金属学与热处理 期末复习重点

合集下载

金属学与热处理总复习

金属学与热处理总复习



⑷ 奥氏体化
⑸ 过冷奥氏体转变 ⑹ 固溶处理+时效: 固溶处理是指将合金加热到固溶线以上,保温并淬 火后获得过饱和的单相固溶体组织的处理。

时效是指将过饱和的固溶体加热到固溶线以下某温
度保温,以析出弥散强化相的热处理。
3、铁碳合金相图

点:符号、成分、温度 线:液固相线、水
平线、固溶线、固 溶体转变线 相区标注 组织组成物标注 复相组织组成物: 珠光体P(F+ Fe3C) 莱氏体Le(A+ Fe3C) Le’(P+Fe3C)
转变为M回,使硬度不仅不下降,反而升高的现象)

10、防止第二类回火脆性:W、Mo (回火脆性 :淬火钢在某些温度范围内回火时,出现 的冲击韧性下降的现象。)
三、组织

㈠ 纯金属的组织 1、结晶:金属由液态转变为晶体的过程 ⑴ 结晶的条件——过冷:在理论结晶温度以下发生 结晶的现象。

奥氏体化后的晶粒度: 初始晶粒度:奥氏体化刚结束时的晶粒度。 实际晶粒度:给定温度下奥氏体的晶粒度。
本质晶粒度:加热时奥氏体晶粒的长大倾向。
2、冷却时的转变

⑴ 等温转变曲线及产物
A1
650℃ 过冷A 600℃ 过冷A 550℃
过冷A A→S


㈡ 合金的组织

1、相图 匀晶L 共晶L+ 共析 + 包晶L+

杠杆定律:只适用于两相区。 枝晶偏析:在一个枝晶范围内或一个晶粒范围内成分 不均匀的现象。 2、合金中的固态相变



⑴ 固溶体转变:AF
⑵ 共析转变:AP(F+Fe3C)
⑶ 二次析出:AFe3CⅡ

《金属材料与热处理》期末考试复习题

《金属材料与热处理》期末考试复习题

《金属材料与热处理》期末考试复习题填空:1、变形一般分为(弹性)变形和(塑性)变形两种,不能随载荷的去除而消失的变形称为(塑性)变形。

2 、强度是指金属材料在(静)载荷作用下抵抗(塑性变形)或(断裂)的能力。

3 、断裂前金属材料产生(永久变形)的能力称为塑性,金属材料的(伸长率和(断面收缩率)的数值越大,表示材料的塑性越好。

4、含金中成分、结构及性能相同的组成部分称为(相)。

5、含碳量为(0.0218%~2.11%)的铁碳合金称为钢。

根据室温组织不同,钢又分为三类:亚共析钢(0.0218%<C<0.77%),其室温组织为(铁素体)和(珠光体);(C=0.77%)共析钢,其室温组织为(珠光体);过共析钢(0.77%<C<2.11%),其室温组织为(珠光体)和(二次渗碳体)。

6、金属材料抵抗(冲击)载荷作用而(不破坏)能力,称为冲击韧性。

冲击韧度越大,表示材料的冲击韧性越(好)。

7、强度的常用衡量指标有(屈服点)和(屈服强度),分别用符号(σs)和(σb )表示。

8、常见的金属晶格类型有体心立方晶格、面心立方晶格和密排六方晶格三种。

9、金属的结晶过程是由(晶核的形成)和(长大)两个基本过程组成的。

10、细化晶粒的根本途径是控制结晶时的形核率及长大速度。

11、从金属学观点来说,凡在再结晶温度以下进行的加工称为冷加工;在金属的再结晶温度以上进行的加工称为热加工。

12、铁碳合金的基本相是(铁素体F)、(奥氏体A)和(渗碳体Fe3C)。

13、铁素体的性能特点是具有良好的(塑性)和(韧性),而(强度)和(硬度)很低。

14、铁碳合金的基本组织有五种,它们是(铁素体)、(奥氏体)、(渗碳体)、(珠光体)、(莱氏体)。

15、大小不变或变化缓慢的载荷称为(静载荷),在短时间内以较高速度作用于零件上的载荷称为(冲击载荷),大小和方向随时间发生周期性变化的载荷称为(交变载荷)。

16、金属在(固态)态下,随温度的改变,由(一种晶格)转变为(另一种晶格)的现象称为同素异构转变。

《金属学与热处理》复习题参考答案

《金属学与热处理》复习题参考答案

《金属学与热处理》复习题绪论基本概念:1.工艺性能:金属材料适应实际加工工艺的能力。

(分类)2.使用性能:金属材料在使用时抵抗外界作用的能力。

(分类)3.组织:用肉眼,或不同放大倍数的放大镜和显微镜所观察到的金属材料内部的情景。

宏观组织:用肉眼或用放大几十倍的放大镜所观察到的组织。

(金属内部的各种宏观缺陷)显微组织:用100-2000倍的显微镜所观察到的组织。

(各个组成相的种类、形状、尺寸、相对数量和分布,是决定性能的主要因素)4:结构:晶体中原子的排列方式。

第一章基本概念:1.金属:具有正的电阻温度系数的物质,其电阻随温度升高而增加。

2.金属键;金属正离子和自由电子之间相互作用而形成的键。

3.晶体:原子(离子)按一定规律周期性地重复排列的物质。

4.晶体特性:(原子)规则排列;确定的熔点;各向异性;规则几何外形。

5.晶胞:组成晶格的最基本的几何单元。

6.配位数:晶格中任一原子周围与其最近邻且等距的原子数目。

7.晶面族:原子排列相同但空间位向不同的所有晶面称为晶面族。

8.晶向族:原子排列相同但空间位向不同的所有晶向称为晶向族。

9.多晶型性:当外部条件(如温度和压强)改变时,有些金属会由一种晶体结构向另一种晶体结构转变。

又称为同素异构转变。

10.晶体缺陷:实际晶体中原子排列偏离理想结构的现象。

11.空位:晶格结点上的原子由于热振动脱离了结点位置,在原来的位置上形成的空结点。

12.位错:晶体中有一列或若干列原子发生了有规则的错排现象,使长度达几百至几万个原子间距、宽约几个原子间距范围内的原子离开其平衡位置,发生了有规律的错动。

13.柏氏矢量:在实际晶体中沿逆时针方向环绕位错线作一个闭合回路。

在完整晶体中以同样的方向和步数作相同的回路,由回路的终点向起点引一矢量,该矢量即为这条位错线的柏氏矢量。

14.晶粒:晶体中存在的内部晶格位向完全一致,而相互之间位向不相同的小晶体。

15.各向异性:由于晶体中不同晶面和晶向上的原子密度不同,因而晶体在不同方向上的性能有所差异。

金属学与热处理复习资料(本)

金属学与热处理复习资料(本)

金属学与热处理复习资料一、名词解释1、晶体:原子在三维空间做有规则的周期性重复排列的物质。

2、非晶体:指原子呈不规则排列的固态物质。

3、晶格:一个能反映原子排列规律的空间格架。

4、晶胞:构成晶格的最基本单元。

5、晶界:晶粒和晶粒之间的界面。

6、单晶体:只有一个晶粒组成的晶体。

7、合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。

8、组元:组成合金最基本的、独立的物质称为组元。

9、相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。

10、固熔体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相。

11、结晶:纯金属或合金由液体转变为固态的过程。

12、重结晶:金属从一种固体晶态改变了晶体结构转变为另一种固体晶态的过程。

13、过冷度:理论结晶温度(T0)和实际结晶温度(T1)之间存在的温度差。

14、铁素体:碳溶解于α-Fe中形成的间隙固溶体。

15、渗碳体:是铁与碳形成的质量分数为6.69%的金属化合物。

16、奥氏体:碳溶解于γ-Fe中形成的间隙固溶体。

17、珠光体:是由铁素体与渗碳体组成的机械化合物。

18、莱氏体:奥氏体与渗碳体的混合物为莱氏体。

19、同素异构转变:一些金属,在固态下随温度或压力的改变,还会发生晶体结构变化,即由一种晶格转变为另一种晶格的变化,称为同素异构转变。

20、实际晶粒度:某一具体热处理或热加工条件下的奥氏体的晶粒度叫实际晶粒度,它决定钢冷却后的组织和性能。

21、马氏体:碳在α-Fe 中的过饱和间隙固溶体,具有很大的晶格畸变,强度很高。

22、贝氏体:渗碳体分布在含碳过饱和的铁素体基体上或的两相混合物。

根据形貌不同又可分为上贝氏体和下贝氏体。

23、淬透性:淬透性是指在规定条件下,钢在淬火冷却时获得马氏体组织的能力。

24、淬硬性:淬硬性是指钢在理想的淬火条件下,获得马氏体所能达到的最高硬度。

25、调质处理:淬火后高温回火的热处理工艺组合。

金属材料及热处理复习资料

金属材料及热处理复习资料

金属材料及热处理复习《金属材料与热处理》是一门技术基础课,它的内容主要包含以下几个部门:1、钢铁材料的冶炼介绍金属材料的概念、分类及其生产过程。

重点放在钢铁材料的生产过程。

2、金属的性能介绍金属的物理、化学、力学及工艺等性能。

3、金属学的基础知识介绍金属和合金的晶体构造及其结晶过程,以及金属的成分、温度和组织之间的相互关系及变化规律。

4、钢的热处理介绍热处理的基本理论及各种热处理工艺的目的和方法。

5、常用的金属材料介绍碳钢、合金钢、铸铁、有色金属及硬质合金等金属材料的牌号、成分、组织、热处理、性能及用途。

鉴于机械专业技校生掌握这门课的必需性以及同学们学起来有一定难度,平时往往还未全面掌握,在期末进行复习时,提高他们复习效率,帮助他们理解和融会贯通尤为重要,采用一般从前到后按顺序复习方法,往往效果不太好,为此笔者经过一段时间探索,概括全书,提出了“顺口溜”的复习方法,共10句,它们是:1金属材料热处理,2钢铁材料最重要。

3铁碳相图作纲要,4选材热处理有依靠。

5硬质合金作刀具,6轴承合金作滑动。

7正火退火去应力,8淬火回火变魔术。

9牢牢记住主干线,10成分组织与性能。

首先要求大家熟读这10句话,多读几遍,然后一句一句加以理解。

1金属材料热处理同学们读这句话,首先要知道,这本书主要由金属材料和热处理两部分组成,要知道金属材料分类和工厂中热处理种类。

热处理共分正火、退火、淬火、回火、表面热处理等五种。

2钢铁材料最重要读这句话大家要知道,工厂中用得最多的材料是钢和铁,许多重要关键场合都是用钢铁材料制造的,钢铁的产量、质量,在当今世界甚至是一个国家综合实力的标志。

同时同学们要简单了解钢铁是怎么生产出来的,钢与铁是完全不同的两种材料,它们彼此之间的性能完全不一样,联系到以后的热处理,即使是同一种钢,经过不同的热处理,其最后性能不一样。

3铁碳相图作纲要4选材热处理有依靠读了这两句话,同学们要知道,铁碳相图,是我们选材的基础,它是清楚地表明了铁碳合金成分、温度、组织三者之间关系的一个“地图”,同一种成分不同温度,同一种温度不同成分,它们组织不同,以及室温组织随含碳量的变化,最终导致钢材力学性能的变化,只有掌握和透彻理解铁碳相图,才能得心应手地选材用材。

最新金属学与热处理原理期末总结资料

最新金属学与热处理原理期末总结资料

金属学与热处理原理一、选择题(4×10)1.影响金属结晶过冷度的因素(1)金属本性,金属不同,其过冷度不同。

(2)金属纯度,纯度越高,过冷度越大(3)冷却速度,速度越大,过冷度越大(4)铸造模具所用材料,金属模具大于砂模的过冷度2.图中斜线所示晶面的晶面指数(图不好画,答案选第4个)(1)(120)(2)(102)(3)(201)(4)(012)3.影响再结晶温度的因素与规律(1)纯度越高,再结晶温度越低(2)冷变形越大,再结晶温度越低(3)加热速度越大,再结晶温度越低(4)金属本性,熔点越低,再结晶温度越低4.塑性变形后的金属随加热问题上升,时间延长,可能发生的变化(1)显微组织依次发生回复、再结晶和晶粒长大(2)组织由缺陷较高的纤维组织向低缺陷的等轴晶转变(3)内应力松弛或消除,应力腐蚀倾向减小(4)强度、硬度下降,塑性、韧性上升5.影响置换固溶体溶解度的因素(1)尺寸差,原子尺寸差越小,溶解度越大(2)电负性差,电负性差越小,溶解度越大(3)电子浓度,电子浓度越小,溶解度越大(4)晶体结构,晶格类型相同溶解度越大6.六方晶系[010]晶向还用四坐标轴表示(1)[-1-120](2)[11-20](3)[-12-10](4)[-2110]7.晶面(011)和(111)所在晶带轴(1)[-110](2)[1-10](3)[01-1](4)[-101]8.调幅分解是固分解的一中特殊形式,其特征有(1)一种固溶体分解为成分不同而结构相同的两种固溶体(2)无形核、长大过程(3)保持共格关系的转变(4)一种同素异构转变9.具有粗糙晶面的固溶体合金在正的温度梯度下(1)以二维晶核方式长大(2)以螺型位错方式长大(3)以垂直方式长大(4)晶体形态可能呈树枝状10.若某金属元素其键能越高,则(1)熔点越高(2)强度、模量越大(3)其原子半径越小(4)其热膨胀系数越小二、判断题(5×4)1.钢经加热转变得到成分单一、均匀的γ,随后水冷或者油冷的热处理工艺成为淬火,而采用空冷的工艺成为正火。

金属学与热处理期末复习总结

金属学与热处理期末复习总结

一、名词解释:1热强性:在室温下,钢的力学性能与加载时间无关,但在高温下钢的强度及变形量不但与时间有关,而且与温度有关,这就是耐热钢所谓的热强性;2形变热处理:是将塑性变形同热处理有机结合在一起,获得形变强化和相变强化综合效果的工艺方法;3热硬性:热硬性是指钢在较高温度下,仍能保持较高硬度的性能;4固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到的热处理工艺;5回火脆性:是指回火后出现韧性下降的;6二次硬化:某些铁碳合金如高速钢须经多次回火后,才进一步提高其硬度;7回火稳定性:在时,抵抗强度、硬度下降的能力称为回火稳定性;8淬硬性:指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示;9水韧处理:将钢加热至奥氏体区温度1050-1100℃,视钢中碳化物的细小或粗大而定并保温一段时间每25mm壁厚保温1h,使铸态组织中的碳化物基本上都固溶到奥氏体中,然后在水中进行淬火,从而得到单一的奥氏体组织;10分级淬火:将奥氏体状态的工件首先淬入温度略高于钢的Ms点的盐浴或碱浴炉中保温,当工件内外温度均匀后,再从浴炉中取出空冷至室温,完成马氏体转变;11临界淬火冷却速度:是过冷奥氏体不发生分解直接得到全部马氏体含残留奥氏体的最低冷却速度;12季裂:它指的是经冷变形后的金属内有拉伸应力存在又处于特定环境中所发生的断裂; 13奥氏体化:将钢加热至临界点以上使形成奥氏体的金属热处理过程;14本质晶粒度:本质晶粒度用于表征钢加热时晶粒长大的倾向;二、简答:1 何为奥氏体化简述共析钢的奥氏体化过程;答:1、将钢加热至临界点以上使形成奥氏体的金属热处理过程;2、它是一种扩散性相变,转变过程分为四个阶段;1形核;将珠光体加热到Ac1以上,在铁素体和渗碳体的相界面上奥氏体优先形核;珠光体群边界也可形核;在快速加热时,由于过热度大,铁素体亚边界也能形核;2长大;奥氏体晶粒长大是通过渗碳体的溶解、碳在奥氏体和铁素体中的扩散和铁素体向奥氏体转变;为了相平衡,奥氏体的两个相界面自然地向铁素体和渗碳体两个方向推移,奥氏体便不断长大;3残余渗碳体的溶解;铁素体消失后,随着保温时间的延长,通过碳原子扩散,残余渗碳体逐渐溶入奥氏体;4奥氏体的均匀化;残余渗碳体完全溶解后,奥氏体中碳浓度仍是不均匀的;只有经长时间的保温或继续加热,让碳原子进行充分地扩散才能得到成分均匀的奥氏体;2 奥氏体晶粒大小对冷却转变后钢的组织和性能有何影响简述影响奥氏体晶粒大小的因素;答:1、奥氏体晶粒度大小对钢冷却后的组织和性能有很大影响;奥氏体晶粒度越细小,冷却后的组织转变产物也越细小,其强度也越高,此外塑性,韧性也较好;但奥氏体化温度过高或在高温下保持时间过长会显着降低钢的冲击韧度、减少裂纹扩展功和提高脆性转变温度;2、奥氏体晶粒大小是影响使用性能的重要指标,主要有下列因素影响奥氏体晶粒大小;1加热温度和保温时间的影响加热温度越高,保温时间越长,奥氏体晶粒越粗大;2加热速度的影响加热速度越快,奥氏体的实际形成温度越高,形核率和长大速度越大,则奥氏体的起始晶粒越细小,但快速加热时,保温时间不能过长,否则晶粒反而更加粗大;3钢的化学成分的影响在一定含碳量范围内,随着奥氏体中含碳量的增加,碳在奥氏体中的扩散速度及铁的自扩散速度增大,晶粒长大倾向增加,但当含碳量超过一定限度后,碳能以未溶碳化物的形式存在,阻碍奥氏体晶粒长大,使奥氏体晶粒长大倾向减小;4钢的原始组织的影响钢的原始组织越细,碳化物弥散速度越大,奥氏体的起始晶粒越细小,相同的加热条件下奥氏体晶粒越细小;3 简述影响过冷奥氏体等温转变的因素;答:奥氏体成分含碳量、合金元素、奥氏体状态钢的原始组织、奥氏体化的温度和保温时间及应力和塑性变形;1、含碳量的影响亚共析钢随奥氏体含碳量增加,使C曲线右移,Ms和Mf点降低;过共析钢随含碳量的增加,使C曲线向左移,Ms和Mf点降低;2、合金元素的影响除Co、AlWAl>%外,所有合金元素的溶解到奥氏体中后,都增大过冷奥氏体的稳定性,使C曲线右移,Ms和Mf点降低;3、奥氏体状态的影响奥氏体化温度越低,保温时间越短,奥氏体晶粒越细小,C曲线左移;4、应力和塑性变形的影响在奥氏体状态下承受拉应力会加速奥氏体的等温转变,承受压应力则会阻碍这种转变;对奥氏体进行塑性变形有加速奥氏体转变的作用,C曲线左移;4简述片状珠光体和粒状珠光体的组织和性能;答:1、片状珠光体组织:WC=%的奥氏体在近于平衡的缓慢冷却条件下形成的珠光体是由铁素体和渗碳体组成的片层相间的组织;性能:主要决定于片间距;片间距越小,钢的断裂强度和硬度均随片间距的缩小而增大;随片间距减小,钢的塑性显着增加;片间距减小,塑性变形抗力增大,故强度;硬度提高;2、粒状珠光体组织:渗碳体呈颗粒状分布在连续的铁素体基体中的组织性能:主要取决于渗碳体颗粒的大小,形态与分布;钢的成分一定时,渗碳体颗粒越细,相界面越多,则刚的硬度和强度越高;碳化物越接近等轴状、分布越均匀,则钢的韧性越好;粒状珠光体的硬度和强度较低,塑性和韧性较好,冷变形性能,可加工性能以及淬火工艺性能都比珠光体好;5何为马氏体简述马氏体的晶体结构、组织形态、性能及转变特点;答:是碳在α-Fe中过饱和的间隙固溶体;2、马氏体的晶体结构在钢中有两种:体心正方结构WC<%,c/a=1;体心正方结构WC>%,c/a>1;组织形态:板条马氏体、片状马氏体200℃以上,WC<%,完全形成板条马氏体,因其体内含有大量位错又称位错马氏体;特点强而韧%<WC<1%,为板条马氏体和片状马氏体的混合物;200℃以下,WC>%,完全形成片状马氏体,因其亚结构主要为孪晶又称孪晶马氏体;特点硬而脆4、1马氏体的显着特点是高硬度和高强度,原因包括固溶强化、相变强化、时效强化、原始奥氏体晶粒大小及板条马氏体束大小;马氏体的硬度主要取决于马氏体的含碳量;合金元素对马氏体的硬度影响不大,但可以提高其强度;2马氏体的塑性和韧性主要取决于马氏体的亚结构;5、1无扩散性;奥氏体成分保留在马氏体中2马氏体转变的切变共格性3马氏体转变具有特定的惯习面和位向关系4马氏体转变是在一定温度范围内进行的6 简述淬火钢的回火转变、组织及淬火钢在回火时的性能变化;答:1、钢的回火转变包括五个方面180℃-100℃以下温度回火,马氏体中碳的偏聚,组织是马氏体马氏体:碳溶于α-Fe的过饱和的固溶体280℃-100℃回火,马氏体开始分解,组织是回火马氏体回火马氏体:低碳马氏体和ε碳化物组成的混合物,称为回火马氏体;3200℃-300℃回火,残余奥氏体开始转变,组织是回火马氏体4200℃-400℃回火,碳化物的转变为Fe3C,组织是回火托氏体回火托氏体:由针状α相和无共格联系的细粒状渗碳体组成的机械混合物;5500℃-650℃渗碳体的聚集长大和α相回复或再结晶,组织是回火索氏体回火索氏体:回复或再结晶的铁素体和粗粒状渗碳体的机械混合物;2、回火时力学性能变化总的趋势是随回火温度提高,钢的抗拉强度、屈服强度和硬度下降,塑性、韧性提高;7 简述回火脆性的分类、特点及如何消除;答:1分类:第一类回火脆性低温回火脆性250℃-400℃和第二类回火脆性高温回火脆性450℃-650℃2特点第一类回火脆性:1具有不可逆性第二类回火脆性:1具有可逆性;2与后的有关3与组织状态无关,但以M的脆化倾向3如何消除第一类回火脆性:无法消除,合金元素会提高脆化温度;第二类回火脆性:1选择含杂质元素极少的优质钢材以及采用形变热处理;2加入适量的Mo、W等合金元素阻碍杂质元素在晶界上便聚;3对亚共析钢在A1~A3临界区可采用4采用高温回火后快冷的方法可抑制回火脆性,但不适用于对回火脆性敏感的较大工件;8 叙述淬透性和淬硬性及淬透性和实际条件下淬透层深度的区别;答:1、淬透性:是指奥氏体化后的钢在淬火时获得马氏体的能力,它反映过冷奥氏体的稳定性,与钢的临界冷却速度有关;临界冷却速度越慢,淬透性越大;其大小以钢在一定条件下淬火获得的淬透层深度和硬度分布来表示;2、淬硬性:是指奥氏体化后的钢在淬火时硬化的能力,主要取决于马氏体中的含碳量,含碳量越高,淬硬性越大;用淬火马氏体可能达到的最高硬度来表示;3、实际条件下的淬透层深度:是指具体条件下测定的半马氏体区至表面的深度;4、区别:1同一材料的淬透层深度与工件尺寸、冷却介质有关.工件尺寸小、介质冷却能力强,淬透层深;2淬透性与工件尺寸、冷却介质无关,它是钢的一种属性;相同奥氏体化温度下的同一钢种,其淬透性是确定不不变的;9 何谓淬火热应力、组织应力影响因素都是什么简述热应力和组织应力造成的变形规律;答:1、淬火热应力:工件在加热或冷却时由于内外的温度差异导致热涨或冷缩的不一致所引起的内应力;2、组织应力:工件在冷却过程中,由于内外温差造成组织转变不同时,引起内外比体积的不同变化而引起的内应力;3、影响因素:1含碳量的影响:随着含碳量的增加热应力作用逐渐减弱组织应力逐渐增强;2合金元素的影响:加入合金元素热应力和组织应力增加;3工件尺寸的影响:a.在完全淬透的情况下随着工件直径的增大淬火后残余应力将由组织应力性逐渐变成热应力性;b.在未完全淬透的情况下所产生的应力特性是与热应力相似的,工件直径越大淬硬层越薄,热应力特性越明显;4淬火介质和冷却方法的影响:如果在高于Ms点以上的温度区域冷却速度快而在温度低于Ms点区域冷却速度慢则为热应力性,反之则为组织应力型;4、变形规律:1热应力引起的变形①沿最大尺寸方向收缩,沿最小尺寸方向伸长;②平面凸起,直角变钝,趋于球形;③外径胀大,内径缩小;2组织应力引起变形与热应力相反;10 何谓回火叙述回火工艺的分类,得到的组织,性能特点及应用;答:1、回火:回火是指将淬火钢加热到A1以下的某温度保温后冷却的工艺;2、分类: 低温回火:1得到回火马氏体;2在保留高硬度、高强度及良好的耐磨性的同时又适当提高了韧性,降低内应力;3适用于刀具、量具、滚动轴承、渗碳件及高频表面淬火件;中温回火:1得到回火托氏体;2基本消除了淬火应力,具有高的弹性极限,较高的强度和硬度,良好的塑性和韧性;3适用于弹簧热处理及热锻模具;高温回火:1得到回火索氏体;2获得良好的综合力学性能,即在保持较高的强度同时,具有良好的塑性和韧性;3广泛用于各种结构件如轴、齿轮等热处理;也可作为要求较高精密件、量具等预备热处理;11 简述化学热处理的一般过程;渗碳的工艺、渗层深度、渗碳后表层含碳量、用钢、热处理、组织和应用;答:1、过程:1介质渗剂的分解2工件表面的吸收3原子向内部扩散;2、渗碳工艺:气体渗碳法,固体渗碳,离子渗碳3、渗碳层厚度由表面到过度层一半处的厚度:一般为-2mm;4、渗碳层表面含碳量:以%%为最好;5、用刚:为含的低碳钢和低碳合金钢;碳高则心部韧性降低;6、热处理:常用方法是渗碳缓冷后,重新加热到Ac1+30-50℃淬火分三类:遇冷直接淬火、一次淬火、二次淬火+低温回火;7、组织:表层:高碳M回+颗粒状碳化物+A少量心部:低碳M回+铁素体淬透时、铁素体+索氏体8、应用:拖拉机履带板,坦克履带板。

金属学与热处理重点整理

金属学与热处理重点整理

金属学与热处理重点整理第1章1.1金属原子的结构特点:最外层的电子数很少,一般为1~2个,不超过3个。

金属键的特点:没有饱和性和方向性结合力:当原子靠近到一定程度时,原子间会产生较强的作用力。

结合力=吸引力+排斥力结合能=吸引能+排斥能(课本图1.2)吸引力:正离子与负离子(电子云)间静电引力,长程力排斥力:正离子间,电子间的作用力,短程力固态金属原子趋于规则排列的原因:当大量金属原子结合成固体时,为使固态金属具有最低的能量,以保持其稳定状态,原子间也必须保持一定的平衡距离。

1.2晶体:基元在三维空间呈规律性排列。

晶体结构:晶体中原子的具体排列情况,也就是晶体中的这些质点在三维空间有规律的周期性的重复排列方式。

晶格:将阵点用直线连接起来形成空间格子。

晶胞:保持点阵几何特征的基本单元三种典型的金属晶体结构(要会画晶项指数,晶面指数)共带面:平行或相交于同一直线的一组晶面组成一个晶带,这一组晶面叫做共带面晶带轴:同一晶带中所有晶面的交线互相平行,其中通过坐标原点的那条直线。

多晶型转变或同素异构转变:当外部的温度和压强改变时,有些金属会由一种晶体结构向另一种晶体结构转变。

1.3合金:两种或两种以上金属元素,或金属元素与非金属元素,经熔炼、烧结或其它方法组合而成并具有金属特性的物质。

组元:组成合金最基本的独立的物质,通常组元就是组成合金的元素。

相:是合金中具有同一聚集状态、相同晶体结构,成分和性能均一,并以界面相互分开的组成部分。

固溶体:合金的组元通过溶解形成一种成分及性能均匀的、且结构与组元之一相同的固相,称为固溶体。

与固溶体结构相同的组元为溶剂,另一组元为溶质。

固溶体的分类:按溶质原子在溶剂晶格中的位置分为:置换固溶体与间隙固溶体。

按溶质原子在固体中的溶解度:分为有限固溶体和无限固溶体。

按溶质原子在固溶体内分布规则:分为有序固溶体和无序固溶体。

固溶强化:在固体溶液中,随着溶质浓度的增加,固溶体的强度、硬度提高,塑性韧性下降。

完整word版,金属学与热处理总结(免费版),推荐文档

完整word版,金属学与热处理总结(免费版),推荐文档

金属学与热处理总结一、金属的晶体结构重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。

基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。

金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。

位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。

位错的柏氏矢量具有的一些特性:①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。

刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。

晶界具有的一些特性:①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。

二、纯金属的结晶重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。

基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。

铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。

相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。

过冷度:理论结晶温度与实际结晶温度的差称为过冷度。

变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。

过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。

从热力学的角度上看,没有过冷度结晶就没有趋动力。

根据 T R k ∆∝1可知当过冷度T ∆为零时临界晶核半径R k 为无穷大,临界形核功(21T G ∆∝∆)也为无穷大。

金属学与热处理知识点总结

金属学与热处理知识点总结

金属学与热处理知识点总结金属学是研究金属材料的物理特性、化学特性和力学特性,以及金属原材料的加工工艺的学科。

热处理是指将金属材料通过加热、保温和冷却等工艺过程来改变金属材料的性能,改善金属材料的加工性能。

本文结合实例,从金属学和热处理两个方面对相关知识点进行总结。

一、金属学1、金属的性质金属的性质是由元素的原子结构和组成决定的,因此,金属的物理性质、化学性质和力学性质均受它的原子结构和组成的影响。

金属的主要性质有导电性、导热性、耐腐蚀性等。

它们的性质决定了金属在工业生活中的重要作用。

2、金属的加工工艺金属加工是指采用机械、热处理、电子和化学等不同类型的加工方法,改变金属原材料的形状、性能和结构,以达到使用和生产需要的加工工艺。

常见的金属加工工艺有冲压、锻造、焊接、切削等。

二、热处理1、热处理的种类热处理是指通过加热、保温和冷却等技术,改变金属材料的组织结构,以改善材料性能的一种技术手段。

热处理的分类很多,其中包括:硬化、回火、淬火、正火、调质等。

2、热处理的作用热处理的主要作用是改变金属材料的组织结构,从而改善金属材料的性能。

热处理可以增加材料的强度、耐磨性、耐腐蚀性,同时热处理还可以改变材料的尺寸、形状和外观等。

热处理是衡量金属材料质量的关键性步骤之一,因此,热处理技术的发展有助于提高金属材料的使用性能。

综上所述,金属学是研究金属材料的物理特性、化学特性和力学特性,及其原材料加工工艺的学科,金属加工工艺可以改变金属原材料的形状、性能和结构,以达到使用和生产需要。

热处理是通过加热、保温、冷却等技术,改变金属材料的组织结构,以改善材料性能的技术手段,可以改变材料的性能、尺寸、形状和外观等。

正确运用金属学和热处理知识,可以有效提高金属材料的使用性能。

金属学与热处理-期末复习重点

金属学与热处理-期末复习重点

第一章金属的晶体结构第一节金属1度系数为负值。

第二节金属的晶体结构1、晶体的特征:1、具有一定的熔点2、各向异性非晶体为各向同性23、为了清楚地表明原子在空间排列的规律性,常常将构成晶体的原子抽象为纯粹的几何点,称之为点阵。

这些点阵有规则地周期性重复排列所形成的三维空间阵列称为空间点阵。

常人4567、常见的三种晶体结构主要是指体心立方、面心立方和密排六方结构,其中体心立方结构(BCC)每个晶胞含有2原子,其原子配位数为8,致密度是68%面心立方结构(FCC)每个晶胞含有4原子,其原子配位数为12;致密度是74%密排六方结构(HCP)每个晶胞含有6原子,其原子配位数为12,致密度是74% 。

8、密排面的堆垛顺序是AB AB AB……,构成密排六方结构ABCABCABC……,构成面心立方结构9、通常以[uvw]表示晶向指数的普遍形式原子排列相同但空间位向不同的所有晶向成为晶向族,<uvw>表示晶面指数的一般表示形式为(hkl)晶面族用大括号{hkl}表示10、在立方结构的晶体中,当一晶向[uvw]位于或平行于某一晶面(hkl)时,必须满足以下关系:hu+kv+lw=0当某一晶向与某一晶面垂直时,则其晶向指数和晶面指数必须完全相等,即u=b、v=k、w=l。

12、由于多晶体中的晶粒位向是任意的,晶粒的各向异性被互相抵消,因此在一般情况下整个晶体不显示各向异性,称之为伪等向性。

一般金属都是多晶体第三节实际金属的晶体结构1、晶体中的线缺陷就是各种类型的位错,它是在晶体中某处有一列或若干列原子发生了有规律的错排现象。

2、刃型位错的重要特征:1、刃型位错有一额外半原子面;2、位错线是一个具有一定宽度的管道3、位错线与晶体的滑移方向相垂直,位错线运动的方向垂直于位错线螺型位错的重要特征:1、螺型位错没有额外半原子面;2、螺型位错线是一个具有一定宽度的管道,其中只有切应变,而无正应变3、位错线与晶体的滑移方向平行,位错线运动的方向与位错线垂直4、位错线与柏氏矢量垂直就是刃型位错,位错线与柏氏矢量平行,就是螺型位错。

金属学与热处理期末复习总结PPT课件

金属学与热处理期末复习总结PPT课件

2019/11/28
.
15
工业纯铁
碳素钢
白口铸铁
四条垂直线
Fe
-
Fe C 相图:相 3.2 Fe-Fe3C相图 3
过共析钢
亚共晶白口铁 过共晶白口铁
亚20共19/析11/2钢8 共析钢
.
共晶白口铁
16
Fe - Fe3C 相图:组织
1. 16点
2. 3水平线 HJB、ECF、PSK线
3. 初生、二次、三次渗碳体脱溶线 CD、ES、PQ(碳的溶
立方晶系中给出指定的晶向指数或晶面指数( 取倒数化整数!!)的坐标。
刃型位错中位错线中既有正应变又有切应变, 对于正刃型位错,滑移面之上受压应力,滑移 面之下受拉应力。位错线、运动方向、滑移方 向之间的关系。螺型位错。
空位类型、晶体缺陷种类、点缺陷种类
3
选择
Fe在不同温度下体积的变化。P18-19 例如:在912℃(其晶格常数为0.02464nm)转变为( 其晶格常数为0.0486nm)时的休积() A膨胀 B收缩 C不变 D不能确定 四面体八面体间隙(考研) 例如:若面心立方晶体的晶格常数为a,则其八面体间 隙( )。 A是不对称的 B是对称的 C位于面心和棱边中点 D 位于体心和棱边中点 各向异性、各向同性。
(二)区间范围
1.碳在三大固溶体的极限溶解度(温度、含量) 2.A4温度 3. A3
温度 4.共晶点(温度、成分)5.包晶点 6.共析点 7.渗碳体成分
8.室温下,三次渗碳体含量最大的铁碳合金 9.共晶、共析、包晶
转变的碳含量范围
14
三、相图分析
1.基本概念
初生相 先共晶相 二次结晶
二次相
组织组成物:在显微组织中能够清楚的区分开,是显微 组织的独立部分 相组成物:从相的组成看 相的成分 相含量 用不同的线段 组织含量

金属学与热处理第二版--复习总结

金属学与热处理第二版--复习总结

金属学与热处理第二版复习总结哈工大(威海) 14级苏同学此文档只总结了部分重要概念与影响因素(不包含第八章、第十二章、第十三章)另外,第十章、十一章的热处理的具体工艺也是重点,此文档没有涉及。

概念金属最外层的电子数很少,一般为1~2个,不超过3个。

金属键➢原子共用自由电子形成➢无饱和性和方向性。

金属晶体原子排列密度高,能变形,导电,导热。

金属原子特点➢外层电子少,易失去➢有自由电子➢金属离子与自由电子形成键。

➢金属键无方向性➢有良好的塑性晶体:各向异性是晶体区别于非晶体的一个重要标志柏氏矢量的意义及特征➢反映位错的点阵畸变总量➢反映晶体的滑移量及方向➢与位错线有确定的位置关系➢具有守恒性相界共格界面、半共格界面、非共格界面三类。

共格界面界面能最低➢界面处晶体缺陷集中,原子能量高➢界面是氧化、腐蚀的优先发生地➢界面是固态相变的有效形核位置➢界面原子的扩散速度远高于晶内➢存在内吸附现象。

异类原子可降低界面能时,会向界面偏聚➢界面阻碍位错运动,组织越细小,强度硬度越高➢界面能越大,界面迁移速度越大;晶粒长大可以降低界面能。

固溶体结晶的特点(1)异分结晶:固相成分与液相成分不同,晶体与母相成分不同称为异分结晶(选择结晶)。

(2)固溶体结晶需要在一定的温度范围:每一温度下,结晶出一定数量的固相。

温度的降低,固相的数量增加成分分别沿着固相线和液相线变化非平衡凝固总结:(1)固相平均成分线和液相平均成分线偏离固相线与液相线。

冷却速度越快,偏离越严重(2)固溶体成分不均匀。

先结晶部分总是富高熔点组元,后结晶的部分富低熔点组元。

区域偏析、晶内偏析、枝晶偏析(3)结晶温度。

凝固终结温度低于平衡凝固时的终结温度。

伪共晶——靠近共晶点附近合金得到全部共晶组织离异共晶——共晶组织没有显示出共晶的特征不平衡共晶——在不该出现共晶的合金里出现共晶组织孪生变形的特点(1)切应力作用下发生,临界切应力远大于滑移时。

(2)是一种均匀切变。

金属学与热处理资料总结试用期末复习考研哈尔滨工业大学(哈工大)重庆大学(重大)

金属学与热处理资料总结试用期末复习考研哈尔滨工业大学(哈工大)重庆大学(重大)

★金属的定义:金属是具有正的电阻温度系数的物质, 通常具有良好的导电性、导热性、延展性、高的密度和高的光泽。

★金属原子的结构特点:其最外层的电子(价电子)数很少,一般为1~2个,不超过3个。

★结合力: ①金属键:共有价电子→电子云→键无方向性和饱和性②离子键: 得失价电子→正负离子③共价键: 共有电子对→键有饱和性④范德瓦尔键 : 一个分子的正电荷部位与另一分子的负电荷部位间以微弱静电引力相引而结合在一起称为分子键。

★金属的键能:键能高,熔点、强度、模量也越高;原子半径热膨胀系数小★晶带轴:平行于或者相交于同一直线的一组晶面组成一个晶带,而该直线叫做晶带轴。

多晶型转变:当外部的温度和压强改变时,有些金属会由一种晶体结构向另一种晶体结构转变,称之为多晶型转变,又称为同素异构转变(重结晶,二次结晶)第二章:凝固:金属由液态转变为固态的过程。

结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。

宏观现象:过冷 热力学条件:微观过程:形核和长大影响金属结晶过冷度的因素:答:①金属的本性 ②金属的纯度 ③冷却速度;④铸造模具所用材料 形核方式:均匀形核,非均匀形核液固界面的微观结构:具有粗糙界面(杰克逊因子<2):垂直方式长大; 光滑界面(杰克逊因子>5)、台阶长大:二维晶核、螺型位错; 正温度梯度:平面状界面、 负温度梯度:树枝状第三章:二元相图:匀晶相图:固溶体合金,适于变形成形 选择性结晶规律: 不平衡结晶:成分偏析成分过冷:正温度梯度下可能长成树枝晶 共晶相图:适于铸造成形伪共晶:由非共晶成分的合金所得到的共晶组织离异共晶:共晶体中的一相依附于先析出相生长,使共晶组织特征消失 包晶相图:铸锭三晶区的形成过程表层细晶区:当高温液态金属倒入铸模后,靠近模壁一层的液体产生较大的过冷,结晶先 从铸模壁开始,并且模壁可以作为非均匀形核的基底,因此,在此薄层中会形成大量的晶 核,同时向各个方向生长,形成了表面细晶区。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章金属的晶体结构第一节金属1度系数为负值。

第二节金属的晶体结构1、晶体的特征:1、具有一定的熔点2、各向异性非晶体为各向同性23、为了清楚地表明原子在空间排列的规律性,常常将构成晶体的原子抽象为纯粹的几何点,称之为点阵。

这些点阵有规则地周期性重复排列所形成的三维空间阵列称为空间点阵。

常人4567、常见的三种晶体结构主要是指体心立方、面心立方和密排六方结构,其中体心立方结构(BCC)每个晶胞含有2原子,其原子配位数为8,致密度是68%面心立方结构(FCC)每个晶胞含有4原子,其原子配位数为12;致密度是74%密排六方结构(HCP)每个晶胞含有6原子,其原子配位数为12,致密度是74% 。

8、密排面的堆垛顺序是AB AB AB……,构成密排六方结构ABCABCABC……,构成面心立方结构9、通常以[uvw]表示晶向指数的普遍形式原子排列相同但空间位向不同的所有晶向成为晶向族,<uvw>表示晶面指数的一般表示形式为(hkl)晶面族用大括号{hkl}表示10、在立方结构的晶体中,当一晶向[uvw]位于或平行于某一晶面(hkl)时,必须满足以下关系:hu+kv+lw=0当某一晶向与某一晶面垂直时,则其晶向指数和晶面指数必须完全相等,即u=b、v=k、w=l。

12、由于多晶体中的晶粒位向是任意的,晶粒的各向异性被互相抵消,因此在一般情况下整个晶体不显示各向异性,称之为伪等向性。

一般金属都是多晶体第三节实际金属的晶体结构1、晶体中的线缺陷就是各种类型的位错,它是在晶体中某处有一列或若干列原子发生了有规律的错排现象。

2、刃型位错的重要特征:1、刃型位错有一额外半原子面;2、位错线是一个具有一定宽度的管道3、位错线与晶体的滑移方向相垂直,位错线运动的方向垂直于位错线螺型位错的重要特征:1、螺型位错没有额外半原子面;2、螺型位错线是一个具有一定宽度的管道,其中只有切应变,而无正应变3、位错线与晶体的滑移方向平行,位错线运动的方向与位错线垂直4、位错线与柏氏矢量垂直就是刃型位错,位错线与柏氏矢量平行,就是螺型位错。

用柏氏矢量可以表示晶体滑移的方向和大小,已知位错线是晶体在滑移面上已滑移区和未滑b b 正刃错 负刃错 移区的边界线,位错线运动时扫过滑移面,晶体即发生滑移,其滑移量的大小即柏氏矢量b ,滑移的方向即柏氏矢量的方向。

5、位错密度-单位体积中所包含的位错线的总长度。

ρ=L/Vρ:位错密度; L :位错线的总长度; V :晶体体积课后习题:1-4 体心立方,若h+k+l=偶数,则d =√ℎ2+k 2+l 2,否则,d =2√ℎ2+k 2+l 21-5 面心立方晶体若h 、k 、l 均为奇数或均为偶数,则 d =√ℎ2+k 2+l 2 ;否则, d =2√ℎ2+k 2+l 2。

1-15第二章 纯金属的结晶第一节 金属结晶的现象1、1mol 物质从一个相转变为另一个相时,伴随着放出或吸收的热量称为相变潜热。

2、结晶过程是(形核)与(长大)的过程第二节 金属结晶的热力学条件1、如果液相的自由能高于固相的自由能,那么液相将自发地转变为固相,即金属发生结晶。

液相金属和固相金属的自由能之差,是结晶的驱动力,阻力:表面能增加2、(过冷度越大)是结晶的热力学条件第三节 金属结晶的结构条件1、这种不断变化着的短程有序原子集团称为(结构起伏),或称为相起伏第四节 晶核的形成1、两种形核方式:一种是(均匀形核)、二是(非均匀形核)。

若液相中各个区域出现新的相晶核的几率都是相等的,这种形核方式即为均匀形核;反之,新相优先出现于液相中的某些区域称为非均匀形核。

2、晶胚半径与ΔG 的关系3、临界晶核半径r K最大晶胚尺寸r max 和临界晶核半径r K 随过冷度的变化第五节 晶核长大1、两条曲线的交点所对应的过冷度 就是临界过冷度2、形成临界晶核时,体积自由能的下降只补偿了表面能的(2/3),还有(1/3)的表面能没有得到补偿,需要另外供给,即需要对形核做功,故称 为(形核功)。

3、这种微区内暂时偏离平衡能量的现象即为(能量起伏)。

4、过冷液相中的相起伏和能量起伏是形核的基础5、临界形核功与过冷度的平方成反比。

6、N = N 1• N 2N 1为受形核功影响的形核率因子,N 2为守原子扩散能力影响的形核率因子,形核率N 则是以上两者的综合。

7、由于N 主要受到形核功的控制,而形核功 与过冷度的平方成反比,过冷度越大,则形核功越小,因而形核率增加,故N 随过冷度的增加,即温度的降低而增大。

N 主要取决于原子的扩散能力,温度越高(过冷度越小),则原子的扩散能力越大,因而N 越大。

这是因为温度较高、过冷度较小时,原子有足够高的扩散能量,此时的形核率主要受形核功的影响,但当过冷度很大(超过极大值后)时,原子的扩散能力转而起主导作用。

8、凹面上形成的晶核体积最小,平面上次之,凸面上最大。

b b右螺型9、凹曲面的形核效能最高,因为较小体积的晶胚便可达到临界晶核半径,平面居中,凸曲面的效能最低。

10、决定晶体长大方式和长大速度的主要因素是(晶核的界面结构)和(界面前沿液体中的温度梯度)。

11、在光学显微镜下,光滑界面由曲折的若干小平面组成,又称为小平面界面12、在光学显微镜下,粗糙界面是平直的,又称为非小平面界面。

13、在粗糙界面上的所有位置都是生长位置,所以液相原子可以连续地向界面添加,界面的性质永远不会改变,称为(连续)长大或均匀长大。

14、正温度梯度是指液相中的温度随至界面距离的增加而(提高)的温度分布状况。

结晶前沿液体中的过冷度随至界面距离的增加而(减小)。

15、负温度梯度是指液相中的温度随至界面距离的增加而(降低)的温度分布状况。

过冷度随至界面距离的增加而(增大)。

16、具有粗糙界面结构的晶体,在正的温度梯度下长大时,固液界面始终近似地保持平面,这种长大方式称为平面长大方式。

具有粗糙界面的晶体在负的温度梯度下生长时,一般的金属结晶时,均以树状生长方式长大。

具有光滑界面的物质在负的温度梯度下长大时,仍有可能长成规则的几何外形。

17、晶粒度取决于形核率N和长大速度G之比,比值N/G越大,晶粒越细小18、为了细化铸锭和焊缝区的晶粒,采用一下几种方法:1、控制过冷度,增加过冷度的方法主要是提高液态金属的冷却速度2、变质处理,变质处理是在浇注前往液态金属中加入形核剂,促进形成大量的非均匀晶核来细化晶粒。

3、振动、搅动,一方面是依靠从外面输入能量促使晶核提前形成,另一方面是使成长中的枝晶破碎,使晶核数目增加。

左螺型第六节金属铸锭的宏观组织与缺陷1、纯金属铸锭的宏观组织通常由三个晶区所组成,即外表层的(细晶区)、中间的(柱状晶区)和心部的(等轴晶区)。

第三章二元合金的相结构与结晶成的具有金属特制的物质。

第一节合金中的相3.4.相是组织的基本组成部分。

第二节合金的相结构1.其晶体结构与组成合金的某一组元的2.若两元素间的电负性差值越小,则形成的置换固溶体的固溶度越大。

3.(原子尺寸因素)、(电负性因素)、(电子浓度因素)和(晶体结构因素)是影响固溶体固溶度大小的四个主要因素。

固溶体的固溶度除与以上因素有关外,还与(温度)有关,温度越高,固溶度越大。

4.(1)正常价化合物:由电负性相差较大的元素组成(2)电子化合物:按照一定电子浓度的比值形成的化合物(3)间隙相和间隙化合物:<1>间隙相都具有简单的晶体结构相具有极高的熔点和硬度,它们是硬质合金的重要相组成。

<2>间隙化合物一般具有复杂的晶体结构第三节二元合金相图的建立第四节匀晶相图及溶固体的结晶1、两组元不但在液态无限互溶,而且在固态也无限互溶的二元合金系所形成的相图,称为匀晶相图。

2、固溶体合金结晶时所结晶出的固相成分与液相成分不同,这种结晶出的晶体与母相化学成分不同的结晶称为异分结晶,或称为选择结晶。

3、平衡分配系数k0定义:在一定温度下,固液两平衡相中的溶质浓度之比值,即:K0=Cα/C L 式中Cα和C L 为固相和液相的平衡浓度。

4、当k0 < 1时,k0值越小,则液相线和固相线之间的水平距离越大;当k0 > 1时,k0值越大,则液相线和固相线之间的水平距离也越大。

k0值的大小,实际反映了溶质组元重新分配的强弱程度。

5、固溶体合金不平衡结晶,先结晶的部分含高熔点组元较多,后结晶的部分含低熔点组元较多。

,在晶粒的内部存在着浓度差别,这种在一个晶粒内部化学成分不均匀的现象,称为7、在固液界面前沿一定范围内的液相,其实际温度仪与平衡结晶温度,,出现了一个过冷区域,过冷度为平衡结晶温度与实际温度之差,这个过冷度是由于界面前沿液相中的成分差别的平衡结晶曲线正好相切。

第五节共晶相图及其合金的结晶12、在平衡结晶条件下,只有共晶成分的合金才能获得完全的共晶组织。

但在不平衡结晶条件下,成分在共晶点附近的亚共晶或过共晶合金,也可能得到全部共晶组织,这种非共晶成第六节包晶相图及其合金的结晶12第七节其他类型的二元合金相图第八节二元相图的分析和使用1、成分间隔与温度间隔越大,则合金的流动性越差。

第四章铁碳合金碳钢和铸铁都是铁碳合金。

第一节铁碳和金的组元及基本相⒈(铁素体)是碳溶于α-Fe中的间隙固溶体。

⒉(奥氏体)是碳溶于γ-Fe中的间隙固溶体。

⒊(渗碳体)是铁与碳形成的间隙化合物Fe3C。

第二节Fe-Fe3C相图分析⒈共析转变的产物称为(珠光体)。

⒉珠光体组织中片层排列方向相同的领域叫做一个(珠光体领域)或(珠光体团)。

第三节铁碳合金的平衡结晶过程及其组织⒈在恒温下发生共晶转变形成(莱氏体)(Ld)。

第四节含碳量对铁碳合金平衡组织和性能的影响铁碳合金的成分与组织的关系⒈铁碳相图成分影响流动性○1刚液的流动性随含碳量的增加而提高○2浇注温度越高,流动性越好○3当浇注温度一定时,过热度越大,流动性越好○4亚共晶铸铁随含碳量的增加,流动性随之提高,过共晶铸铁随含碳量的增加,流动性变差。

第五节钢种的杂质元素及钢锭组织⒈硫的最大危害是引起钢在热加工时开裂,这种现象称(热脆),出现Fe+FeS共晶。

⒉磷具有很强的固溶强化作用,它是钢的强度,硬度显著提高,但剧烈地降低钢的韧性,尤其是低温韧性,成为(冷脆)。

⒊如果将含氮量较高的钢从高温急速冷却下来(淬火)时,就会的到氮在α-Fe中的过饱和固溶体,将此钢材在室温下长期放置或稍加热时,氮就逐渐以氮化铁的形式从铁素体中析出,使刚的强度硬化升高,塑性韧性下降,使钢材变脆,这种现象叫做(淬火时效)。

⒋含有氮的低碳钢材经冷塑性变形后,性能也将随时间而变化,随强度硬度升高,塑性韧性下降,这种现象称为(应变时效)。

第六章金属及合金的塑性变形⒈力学性能强化机制:○1形变强化;○2细晶强化;○3固溶强化;○4形成第二相(弥散强化、沉淀强化)。

相关文档
最新文档