以上时风扇全速工作,点亮此功能指示灯。

二、 基本要求(1)设计测量温度范围-55℃~+125℃的智能测温系统,要求数码管实时显示测量温度,单片机根据温度高低确定风扇转速 (2)画出程序框图(3)有完整的整机电路图(protel 绘制)(4)完成格式正确、内容完整的实验报告三、 参考文献王祁, 智能仪器设计基础.北京:机械工业出版社,2009目录一、前言 (4)二、系统组成 (4)1、设计思路 (5)2、系统的性能指标: (5)3、系统的主要功能: (5)三、电路组成及工作原理 (5)1、温度传感器功能模块 (6)2、AT89C51单片机 ........................................................................................................ 8 3、74LS164移位寄存器 .. (12)4、晶振电路 (12)5、复位电路 ................................................................................................................... 13 6、键盘电路 . (13)7、显示电路 (14)8、稳压电路 ................................................................................................................... 14 9、显示电路 . (15)10、风扇控制电路 (15)四、课程设计心得与体会 (16)五、参考文献 (16)六、整机电路图 (17)七.心得体会 (18)智能温度测量系统的设计一、前言温度是一种基本的环境参数,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量。

智能仪器课程设计报告

智能仪器课程设计报告

智能型温度测量仪报告题目:智能型温度测量仪院别:机电工程与自动化专业:生产过程自动化技术班级: xxx姓名: xxxXxxXxx指导老师: xxx目录引言................................................. 错误!未定义书签。

一、系统设计任务及要求........................................... - 2 -1.1系统设计任务 (2)1.2系统设计的基本要求 (2)1.3系统概述 (2)二、系统总体设计................................................. - 2 -整体设计方案的确定 (2)三、硬件电路设计及工作原理....................................... - 3 -3.1参数采集模块设计 (3)3.2显示温度模块和显示时钟介绍 (3)3.3具体硬件电路原理分析 (4)四、软件设计...................................................... - 7 -4.1主程序流程图 (7)4.2DS18B20温度读取程序(如图9) (8)4.3DS18B20温度传感器初始化 (8)4.4读出温度子程序 (9)4.5DS18B20的读写时序 (10)4.6按键流程图 (12)五、主要技术指标的测量........................................... - 12 -六、结论......................................................... - 13 -结束语........................................................... - 14 -附录:硬件原理图.................................................. - 15 -引言:温度是日常生活、工业、医学、环境保护、化工、石油等领域最常遇到的一个物理量,也是工业控制中主要的被控参数之一。

课程设计--- 智能温度测量系统的设计

课程设计--- 智能温度测量系统的设计

《智能仪表技术》课程设计题目:智能温度测量系统的设计系别:机电工程系专业:检测技术及应用班级:学生姓名:指导老师:完成日期:2012.10.28《智能仪表技术》课程设计任务书班级10计量学生姓名指导教师课程设计题目智能温度测量系统的设计主要设计内容本系统是一个基于单片机AT89C51的数字温度计的设计,用来测量环境温度,测量范围为-50℃—110℃度。

整个设计系统分为4部分:单片机控制、温度传感器、数码显示以及键盘控制电路。

整个设计是以AT89C51为核心,通过数字温度传感器DS18B20来实现环境温度的采集和A/D转换,同时因其输出为数字形式,且为串行输出,这就方便了单片机进行数据处理,但同时也对编程提出了更高的要求。

单片机把采集到的温度进行相应的转换后,使之能够方便地在数码管上输出。

LED采用四位一体共阴的数码管主要技术指标和设计要求1.设计指标DS18B20温度计,温度测量范围0~99.9摄氏度可设置上限报警温度、下限报警温度即高于上限值或者低于下限值时蜂鸣器报警默认上限报警温度为38℃、默认下限报警温度为5℃报警值可设置范围:最低上限报警值等于当前下限报警值最高下限报警值等于当前上限报警值将下限报警值调为0时为关闭下限报警功能2.设计要求1)基本范围0℃-99℃2)精度误差小于0.5℃3)LED数码直读显示3.制作要求自行装配和调试,并能发现问题和解决问题。

4.编写设计报告写出设计与制作的全过程,附上有关资料和图纸,有心得体会。

主要参考资料及文献[1]李朝青.单片机原理及接口技术(简明修订版).杭州:北京航空航天大学出版社,1998[2]李广弟.单片机基础[M].北京:北京航空航天大学出版社,1994[3]江力.单片机原理与应用技术 .清华大学出版社 .2006[4]蔡美琴等.MCS一51系列单片机系统及其应用[M].北京:高等教育出版社,1999.[5]王树勋.MCS一51单片微型计算机原理与开发.北京:机械工业出版社,1995[6] 周润景,张丽娜.基于PROTEUS 的电路及单片机系统设计与仿真[M].北京:航空航天大学出版社 ,2006.P321~P326[7]王忠飞,胥芳.MCS-51 单片机原理及嵌入式系统应用[M].西安:西安电子科技大学出版社,2007.P268-273目录1 概述 (5)1.1研究背景和研究意义: (5)1.2本文研究内容: (5)1.2.1设计目的: (5)1.2.2设计要求: (5)1.2.3设计原理: (6)2 系统硬件模块的选择 (6)2.1开发工具的选择: (6)2.2单片机的选择 (7)2.3温度传感器的选择 (10)2.3.1DS18B20的介绍 (11)2.3.2DS18B20工作原理 (11)2.4显示模块的选择 (13)3 系统硬件电路设计 (15)3.1系统整体电路图 (15)3.2单片机最小系统 (16)3.3温度传感器系统 (17)3.4报警电路设计 (20)3.5显示电路设计 (21)3.6电源电路设计 (22)4 系统软件设计 (22)4.1主程序 (23)4.2读出温度子程序 (24)4.3温度转换命令子程序 (24)4.4计算温度子程序....................................................... ..25课程设计总结 (27)参考文献: (28)1. 概述1.1研究背景和研究意义:随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。

智能仪器课程设计任务书

智能仪器课程设计任务书

智能型温度测试仪任务书
题目:智能型温度测量仪
院别:机电工程与自动化
专业:生产过程自动化技术
班级:xxx
姓名:xxx
Xxx
Xxx
指导老师:xxx
《智能型仪器仪表》设计任务书一、设计系统名称
智能型温度测量仪
二、性能指标
DS18B20利用单总线的特点可以方便的实现多点温度的测量,轻松的组建传感器网络,系统的抗干扰性好、设计灵活、方便,而且适合于在恶劣的环境下进行现场温度测量。

1、具有数码管显示时间,如12:00。

2、显示温度二位数值,如50 ºC。

3、按键功能,设计中共使用了4个按键,第一个为功能键用
来切换按键用来切换时间的时、分;第二个按键为加键;第三个为减键;第四个为设置取消键
三、任务分配
1.人员安排:
由xxx编写程序、画原理图
由xxx做ppt。

由xxx收集资料。

课程设计进程安排表。

智能温度测量仪课程设计

智能温度测量仪课程设计

一、系统功能说明1.1主要技术指标1)测温范围:-200~600摄氏度;2)测温精度:0.5摄氏度;3)稳定性:0.5摄氏度1.2 PT100传感器电阻式温度传感器(RTD, Resistance Temperature Detector)是指一种物质材料作成的电阻,它会随温度的改变而改变电阻值。

PT100温度传感器是一种以铂(Pt)做成的电阻式温度传感器,属于正电阻系数,其电阻阻值与温度的关系可以近似用下式表示:在0~600℃范围内:Rt =R0 (1+At+Bt2)在-200~0℃范围内:Rt =R0 (1+At+Bt2+C(t-100)t3)式中A、B、C 为常数,A=3.96847×10-3;B=-5.847×10-7;C=-4.22×10-12;由于它的电阻—温度关系的线性度非常好,因此在测量较小范围内其电阻和温度变化的关系式如下:R=Ro(1+αT)其中α=0.00392, Ro为100Ω(在0℃的电阻值),T为华氏温度,因此铂做成的电阻式温度传感器,又称为PT100。

1.2.1 PT100传感器特性PT100温度传感器的测量范围广:-200℃~+600℃,偏差小,响应时间短,还具有抗振动、稳定性好、准确度高、耐高压等优点,其得到了广泛的应用,本设计即采用PT100作为温度传感器。

1.2.2 PT100传感器测量原理Pt100是电阻式温度传感器,测温的本质其实是测量传感器的电阻,通常是将电阻的变化转换成电压或电流等模拟信号,然后再将模拟信号转换成数字信号,再由处理器换算出相应温度。

采用Pt100 测量温度一般有两种方法:方案一:设计一个恒流源通过Pt100 热电阻,通过检测Pt100 上电压的变化来换算出温度;测温原理:通过运放U1A将基准电压4.096V转换为恒流源,电流流过Pt100时在其上产生压降,再通过运放U1B将该微弱压降信号放大(图中放大倍数为10),即输出期望的电压信号,该信号可直接连AD转换芯片。

智能温度计课程设计

智能温度计课程设计

《智能仪器》课程设计说明书学生姓名:学号:学院:机电工程学院专业:电子信息工程技术题目:智能温度计指导教师:职称:一.课程设计的目的:本课程是电子信息工程技术专业的专业基本能力训练课程,其目的是通过本课程设计,使学生掌握智能仪器的一般设计方法,熟悉系统硬件和软件的一般开发环境和开发流程,为设计和开发智能仪器打下坚实的基础。

培养学生基于单片机应用系统的分析和设计能力和专业知识综合应用能力,同时提高学生分析问题和解决问题的能力以及实际动手能力,为日后工作奠定良好的基础。

二.设计题目:智能型温度测量仪的设计三.内容和要求四.组织方式1.智能型温度测量仪的设计⑴.功能要求①.配合温度传感器,实现温度的测量;②.具有开机自检、自动调零功能;③.使用220V/50Hz交流电源,设置电源开关、电源指示灯和电源保护功能。

⑵.主要技术指标①.测量温度范围:0~120℃②.测量误差:≤1%⑥.显示方式:4位LED数码管显示被测温度值。

目录●一:《智能仪器》课程设计指导书●二:摘要●三:引言:●四智能温度计的设计梗概●五:系统硬件组成●六:系统硬件组成温度传感器AD590 ●七:放大器●八:3A/D转换器MC14433放大器●九: LED显示器●十:性能弊端处理●十一:总结●十二:体会●十三:参考文献●十四:程序清单摘要:本论文叙述了应用单片机AT89C51构成的智能温度计主要的功能、硬件的组成和软件的设计。

该系统的功能是通过温度传感器对温度进行采集,然后通过A/D转换器MC14433进行模数转换,传给单片机进行处理,从而实现温度的实时显示。

整个系统结构紧凑、简单可靠、操作灵活、功能强、性能价格比高,较好地满足了现代农业生产和科研的需要。

单片机自问世以来,性能不断提高和完善,其资源又能满足很多应用场合的需要,加之单片机具有集成度高、功能强、速度快、体积小、功耗低、使用方便、价格低廉等特点,因此,在工业控制、智能仪器仪表、数据采集和处理、通信系统、高级计算器、家用电器等领域的应用日益广泛,并且正在逐步取代现有的多片微机应用系统。

智能仪器智能温度测试仪的设计

智能仪器智能温度测试仪的设计

智能仪器智能温度测试仪的设计智能仪器智能温度测试仪的设计1.引言1.1 目的本文档旨在介绍智能仪器智能温度测试仪的设计。

该仪器采用智能化技术,能够准确测量温度并进行数据分析和记录,以满足各种温度测试需求。

1.2 背景随着科技的发展,温度测试在工业、医疗、农业等领域中的重要性越来越被重视。

传统的温度测试仪器存在准确性、操作复杂等问题。

为了解决这些问题,本设计旨在开发一款智能化的温度测试仪器。

2.系统设计2.1 系统概述智能温度测试仪由硬件模块和软件模块组成。

硬件模块包括传感器、数据采集模块、数据分析处理模块和显示屏等部分;软件模块包括数据管理系统、用户界面和远程控制等部分。

2.2 硬件设计①传感器本设计采用高精度温度传感器,能够实时测量温度,并输出数字信号给数据采集模块。

②数据采集模块数据采集模块负责采集传感器输出的温度数据,并进行模数转换。

采集的数据将通过总线传输给数据处理模块。

③数据处理模块数据处理模块对采集到的温度数据进行处理和分析,并将结果保存到内部存储器中,以备后续查询和分析。

④显示屏显示屏用于展示实时温度、历史数据以及系统状态等信息,并提供用户操作界面。

2.3 软件设计①数据管理系统数据管理系统用于存储、查询和管理温度测试仪采集到的数据。

它提供了数据导入、导出、删除、备份等功能。

②用户界面用户界面提供给用户进行温度测试的操作界面和数据展示界面。

用户可以通过界面设定温度范围、采样频率等参数。

③远程控制远程控制功能使用户可以通过远程连接的方式,对温度测试仪进行远程控制和数据查询。

3.性能要求3.1 测量精度温度测试仪的测量精度要达到±0.1℃以内,以满足不同行业对温度测试的精度要求。

3.2 响应时间温度测试仪的响应时间应小于1秒,以便快速响应用户的操作并实现实时数据显示。

3.3 数据存储容量温度测试仪的数据存储容量应达到最少1000条数据,以满足长时间的数据记录需求。

4.法律名词及注释●智能温度测试仪: 一种具备智能化功能的温度测试设备,能够准确测量温度并进行数据分析和记录。

智能仪器智能温度测试仪的设计

智能仪器智能温度测试仪的设计

北华大学智能仪器综合设计实习报告题目:智能温度测试仪的设计专业:测控技术与仪器班级:姓名:学号:指导老师:目录一、概述 (1)二、方案设计 (2)1.设计任务 (2)2.总体方案 (2)3.具体方案 (2)4.PT100传感器特性 (3)5.测温原理 (3)三.MK—4PC 智能仪器实验教学系统简介 (3)四.硬件电路设计 (5)1.硬件功能分析 (5)2.各部分硬件设计 (5)五.软件设计 (8)1。

编程环境介绍 (8)2。

软件功能需求分析 (10)3.各部分软件设计 (11)a.软件的流程图 (11)b.主程序 (11)六.调试 (21)七.实习总结 (21)八.参考文献 (22)一、概述温度是自然界中和人类打交道最多的物理参数之一,无论是在生产实验场所,还是在居住休闲场所,温度的采集或控制都十分频繁和重要,而且,网络化远程采集温度并报警是现代科技发展的一个必然趋势。

由于温度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,所以温传感器就会相应产生.传感器主要用于测量和控制系统,它的性能好坏直接影响系统的性能。

温度传感器从使用的角度大致可分为接触式和非接触式两大类,前者是让温度传感器直接与待测物体接触,而后者是使温度传感器与待测物体离开一定的距离,检测从待测物体放射出的红外线,达到测温的目的。

由于PT100热电阻的温度与阻值变化关系,人们便利用它的这一特性,发明并生产了PT100热电阻温度传感器。

它是集温度湿度采集于一体的智能传感器。

温度的采集范围可以在—200℃~+200℃,湿度采集范围是0%~100%。

pt100温度传感器是一种将温度变量转换为可传送的标准化输出信号的仪表。

主要用于工业过程温度参数的测量和控制。

带传感器的变送器通常由两部分组成:传感器和信号转换器。

传感器主要是热电偶或热电阻;信号转换器主要由测量单元、信号处理和转换单元组成(由于工业用热电阻和热电偶分度表是标准化的,因此信号转换器作为独立产品时也称为变送器),有些变送器增加了显示单元,有些还具有现场总线功能。

智能测温系统设计报告书

智能测温系统设计报告书

智能测温系统设计报告书1. 引言随着科技的不断发展,智能化渗透到我们生活的方方面面。

智能测温系统作为一种应用于各个领域的智能化温度检测设备,有着广泛的应用前景。

本报告旨在设计一种智能测温系统,并详细介绍该系统的设计原理、硬件架构和软件实现。

2. 设计原理智能测温系统的设计原理是通过采集目标物体的红外辐射,计算目标物体的表面温度。

该设计基于斯特藩-玻尔兹曼定律,即目标物体的辐射功率与其绝对温度的四次方成正比。

智能测温系统利用红外传感器和数字信号处理器实现红外辐射的测量和温度计算。

3. 硬件架构智能测温系统的硬件架构主要包括红外传感器、数据采集模块和计算模块。

- 红外传感器负责接收目标物体发出的红外辐射并转化为电信号。

- 数据采集模块将红外传感器接收到的信号进行放大和滤波处理,以获取精确的红外辐射数据。

- 计算模块通过处理数据采集模块提供的红外辐射数据,应用斯特藩-玻尔兹曼定律进行温度计算,最后输出目标物体的表面温度。

4. 软件实现数据预处理数据预处理过程包括对输入的红外辐射数据进行放大、滤波和ADC (模数转换)处理,使得处理后的数据更加精确和可靠。

温度计算根据斯特藩-玻尔兹曼定律,通过处理红外辐射数据计算目标物体的表面温度。

计算模块利用软件算法,对处理后的数据进行数值计算,得出最终的温度结果。

结果显示设计一种用户友好的界面,显示目标物体的实时温度。

该界面可以通过显示屏或通过网络传输到监控平台进行显示。

5. 优势和应用智能测温系统相比传统的温度计具有以下优势:- 非接触性测温,避免了传统接触式温度计可能带来的污染和传染风险。

- 实时监测和报警功能,能够迅速对异常温度进行预警并采取相应的措施。

- 数据可追溯性,智能测温系统可以存储历史温度数据,并能够导出和分析这些数据。

智能测温系统的应用范围广泛,包括但不限于以下领域:- 工业生产线的温度监控- 建筑物的空调温度调节- 医疗设备的温度控制- 电子设备的散热管理6. 结论通过本报告的设计和实现,我们成功地开发了一种智能测温系统。

智能温度测控仪课程设计

智能温度测控仪课程设计

智能温度测控仪课程设计一、课程目标知识目标:1. 理解智能温度测控仪的基本原理,掌握温度传感器的工作方式和测量范围。

2. 学习智能温度测控仪的电路组成和功能,了解各组成部分的作用及相互关系。

3. 掌握编程方法,实现对温度数据的采集、处理和显示。

技能目标:1. 能够正确连接智能温度测控仪的电路,进行简单的故障排查和维修。

2. 能够运用所学编程知识,编写程序实现对温度的实时监控和控制。

3. 培养动手实践能力,通过实际操作,熟练使用智能温度测控仪。

情感态度价值观目标:1. 培养学生对智能硬件的兴趣和热情,激发创新精神和探究欲望。

2. 增强学生的团队协作意识,培养合作解决问题的能力。

3. 培养学生关注环境保护,认识到智能温度测控仪在节能降耗方面的作用。

课程性质:本课程属于电子技术实践课程,注重理论联系实际,培养学生的动手能力和创新能力。

学生特点:学生具备一定的电子技术基础知识,对智能硬件有一定的好奇心,喜欢动手实践。

教学要求:教师应充分调动学生的积极性,注重启发式教学,引导学生主动探究,提高学生的实践能力。

同时,关注学生的情感态度价值观的培养,使学生在掌握知识技能的同时,形成正确的价值观。

通过分解课程目标为具体的学习成果,为后续的教学设计和评估提供明确依据。

二、教学内容1. 理论知识:- 温度传感器原理与分类,重点讲解热敏电阻、热电偶等常见温度传感器的原理和应用。

- 智能温度测控仪电路组成,包括传感器、信号处理电路、微控制器、显示模块等部分的功能和连接方式。

- 编程基础,介绍C语言或Python语言在温度测控中的应用,涉及数据类型、运算符、控制结构等。

2. 实践操作:- 智能温度测控仪电路搭建,指导学生根据电路图正确连接各部分组件。

- 程序编写与调试,引导学生学习编程软件的使用,编写温度采集程序,并进行调试和优化。

- 系统测试与优化,通过实际测试,观察温度测控效果,针对问题进行排查和优化。

3. 教学大纲安排:- 第一课时:导入新课,介绍智能温度测控仪的应用,明确学习目标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录目录 (2)一、资料收集 (3)1.1、芯片介绍 (3)1.2、DS18B20简介 (3)1.3、DS18B20的内部结构 (3)1) 64位的ROM (4)2) DS18B20温度传感器的存储器 (4)1.4、DS18B20的时序 (4)1.5、DS18B20的复位时序 (5)1.6、DS18B20的读时序 (5)1.7、DS18B20的写时序 (5)二、智能型温度测量仪的原理 (5)2.1、智能型温度测量仪的系统描述 (6)2.2、智能型温度测量仪的性能指标 (6)2.2、智能型温度测量仪的硬件结构 (6)2.3、智能型温度测量仪的工作流程图 (7)1)智能型温度测量仪的工作流程图如下 (7)2)智能型温度测量仪的按键流程图如下 (7)3) 软件设计流程图 (8)2.4、智能型温度测量仪的原理图 (10)三、遇到的问题与解决方案 (11)四、结论与评价 (11)一、资料收集1.1、芯片介绍T89C52是一种低电压、高性能CMOS 8位微处理器 它自带4K字节闪存可编程可擦除只读存储器(FPEROM—Flash Programmable and Erasable Read Only Memory),俗称单片机。

单片机的可擦除只读存储器可以反复擦除1000次。

该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

由于将多功能8位CPU 和闪存存储器组合在单个芯片中,A TMEL的A T89C52是一种高效微控制器。

AT89C系列单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

1.2、DS18B20简介单总线数字温度传感器DS18B20,体积更小、适用电压更宽、更经济Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。

一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。

DS18B20“一线总线”数字化温度传感器,测量温度范围为-55°C~+125°C。

在-10~+85°C范围内,精度为±0.5°C。

DS1822的精度较差为±2°C 。

现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。

适合于恶劣环境的现场温度测量 如:环境控制、设备或过程控制、测温类消费电子产品等。

新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。

而且新一代产品更便宜、体积更小。

DS18B20的特性可以程序设定9~12位的分辨率、精度为±0.5°C。

用户设定的报警温度存储在EEPROM中,掉电后依然保存。

省略了存储用户定义报警温度、分辨率参数的EEPROM、精度降低为±2°C。

DS18B20使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。

DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。

这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。

1.3、DS18B20的内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。

DS18B20的管脚排列如下:DQ为数字信号输入/输出端GND为电源地VDD为外接供电电源输入端(在寄生电源接线方式时接地)。

DS18B20的管脚排列如上1) 64位的ROM光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。

64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。

光刻ROM 的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。

2) DS18B20温度传感器的存储器DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的E2RAM,后者存放高温度和低温度触发器TH、TL和结构寄存器。

暂存存储器包含了8个连续字节,前两个字节是测得的温度信息,第一个字节的内容是温度的低八位,第二个字节是温度的高八位。

第三个和第四个字节是TH、TL的易失性拷贝,第五个字节是结构寄存器的易失性拷贝,这三个字节的内容在每一次上电复位时被刷新。

第六、七、八个字节用于内部计算。

第九个字节是冗余检验字节。

1.4、DS18B20的时序由于DS18B20采用的是单总线协议方式,即在一根数据线实现数据的双向传输,而对89C51单片机来说,硬件上并不支持单总线协议,因此,我们必须采用软件的方法来模拟单总线的协议时序来完成对DS18B20芯片的访问。

由于DS18B20是在一根I/O线上读写数据,因此,对读写的数据位有着严格的时序要求。

DS18B20有严格的通信协议来保证各位数据传输的正确性和完整性。

该协议定义了几种信号的时序:初始化时序、读时序、写时序。

所有时序都是将主机作为主设备,单总线器件作为从设备。

而每一次命令和数据的传输都是从主机主动启动写时序开始,如果要求单总线器件回送数据,在进行写命令后,主机需启动读时序完成数据接收。

数据和命令的传输都是低位在先。

1.5、DS18B20的复位时序1.6、DS18B20的读时序对于DS18B20的读时序分为读0时序和读1时序两个过程。

对于DS18B20的读时隙是从主机把单总线拉低之后,在15秒之内就得释放单总线,以让DS18B20把数据传输到单总线上。

DS18B20在完成一个读时序过程,至少需要60us才能完成1.7、DS18B20的写时序对于DS18B20的写时序仍然分为写0时序和写1时序两个过程。

对于DS18B20写0时序和写1时序的要求不同,当要写0时序时,单总线要被拉低至少60us,保证DS18B20能够在15us到45us之间能够正确地采样IO总线上的“0”电平,当要写1时序时,单总线被拉低之后,在15us之内就得释放单总线。

二、智能型温度测量仪的原理智能型温度测量仪是指将温度变换原件变换所得得模拟量转换为数字量,通过单片机等智能芯片进行数据处理、运算等,并以数字形式显示测量结果或控制其他装置的智能化仪表。

以单片机为主体的仪表中,软件完成众多的数据处理和储存任务,简化了传统常规仪表的电子线路,使仪表的结构发生了根本的变革;同时,较大幅度地增加了功能,提高了准确性和可靠性,使仪表具有了一部分人脑的智能。

2.1、智能型温度测量仪的系统描述根据已有的单片机数字式温度测量控制系统电路板进行系统调试。

采用数字传感器,电路不用考虑A/D 转换,只需设计制定某个I/O 口作为与数字传感器相连,所以可以采用DS18B20单总线温度传感器。

单片机可根据程序指令实现单点检查的功能,该系统的总体方案如下:系统结构框图如上2.2、智能型温度测量仪的性能指标1)采用串行下载方式的STC 单片机。

2)测量温度范围:—50°C~+125°C 。

3)测量精度范围:0°C~80°C 。

4)显示方式:4位数码管显示,含有一位小数点及循环扫描及时温度识别。

2.2、智能型温度测量仪的硬件结构智能型温度测量仪的硬件部分由单片机主机电路、过程输入/输出通道。

通信接口、按键等部分组成,如下图所示。

主机电路以单片机为核心,用来存储数据和程序,并进行一系列的运算和处理。

过程输入/输出通道由模拟量输入/输出电路(A/D 转换电路和D/A 转换电路等)以及开关量输入/输出电路等构成。

模拟量输入/输出电路用l 来输入/输出模拟量信号;而开关量输入/输出电路则用来输入/输出开关量信号。

利用键盘可以实现人与仪表之间的联系,而通信接口接口则用于使仪表与外界进行数据交换。

DS18B20并行口下载接口电脑转换系统段驱动 4位LED 显示位驱动 RS-232接口电路 ISP 功能单片机2.3、智能型温度测量仪的工作流程图由温度传感器DS18B20进入的数字信号经过输入信号处理,即经过放大、整形和补偿,变成数字量。

次数字信号通过接口送人缓冲寄存器保存输入数据。

微处理CPU 对输入的数据进行加工处理、分析、计算后,将运算结果存入读/写存储器中。

1)智能型温度测量仪的工作流程图如下。

数字量 数字量输入电路 开关量 开关量输入电路 键盘 单片机 主机电路 数字量 输出电路 开关量输出电路 通信接口 输出 数字量信号输出 开关量信号通信数据 数字量输入信号处理I/O键盘 输入缓冲器 ARMCPU输出缓冲器显示 开关量输出 并行或 并行I/O2)智能型温度测量仪的按键流程图如下。

开始有无按键退出延时有无按键退出哪个按键按下执行相应功能退出3)软件设计流程图对于DS18B20的温度读取,直接进入温度的读状态,为了不影响温度转换的时序,在DS18B20温度测量过程中要关断中断,转换完成后再打开。

开始调初始化子程序设置跳过ROM命令CCH调写命令子程序设置启动温度转换命令44H调写命令子程序延时调初始化子程序设置跳过ROM命令CCH调写命令子程序设置读数据命令EBH 调写命令子程序读取温度数据调温度数据处理子程序调数码管显示子程序结束2.4、智能型温度测量仪的原理图三、遇到的问题与解决方案四、结论与评价基于DS18B20的温度测量控制系统电路板作为具体应用实例,通过对电路板的调试以及对温度精度、响应时间参数的实测,对数据进行分析处理,可以综合评价电路板性能的好坏。

多个DS18B20的扩展。

单片机AT89C52通过驱动电路采集4条输出总线上悬挂的大量DS18B20来测量温度,每个传感器的DQ端和驱动电路的1-Wire总线并联,DS18B20接地端和驱动电路接地端相连,通过俩芯平行导线连接。

相关文档
最新文档