生化6第六章生物氧化
生化名词解释
第四章糖代谢(一)名词解释1.乳酸循环(Cori循环):肌肉收缩时生成乳酸,由于肌肉内糖异生活性低,所以乳酸通过细胞膜弥散进入血后,再进入肝,在肝内异生为葡萄糖。
葡萄糖释进入血液后又可被肌肉摄取,这就构成了一个循环,称为乳酸循环。
2.糖异生:由非糖物质乳酸、丙酮酸、甘油、生糖氨基酸等转变成糖原或葡萄糖的过程称为糖异生,糖异生只在肝脏、肾脏发生。
3.高血糖:临床上将空腹血糖浓度高于7.22~7.78mmol/L,称为高血糖。
4.糖尿:指血糖浓度高于8.89~10.00mmol/L,超过了肾小管对葡萄糖的重吸收能力,尿中出现葡萄糖,称为糖尿。
5.糖原合成与糖原分解:糖原为体内糖的贮存形式,也可被迅速动用。
由葡萄糖合成糖原的过程称为糖原合成,糖原合酶为关键酶。
由肝糖原分解为6-磷酸葡萄糖,再水解成葡萄糖释出的过程称为糖原分解,磷酸化酶为关键酶。
6.血糖:血液中所含的葡萄糖称为血糖。
血中葡萄糖水平的正常范围是3.89~6.11mmol /L。
7.糖酵解和糖酵解途径:在无氧情况下,葡萄糖经丙酮酸分解成乳酸的过程称为糖酵解。
自葡萄糖分解为丙酮酸的反应阶段为糖酵解和糖有氧氧化所共有,称为糖酵解途径。
8.糖酵解途径:自葡萄糖分解为丙酮酸的反应阶段为糖酵解和有氧氧化所共有,称为糖酵解途径。
9.钙调蛋白(calmoduline):是细胞内的重要调节蛋白。
由一条多肽链组成,CaM上有4个Ca2+结合位点,当胞质Ca2+浓度升高,Ca2+与CaM结合,其构象发生改变进而激活Ca2+CaM激酶。
10.低血糖:临床上将空腹血糖浓度低于3.33~3.89mmo1/L,称为低血糖。
11.乳酸循环:又称Cori循环,指将肌肉内的糖原和葡萄糖通过糖酵解生成乳酸,乳酸进入血中运输至肝脏,在肝内乳酸异生成葡萄糖并弥散入血,释入血中的葡萄糖又被肌肉摄取利用,构成的循环过程称为乳酸循环。
12.三羧酸循环:又称Krebs循环或枸橼酸循环,为乙酰辅酶A氧化的途径,先由乙酰辅酶A与草酰乙酸缩合生成三羧基酸枸橼酸,再经2次脱羧,4次脱氢等一系列反应,再次生成草酰乙酸,这一循环过程称为三羧酸循环。
2016中国农业大学考研生物必做题集王镜岩生物化学题库及答案解析
2016中国农业大学考研生物必做题集王镜岩生物化学题库及答案解析第六章生物氧化一、选择题(A 型题)1.关于生物氧化的错误描述是()A.生物氧化是在体温,pH 近中性的条件下进行的B.生物氧化过程是一系列酶促反应,并逐步氧化,逐步释放能量C.其具体表现为消耗氧和生成CO 2D.最终产物是H 2O,CO 2和能量E.生物氧化中,ATP 生成方式只有氧化磷酸化2.生命活动中能量的直接供给者是()A.葡萄糖B.ATPC.ADPD.脂肪酸E.磷酸肌酸3.下列关于呼吸链的叙述,其中错误的是()A.它普遍存在于各种细胞的线粒体或微粒体B.它是产生ATP,生成水的主要方式C.NADH 氧化呼吸链是体内最普遍的D.呼吸链中氧化与磷酸化的偶联,可以解离E.氢和电子由电负性较高的、电子密度较大的流向电负性较低、电子密度较小的成分,最后传递到正电性最高的氧4.当氢和电子经NADH 氧化呼吸链传递给氧生成水时可生成的ATP 分子数是()A.1B.2C.3D.4E.55.当氢和电子经琥珀酸氧化呼吸链传递给氧生成水时可生成ATP 的分子数是()A.1B.2C.3D.4 E.56.细胞色素在呼吸链中传递电子的顺序是()A.a→a 3→b→c 1→cB.b→a→a 3→c 1→cC.b→c 1→c→aa 3D.c 1→c→b→a→a 3E .c→c 1→aa 3→b7.线粒体内膜表面的α-磷酸甘油脱氢酶的辅酶是()A.FADB.NAD+C.NADP+D.FMNE.TPP8.作为递氢体,能将电子直接传递给细胞色素的是()A.NADH+H+B.NADPH+H+C.CoQD.FADH2E.FMNH29.能接受还原型辅基上两个氢的呼吸链成分是()A.NAD+B.FADC.CoQD.CytcE.Cytb10.鱼藤酮抑制呼吸链的部位是()A.NAD→FMNB.c 1→cC.CoQ→bD.aa 3→O 2E.b→c 1二、填空题1.琥珀酸呼吸链的组成成分有、、、、。
第六(8)章生物氧化与氧化磷酸化
,故称为细胞色素。
细胞色素通过辅基中的铁离子价的可逆变 化进行电子传递。它在呼吸链中作为单电子传 递体。
血红素
Cyt.类基本结构
Cys 蛋白质部分 S H3C- CH H3C-
多肽链
Cys CH3 S
细 胞 色 素
N
铁卟啉 H3CCH2 CH2 COO-
-CH - CH3 Fe N 3+ N -CH3
代谢物在脱氢酶催化下脱下的氢由相应的氢载体( NAD+ 、 NADP+ 、 FAD 、 FMN 等)所接受,再通过一系列递氢 体或递电子体传递给氧而生成H2O 。
CH3CH2OH
乙醇脱氢酶
CH3CHO
NAD+
NADH+H+
NAD+
2e
电子传递链
1\2 O2
O=
2H+
H2 O
(4)当有机物被氧化成CO2和H2O时,释放的 能量怎样转化成ATP。
2)磷氮键型
O NH C N NH CH3 P O O
NH C N NH CH3 O P O NH2 O
CH2COOH
磷酸肌酸 10.3千卡/摩尔
CH2CH2CH2CHCOOH
磷酸精氨酸 7.7千卡/摩尔
磷酸肌酸是易兴奋组织(如肌肉、脑、神经)唯一的能起 暂时储能作用的物质。 磷酸精氨酸是无脊椎动物肌肉中的储能物质
[ATP]+1/2[ADP] 能荷= [ATP]+[ADP]+[AMP]
能荷可调节代谢,能荷高时,抑制物质分解代谢,促 进物质的合成代谢;能荷低,促进物质分解代谢,抑制 物质的合成代谢。
能荷调节主要是通过 ATP 、ADP、AMP作为一些 调节酶的变构效应物而起 作用的。 如糖酵解中磷酸果糖 激酶的调控:高浓度的ATP 是该酶的变构抑制剂,ATP 的抑制作用可被AMP解除。
第6章--生物氧化习题
第六章生物氧化习题一、名词解释1.生物氧化:有机物质在生物体活细胞内氧化分解,同时释放能量的过程。
2 氧化磷酸化:指底物脱下的2H经过电子传递链传递到分子氧形成水的过程中释放出能量与ADP磷酸化生成 ATP的过程相偶联生成ATP的方式。
3 底物水平磷酸化:某些底物分子中含有高能磷酸键,可转移至ADP生成ATP的过程。
4呼吸链:代谢物上的氢原子被脱氢酶激活脱落后,经过一系列的传递体,最后传递给被激活的氧分子而生成水的全部体系称呼吸链。
5 高能化合物:在生物体内随水解反应或基团转移反应可放出大量自由能的化合物成为高能化合物。
6 磷氧比:指每消耗1mol氧原子所产生的ATP的物质的量。
7 电子传递抑制剂:能够阻断电子传递链中某一部位电子传递的物质称为电子传递抑制剂。
8 解偶联剂:具有解偶联作用的化合物称为解偶联剂。
9 氧化磷酸化抑制剂:是指直接作用于线粒体F0F1-ATP酶复合体中的F1组分而抑制ATP合成的一类化合物。
10 F0F1-ATP合酶:位于线粒体内膜基质一边,由F0和F1构成的复合体。
是一种ATP驱动的质子运输体,当质子顺电化学梯度流动时催化ATP的合成;当没有氢离子梯度通过质子通道F0时,F1的作用是催化ATP的水解。
二、选择题1.生物氧化的底物是:( D )A、无机离子B、蛋白质C、核酸D、小分子有机物2.除了哪一种化合物外,下列化合物都含有高能键?( D )A、磷酸烯醇式丙酮酸B、磷酸肌酸C、ADPD、G-6-PE、1,3-二磷酸甘油酸3.下列哪一种氧化还原体系的氧化还原电位最大?( C )A、延胡羧酸→丙酮酸B、CoQ(氧化型) →CoQ(还原型)C、Cyta Fe2+→Cyta Fe3+D、Cytb Fe3+→Cytb Fe2+E、NAD+→NADH4.呼吸链的电子传递体中,不是蛋白质而是脂质的组分是:( D )A、NAD+B、FMNC、FE、SD、CoQE、Cyt5.2,4-二硝基苯酚抑制细胞的功能,可能是由于阻断下列哪一种生化作用而引起? ( E )A、NADH脱氢酶的作用B、电子传递过程C、氧化磷酸化D、三羧酸循环E、电子传递与氧化磷酸化的偶联过程6.能使线粒体电了传递与氧化磷酸化解偶联的试剂是:( A )A、2,4-二硝基苯酚B、寡霉素C、一氧化碳D、氰化物7.呼吸链的各细胞色素在电子传递中的排列顺序是:( D )A、c1→b→c→aa3→O2B、c→c1→b→aa3→O2C、c1→c→b→aa3→O2D、b→c1→c→aa3→O28.在呼吸链中,将复合物I、复合物II与细胞色素系统连接起来的物质是什么?( C )A、FMNB、Fe·S蛋白C、CoQD、Cytb9.下述那种物质专一的抑制F0因子?( C )A、鱼藤酮B、抗霉素AC、寡霉素D、氰化物10.下述分子哪种不属于高能磷酸化合物:( C )A、ADPB、磷酸烯醇式丙酮酸C、乙酰COAD、磷酸肌酸11.细胞色素c是——:( C )A、一种小分子的有机色素分子B、是一种无机色素分子C、是一种结合蛋白质D、是一种多肽链12.下列哪种物质抑制呼吸链的电子由NADH向辅酶Q的传递:( B )A、抗霉素AB、鱼藤酮C、一氧化碳D、硫化氢13.下列哪个部位不是偶联部位:( B )A、FMN→CoQB、NADH→FMNC、b→cD、a1a3→O214.ATP的合成部位是:( B )A、OSCPB、F1因子C、F0因子D、任意部位15.目前公认的氧化磷酸化理论是:( C )A、化学偶联假说B、构象偶联假说C、化学渗透假说D、中间产物学说16.下列代谢物中氧化时脱下的电子进入FADH2电子传递链的是:( D )A、丙酮酸B、苹果酸C、异柠檬酸D、琥珀酸17.下列呼吸链组分中氧化还原电位最高的是:( C )A、FMNB、CytbC、CytcD、Cytc118.ATP含有几个高能键:( B )A、1个B、2个C、3个D、4个19.在使用解偶联剂时,线粒体内膜:( B )A、膜电势升高B、膜电势降低C、膜电势不变D、两侧pH升高20.线粒体电子传递链各组分:( C )A、均存在于酶复合体中B、只能进行电子传递C、氧化还原电势一定存在差异D、即能进行电子传递,也能进行氢的传递二、填空题1.生物氧化是有机分子在细胞中氧化分解,同时产生可利用的能量的过程。
基础生物化学-生物氧化
内膜约含 80%的蛋白质,包括电子传递链和氧 化磷酸化的有关组分,是线粒体功能的主要 担负者 。 线粒体 的内腔 充满半流动的基质 (衬质),其中包含大量的酶类以及线粒体 DNA和核糖体。 线粒体基质酶类包括 TCA酶类、脂肪酸-氧化 酶类和氨基酸分解代谢酶类。
哺乳动物线粒体 DNA 为环状分子,编码包括 细胞色素氧化酶、细胞色素 b 和 F0 疏水亚基 在内的10多种蛋白质,约占内膜总蛋白质的 20%,其余的蛋白质均由核基因编码,在细 胞质中合成后运入线粒体。 线粒体内膜的内表面有一层排列规则的球形颗 粒,通过一个细柄与构成嵴的内膜相连接, 这就是ATP合酶(偶联因子F1-F0)。
6.1.1.3 生物氧化中CO2和H2O的生成 ① CO2的生成 代谢底物在酶的作用下经一系列脱氢、加水等 反应,转变为含羧基的化合物,经脱羧反应 生成CO2,包括直接脱羧和氧化脱羧。
② H2O的生成 生物氧化中底物脱下的氢与氧结合生成水。
6.1.2 生物氧化的自由能变化 6.1.2.1 自由能概念 生物体不能直接利用热能做动,在生命活动过 程中所需的能量都来自体内生化反应释放的 自由能。 自由能(free energy) :在恒温、恒压条件下一 个体系可用于做有用功的能量。又称Gibbs自 由能,以G表示。
②黄素蛋白(flavoproteins) 与电子传递链有关的黄素蛋白有两种,分别以 FMN和FAD为辅基。
在FAD、FMN分子中的异咯嗪部分可进行可逆 的脱氢加氢反应。氧化型黄素辅基从NADH接 受两个电子和一个质子,或从底物(如琥珀酸) 接受两个电子和两个质子而还原: NADH+H++FMN=NAD++FMNH2 琥珀酸+FAD=延胡索酸+FADH2
生化习题_第六章_生物氧化[1]
第六章生物氧化一、单项选择题1、下列化合物不属高能化合物的是:A.1,3-二磷酸甘油酸B.乙酰CoAC.AMPD.氨基甲酰磷酸E.磷酸烯醇式丙酮酸2、线粒体长呼吸链的排列顺序哪个是正确的?A. NADH-FMN-CoQ-Cyt-O2B. FADH2-NAD+-CoQ-Cyt-O2C. FADH2-FAD-CoQ-Cyt-O2D. NADH-FAD-CoQ-Cyt-O2E. NADH-CoQ-FMN-Cyt-O23、正常生理条件下控制氧化磷酸化的主要因素是:A.O2的水平B.ADP的水平C.线粒体内膜的通透性D.底物水平E.酶的活力4、氰化物的中毒机理是:A.大量破坏红细胞造成贫血B.干扰血红蛋白对氧的运输C.抑制线粒体电子传递链D.抑制呼吸中枢,使通过呼吸摄入氧量过低E.抑制ATP合酶的活性5、关于细胞色素氧化酶的叙述,正确的是:A.存在于线粒体中B.存在于细胞液中C.存在于微粒体中D.存在于细胞膜上E.存在于内质网中6、关于呼吸链叙述正确的是:A.琥珀酸脱氢酶的辅酶是FMNB.琥珀酸脱氢酶不属于黄酶类C.短呼吸链的氢传递顺序是FADH2-CoQ-Cyt-O2D.NADH呼吸链由酶复合体Ⅰ、Ⅱ、Ⅲ组成E.NAD+、FMN、Cyt都是递氢体7、每mol高能键水解时释放的能量大于:A.5KJB.20KJC.21KJD.40KJE.51KJ8、有关FMN的描述,正确的是:A.含VitB6B.也称黄素腺嘌呤二核苷酸C.是递氢体D.每次传递1HE.是琥珀酸脱氢酶的辅基9、下列哪一种酶不参与电子传递链的组成?A.NADH-泛醌还原酶B.泛醌-细胞色素C还原酶C.琥珀酸-泛醌还原酶D.细胞色素C氧化酶E.细胞色素C还原酶10、下列那种物质不属于呼吸链抑制剂?A.鱼藤酮B.粉蝶霉素AC.抗霉素AD.二硝基苯酚E.二巯基丙醇11、下列那种物质在呼吸链中属于递电子体?A.NAD+B.FMNC.Fe-SD.CoQE.FAD12、2H经过NADH氧化呼吸链传递可产生的ATP数为:A.2B.3C.4D.6E.1213、2H经过琥珀酸氧化呼吸链传递可产生的ATP数为:A.2B.3C.4D.6E.1214、符合细胞色素特点的是:A.细胞色素也可分布在线粒体外B.呼吸链中有许多细胞色素可被CN-抑制C.参与呼吸链组成的细胞色素有a、b、c、d四种D.细胞色素C氧化酶其本质不是细胞色素E.所有细胞色素与线粒体内膜紧密结合,不易分离15、电子按下列各途径传递,能偶联磷酸化的是:A.Cyt—Cytaa3B.CoQ--CytbC.Cytaa3—O2D.琥珀酸--FADE.FAD—CoQ16、线粒体呼吸速率不会因哪种物质的缺乏而受抑制?A.O2B.磷酸C.Cytaa3—O2D.底物如琥珀酸E.ATP17、下列哪种说法是正确的?A.复合体Ⅰ又称为琥珀酸-泛醌还原酶B.铁硫蛋白是电子传递体,每次传递2个电子C.FMN和FAD结构中含有铁卟啉D.复合体Ⅳ也称为细胞色素C氧化酶E.NAD+、FAD、FMN、CoQ等属于递氢体18、下列哪种物质能抑制复合体Ⅲ中Cytb与Cytc1间的电子传递?A.CO、CN-B.鱼藤酮C.粉蝶霉素AD.二巯基丙醇E.异戊巴比妥19、下列哪种实验不能确定呼吸链成分的排列顺序?A.测定标准氧化还原电位B.将呼吸链拆开重组,鉴定复合体的排列C.测定P/O比值及自由能的变化D.检测呼吸链阻断部位前后吸收光谱的改变E.以还原状态为对照,缓慢给氧,观察各组分被氧化的顺序20、关于ATP在能量代谢中的作用,错误的是:A.ATP是生物能量代谢的中心B.ATP可转变为其他的三磷酸核苷C.ATP属于高能磷酸化合物D.ATP与磷酸肌酸之间可以相互转变E.当ATP较富余时,磷酸肌酸将-P转移给ADP生成ATP二、多项选择题(X型题,有二个以上正确答案)1、关于电子传递链的叙述,错误的是:A.电子传递链又称为呼吸链B.长呼吸链与短呼吸链的区别主要在于所含复合体的多少C.电子传递体都与蛋白质结合D.细胞色素中都含有一个铁卟啉辅基2、关于ATP合酶的叙述,错误的是:A.ATP合酶是合成的ATP酶B.ATP合酶是由F0、F1两部分构成C.F1的β亚基可独立行使ATP合成和释放D.ATP合酶最小的反应中心为αβX(X为小亚基)3、下列哪些酶属于线粒体外氧化还原体系?A.过氧化氢酶B.过氧化物酶C.超氧物歧化酶D.加单氧酶4、关于胞液中NADH的氧化,正确的是:A.需通过某种方式进入线粒体后才可进行氧化磷酸化B.可经过α-磷酸甘油穿梭机制C.可经过苹果酸-天冬氨酸穿梭机制D.每2H可产生3个ATP5、关于线粒体DNA的特点,正确的是:A.呈裸露的环状双螺旋结构B.缺乏蛋白质保护C.具有损伤修护系统D.每2H可产生3个ATP三、填空题1、电子传递链的四个复合体是①、②、③和④。
生化简明教程章节习题集第六章
第六章生物氧化与氧化磷酸化一、练习题目(一)名词解释1.生物氧化2.高能磷酸化合物3.电子传递链4.磷酸原5.电子传递抑制剂6.氧化磷酸化作用7.底物水平磷酸化作用8.解偶联作用9.磷氧比(P/O)10.穿梭作用(二)问答题1.何谓生物氧化?它有何特点?其作用的关键是什么?生物氧化的方式?2.举例说明高能化合物可分为哪几种键型。
3.影响ATP水解时自由能释放的重要因素是什么?4.电子传递链上有哪几类电子传递体?各作用如何?5.如何证明电子传递链各组分的排列顺序和方向?6.写出电子传递链的排列顺序。
7.在电子传递链上可拆离成哪几个电子传递复合物?各复合物作用是什么?8.电子传递抑制剂主要有哪几种?其毒害作用机理是什么?9.谷氨酸十丙酮酸α酮戊二酸十丙氨酸:已知25℃时丙氨酸合成的Keq为1.107,试计算该反应的ΔG0’值。
10.计算下列各反应的ΔG0’值:(1)ATP+GDP→GTP+ADP;(2)3—磷酸甘油酸+ATP→1.3—二磷酸甘油酸+ADP;(3)NADH氧化生成水11.在真核生物中,指出下列各反应中P/O比的理论值:(1)3—磷酸甘油醛→1,3—二磷酸甘油酸;(2)琥珀酸—延胡索酸;(3)异柠檬酸→α→酮戊二酸;(4) α—酮戊二酸→琥珀酸12.真核生物细胞质内形成的NADH+H+,当其电子传递给氧时,为什么只产生2ATP?13.关于氧化磷酸化机理有哪几种主要学说,其中目前较为公认的是哪一种,其主要内容是什么?其实验证明是什么?14.在真核生物中,根据化学历程计算lmol葡萄糖彻底氧化能产生多少ATP?(三)填空题1.自由能的单位是______________。
当△G>0时,则反应____________自发进行,此反应称为__________反应,其Keq__________1。
2.标准自由能变化与标准氧化还原电势变化的关系为____________。
3.在标准条件下,一般将水解时释放以上自由能的化合物称为高能化合物。
6生物化学习题(答案)
6生物化学习题(答案)6 生物氧化一、名词解释1、生物氧化:生物细胞将糖、脂、蛋白质等燃料分子氧化分解,最终生成CO2和H2O并释放出能量的作用。
生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2和H2O的同时,释放的能量使ADP转变成ATP。
2、呼吸链:有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链。
电子在逐步的传递过程中释放出能量被用于合成ATP,以作为生物体的能量来源。
3、氧化磷酸化:在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中伴随ADP磷酸化生成ATP的作用,称为氧化磷酸化。
氧化磷酸化是生物体内的糖、脂肪、蛋白质氧化分解合成ATP的主要方式。
4、P/O:电子经过呼吸链的传递作用最终与氧结合生成水,在此过程中所释放的能量用于ADP磷酸化生成ATP。
经此过程消耗一个原子的氧所要消耗的无机磷酸的分子数(也是生成ATP的分子数)称为磷氧比值(P/O)。
如NADH的磷氧比值是3,FADH2的磷氧比值是2。
5、底物水平磷酸化:在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键(或高能硫酯键),由此高能键提供能量使ADP(或GDP)磷酸化生成ATP(或GTP)的过程称为底物水平磷酸化。
此过程与呼吸链的作用无关,以底物水平磷酸化方式只产生少量ATP。
6、能荷:能荷是细胞中高能磷酸状态的一种数量上的衡量,能荷大小可以说明生物体中ATP-ADP-AMP系统的能量状态。
1、真核细胞的呼吸链主要存在于线粒体内膜,而原核细胞的呼吸链存在于细胞质膜。
2、NADH呼吸链中氧化磷酸化的偶联部位是复合体Ⅰ、复合体Ⅲ、复合体Ⅳ。
3、在呼吸链中,氢或电子从电负性较大(氧化还原电位较低)的载体依次向电正性较大(氧化还原电位较高)的载体传递。
第六章 代谢与生物氧化
一、新陈代谢
第 六 章 代 谢 与 生 物 氧 化 4. 代谢
——完成某一代谢过程的一组相互衔接的酶 完成某一代谢过程的一组相互衔接的酶 促反应。 促反应。 特点: 特点:
没有完全可逆的代谢途径; 没有完全可逆的代谢途径; 的代谢途径 代谢途径形式是多样 形式是多样的 代谢途径形式是多样的; 代谢途径有确定的细胞定位 确定的细胞定位; 代谢途径有确定的细胞定位; 代谢途径是相互沟通的; 代谢途径是相互沟通 相互沟通的 能量关联; 代谢途径之间有能量关联 代谢途径之间有能量关联; 代谢途径的流量可调控 可调控。 代谢途径的流量可调控。
能
在高能化合物分子中, 在高能化合物分子中 , 被水解断裂时释放出大量 自由能的活泼共价键。 高能键常用符号“ 表示 表示。 自由能的活泼共价键。 高能键常用符号“ ~ ”表示。
“高能键”≠“键能高” 高能键” 高能键 键能高”
茶学与生物系-生物化学
代谢中的能量物质
第 六 章
根据分子结构和高能键的特征,高能化合物可分为: 根据分子结构和高能键的特征,高能化合物可分为: 焦磷酸化合物: (1) 焦磷酸化合物:如ATP
(C~S)型 型
茶学与生物系-生物化学
二、生物氧化
第 六 章 代 谢 与 生 物 氧 化 1.定义 定义
糖类、脂肪、 糖类、脂肪、蛋白质等有机物质在细胞中进行脱 加氧等氧化分解生成CO2和H2O,并释放出能量 氢、加氧等氧化分解生成 , 的过程称为生物氧化 生物氧化(biological oxidation)。 的过程称为生物氧化 。 其实质是需氧细胞在呼吸代谢过程中所进行的一 系列氧化还原反应过程,故又可称细胞呼吸 细胞呼吸。 系列氧化还原反应过程,故又可称细胞呼吸。
• 新陈代谢 一 新陈代谢一 物质 和 能量 转变
生物化学第六章生物氧化
(还原剂) (氧化剂)
可写成 A2+ B3+
A3+
B2+
2019/11/23
生物化学教研室
9
第三节 生成ATP的氧化体系
一、呼吸链的概念
代谢物脱下的成对氢原子(2H)通过多种酶和辅酶所 催化的连锁反应逐步传递,最终与氧结合生成水。由 于此过程与细胞呼吸有关,所以将传递链称为呼吸链, 也叫电子传递呼吸链。
氧化酶,而其它均为不需氧脱氢酶。其中a与 a3很难分开,常写为aa3。
在微粒体中主要为细胞色素b5、p450。p450作用 与aa3类似 。
2019/11/23
生物化学教研室
19
细胞色素的结构
2019/11/23
生物化学教研室
20
呼吸链复合体
人线粒体呼吸链通过上述5大类成分形成4个复合体。
2019/11/23
P/O比值:每消耗1摩尔原子氧所消耗的无机磷 原子的摩尔数。
2019/11/23
生物化学教研室
39
2、氧化磷酸化的偶联机制
内模胞浆侧
化 学 渗 透 学 说内膜基侧2019/11/23
生物化学教研室
40
ATP合酶(复合体Ⅴ)
由F1和F0组成。 F1 在线粒体内膜基质 侧形成颗粒状突起, 催化ATP的生成。 F膜0镶中嵌。在当线H+粒顺体浓内度 梯度经回流时,γ 亚基发生旋转,3个 β 亚基构象变化, 由紧密结合型变为 开放型,释放ATP。
根据呼吸链各组分的标准氧化还原电位测定(电位越 低越容易失去电子)、利用呼吸链特异性的阻断剂测 定其氧化和还原状态的吸收光谱及离体线粒体各组分 的氧化顺序等实验,确定了呼吸链各组分的排列顺序, 并发现体内存在两条主要的呼吸链。
基础生化第六章生物氧化与氧化磷酸化
自发过程示意图
自由能和化学反应的关系
与反应途径、反应机理无关。任何反应, ΔG与反应途径、反应机理无关。任何反应,当: 反应可自发进行,为放能反应; Δ G< 0 反应可自发进行,为放能反应; 反应不能自发进行,为吸能反应; ΔG >0 反应不能自发进行,为吸能反应; 体系处于平衡状态,反应可逆。 ΔG =0 体系处于平衡状态,反应可逆。
ATP的生成方式 ATP的生成方式 1.氧化磷酸化: 1.氧化磷酸化:代谢物脱下的氢经电子传递链与氧 氧化磷酸化 结合成水的同时逐步释放出能量, ADP磷酸化为 结合成水的同时逐步释放出能量,使ADP磷酸化为 ATP的过程 的过程。 ATP的过程。 2.底物水平磷酸化 2.底物水平磷酸化 3.光合磷酸化:由光驱动的电子传递过程与ADP ADP的磷 3.光合磷酸化:由光驱动的电子传递过程与ADP的磷 光合磷酸化 酸化相偶联, 酸化相偶联,使电子传递过程中释放出的能量用 ATP的生成 的生成。 于ATP的生成。
NADH/NAD: E0’ =- =-0.32V, 丙酮酸 乳酸: E0’ =- =-0.185V , 丙酮酸/乳酸 乳酸
G0’=- ×96.496×〖-0.185- (-0.32) 〗 =-2× =- × - - = -25.1kJ/mol
4.高能化合物 高能化合物: 高能化合物: 在标准条件下(pH7,25℃,1mol/L)发生水解时,可 在标准条件下(pH7 25℃ mol/L)发生水解时, (pH 发生水解时 释放出大量自由能( 20.92KJ/mol以上)的化合物。 释放出大量自由能(即20.92KJ/mol以上)的化合物。 KJ/mol以上 高能磷酸化合物: 高能磷酸化合物: 分子中含磷酸基团,它被水解下来时释放出大量的 分子中含磷酸基团 , 自由能( 20.92KJ/mol以上) KJ/mol以上 自由能(即20.92KJ/mol以上),这类高能化合物叫高能磷 酸化合物。 酸化合物。 高能键: 高能键: 在高能化合物分子中, 在高能化合物分子中 , 被水解断裂时释放出大量自 由能的活泼共价键叫高能键。 高能键常用符号“ 由能的活泼共价键叫高能键。 高能键常用符号“ 示。
生化小结
第六章生物氧化1.电子传递链:两条:电子从NADH沿着电子传递链传递到氧;电子从FADH2等传递到氧。
2.氧化磷酸化作用:是NADH和FADH2通过与氧化呼吸链的电子传递相联系的合成A TP 的作用。
每个NADH被氧化可合成2.5分子A TP分子每个FADH2被氧化大约可合成1.5分子A TP分子3.电子传递抑制:鱼藤酮:抑制NADH脱氢酶的电子传递;抗霉素:抑制Cytbc1复合体;氰化物、叠氮化物和CO都抑制细胞色素氧化酶4.解偶联剂:2,4-二硝基苯酚:使电子传递进行但不合成A TP。
5.胞液NADH的再氧化作用:α-磷酸甘油穿梭:每分子胞液NADH约合成1.5个A TP;苹果酸-Asp穿梭:每分子胞液NADH合成2.5个A TP第七章氨基酸代谢1.一些基本概念如氮平衡、必需氨基酸、食物蛋白质的互补作用、蛋白质的腐败作用、AA 代谢库等。
2.AA降解:通过脱去α-氨基,形成的碳骨架(α-酮酸)转变为一种或几种代谢中间物:如可引起葡萄糖的净合成,则称为生糖AA;如可引起产生酮体,则为生酮AA;有些AA可产生一种以上的中间产物,既能生糖又能生酮,即为生糖兼生酮AA。
3.转氨基作用:⑴此反应的受体通常优先利用α-酮戊二酸。
⑵重要的转氨酶为ALT(GPT)和AST(GOT),均与谷AA有关。
⑶所有转氨酶的辅酶都是磷酸吡哆醛(PLP),它是VitB6的衍生物,在转氨作用中可迅速地转变为磷酸吡哆胺。
4.谷AA的氧化脱氨基作用:由转氨基作用产生的谷AA在谷AA脱氢酶作用下氧化脱氨基产生氨。
此酶广泛分布于肝、肾等组织,其特点在于能利用NAD+ 或NADP+两种辅酶并受别构调节,GTP、ATP为别构抑制剂。
5.联合脱氨基作用:⑴转氨基与L-谷AA氧化脱氨基的联合脱氨基作用,是体内大多数AA 脱氨基的主要方式;也是体内某些非必需AA合成的主要途径。
⑵肌肉组织中,主要通过“嘌呤核苷酸循环”脱去氨基。
6.α-酮酸的代谢:合成非必需AA、转变为糖和脂类和氧化功能。
生化学习通总结的部分题库
第二章、核酸1.蛋白质生物合成过程中,以tRNA作为运输氨基酸的工具。
2.tRNA的三级结构呈倒L型。
3.体内的嘌呤碱主要有腺嘌呤和鸟嘌呤。
4.核酸的特征元素是磷P。
5.基因中不编码的居间序列称为内含子,编码序列称为外显子。
6.核酸的基本组成单位是核苷酸。
7.简述tRNA在蛋白质生物合成中的作用。
在蛋白质合成中,tRNA起着运载氨基酸的作用,tRNA是多肽链和mRNA之间的重要转换器。
①其3ˊ端接受活化的氨基酸;②tRNA上反密码子识别mRNA链上的密码子;③合成多肽链时,多肽链通过tRNA暂时结合在核糖体的正确位置上,直至合成终止后多肽链才从核糖体上脱下。
8.简述三种RNA的分类并说明它们在蛋白质合成过程中的作用。
信使RNA(mRNA)、转运RNA(tRNA)、核糖体RNA(rRNA)三种。
信使RNA (mRNA),在蛋白质合成过程中起模板作用;转运RNA(tRNA),在蛋白质合成过程中起搬运活化的氨基酸作用;核糖体RNA(rRNA),在蛋白质合成过程中作为合成的场所。
9.DNA的一级结构指多核苷酸链中各个核苷酸之间的连接方式,核苷酸的种类数量以及核苷酸的排列顺序。
10.增色效应当双螺旋DNA变性时,260nm处紫外光吸收值增加的现象。
11.减色效应当双螺旋DNA复性时,260nm处紫外光吸收值减少的现象。
12.熔解温度Tm 有1/2双链DNA融解转变成单链DNA 的温度。
或增色效应达到50%时的温度。
13.试述tRNA二级结构的组成特点及其每一部分的功能。
tRNA的二级结构为三叶草结构。
其结构特征为:(1)tRNA的二级结构由四臂、四环组成。
已配对的片断称为臂,未配对的片断称为环。
(2)叶柄是氨基酸臂。
其上含有CCA-OH3’,此结构是接受氨基酸的位置。
(3)氨基酸臂对面是反密码子环。
在它的中部含有三个相邻碱基组成的反密码子,可与mRNA上的密码子相互识别。
(4)左环是二氢尿嘧啶环(D环),它与氨基酰-tRNA合成酶的结合有关。
生物化学课件-生物氧化
26
1、不需传递体体系∶ 是最简单的生物氧化体系。从底物脱下来的氢不需传递, 直接在酶作用下与分子氧结合。这种酶可分为∶
2021/4/8
27
(1) 氧化酶类催化的反应模式∶
(见P310)
氧化酶类∶ 它是含Cu++或Fe++的金属蛋白,不能从底物上脱氢,只
能夺取底物上的电子对(2e),用于激活分子氧(O2),从而促 进氧与底物的化合。氰化物、硫化氢对氧化酶有抑制作用。
三羧酸 循环
2021/4/8
大分子降解 成基本结构 单位
小分子化合物 分解成共同的 中间产物(如 丙酮酸、乙酰
CoA等)
共同中间物进 入三羧酸循环, 氧化脱下的氢由 电子传递链传递 生成H2O,释放 出大量能量,其 中一部分通过磷 酸化储存在ATP 中。
5
二、中间代谢
1、酶抑制剂的应用 2、利用遗传缺陷症研究代谢途径 3、气体测量法 4、同位素示踪法
R为气体常数,其值为8.314J·K-1 ·mol-1,F为法拉第常数, 其值为96.485kJ /(V. mol ), T为热力学温度,当T = 298K时
Eφ’ =EφΘ0’ +
2.03.0033RTlg ca[(电氧 子化 受体型 ] )
nF
cg([还 电子原 供体型 ] )
2021/4/8
16
ADP + Pi
生物氧化过程中 释放出的自由能
ATP + H2O
2021/4/8
49
一、ATP 的生成
类别:底物水平磷酸化 电子传递水平磷酸化
2021/4/8
50
二、电子传递过程中自由能的变化
呼吸链中电子传递时自由能的下降
[生化]生物氧化
泵到胞浆侧,复合体Ⅰ有质子泵功能。
组成
第六章 生物氧化
黄素蛋白,辅基为FMN或FAD; 铁硫蛋白,辅基为Fe-S。
1.NADH
复合体Ⅰ
2.FMN
3.Fe-S 4.CoQ
第六章 生物氧化
(1)NAD+和NADP+的结构
R=H: NAD+; R=H2PO3:NADP+
• •
FMNH•
第六章 生物氧化
复合体Ⅰ成分2 Fe-S:单电子传递体
铁硫簇(Fe-S)是铁硫蛋白(酶)中辅基,含有 等量铁原子和硫原子,其中铁原子可进行
Fe2+ Fe3++e 反应传递电子。
第六章 生物氧化
铁 硫 蛋 白 中 辅 基 铁 硫 中 心 (Fe-S) 含 有 等 量 铁 原 子 和 硫 原 子 , 其 中 一 个 铁 原 子 可 进 行 Fe2+ Fe3++e 反应传递电子。属于单电子传递体。
第六章 生物氧化
第六章 生物氧化
Biological Oxidation
第六章 生物氧化
目
概述
生成ATP的氧化磷酸化体系
录
其他不生成ATP的氧化体系
第目六的章要生求物氧化
(一)掌握氧化磷酸化的概念及偶联部位。熟悉氧 化磷酸偶联部位确定的实验及数据,P/O比值的定义 及意义。了解氧化磷酸化的偶联机制。熟悉ATP合酶 组成及作用
(1) Cyt的本质
细胞色素 = 酶蛋白 + 血红素
(2) Cyt的功能
血红素中的铁原子可进行Fe2+ 传递电子, 属单电子传递体。
生化6 生物氧化
4H+
+
Cyt c
2H+
+ +
F
0
+
CoQ Ⅰ Ⅱ
-
延胡索酸 琥珀酸
Ⅲ
Ⅳ
- - -
- H2O
F1
-
NADH+H+ NAD+
1/2O2+2H+ ADP+Pi
基质侧
ATP
4H+
合成1ATP,需要消耗4H+的跨膜势能
NADH氧化呼吸链每传递一对电子, 共泵出10H+,可生成2.5ATP
琥珀酸氧化呼吸链每传递一对电子, 共泵出6H+,可生成1.5ATP
R N H3C H3C N O N O NH
+H -H
R
R
︱
N
H3C
H N O NH
︱
-H +H +2H -2H
N
H3C
N O NH
H 3C
N
H 3C
N
H
O
H
O
FAD/FMN
FADH2/FMNH2
3. 铁硫蛋白
蛋白质
Fe
2+
-e +e
Fe 3+
4. 泛醌(CoQ, UQ, Q)
Q
2H++2e 2H++2e
2
2H +
H 2O
2. 琥珀酸氧化呼吸链
(又称FADH2氧化呼吸链)
琥珀酸 脂酰CoA α-磷酸甘油
(FAD)
→CoQ→b(Fe-S) →c1→c→aa3→1/2O2
复合体III 复合体IV
生化考试名词解释
生化考试名词解释2. 别构酶:又称为变构酶,是一类重要的调节酶。
其分子除了与底物结合、催化底物反应的活性中心外,还有与调节物结合、调节反应速度的别构中心。
通过别构剂结合于别构中心影响酶分子本身构象变化来改变酶的活性。
3. 酮体:在肝脏中,脂肪酸不完全氧化生成的中间产物乙酰乙酸、β-羟基丁酸及丙酮统称为酮体。
在饥饿时酮体是包括脑在内的许多组织的燃料,酮体过多会导致中毒。
4. 糖酵解:生物细胞在无氧条件下,将葡萄糖或糖原经过一系列反应转变为乳酸,并产生少量ATP的过程。
5. EMP途径:又称糖酵解途径。
指葡萄糖在无氧条件下经过一定反应历程被分解为丙酮酸并产生少量ATP和NADH+H+的过程。
是绝大多数生物所共有的一条主流代谢途径。
6. 糖的有氧氧化:葡萄糖或糖原在有氧条件下,经历糖酵解途径、丙酮酸脱氢脱羧和TCA循环彻底氧化,生成C02和水,并产生大量能量的过程。
7. 氧化磷酸化:生物体通过生物氧化产生的能量,除一部分用于维持体温外,大部分通过磷酸化作用转移至高能磷酸化合物ATP中,这种伴随放能的氧化作用而使ADP磷酸化生成ATP的过程称为氧化磷酸化。
根据生物氧化的方式可将氧化磷酸化分为底物水平磷酸化和电子传递体系磷酸化。
8. 三羧酸循环:又称柠檬酸循环、TCA循环,是糖有氧氧化的第三个阶段,由乙酰辅酶A和草酰乙酸缩合生成柠檬酸开始,经历四次氧化及其他中间过程,最终又生成一分子草酰乙酸,如此往复循环,每一循环消耗一个乙酰基,生成CO2和水及大量能量。
9. 糖异生:由非糖物质转变为葡萄糖或糖原的过程。
糖异生作用的途径基本上是糖无氧分解的逆过程---除了跨越三个能障(丙酮酸转变为磷酸烯醇式丙酮酸、1,6-磷酸果糖转变为6-磷酸果糖,6-磷酸果糖转变为葡萄糖)需用不同的酶及能量之外,其他反应过程完全是糖酵解途径逆过程。
10. 乳酸循环:指糖无氧条件下在骨骼肌中被利用产生乳酸及乳酸在肝中再生为糖而又可以为肌肉所用的循环过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.细胞色素类
细胞色素(简写为cyt. )是含铁的电子传递体,辅基为
铁卟啉的衍生物,铁原子处于卟啉环的中心,构成血红
素。各种细胞色素的辅基结构略有不同。线粒体呼吸链
中主要含有细胞色素a, a3,b, c 和c1等,组成它们的辅基 分别为血红素A、B和C。细胞色素a, b, c可以通过它们
2H
SH2
COOH
2H FAD
CH2CH2COOH
Fe*S Cytb
复合物II (琥珀酸脱氢酶)
NAD+
FM NH2 2H
Fe S
2 e-
CoQ
2e2Cyt-Fe2+
-21 O2
S
NADH
+ H 2H
FM N Fe S
CoQH2
复合物I
2e -
2Cyt-Fe3+ 2H+
O2-
H2O
( NADH-泛 醌 还 原 酶 )
CoQ
2e-
Cyt-Fe2+
Cyt-Fe3+
Fe -S
b
c1
Fe -S
CoQH2 2e- Cyt-Fe3+
Cyt-Fe2+ 2e-
Cyt-Fe2+ 2e- Cyt-Fe3+
c
a
Cyt-Fe3+ 2H+
Cyt-Fe2+ 2e-
Cyt-CFue2+
2
e
-
-21 O2
a3
Cyt-CFue32++ O2- H2O
琥珀酸
CHCO
FAD
FAD2H
OH HO延OC胡-C索H酸
(2)NAD/NADP为辅酶的脱氢酶
S-2H NAD/NADP 中间体-2H ½O2
S
NADH/NADPH 中间体 H2O
2.氧化酶: 如细胞色素氧化酶,VitC氧化酶
3.加氧酶: 如羟化酶
第二节 线粒体氧化体系
一.呼吸链的概念
呼吸链又叫电子传递体系或电子传递链,它是代谢物上的氢 被脱氢酶激活脱落后,经过一系列的传递体,最后传递给被激 氧原子,而生成水的全部体系。
第六章
生物氧化
生物氧化概念及特点 线粒体氧化体系 非线粒体氧化体系 生物氧化中能量转移与利用
学习目的与要求:
1.生物氧化概念及特点 2.线粒体氧化体系氧化方式 3.非线粒体氧化体系氧化方式 4.生重物点氧:化中能量转移与利用 1.生物氧化的特点 2.呼吸链的概念,组成成分及排列順序 3.ATP的生成方式 4.氧化磷酸化的机制 5.难影点响:氧化磷酸化的因素 1.呼吸链的组成成分 2.氧化磷酸化的机制
在真核生物细胞内,它位于线粒体内膜上,原核生物中,它 细胞膜上。 线粒体呼吸链
二.呼吸链分组成成分
1.烟酰胺脱氢酶类
S-2H NAD/NADP S NADH/NADPH
2.黄素脱氢酶类
NADH FMN NAD FMN2H
S-2H FAD S FAD2H
3.铁硫蛋白类 Fe3+ Fe2+
-----半胱------半胱----- SSS Fe Fe SS S
的紫外-可见吸收光谱来鉴别。
细胞色素a, b, c 和c1是通过Fe3+ Fe2+ 的互
变起传递电子的作用的。 变起传递电子a的: a作/a用3 的。
a3是通过Cu2+
Hale Waihona Puke Cu+的互
b
c: c/c1
细胞色素c(cytc)
它是电子传递链中一个独 立的 蛋白质电子载体,位于线 粒体 内膜外表,属于膜周蛋白, 易 溶于水。它与细胞色素c1 含有 相同的辅基,但是蛋白组 成则 有所不同。在电子传递过
酪氨酸
COO H CH-O 苹HC果H2酸 COO H
五.生物氧化的酶类
1.脱氢酶 (1)黄素核苷酸为辅基的脱氢酶
需氧黄酶(如:氨基酸氧化酶)
R-CH-COOH
R-C-COOHH2O R-CH-COOH
NH2 FMN/FADFMN2H/FANDH2H NH3 OH
H2O2
O2
不需氧黄酶
CH2-COOH CH2-COOH
复合物III ( 泛 醌 - 细 胞 色 素 c还 原 酶 )
5.辅酶Q---泛醌
泛醌(简写为Q)或辅酶-Q(CoQ):它是电子 传递链中唯一的非蛋白电子载体。为一种脂溶性 醌类化合物。
O
CH3O
CH3
CH3O O
(CH2CH C CH2)nH CH3
n=6-10
NADH泛醌还原酶
NADHCoQ 还原酶 复合体
CoQ2H-CytC 还原酶复合体
三.呼吸链的排列順序
第一节、生物氧化概念及特点 一.生物氧化概念
有机物在生物体内彻底氧化生成CO2和H2O, 并放出能量的作用。也称细胞呼吸/组织呼吸。
包括物质分解和产能
O2
CO2 + H2O
呼吸作用
细胞呼吸(微生物)
二、生物氧化的特点
1.条件温和 生物氧化是在生物细胞内进行的酶促氧化过 程,反应 2条. 水件的温生和成(水溶液,中性pH和常温)。 水的生成不是H直接与O作用生成,水是生物氧化反应 的产物,又是生物氧化反应的环境,氧化过程中脱下来 的氢,通常由各种载体,如NADH等传递到氧并生 成水。水是许多生物氧化反应的氧供体。通过加水脱 氢3作.CO用2,的直生接成参予了氧化反应。 4C作. O能用2量的生的生成生成。成不是C直接与O作用生成,而是通过脱羧 能量的生成不是暴发式的,而是逐步释放,提高能量利用率。生 物氧化释放的能量,通过与ATP合成相偶联,转换成生物体能够 接利用的生物能ATP。
细胞色素c氧化酶
Fe2+
简写为cytc 氧化酶,
即复合物IV,它是
位于线粒体呼吸链
末端的蛋白复合物,
由12个多肽亚基组
成。活性部分主要
包括cyta和a3。
cyta和a3组成一个复合体, cyta含有铁卟啉, cyta3含有铜 原子。cyta3可以直接以O2为电子受体。
在电子传递过程中,分子中的铜离子可以发生 Cu+ Cu2+ 的互变,将cytc所携带的电子传递给O2
三.CO2的生成
(一).直接脱羧
a-脱羧
CO OH C= ℬ-脱O羧 CCOH3 OH C= O CH2 CO
CHO CH3 + CO2
CO
OH
+ CO2
C=
O
CH3
(二).氧化脱羧
a-脱羧 CO OH C=
ℬ-脱OC羧H3
COSCoA
NAD+ NADH+CH3+
+ CO2
HSCOA
COO H CH-O H CH2 COO
NAD+
CO OH NADHC+=H+ O CH3
+ CO2
四、生物氧化中物质的本质(方式)
1. 失电子
2. 脱氢
CH3-CH2OH
CH3CHO
NAD+ NADH+H+
乙醇
乙醛
3. 加氧
O2
H-
CH2CHCOOH
NH2
苯丙氨酸
4. 加水
CHCO
H2O
OH
HOOC-CH 延胡索酸
HO- CH2CHCOOH NH2