C++链表、栈、队列用法示例

合集下载

c语言数据结构名词解释

c语言数据结构名词解释

C语言数据结构名词解释摘要本文档旨在解释和介绍C语言中常用的数据结构相关的名词,包括数组、链表、栈、队列和树等。

通过对这些名词的解释,读者可以更好地理解这些数据结构在C语言中的应用和原理。

目录1.[数组](#1-数组)2.[链表](#2-链表)3.[栈](#3-栈)4.[队列](#4-队列)5.[树](#5-树)1.数组数组是一种线性数据结构,用来存储一组相同类型的元素。

在C语言中,数组的大小是固定的,即在定义时需要指定数组的长度。

数组可以通过索引来访问和修改其中的元素,索引从0开始。

2.链表链表是一种动态数据结构,由一系列节点组成,节点包含数据和指向下一个节点的指针。

与数组不同,链表的大小可以动态增长或缩小。

链表分为单向链表和双向链表两种形式,其中双向链表的节点还包含指向前一个节点的指针。

3.栈栈是一种后进先出(L I FO)的数据结构,类似于现实生活中的弹夹。

栈有两个基本操作:入栈(p us h)和出栈(po p)。

入栈将数据添加到栈的顶部,而出栈则将栈顶的数据移除。

4.队列队列是一种先进先出(FI FO)的数据结构,类似于现实生活中的排队。

队列有两个基本操作:入队(en qu eu e)和出队(de qu eu e)。

入队将数据添加到队列的末尾,而出队则将队列开头的数据移除。

5.树树是一种分层的数据结构,由节点和边组成。

每个节点可以有零个或多个子节点,其中一个节点被称为根节点,没有父节点的节点称为叶子节点。

树在实际应用中常用于表示分层结构,如文件系统和组织结构等。

结论本文档对C语言中常用的数据结构名词进行了解释和介绍,包括数组、链表、栈、队列和树等。

通过阅读本文档,读者可以更好地理解这些数据结构在C语言中的应用和原理。

在实际编程中,选择适合的数据结构对于提高程序的效率和减少资源占用非常重要。

数据结构实验三栈和队列的应用

数据结构实验三栈和队列的应用

数据结构实验三栈和队列的应用数据结构实验三:栈和队列的应用在计算机科学领域中,数据结构是组织和存储数据的重要方式,而栈和队列作为两种常见的数据结构,具有广泛的应用场景。

本次实验旨在深入探讨栈和队列在实际问题中的应用,加深对它们特性和操作的理解。

一、栈的应用栈是一种“后进先出”(Last In First Out,LIFO)的数据结构。

这意味着最后进入栈的元素将首先被取出。

1、表达式求值在算术表达式的求值过程中,栈发挥着重要作用。

例如,对于表达式“2 + 3 4”,我们可以通过将操作数压入栈,操作符按照优先级进行处理,实现表达式的正确求值。

当遇到数字时,将其压入操作数栈;遇到操作符时,从操作数栈中弹出相应数量的操作数进行计算,将结果压回操作数栈。

最终,操作数栈中的唯一值就是表达式的结果。

2、括号匹配在程序代码中,检查括号是否匹配是常见的任务。

可以使用栈来实现。

遍历输入的字符串,当遇到左括号时,将其压入栈;当遇到右括号时,弹出栈顶元素,如果弹出的左括号与当前右括号类型匹配,则继续,否则表示括号不匹配。

3、函数调用和递归在程序执行过程中,函数的调用和递归都依赖于栈。

当调用一个函数时,当前的执行环境(包括局部变量、返回地址等)被压入栈中。

当函数返回时,从栈中弹出之前保存的环境,继续之前的执行。

递归函数的执行也是通过栈来实现的,每次递归调用都会在栈中保存当前的状态,直到递归结束,依次从栈中恢复状态。

二、队列的应用队列是一种“先进先出”(First In First Out,FIFO)的数据结构。

1、排队系统在现实生活中的各种排队场景,如银行排队、餐厅叫号等,可以用队列来模拟。

新到达的顾客加入队列尾部,服务完成的顾客从队列头部离开。

通过这种方式,保证了先来的顾客先得到服务,体现了公平性。

2、广度优先搜索在图的遍历算法中,广度优先搜索(BreadthFirst Search,BFS)常使用队列。

从起始节点开始,将其放入队列。

c语言队列数据结构

c语言队列数据结构

c语言队列数据结构队列是一种常见的数据结构,它遵循先进先出(FIFO)的原则。

在C语言中,我们可以使用数组或链表来实现队列数据结构。

本文将介绍C语言中队列的实现方法及其应用。

一、数组实现队列数组是一种简单且常用的数据结构,可以用来实现队列。

在C语言中,我们可以使用数组来创建一个固定大小的队列。

下面是一个使用数组实现队列的示例代码:```c#include <stdio.h>#define MAX_SIZE 100int queue[MAX_SIZE];int front = -1;int rear = -1;void enqueue(int data) {if (rear == MAX_SIZE - 1) {printf("队列已满,无法插入元素。

\n");return;}if (front == -1) {front = 0;}rear++;queue[rear] = data;}void dequeue() {if (front == -1 || front > rear) {printf("队列为空,无法删除元素。

\n"); return;}front++;}int getFront() {if (front == -1 || front > rear) {printf("队列为空。

\n");return -1;}return queue[front];}int isEmpty() {if (front == -1 || front > rear) {return 1;}return 0;}int main() {enqueue(1);enqueue(2);enqueue(3);printf("队列的第一个元素:%d\n", getFront());dequeue();printf("队列的第一个元素:%d\n", getFront());return 0;}```在上述代码中,我们使用了一个数组`queue`来存储队列的元素。

c++中队列的用法

c++中队列的用法

c++中队列的用法队列是一种先进先出(FIFO)的数据结构,它按照元素添加和移除元素的顺序访问元素。

在C语言中,可以使用数组来实现队列。

队列有两个主要的操作:入队(添加元素到队尾)和出队(从队头移除元素)。

一、队列的基本操作在C中,队列通常使用数组来实现。

以下是一些基本的队列操作:1.初始化队列可以使用以下代码来初始化一个空的队列:```cqueue*q=(queue*)malloc(sizeof(int));//初始化一个空的整数队列```2.入队操作入队操作是将元素添加到队列的末尾。

可以使用以下代码来实现:```cq->data[q->head]=x;//将元素x添加到队列的头部q->head=(q->head+1)%MAXSIZE;//将头部指针移动到下一个位置```其中,`MAXSIZE`是队列的最大大小,`data`是队列的数组,`head`是队列的头部指针。

3.出队操作出队操作是从队列的头部移除元素。

可以使用以下代码来实现:```cif(q->tail!=q->head){//如果队列中还有元素x=q->data[q->head];//移除头部元素并保存它q->head=(q->head+1)%MAXSIZE;//将头部指针移动到下一个位置}else{//如果队列为空,则不能执行出队操作x=NULL;//返回一个无效的值来表示队列为空}```其中,`tail`是队列的尾部指针。

二、队列的应用场景队列是一种非常有用的数据结构,它适用于多种场景。

以下是一些常见的队列应用场景:1.任务调度:队列可以用于任务调度,将待执行的任务按照优先级添加到队列中,然后按照优先级顺序从队列中取出任务并执行。

这样可以确保高优先级任务能够优先执行,避免低优先级任务阻塞高优先级任务的执行。

2.生产者-消费者问题:队列可以用于解决生产者-消费者问题。

生产者将数据添加到队列中,消费者从队列中取出数据并处理它们。

数据结构(c语言版)第三版习题解答

数据结构(c语言版)第三版习题解答

数据结构(c语言版)第三版习题解答数据结构(C语言版)第三版习题解答1. 栈(Stack)1.1 栈的基本操作栈是一种具有特定限制的线性表,它只允许在表的一端进行插入和删除操作。

栈的基本操作有:(1)初始化栈(2)判断栈是否为空(3)将元素入栈(4)将栈顶元素出栈(5)获取栈顶元素但不出栈1.2 栈的实现栈可以使用数组或链表来实现。

以数组为例,声明一个栈结构如下:```c#define MAX_SIZE 100typedef struct {int data[MAX_SIZE]; // 存储栈中的元素int top; // 栈顶指针} Stack;```1.3 栈的应用栈在计算机科学中有广泛的应用,例如计算表达式的值、实现函数调用等。

下面是一些常见的栈应用:(1)括号匹配:使用栈可以检查一个表达式中的括号是否匹配。

(2)中缀表达式转后缀表达式:栈可以帮助我们将中缀表达式转换为后缀表达式,便于计算。

(3)计算后缀表达式:使用栈可以方便地计算后缀表达式的值。

2. 队列(Queue)2.1 队列的基本操作队列是一种按照先进先出(FIFO)原则的线性表,常用的操作有:(1)初始化队列(2)判断队列是否为空(3)将元素入队(4)将队头元素出队(5)获取队头元素但不出队2.2 队列的实现队列的实现一般有循环数组和链表两种方式。

以循环数组为例,声明一个队列结构如下:```c#define MAX_SIZE 100typedef struct {int data[MAX_SIZE]; // 存储队列中的元素int front; // 队头指针int rear; // 队尾指针} Queue;```2.3 队列的应用队列在计算机科学中也有广泛的应用,例如多线程任务调度、缓存管理等。

下面是一些常见的队列应用:(1)广度优先搜索:使用队列可以方便地实现广度优先搜索算法,用于解决图和树的遍历问题。

(2)生产者-消费者模型:队列可以用于实现生产者和消费者之间的数据传输,提高系统的并发性能。

第三章_表、栈和队列

第三章_表、栈和队列

6
1.表ADT

带表头的单链表
head a1 a2
存储地址 22
an ∧
数据域
指针域

单链表存储结构 示意图
a2

86
head
38 38

94
86 94
物理与电子学院-数据结构
… a3
… NULL
22
7
a1
1.表ADT

.h文件
物理与电子学院-数据结构
8
1.表ADT

IsEmpty O(1) IsLast O(1) Find O(N)
12
1.表ADT

双(向)链表
Prior Element Next
A B C
head
tail

初态
head
tail
物理与电子学院-数据结构
13
1.表ADT

双链表的删除
c a b tail
head
Current
head c
a
b
tail
Current ->Prior->Next = current ->Next
3
2 1 0 top top top
D C B A
C B A
B A
top
A
top
空栈 栈空: top == -1
stacksize = = 4
物理与电子学院-数据结构
top 指针指示真正的栈顶元素 的下标地址。 栈满时的处理方法: 1、报错。返回操作系统。 2、分配更大的空间,作为新 栈,将 原栈的内容移入新栈。
head
c
Current

栈和队列的应用实例

栈和队列的应用实例

栈和队列的应用实例栈和队列都是常用的数据结构,在计算机科学中有着广泛的应用。

以下是一些常见的应用实例:1. 栈的应用实例●表达式求值:使用栈可以方便地对表达式进行求值,如逆波兰表达式求值。

●函数调用:函数调用时,每当进入一个函数,都会将上一个函数的现场信息压入栈中,然后在函数返回时再将其弹出,以便恢复上一个函数的执行现场。

●括号匹配:使用栈可以很方便地检查输入序列中括号的匹配情况。

2. 队列的应用实例●广度优先搜索:在图中进行广度优先搜索时常使用队列,因为它满足“先进先出”的特点,可以确保搜索的顺序是按层次来进行的。

●消息队列:在分布式系统中,消息队列经常用于实现进程之间的通信,以及任务的异步处理。

●缓冲区:在计算机中,经常需要通过使用缓冲区来平衡生产者和消费者之间的速度差异,队列就是一种常用的缓冲区实现方式。

以下是具体的应用实例:栈逆波兰表达式求值逆波兰表达式是一种不需要括号的算术表达式表示方法,它将运算符写在操作数的后面,因此也被称为“后缀表达式”。

例如,中缀表达式“3 + 4 * 2 / (1 - 5)”的逆波兰表达式为“3 4 2 * 1 5 - / +”。

逆波兰表达式求值时,可以使用栈来存储数字和运算符,具体过程如下:1. 遍历逆波兰表达式中的每个元素。

2. 如果当前元素是数字,则压入栈中。

3. 如果当前元素是运算符,则从栈中弹出两个操作数进行运算,并将结果压入栈中。

4. 遍历完逆波兰表达式后,栈顶即为表达式的值。

以下是Python语言实现逆波兰表达式求值的代码:def evalRPN(tokens: List[str]) -> int:stack = []for token in tokens:if token in '+-*/': # 运算符num2 = stack.pop()num1 = stack.pop()if token == '+':stack.append(num1 + num2)elif token == '-':stack.append(num1 - num2)elif token == '*':stack.append(num1 * num2)else:stack.append(int(num1 / num2))else: # 数字stack.append(int(token))return stack[0]该函数接受一个字符串列表tokens,其中包含了逆波兰表达式的所有元素。

c++ stack的用法

c++ stack的用法

c++ stack的用法一、概述栈(Stack)是一种数据结构,它遵循后进先出(LIFO,LastInFirstOut)的原则,即最后进入的数据会被最先取出。

栈在计算机科学中常用于实现函数的调用、参数传递以及局部变量存储等。

二、基本操作1.初始化栈:可以使用`malloc()`函数为栈分配内存空间,并使用`calloc()`函数将内存空间清零。

2.入栈(Push):将数据元素压入栈中。

可以使用`push()`函数实现。

3.出栈(Pop):将栈顶元素取出并返回。

可以使用`pop()`函数实现。

4.获取栈顶元素:可以使用`top()`函数获取栈顶元素。

5.检查栈是否为空:可以使用`empty()`函数检查栈是否为空。

三、示例代码以下是一个简单的C语言代码示例,展示了如何使用栈实现一个简单的计数器:```c#include<stdio.h>#include<stdlib.h>#defineMAX_SIZE10typedefstruct{intdata[MAX_SIZE];inttop;}Stack;voidinitStack(Stack*s){s->top=-1;}voidpush(Stack*s,intvalue){ if(s->top==MAX_SIZE-1){ printf("Stackisfull!\n"); return;}s->data[++s->top]=value;}intpop(Stack*s){if(s->top==-1){printf("Stackisempty!\n"); return-1;}returns->data[s->top--];}intmain(){Stacks;initStack(&s);push(&s,1);push(&s,2);push(&s,3);printf("Topelement:%d\n",pop(&s));//输出:Topelement:3printf("Poppedelement:%d\n",pop(&s));//输出:Poppedelement:2printf("Stacksize:%d\n",s.top);//输出:Stacksize:1return0;}```四、注意事项1.栈是一种后进先出(LIFO)的数据结构,因此在进行出栈操作时,需要特别小心,以避免出现数据丢失或错误的情况。

c 队列queue的用法

c 队列queue的用法

c 队列queue的用法队列(queue)是一种常用的数据结构,具有“先进先出”(First-In-First-Out,FIFO)的特点。

在队列中,元素的插入和删除操作分别在队列的末尾和前端进行。

队列常用于模拟排队、任务调度和缓存等场景。

在C语言中,我们可以使用数组或链表实现队列的功能。

以下是一种使用数组实现的简单队列的示例:```c#include <stdio.h>#define MAX_SIZE 10//定义队列结构typedef struct {int items[MAX_SIZE];int front;int rear;} Queue;//初始化队列void initQueue(Queue *q) {q->front = -1;q->rear = -1;}//判断队列是否为空int isEmpty(Queue *q) {return (q->front == -1 && q->rear == -1); }//判断队列是否已满int isFull(Queue *q) {return (q->rear == MAX_SIZE - 1);//入队操作void enqueue(Queue *q, int data) { if (isFull(q)) {printf("队列已满,无法入队\n"); return;}if (isEmpty(q)) {q->front = q->rear = 0;} else {q->rear++;}q->items[q->rear] = data;printf("元素%d已入队\n", data);//出队操作void dequeue(Queue *q) {if (isEmpty(q)) {printf("队列为空,无法出队\n"); return;}int data = q->items[q->front]; if (q->front == q->rear) {q->front = q->rear = -1;} else {q->front++;}printf("元素%d已出队\n", data);int main() { Queue q; initQueue(&q); enqueue(&q, 1); enqueue(&q, 2); enqueue(&q, 3); dequeue(&q); dequeue(&q); dequeue(&q); dequeue(&q); return 0;}```在上述代码中,我们定义了一个`Queue`结构体,包含一个固定大小的整型数组`items`用于存储队列元素,以及两个整型变量`front`和`rear`表示队列的前端和末尾。

c语言链表的实用场景

c语言链表的实用场景

c语言链表的实用场景链表是一种常用的数据结构,适用于许多实际场景。

在C语言中,链表通常通过指针来实现。

下面我将介绍一些常见的使用场景,以展示链表的实际应用。

1.数据库数据库中通常需要存储大量的数据,并进行高效的增删改查操作。

链表可以用于实现数据库中的表,每个节点表示一行数据,通过指针连接各行数据。

这样的设计可以简化数据的插入和删除操作,同时支持动态内存分配。

2.文件系统文件系统是操作系统中重要的组成部分,负责管理文件和目录的存储和组织。

链表可以被用来维护文件和目录的层次结构。

每个节点表示一个文件或目录,在节点中存储文件名和其他属性,并通过指针连接父节点和子节点,实现树状的文件系统结构。

3.缓存管理缓存是提高数据读写性能的一种机制,通常使用链表来实现。

链表的头节点表示最近访问的数据,越往后的节点表示越早被访问的数据。

当需要插入新数据时,链表头部的节点会被替换为新的数据,实现了最近访问数据的缓存功能。

4.链表排序链表排序是常见的问题,主要通过链表节点之间的指针修改来实现。

排序算法可以按照节点的值进行比较和交换,从而实现链表的排序功能。

链表排序应用于许多场景,如订单排序、学生成绩排序等。

5.模拟表达式求值在编译器和计算器中,链表可以用于构建和求解表达式。

每个节点表示表达式的一个操作数或操作符,通过指针连接节点,形成表达式树。

然后可以使用树来求解表达式的值,或者进行优化和转换。

6.链表图结构链表可以用于构建图结构,每个节点表示图的一个顶点,通过指针连接顶点之间的边。

链表图结构可以用于实现路由算法、网络拓扑结构、社交网络等。

7.线性代数运算链表可以用来实现向量和矩阵等线性代数结构。

每个节点表示矩阵的一个元素,通过指针连接不同元素之间的关系。

链表可以用于矩阵乘法、矩阵求逆等运算。

8.垃圾回收在编程中,动态内存分配往往需要手动管理内存的释放。

链表可以用来管理动态分配的内存块,通过指针连接各个内存块,并进行有效的垃圾回收。

栈和队列的应用场景

栈和队列的应用场景

栈和队列的应用场景栈和队列是数据结构中常见的两种基本数据结构,它们在实际生活和计算机领域中有着广泛的应用场景。

本文将从实际应用的角度出发,介绍栈和队列在不同场景下的具体应用。

### 一、栈的应用场景#### 1.1 浏览器的后退和前进功能在浏览器中,当我们访问一个网页时,浏览器会将该网页的 URL 存储在一个栈中。

当我们点击后退按钮时,浏览器会从栈顶取出上一个网页的 URL,实现后退功能;当我们点击前进按钮时,浏览器会从栈中取出下一个网页的 URL,实现前进功能。

#### 1.2 括号匹配在编程中,栈常用于检查表达式中的括号是否匹配。

当遇到左括号时,将其入栈;当遇到右括号时,将栈顶元素出栈并与右括号进行匹配。

如果匹配成功,则继续;如果匹配失败,则表达式中存在不匹配的括号。

#### 1.3 撤销操作在文本编辑器或图像处理软件中,撤销操作通常使用栈来实现。

每次编辑操作都会将编辑内容存储在栈中,当用户点击撤销按钮时,软件会从栈中取出上一个编辑操作,实现撤销功能。

### 二、队列的应用场景#### 2.1 系统任务调度在操作系统中,队列常用于实现任务调度。

操作系统会将需要执行的任务按照先来先服务的原则排入队列,然后逐个执行。

这种方式可以保证任务的顺序性和公平性。

#### 2.2 打印队列在打印机中,打印任务通常按照先后顺序排入打印队列中,然后依次执行。

这样可以避免多个打印任务同时请求打印,导致打印机发生冲突。

#### 2.3 消息队列在分布式系统中,消息队列被广泛应用于解耦和异步处理。

生产者将消息发送到队列中,消费者从队列中取出消息并进行处理,实现了生产者和消费者之间的解耦。

### 三、栈和队列的综合应用场景#### 3.1 模拟计算器在计算器的设计中,可以使用栈来实现表达式的计算。

将中缀表达式转换为后缀表达式,然后利用栈来计算后缀表达式的值,实现计算器的功能。

#### 3.2 资源分配在操作系统中,可以使用队列来实现资源的分配。

数据结构-使用C语言 朱战立 第3章堆栈和队列

数据结构-使用C语言 朱战立 第3章堆栈和队列

top
D top C B A
D C B A
top
D C B A
top
顺序栈出栈函数的核心语句: S->top --; d = S->stack[S->top];
17
例5、 设依次进入一个栈的元素序列为c,a,b,d,则 可得到出栈的元素序列是:
A)a,b,c,d C)b,c,d,a
B)c,d,a,b D)a,c,d,b
初始化堆栈S 堆栈S非空否 入栈 出栈 取栈顶数据元素
11
二、堆栈的顺序表示和实现 1、顺序(堆)栈
顺序存储结构的堆栈。
顺序栈S an an-1 …… 栈顶top
2、顺序栈的存储结构
它是利用一组地址连续的存储 单元依次存放自栈底到栈顶的数据 元素,同时设指针top指示当前栈顶 位置。
ai …… a1 a0
具体方法:顺序扫描算术表达式(表现为一个字符串), 当遇到三种类型的左括号时让该括号进栈; 1. 当扫描到某一种类型的右括号时,比较当前栈顶括号是 否与之匹配,若匹配则退栈继续进行判断; 2. 若当前栈顶括号与当前扫描的括号不相同,则左右括号 配对次序不正确; 3. 若字符串当前为某种类型左括号而堆栈已空,则右括号 多于左括号; 4. 字符串循环扫描结束时,若堆栈非空(即堆栈中尚有某 种类型左括号),则说明左括号多于右括号;否则,左 右括号匹配正确。
14
顺序栈S
高地址
栈顶top
an an-1 …… ai …… a1 a0 入栈口诀:堆栈指针top “先 压后加” : S[top++]=an 栈底base 出栈口诀:堆栈指针top “先 减后弹” : e=S[--top]
低地址
栈不存在的条件: base=NULL; 栈为空的条件 : base=top或top<=0; 栈满的条件 : top-base=MaxSize;

栈和队列的特点及日常生活中的应用

栈和队列的特点及日常生活中的应用

栈和队列的特点及日常生活中的应用栈和队列是两种常见的数据结构,它们在日常生活中有着广泛的应用。

栈具有先进后出(Last In First Out,简称LIFO)的特点,而队列则具有先进先出(First In First Out,简称FIFO)的特点。

下面将从两个方面来讨论栈和队列的特点及其在日常生活中的应用。

一、栈的特点及日常生活中的应用:-栈的插入和删除操作只在栈顶进行;-栈的插入操作被称为“入栈”,删除操作被称为“出栈”;-栈的结构特点决定了只能访问栈顶元素。

2.日常生活中的应用:-撤销操作:许多软件在编辑功能中都提供了“撤销”功能,这就利用了栈的特点,将操作历史记录在栈中,每次撤销时只需要出栈即可恢复上一步操作;-括号匹配:在编程中,经常需要对括号进行匹配,利用栈的特点可以方便地判断括号是否匹配,以及处理括号之间的嵌套;-网页浏览历史:浏览器提供了“后退”和“前进”的功能,实质上就是利用了栈的特点,将浏览历史记录在栈中,每次点击“后退”或“前进”时,只需要进行出栈或入栈操作即可。

二、队列的特点及日常生活中的应用:-队列的插入操作在队尾进行,删除操作在队头进行;-队列的插入操作被称为“入队”,删除操作被称为“出队”。

2.日常生活中的应用:-等待队列:日常生活中,我们经常在银行、超市等场所遇到人们排队等待的情况,这就是队列的一种应用。

先来的人先入队,后来的人先出队,保证了公平性和有序性;-打印队列:多台电脑共享一个打印机时,打印任务通常会先进入打印队列,按照FIFO的原则依次打印,这样可以保证每个任务都能得到执行;-消息传递:在多线程、多进程的编程中,往往需要通过队列来进行线程或进程间的通信,保证消息的有序传递和处理。

通过以上的讨论,我们可以看到,栈和队列在日常生活中有着广泛的应用。

它们的特点决定了它们在不同场景中的合适性,合理地利用栈和队列可以提高效率,简化操作,实现更加智能化的功能。

因此,了解栈和队列的特点及其应用,对于我们提高编程和解决问题的能力有着重要意义。

栈c语言题目

栈c语言题目

栈是一种后进先出(LIFO)的数据结构,在C语言中通常使用数组或链表来实现。

以下是一些关于栈的C语言题目:
1. 栈的定义和基本操作:定义一个栈数据结构,实现推入(push)、弹出(pop)、查看栈顶(peek)等基本操作。

2. 栈的应用:使用栈解决括号匹配问题,例如给定一个只包含'('、')'、'{'、'}'、'['、']'的字符串,判断字符串是否有效。

3. 逆波兰表达式求值:给定一个逆波兰表达式,利用栈计算表达式的值。

4. 浏览器前进后退功能的模拟:使用两个栈来模拟浏览器的前进和后退功能。

5. 最小值栈:设计一个栈,除了正常的push/pop操作外,还支持查询当前栈中的最小元素。

6. 有效的括号序列:给定一个只包含'('、')'、'{'、'}'、'['、']'的字符串,判断字符串是否为有效的括号序列。

7. 用栈实现队列:仅使用栈来实现队列的操作,如enqueue、dequeue等。

8. 括号的最大嵌套深度:给定一个只包含'('、')'、'{'、'}'、'['、']'的字符串,求出合法括号序列的最大嵌套深度。

9. 逆序对问题:给定一个数组,找出所有逆序对。

10. 汉诺塔问题:使用栈来解决经典的汉诺塔问题。

生活中栈和队列的例子

生活中栈和队列的例子

生活中栈和队列的例子
1. 你看那排队买奶茶的队伍,这不就是一个典型的队列嘛!大家都按照先来后到的顺序排队,依次购买,多有秩序呀!就像我们遵守规则依次前进一样。

2. 想想学校食堂打饭的时候,餐盘不就像在栈里一样嘛,一个个叠放在那里,先放进去的最后才拿出来,这多形象呀!
3. 周末去超市购物,大家把购物车推来推去,就好像栈里的元素进进出出,不是很有意思吗?
4. 去火车站坐车,大家检票进站不也是排队依次进入嘛,这不就是队列在生活中的体现嘛?哎呀!
5. 家里的碗柜,碗一个个叠起来,拿的时候也是从上面开始拿,这和栈简直一模一样呀,你说神奇不神奇?
6. 图书馆里的书架,书按照一定的顺序摆放,这不就像队列一样整整齐齐的嘛,找起来也方便呀!
7. 上班等电梯的时候,大家不也是排队嘛,先进去的人先上楼,这就是队列呀,难道不是吗?
8. 高速公路上的车辆排队通过收费站,这也是一种队列呀,大家依次缴费通过,多么有秩序呀!
我的观点结论就是:生活中到处都有栈和队列的影子呀,它们让我们的生活更加有序、高效呢!。

C数据结构实例代码

C数据结构实例代码

C数据结构实例代码C语言是一种通用的高级程序设计语言,也是实现数据结构的一种常用语言。

下面是一些常见的数据结构的示例代码,供参考。

1. 数组(Array)```c#include <stdio.h>int maiint arr[5] = {1, 2, 3, 4, 5}; // 创建一个有5个元素的整数数组for(int i=0; i<5; i++)printf("%d ", arr[i]); // 遍历并输出数组的所有元素}return 0;```2. 链表(Linked List)```c#include <stdio.h>#include <stdlib.h>struct Nodeint data;struct Node* next;};void printList(struct Node* head)struct Node* curr = head;while(curr != NULL)printf("%d ", curr->data);curr = curr->next;}void insert(struct Node** head, int data)struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));newNode->data = data;newNode->next = (*head);(*head) = newNode;int maistruct Node* head = NULL;insert(&head, 5);insert(&head, 4);insert(&head, 3);insert(&head, 2);insert(&head, 1);printList(head); // 输出链表的所有元素return 0;```3. 栈(Stack)```c#include <stdio.h>#define SIZE 5int stack[SIZE];int top = -1;int isEmptreturn top == -1;int isFulreturn top == SIZE - 1;void push(int item)if(isFull()printf("Stack is full.\n");} elsestack[++top] = item;printf("Pushed %d\n", item);}void poif(isEmpty()printf("Stack is empty.\n");} elseprintf("Popped %d\n", stack[top--]); }int maipush(1);push(2);push(3);pop(;push(4);push(5);push(6);pop(;return 0;```4. 队列(Queue)```c#include <stdio.h>#define SIZE 5int queue[SIZE];int front = -1; // 队头指针int rear = -1; // 队尾指针int isEmptreturn front == -1 && rear == -1; int isFulreturn rear == SIZE - 1;void enqueue(int item)if(isFull()printf("Queue is full.\n");} elseif(isEmpty()front = rear = 0;} elserear++;}queue[rear] = item;printf("Enqueued %d\n", item);}void dequeuif(isEmpty()printf("Queue is empty.\n");} elseprintf("Dequeued %d\n", queue[front]); if(front == rear)front = rear = -1;} elsefront++;}}int maienqueue(1);enqueue(2);enqueue(3);dequeue(;enqueue(4);enqueue(5);enqueue(6);dequeue(;return 0;```5. 树(Tree)```c#include <stdio.h>#include <stdlib.h>struct Nodeint data;struct Node* left;struct Node* right;};struct Node* create(int data)struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));newNode->data = data;newNode->left = NULL;newNode->right = NULL;return newNode;void inorder(struct Node* root)if(root != NULL)inorder(root->left);printf("%d ", root->data);inorder(root->right);}int maistruct Node* root = create(1);root->left = create(2);root->right = create(3);root->left->left = create(4);root->left->right = create(5);root->right->left = create(6);root->right->right = create(7);printf("Inorder traversal of the tree: "); inorder(root); // 中序遍历树return 0;```。

数据结构c语言版实验报告

数据结构c语言版实验报告

数据结构c语言版实验报告数据结构C语言版实验报告一、实验目的本次实验的目的是通过使用C语言编程,实现几种常见的数据结构,包括栈、队列和链表,并进行相关操作的实现和测试。

二、实验内容1. 栈的实现与应用栈是一种先进后出的数据结构,常用于实现递归、表达式求值和内存管理等场景。

在本次实验中,我们使用C语言实现了一个基于数组的顺序栈,并进行了以下操作的实现和测试:- 入栈(push):将元素插入到栈顶。

- 出栈(pop):将栈顶元素删除并返回。

- 获取栈顶元素(top):返回栈顶元素的值。

- 判断栈是否为空(isEmpty):判断栈是否为空栈。

2. 队列的实现与应用队列是一种先进先出的数据结构,常用于实现任务调度、消息传递和缓冲区等场景。

在本次实验中,我们使用C语言实现了一个基于数组的顺序队列,并进行了以下操作的实现和测试:- 入队(enqueue):将元素插入到队尾。

- 出队(dequeue):将队头元素删除并返回。

- 获取队头元素(front):返回队头元素的值。

- 判断队列是否为空(isEmpty):判断队列是否为空队列。

3. 链表的实现与应用链表是一种动态数据结构,常用于实现链式存储和数据的插入、删除等操作。

在本次实验中,我们使用C语言实现了一个单链表,并进行了以下操作的实现和测试:- 头插法(insertAtHead):在链表头部插入元素。

- 尾插法(insertAtTail):在链表尾部插入元素。

- 删除节点(deleteNode):删除指定节点。

- 查找节点(searchNode):查找指定节点的位置。

三、实验结果通过对栈、队列和链表的实现和测试,我们得到了以下实验结果:1. 栈的实现和操作的正确性得到了验证,栈的入栈、出栈、获取栈顶元素和判断是否为空的功能均正常运行。

2. 队列的实现和操作的正确性得到了验证,队列的入队、出队、获取队头元素和判断是否为空的功能均正常运行。

3. 链表的实现和操作的正确性得到了验证,链表的头插法、尾插法、删除节点和查找节点的功能均正常运行。

数组链表栈队列树图等数据结构的优缺点及应用场景

数组链表栈队列树图等数据结构的优缺点及应用场景

数组链表栈队列树图等数据结构的优缺点及应⽤场景数组、字符串(Array & String)数组的优点在于:构建⾮常简单能在 O(1) 的时间⾥根据数组的下标(index)查询某个元素⽽数组的缺点在于:构建时必须分配⼀段连续的空间查询某个元素是否存在时需要遍历整个数组,耗费 O(n) 的时间(其中,n 是元素的个数)删除和添加某个元素时,同样需要耗费 O(n) 的时间链表(LinkedList)单链表:链表中的每个元素实际上是⼀个单独的对象,⽽所有对象都通过每个元素中的引⽤字段链接在⼀起。

双链表:与单链表不同的是,双链表的每个结点中都含有两个引⽤字段。

由⼀系列节点组成的元素集合,每个节点包含数据域item和下⼀个节点的指针next,通过节点相互连接,最终串联成⼀个链表。

class Node(object):def__init__(self,item):self.item = itemself.next = Nonea = [1,2,3]b = Node(a)c = Node(4)b.next = cprint(b.next.item)链表的优点如下:链表能灵活地分配内存空间;能在 O(1) 时间内删除或者添加元素,前提是该元素的前⼀个元素已知,当然也取决于是单链表还是双链表,在双链表中,如果已知该元素的后⼀个元素,同样可以在 O(1) 时间内删除或者添加该元素。

链表的缺点是:不像数组能通过下标迅速读取元素,每次都要从链表头开始⼀个⼀个读取;查询第 k 个元素需要 O(k) 时间。

应⽤场景:如果要解决的问题⾥⾯需要很多快速查询,链表可能并不适合;如果遇到的问题中,数据的元素个数不确定,⽽且需要经常进⾏数据的添加和删除,那么链表会⽐较合适。

⽽如果数据元素⼤⼩确定,删除插⼊的操作并不多,那么数组可能更适合。

栈(Stack)特点:栈的最⼤特点就是后进先出(LIFO)。

对于栈中的数据来说,所有操作都是在栈的顶部完成的,只可以查看栈顶部的元素,只能够向栈的顶部压⼊数据,也只能从栈的顶部弹出数据。

栈和队列的应用实例

栈和队列的应用实例

栈和队列的应用实例一、栈的应用实例1.计算器程序计算器程序是栈的一个经典应用,它可以通过将表达式转换成后缀表达式,再利用栈进行运算得出结果。

具体实现过程如下:(1)将中缀表达式转换为后缀表达式。

(2)利用栈进行后缀表达式的运算。

2.浏览器前进后退功能浏览器前进后退功能也是栈的一个应用。

当用户点击浏览器的前进或后退按钮时,浏览器会将当前页面的URL压入一个栈中。

当用户点击前进或后退按钮时,浏览器会从栈中弹出上一个或下一个URL并加载。

3.括号匹配问题括号匹配问题也是栈的一个常见应用。

当我们需要判断一段代码中括号是否匹配时,可以使用栈来实现。

遍历代码中每个字符,如果是左括号,则将其压入栈中;如果是右括号,则从栈顶弹出一个左括号进行匹配。

如果最终栈为空,则说明所有括号都匹配成功。

二、队列的应用实例1.打印队列打印队列是队列的一个典型应用。

在打印机资源有限且多人共享的情况下,打印队列可以帮助我们管理打印任务的顺序。

每当有一个新的打印任务到达时,就将其加入队列中。

当打印机空闲时,从队列中取出第一个任务进行打印,直到队列为空。

2.消息队列消息队列也是队列的一个重要应用。

在分布式系统中,不同节点之间需要传递消息进行通信。

为了保证消息传递的可靠性和顺序性,可以使用消息队列来实现。

每当一个节点发送一条消息时,就将其加入到消息队列中。

接收方从消息队列中取出最早的一条消息进行处理。

3.广度优先搜索广度优先搜索也是队列的一个常见应用。

在图论和网络分析中,广度优先搜索可以帮助我们寻找最短路径和连通性等问题。

具体实现过程如下:(1)将起点加入到队列中。

(2)从队首取出一个节点,并将与其相邻且未访问过的节点加入到队尾。

(3)重复步骤(2),直到找到终点或者遍历完所有节点。

以上是栈和队列的一些应用实例,在实际编程过程中需要根据具体情况选择合适的数据结构来解决问题。

数据结构栈和队列知识点总结

数据结构栈和队列知识点总结

数据结构栈和队列知识点总结一、栈的基本概念栈是一种线性数据结构,具有后进先出(LIFO)的特点。

栈有两个基本操作:入栈(push)和出栈(pop)。

入栈指将元素压入栈中,出栈指将最近压入的元素弹出。

二、栈的实现方式1. 数组实现:利用数组来存储元素,通过一个变量来记录当前栈顶位置。

2. 链表实现:利用链表来存储元素,每个节点包含一个数据域和一个指向下一个节点的指针。

三、应用场景1. 表达式求值:使用两个栈分别存储操作数和运算符,按照优先级依次进行计算。

2. 函数调用:每当调用一个函数时,就将当前函数的上下文信息压入调用栈中,在函数返回时再弹出。

3. 浏览器历史记录:使用两个栈分别存储浏览器前进和后退的网页地址。

四、队列的基本概念队列是一种线性数据结构,具有先进先出(FIFO)的特点。

队列有两个基本操作:入队(enqueue)和出队(dequeue)。

入队指将元素加入到队列尾部,出队指从队列头部删除元素。

五、队列的实现方式1. 数组实现:利用数组来存储元素,通过两个变量分别记录队列头和队列尾的位置。

2. 链表实现:利用链表来存储元素,每个节点包含一个数据域和一个指向下一个节点的指针。

六、应用场景1. 广度优先搜索:使用队列来保存待访问的节点,按照层次依次访问。

2. 线程池:使用队列来保存任务,线程从队列中取出任务进行处理。

3. 缓存淘汰策略:使用队列来维护缓存中元素的顺序,根据一定策略选择删除队首或队尾元素。

七、栈和队列的比较1. 栈是一种后进先出的数据结构,而队列是一种先进先出的数据结构。

2. 栈只能在栈顶进行插入和删除操作,而队列可以在两端进行操作。

3. 栈可以用于回溯、函数调用等场景,而队列适合于广度优先搜索、缓存淘汰等场景。

八、常见问题及解决方法1. 栈溢出:当栈空间不够时,会发生栈溢出。

解决方法包括增加栈空间大小、减少递归深度等。

2. 队列空间浪费:当使用数组实现队列时,可能会出现队列空间不足的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C++链表操作示例*#29·链表创建struct ts *Create(){struct ts *head=NULL,*tail=NULL,*newnode;//首节点newnode=new ts;strcpy(newnode->name,"张三");strcpy(newnode->num,"");head=newnode;tail=newnode;tail->next=NULL;//第二个newnode=new ts;strcpy(newnode->name,"李四");strcpy(newnode->num,"");tail->next =newnode;tail=newnode;tail->next=NULL;return head;}//初始化*#30·链表输出//显示所有信息void display(ts *head){ts *p=head;if(head==NULL)//链表为空{cout<<"链表为空!"<<endl; return ;}cout<<"链表内容如下:"<<endl; while(p!=NULL){cout<<p->name<<"\t"<<p->num <<"\t"<<endl; p=p->next;}}//display*#31·插入节点//开头插入节点void add(ts *&head,ts *neod){struct ts *tail=NULL;if(head==NULL){head=neod;tail=neod;tail->next=NULL;}else{neod->next =head;head=neod;}}//插入节点//结尾插入节点void inst(ts *&head,ts *neod) {struct ts *tail=NULL,*p=head; if(head==NULL){head=neod;tail=neod;tail->next=NULL;}elsewhile(p->next!=NULL){p=p->next;}p->next=neod;neod->next=NULL;}}//插入节点*#32·链表删除//删除功能void del(ts *&head,char c[]) {ts *p=head;//首节点if(strcmp(c,p->name)==0)head=p->next;//p=head;}//ifelse{while(p!=NULL){if(strcmp(c,p->next->name)==0) {ts *q;q=p->next;p->next=q->next;break;}//ifp=p->next;}//while}//else;}//del//删除头结点void delh(ts *&head){if(head==NULL)return;elsehead=head->next;//p=head;}//delh//删除尾结点void delt(ts *&head){struct ts *tail=NULL,*p=head; if(head==NULL)return;else{while(p->next->next!=NULL)p=p->next;p->next=NULL;}}//delt*#33·链表查找//查找by indexstruct ts *serch(ts *head,int r) {struct ts *p=head;int j=1;if(r<0)cout<<"编号错误"<<endl;else{while(j!=r&&p!=NULL){j++;p=p->next;}if(r==j&&p!=NULL)return p;else{cout<<"编号错误"<<endl; return head;}}}//serch*#34·数组函数#include <>#include <>#include <>struct test{int x;//操作数1int y;//操作数2int z;//答案};//创建void cre(int a[][10],int line)//数组,总数,范围上届{int i=0,j=0;srand(time(NULL));//时间种子for(i=0;i<line;i++){for(j=0;j<10;j++){a[i][j] =int(rand()%(100-1)+1);//操作数1}}//for} //crevoid build(int a[],int len,int up)//数组,总数,范围上届{int i=0;srand(time(NULL));//时间种子for(i=0;i<len;i++){a[i] =int(rand()%(up-1)+1);//操作数1}//for} //build//输出void disp(int a[][10],int line){for(int i=0;i<line;i++){for(int j=0;j<10;j++){cout<<a[i][j] <<"," ;}cout<<endl;}cout<<endl;}//display//输出void display(int a[],int count) {for(int i=0;i<count;i++){cout<<a[i] <<"," ;}cout<<endl;}//display//排序0升1降void maopao(int a[],int s,int u_d) {int temp;int i,j;for(i=0;i<s-1;i++){for(j=0;j<s-i-1;j++){switch(u_d){case 0://升序if(a[j]>a[j+1]){temp=a[j];a[j]=a[j+1];a[j+1]=temp;}break;case 1://降序if(a[j]<a[j+1]){temp=a[j];a[j]=a[j+1];a[j+1]=temp;}break;}//switch}//for1}//for2}//maopao//冒泡排序-升void upm(int a[],int s) {int temp;int i,j;for(i=0;i<s-1;i++){for(j=0;j<s-i-1;j++){if(a[j]>a[j+1]){temp=a[j];a[j]=a[j+1];a[j+1]=temp;}}//for1}//for2}//upm//冒泡排序-降void downm(int a[],int s){int temp;int i,j;for(i=0;i<s-1;i++) {for(j=0;j<s-i-1;j++) {if(a[j]<a[j+1]){temp=a[j];a[j]=a[j+1];a[j+1]=temp;}}//for1}//for2}//downm//选择排序-升void upj(int a[],int s) {int k;int i,j,temp;for(i=0;i<s-1;i++){k=i;for(j=i+1;j<s;j++){if(a[j]<a[k]){temp=a[j];a[j]=a[k];a[k]=temp;}}//for1}//for2//选择排序-降void downj(int a[],int s) {int k;int i,j,temp;for(i=0;i<s-1;i++){k=i;for(j=i+1;j<s;j++){if(a[j]>a[k]){temp=a[j];a[j]=a[k];a[k]=temp;}}//for2}//downj//求总和int sum(int a[][10],int line) {int s=0;for(int i=0;i<line;i++){for(int j=0;j<10;j++){s+=a[i][j];}}return s;}//sumvoid main(){// int *en;//声明数组指针//en=new int[0];//动态生成数组//int count=20;//int en[5][10];//en=new int[count];//build(en,count,99);//cre(en,5);//disp(en,5);//maopao(en,20,1);//upm(en,20);//downm(en,20);//upj(en,20);//downj(en,20);//cout<<sum(en,5);//disp(en,count);}*#35·链表函数//链表#include <>#include <>#include <>#include <iomanip> struct ts{char name[15]; char num[15]; struct ts *next; };ts *head;void main()head=Create(); //创建链表display(head);ts *t=new ts;strcpy(t->name,"王五");strcpy(t->num,"");add(head,t);display(head);//del(head,"王五");ts *r=new ts;strcpy(r->name,"王六");strcpy(r->num,"1");//inst(head,r);add(head,r);display(head);cout<<serch(head,2)->name<<endl; delh(head);delt(head);}*#36·动态数组#include<iostream>#include<vector>vector<int>b;//声明int i,m;for(i=0;i<20;i++)(i);for(i=0;i<20;i++)cout<<b[i]<<";";cout<<endl;// m=();//返回容器大小// m=();//判断是否为空// ();//删除容器的末元素,并不返回该元素。

相关文档
最新文档