时钟树_STM32中文参考手册_V10
stm32 时钟
STM32之时钟树笔记1STM32有五个时钟源:HSI、HSE、LSI、LSE、PLL1.1HSI:高速内部时钟、RC振荡器、频率为8MHz、时钟精度较差,可作为备用时钟源(时钟安全系统CSS)。
1.2HSE:高速外部时钟、可接外部晶体/陶瓷谐振器(4MHz~16MHz)或外部时钟源(HSE旁路,Max 25MHz)。
1.3LSI:低速内部时钟、RC振荡器、频率为40kHz,大容量MCU可进行LSI时钟校准。
1.4LSE:低速外部时钟、接频率为32.768kHz的外部晶体/陶瓷谐振器。
1.5PLL:锁相环倍频输出,时钟输入源可选择HSI/2、HSE或HSE/2。
倍频可选择为2~16倍,最大输出72MHz。
用户可通过多个预分频器配置AHB总线、高速APB2总线和低速APB1总线的频率。
AHB 和APB2域的最大频率是72MHZ。
APB1域的最大允许频率是36MHZ。
SDIO接口的时钟频率固定为HCLK/2。
●40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。
另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。
RTC的时钟源通过RTCSEL[1:0]来选择。
●STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。
该时钟源只能从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。
●另外,STM32还可以选择一个PLL输出的2分频、HSI、HSE、或者系统时钟输出到MCO脚(PA8)上●系统时钟SYSCLK,是供STM32中绝大部分部件工作的时钟源。
系统时钟可选择为PLL输出、HSI或者HSE,在选择时钟源前注意要判断目标时钟源是否已经稳定振荡。
Max=72MHz,它分为2路,1路送给I2S2、I2S3使用的I2S2CLK、I2S3CLK;另外1路通过AHB分频器分频(1/2/4/8/16/64/128/256/512)分频后送给以下8大模块使用:①送给SDIO使用的SDIOCLK时钟。
stm32时钟详细说明
在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。
其实是四个时钟源,如下图所示(灰蓝色),PLL是由锁相环电路倍频得到PLL时钟。
①、HSI是高速内部时钟,RC振荡器,频率为8MHz。
②、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。
③、LSI是低速内部时钟,RC振荡器,频率为40kHz。
④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。
⑤、PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。
倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。
其中40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。
另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。
RTC的时钟源通过RTCSEL[1:0]来选择。
STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。
该时钟源只能从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。
另外,STM32还可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。
系统时钟SYSCLK,它是供STM32中绝大部分部件工作的时钟源。
系统时钟可选择为PLL输出、HSI或者HSE。
系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分频。
其中AHB分频器输出的时钟送给5大模块使用:①、送给AHB总线、内核、内存和DMA使用的HCLK时钟。
②、通过8分频后送给Cortex的系统定时器时钟。
③、直接送给Cortex的空闲运行时钟FCLK。
④、送给APB1分频器。
STM32中文参考手册
9.1 DMA简介
9.2 DMA主要特性
9.3 功能描述
STM32F10xxx参考手册
75
75 75 76 76 77 77 77
78
78 78 79 79 80 80 81 82 82
83
83 83 86 86 87 87
88
89
89
89 89
91
91 92 92 92 94
108
9.4.3 DMA通道x配置寄存器(DMA_CCRx)(x = 1…7)
108
9.4.4 DMA通道x传输数量寄存器(DMA_CNDTRx)(x = 1…7)
110
9.4.5 DMA通道x外设地址寄存器(DMA_CPARx)(x = 1…7)
110
9.4.6 DMA通道x存储器地址寄存器(DMA_CPARx)(x = 1…7)
16
1.3 可用的外设
16
2 存储器和总线构架
17
2.1 系统构架
17
2.2 存储器组织
18
2.3 存储器映像
19
2.3.1 嵌入式SRAM
20
2.3.2 位段
20
2.3.3 嵌入式闪存
21
2.4 启动配置
23
3 CRC计算单元(CRC)
25
3.1 CRC简介
25
3.2 CRC主要特性
25
3.3 CRC功能描述
STM32F10xxx参考手册
38
38 39
39
39 39 40 40 42
45
45
45 45 46
46
48 48 49 49 49 50 50 50 50 50
STM32时钟树
STM32F10xx 时钟树STM32有五个时钟源,HSI RC,HSE OSC,LSI RC,LSE OSC,PLL。
实际是四个,PLL 是由锁相环电路倍频得到的。
HSI 高速内部时钟,8MHzHSE高速外部时钟,频率为4MHz~16MHzLSI 低速内部时钟,40kHzLSE低速外部时钟,32.768kHzPLL的时钟源为两个高速时钟,可选HSI/2,HSE,HSE/2,最大为72MHzOSC 为晶振,振荡器(Oscillator)引脚ˈɒsɪleɪtə(r),STM32F10xx系列处理器有两个外部时钟源,分别接OSC和OSC32引脚,前者为高速,后者为低速。
内置RC振荡器可以被关闭。
STM32有一个时钟监视系统CSS,一旦HSE失效则会自动切换至SYSTICK = HSI。
介绍完时钟源,下面介绍一下STM32每个模块分别对应哪个时钟源。
低速的:1.独立看门狗的时钟源为低速内部时钟LSI ,40kHz2.RTC时钟的时钟源可以有三个,分别为LSI,LSE或者HSE的128分频,通过RTCSEL[1:0]来选择,其中RTCSEL为RCC_CSR寄存器其中的两位。
高速的:1.全速功能的USB模块,其串行接口引擎需要一个频率为48MHz,该时钟源只能从PLL 输出端获得,可以选择1分频或者1.5分频,也就是说,当使用了USB模块,PLL必须使能,而且时钟频率需配置为48MHz或者72MHz.2.系统时钟SYSCLK,是供STM32中绝大部分部件工作的时钟源,系统时钟可选择,PLL 输出,HSI或者HSE输出,全是高速的,系统时钟最大频率为72MHz。
系统时钟并不是直接提供给各模块使用,它需要通过AHB分频器分频给各个模块使用。
AHB的分频因子有9种,1,2,4,8,16,64,128,256,512。
AHB是Advanced High performance Bus,即高级高性能总线,这是一种系统总线,主要用于高性能模块如CPU,DMA,DSP等之间的连接,AHB系统由主模块,从模块和基础结构三部分组成,整个AHB总线上的传输都是由主模块发出,从模块负责回应。
stm32的时钟配置(非常详细)
stm32的时钟配置(⾮常详细)⼤家都知道在使⽤单⽚机时,时钟速度决定于外部晶振或内部RC振荡电路的频率,是不可以改变的。
⽽ARM的出现打破了这⼀传统的法则,可以通过软件随意改变时钟速度。
这⼀出现让我们的设计更加灵活,但是也给我们的设计增加了复杂性。
为了让⽤户能够更简单的使⽤这⼀功能,STM32的库函数已经为我们设计的更加简单⽅便。
在⽐较靠前的版本中,我们需要向下⾯那样设置时钟:ErrorStatus HSEStartUpStatus;void RCC_Configuration(void){RCC_DeInit(); // RCC system reset(for debug purpose)RCC_HSEConfig(RCC_HSE_ON); // Enable HSEHSEStartUpStatus = RCC_WaitForHSEStartUp(); // Wait till HSE is readyif (HSEStartUpStatus == SUCCESS) // 当HSE准备完毕切振荡稳定后{RCC_HCLKConfig(RCC_SYSCLK_Div1); // HCLK = SYSCLKRCC_PCLK2Config(RCC_HCLK_Div1); // PCLK2 = HCLKRCC_PCLK1Config(RCC_HCLK_Div2); // PCLK1 = HCLK/2FLASH_SetLatency(FLASH_Latency_2); // Flash 2 wait stateFLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); // Enable Prefetch BufferRCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); // PLLCLK = 8MHz * 9 = 72 MHzRCC_PLLCmd(ENABLE); // Enable PLLwhile(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET){; // Wait till PLL is ready}RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); // Select PLL as system clock sourcewhile (RCC_GetSYSCLKSource() != 0x08) // Wait till PLL is used as system clock source {;}}}随之函数库的不断升级,到3.0以上时,我们就不⽤再这样编写时钟设置了,我们只要做如下两部即可:第⼀个: system_stm32f10x.c 中 #define SYSCLK_FREQ_72MHz 72000000第⼆个:调⽤SystemInit()说明:在stm32固件库3.0中对时钟频率的选择进⾏了⼤⼤的简化,原先的⼀⼤堆操作都在后台进⾏。
stm32时钟树分析
void RCC_Configuration(void){/* RCC system reset(for debug purpose) */ RCC_DeInit();/* Enable HSE */RCC_HSEConfig(RCC_HSE_ON);/* Wait till HSE is ready */HSEStartUpStatus = RCC_WaitForHSEStartUp();if(HSEStartUpStatus == SUCCESS){/* Enable Prefetch Buffer */FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);/* Flash 2 wait state */FLASH_SetLatency(FLASH_Latency_2);/* HCLK = SYSCLK */RCC_HCLKConfig(RCC_SYSCLK_Div1);/* PCLK2 = HCLK */RCC_PCLK2Config(RCC_HCLK_Div1);/* PCLK1 = HCLK/2 */RCC_PCLK1Config(RCC_HCLK_Div2);/* PLLCLK = 8MHz * 9 = 72 MHz */RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);/* Enable PLL */RCC_PLLCmd(ENABLE);/* Wait till PLL is ready */while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET){}/* Select PLL as system clock source */RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);/* Wait till PLL is used as system clock source */while(RCC_GetSYSCLKSource() != 0x08){}}}systemclock共有三个来源,上面代码最后RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);应该是选择PLLCLK为时钟源void RCC_Configuration(void){/* RCC system reset(for debug purpose) */RCC_DeInit();/* Enable HSE */RCC_HSEConfig(RCC_HSE_ON); ------------SHE外部晶振起震(8M)/* Wait till HSE is ready */HSEStartUpStatus = RCC_WaitForHSEStartUp();if(HSEStartUpStatus == SUCCESS) --------------起震成功配置,flash取指令设置{/* Enable Prefetch Buffer */FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);/* Flash 2 wait state */FLASH_SetLatency(FLASH_Latency_2);/* HCLK = SYSCLK */RCC_HCLKConfig(RCC_SYSCLK_Div1); --------------AHB总线不分频/* PCLK2 = HCLK */RCC_PCLK2Config(RCC_HCLK_Div1); --------------APB2总线不分频/* PCLK1 = HCLK/2 */RCC_PCLK1Config(RCC_HCLK_Div2); --------------APB1总线二分频/* PLLCLK = 8MHz * 9 = 72 MHz */RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); -----PLLCLK =8MHz * 9 = 72 MHz/* Enable PLL */RCC_PLLCmd(ENABLE); --------------- PLL 使能/* Wait till PLL is ready */while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET){}/* Select PLL as system clock source */RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); -------选择PLLCLK为系统时钟systemclk/* Wait till PLL is used as system clock source */while(RCC_GetSYSCLKSource() != 0x08){}}}从这里可以看到最后AHB时钟为72M(最大也是72M);APB2时钟72M(最大也是72M);APB1时钟36M(最大也是36M);所以可以得到APB2预分频系数为1;APB1预分频系数为2。
STM32技术参考手册第4章复位和时钟控制(上)
4 复位和时钟控制4.1 复位STM32F支持三种复位形式,分别为系统复位、上电复位和备份区域复位。
4.1.1 系统复位系统复位将复位除时钟控制寄存器CSR中的复位标志和备份区域中的寄存器以外的所有寄存器(见图3)。
当以下事件中的一件发生时,产生一个系统复位:1. NRST管脚上的低电平(外部复位)2. 窗口看门狗计数终止(WWDG复位)3. 独立看门狗计数终止(IWDG复位)4. 软件复位(SW复位)5. 低功耗管理复位可通过查看RCC_CSR控制状态寄存器中的复位状态标志位来确认复位事件来源。
软件复位通过将Cortex-M3中断应用和复位控制寄存器中的SYSRESETREQ位置1,可实现软件复位。
请参考Cortex技术参考手册获得进一步信息。
低功耗管理复位在以下两种情况下可产生低功耗管理复位:1. 在进入待机模式时产生低功耗管理复位:通过将用户选择字节中的nRST_STDBY位置1将使能该复位。
这时,即使执行了进入待机模式的过程,系统将被复位而不是进入待机模式。
2. 在进入停止模式时产生低功耗管理复位:通过将用户选择字节中的nRST_STOP位置1将使能该复位。
这时,即使执行了进入停机模式的过程,系统将被复位而不是进入停机模式。
关于用户选择字节的进一步信息,请参考STM32F10x闪存编程手册。
4.1.2 电源复位当以下事件中之一发生时,产生电源复位:1. 上电/掉电复位(POR/PDR复位)2. 从待机模式中返回电源复位将复位除了备份区域外的所有寄存器。
(见图3)图中复位源将最终作用于RESET管脚,并在复位过程中保持低电平。
复位入口矢量被固定在地址0x0000_0000~0x0000_0004。
图4-1.复位电路备份区域拥有两个专门的复位,它们只影响备份区域。
4.1.3 备份域复位当以下事件中之一发生时,产生备份区域复位。
1. 软件复位,备份区域复位可由设置备份区域控制寄存器RCC_BDCR中的BDRST位产生。
图文详解stm32时钟树
对于广大初次接触STM32的读者朋友(甚至是初次接触ARM器件的读者朋友)来说,在熟悉了开发环境的使用之后,往往“栽倒”在同一个问题上。
这问题有个关键字叫:时钟树。
众所周知,微控制器(处理器)的运行必须要依赖周期性的时钟脉冲来驱动——往往由一个外部晶体振荡器提供时钟输入为始,最终转换为多个外部设备的周期性运作为末,这种时钟“能量”扩散流动的路径,犹如大树的养分通过主干流向各个分支,因此常称之为“时钟树”。
在一些传统的低端8位单片机诸如51,AVR,PIC等单片机,其也具备自身的一个时钟树系统,但其中的绝大部分是不受用户控制的,亦即在单片机上电后,时钟树就固定在某种不可更改的状态(假设单片机处于正常工作的状态)。
比如51单片机使用典型的12MHz晶振作为时钟源,则外设如IO口、定时器、串口等设备的驱动时钟速率便已经是固定的,用户无法将此时钟速率更改,除非更换晶振。
而STM32微控制器的时钟树则是可配置的,其时钟输入源与最终达到外设处的时钟速率不再有固定的关系,本文将来详细解析STM32微控制器的时钟树。
图1是STM32微控制器的时钟树,表1是图中各个标号所表示的部件。
标号图1标号释义1内部低速振荡器(LSI,40Khz)2外部低速振荡器(LSE,32.768Khz)3外部高速振荡器(HSE,3-25MHz)4内部高速振荡器(HIS,8MHz)5PLL输入选择位6RTC时钟选择位7PLL1分频数寄存器8PLL1倍频寄存器9系统时钟选择位10USB分频寄存器11AHB分频寄存器12APB1分频寄存器13AHB总线14APB1外设总线15APB2分频寄存器16APB2外设总线17ADC预分频寄存器18ADC外设19PLL2分频数寄存器20PLL2倍频寄存器21PLL时钟源选择寄存器22独立看门狗设备23RTC设备图1STM32的时钟树在认识这颗时钟树之前,首先要明确“主干”和最终的“分支”。
假设使用外部8MHz 晶振作为STM32的时钟输入源(这也是最常见的一种做法),则这个8MHz便是“主干”,而“分支”很显然是最终的外部设备比如通用输入输出设备(GPIO)。
Stm32中文手册学习笔记
Stm32中⽂⼿册学习笔记Stm32相对于51复杂了太多,之前⾃⼰学习⽅法不对,所以导致花了时间也没什么效果,现在⼯作了⾃⼰也知道该怎么来更好学习了,准备花两周左右看⼀下stm32中⽂⼿册及固件库⼿册,然后再按照正点原⼦的不完全⼿册结合这开发板来学习,也记下学习笔记总结学习、加深记忆。
此次的学习是以STM32F103RBT6作为核⼼MCU的,其有128k flash、20k sram、2个spi、3个串⼝、1个usb、1个can、2个12位的adc、rtc以及51个可⽤的IO⼝。
笔记⼀存储器及总线架构1.Stm32主系统由以下部分构成:●四个驱动单元:─ Cortex?-M3内核DCode总线(D-bus),和系统总线(S-bus) ─通⽤DMA1和通⽤DMA2●四个被动单元─内部SRAM─内部闪存存储器─ FSMC─ AHB到APB的桥(AHB2APBx),它连接所有的APB设备。
2.在每⼀次复位以后,所有除SRAM和FLITF以外的外设都被关闭,在使⽤⼀个外设之前,必须设置寄存器RCC_AHBENR来打开该外设的时钟。
所以以后编程的时候要记住设置RCC_AHBENR来使能外设。
3.memory map是很重要的,以前⼀直没有引起⾜够的重视,程序存储器、数据存储器、寄存器和输⼊输出端⼝被组织在同⼀个4GB的线性地址空间内。
4. 两个位段(bit-band)区,下⾯的映射公式给出了别名区中的每个字是如何对应位带区的相应位的:bit_word_addr = bit_band_base + (byte_offset×32) + (bit_number×4)其中: bit_word_addr是别名存储器区中字的地址,它映射到某个⽬标位。
bit_band_base是别名区的起始地址。
byte_offset是包含⽬标位的字节在位段⾥的序号bit_number是⽬标位所在位置(0-31)例⼦:下⾯的例⼦说明如何映射别名区中SRAM地址为0x20000300的字节中的位2: 0x22006008 =0x22000000 + (0x300×32) + (2×4). 对0x22006008地址的写操作与对SRAM中地址0x20000300字节的位2执⾏读-改-写操作有着相同的效果。
STM32中文参考手册-stm32f103中文参考手册
STM32F10xxx参考手册参考手册小,中和大容量的STM32F101xx, STM32F102xx和STM32F103xxARM内核32位高性能微控制器导言本参考手册针对应用开发,提供关于如何使用小容量、中容量和大容量的STM32F101xx、STM32F102xx或者STM32F103xx微控制器的存储器和外设的详细信息。
在本参考手册中STM32F101xx、STM32F102xx和STM32F103xx被统称为STM32F10xxx。
STM32F10xxx系列拥有不同的存储器容量,封装和外设配置。
关于订货编号、电气和物理性能参数,请参考STM32F101xx、STM32F102xx和STM32F103xx 的数据手册。
关于芯片内部闪存的编程,擦除和保护操作,请参考STM32F10xxx闪存编程手册。
关于ARM Cortex™-M3内核的具体信息,请参考Cortex™-M3技术参考手册。
相关文档● Cortex™-M3技术参考手册,可按下述链接下载:/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf下述文档可在ST网站下载(/mcu/):● STM32F101xx、STM32F102xx和STM32F103xx的数据手册。
● STM32F10xxx闪存编程手册。
* 感谢南京万利提供原始翻译文档目录1文中的缩写 161.1寄存器描述表中使用的缩写列表 161.2术语表161.3可用的外设16 2存储器和总线构架 172.1系统构架172.2存储器组织182.3存储器映像192.3.1嵌入式SRAM 202.3.2位段202.3.3嵌入式闪存 212.4启动配置23 3CRC计算单元(CRC) 253.1CRC简介253.2CRC主要特性253.3CRC功能描述253.4CRC寄存器263.4.1数据寄存器(CRC_DR) 263.4.2独立数据寄存器(CRC_IDR) 263.4.3控制寄存器(CRC_CR) 273.4.4CRC寄存器映像 27 4电源控制(PWR) 284.1电源284.1.1独立的A/D转换器供电和参考电压 284.1.2电池备份区域 294.1.3电压调节器 294.2电源管理器294.2.1上电复位(POR)和掉电复位(PDR) 294.2.2可编程电压监测器(PVD) 304.3低功耗模式304.3.1降低系统时钟 314.3.2外部时钟的控制 314.3.3睡眠模式 314.3.4停止模式 324.3.5待机模式 334.3.6低功耗模式下的自动唤醒(AWU) 344.4电源控制寄存器 354.4.1电源控制寄存器(PWR_CR) 354.4.2电源控制/状态寄存器 364.4.3PWR寄存器地址映像 37 5备份寄存器(BKP) 385.1BKP简介385.2BKP特性385.3BKP功能描述385.3.1侵入检测 385.3.2RTC校准 395.4BKP寄存器描述 395.4.1备份数据寄存器x(BKP_DRx) (x = 1 … 10) 395.4.2RTC时钟校准寄存器(BKP_RTCCR) 395.4.3备份控制寄存器(BKP_CR) 405.4.4备份控制/状态寄存器(BKP_CSR) 405.4.5BKP寄存器映像 42 6复位和时钟控制(RCC) 456.1复位456.1.1系统复位 456.1.2电源复位 456.1.3备份域复位 466.2时钟466.2.1HSE时钟 486.2.2HSI时钟 486.2.3PLL 496.2.4LSE时钟 496.2.5LSI时钟496.2.6系统时钟(SYSCLK)选择 506.2.7时钟安全系统(CSS) 506.2.8RTC时钟 506.2.9看门狗时钟 506.2.10时钟输出 506.3RCC寄存器描述 516.3.1时钟控制寄存器(RCC_CR) 516.3.2时钟配置寄存器(RCC_CFGR) 526.3.3时钟中断寄存器 (RCC_CIR) 546.3.4APB2外设复位寄存器 (RCC_APB2RSTR) 566.3.5APB1外设复位寄存器 (RCC_APB1RSTR) 586.3.6AHB外设时钟使能寄存器 (RCC_AHBENR) 606.3.7APB2外设时钟使能寄存器(RCC_APB2ENR) 616.3.8APB1外设时钟使能寄存器(RCC_APB1ENR) 626.3.9备份域控制寄存器 (RCC_BDCR) 656.3.10控制/状态寄存器 (RCC_CSR) 666.3.11RCC寄存器地址映像 68 7通用和复用功能I/O(GPIO和AFIO) 697.1GPIO功能描述697.1.1通用I/O(GPIO) 707.1.2单独的位设置或位清除 717.1.3外部中断/唤醒线 717.1.4复用功能(AF) 717.1.5软件重新映射I/O复用功能 717.1.6GPIO锁定机制 717.1.7输入配置 717.1.8输出配置 727.1.9复用功能配置 737.1.10模拟输入配置 737.2GPIO寄存器描述 757.2.1端口配置低寄存器(GPIOx_CRL) (x=A..E) 757.2.2端口配置高寄存器(GPIOx_CRH) (x=A..E) 757.2.3端口输入数据寄存器(GPIOx_IDR) (x=A..E) 767.2.4端口输出数据寄存器(GPIOx_ODR) (x=A..E) 767.2.5端口位设置/清除寄存器(GPIOx_BSRR) (x=A..E) 777.2.6端口位清除寄存器(GPIOx_BRR) (x=A..E) 777.2.7端口配置锁定寄存器(GPIOx_LCKR) (x=A..E) 777.3复用功能I/O和调试配置(AFIO) 787.3.1把OSC32_IN/OSC32_OUT作为GPIO 端口PC14/PC15 787.3.2把OSC_IN/OSC_OUT引脚作为GPIO端口PD0/PD1 787.3.3CAN复用功能重映射 797.3.4JTAG/SWD复用功能重映射 797.3.5ADC复用功能重映射 807.3.6定时器复用功能重映射 807.3.7USART复用功能重映射 817.3.8I2C 1 复用功能重映射 827.3.9SPI 1复用功能重映射 827.4AFIO寄存器描述 837.4.1事件控制寄存器(AFIO_EVCR) 837.4.2复用重映射和调试I/O配置寄存器(AFIO_MAPR) 837.4.3外部中断配置寄存器1(AFIO_EXTICR1) 867.4.4外部中断配置寄存器2(AFIO_EXTICR2) 867.4.5外部中断配置寄存器3(AFIO_EXTICR3) 877.4.6外部中断配置寄存器4(AFIO_EXTICR4) 877.5GPIO 和AFIO寄存器地址映象 88 8中断和事件 898.1嵌套向量中断控制器 898.1.1系统嘀嗒(SysTick)校准值寄存器 898.1.2中断和异常向量 898.2外部中断/事件控制器(EXTI) 918.2.1主要特性 918.2.2框图928.2.3唤醒事件管理 928.2.4功能说明 928.2.5外部中断/事件线路映像 948.3EXTI 寄存器描述 958.3.1中断屏蔽寄存器(EXTI_IMR) 958.3.2事件屏蔽寄存器(EXTI_EMR) 958.3.3上升沿触发选择寄存器(EXTI_RTSR) 968.3.4下降沿触发选择寄存器(EXTI_FTSR) 968.3.5软件中断事件寄存器(EXTI_SWIER) 978.3.6挂起寄存器(EXTI_PR) 978.3.7外部中断/事件寄存器映像 98 9DMA 控制器(DMA) 999.1DMA简介999.2DMA主要特性999.3功能描述1009.3.1DMA处理 1009.3.2仲裁器1009.3.3DMA 通道 1019.3.4可编程的数据传输宽度,对齐方式和数据大小端 1029.3.5错误管理 1039.3.6中断1039.3.7DMA请求映像 1049.4DMA寄存器1079.4.1DMA中断状态寄存器(DMA_ISR) 1079.4.2DMA中断标志清除寄存器(DMA_IFCR) 1089.4.3DMA通道x配置寄存器(DMA_CCRx)(x = 1…7) 1089.4.4DMA通道x传输数量寄存器(DMA_CNDTRx)(x = 1…7) 1109.4.5DMA通道x外设地址寄存器(DMA_CPARx)(x = 1…7) 1109.4.6DMA通道x存储器地址寄存器(DMA_CPARx)(x = 1…7) 1109.4.7DMA寄存器映像 111 10模拟/数字转换(ADC) 11310.1ADC介绍11310.2ADC主要特征11310.3ADC功能描述11410.3.1ADC开关控制 11510.3.2ADC时钟 11510.3.3通道选择 11510.3.4单次转换模式 11510.3.5连续转换模式 11610.3.6时序图11610.3.7模拟看门狗 11610.3.8扫描模式 11710.3.9注入通道管理 11710.3.10间断模式 11810.4校准11910.5数据对齐11910.6可编程的通道采样时间 12010.7外部触发转换12010.8DMA请求12110.9双ADC模式12110.9.1同步注入模式 12210.9.2同步规则模式 12310.9.3快速交替模式 12310.9.4慢速交替模式 12410.9.5交替触发模式 12410.9.6独立模式 12510.9.7混合的规则/注入同步模式 12510.9.8混合的同步规则+交替触发模式 12510.9.9混合同步注入+交替模式 12610.10温度传感器12610.11ADC中断12710.12ADC寄存器描述 12810.12.1ADC状态寄存器(ADC_SR) 12810.12.2ADC控制寄存器1(ADC_CR1) 12910.12.3ADC控制寄存器2(ADC_CR2) 13110.12.4ADC采样时间寄存器1(ADC_SMPR1) 13310.12.5ADC采样时间寄存器2(ADC_SMPR2) 13310.12.6ADC注入通道数据偏移寄存器x (ADC_JOFRx)(x=1..4) 13410.12.7ADC看门狗高阀值寄存器(ADC_HTR) 13410.12.8ADC看门狗低阀值寄存器(ADC_LRT) 13410.12.9ADC规则序列寄存器1(ADC_SQR1) 13510.12.10ADC规则序列寄存器2(ADC_SQR2) 13510.12.11ADC规则序列寄存器3(ADC_SQR3) 13610.12.12ADC注入序列寄存器(ADC_JSQR) 13610.12.13ADC 注入数据寄存器x (ADC_JDRx) (x= 1..4) 13710.12.14ADC规则数据寄存器(ADC_DR) 13710.12.15ADC寄存器地址映像 138 11数字/模拟转换(DAC) 14011.1DAC简介14011.2DAC主要特征14011.3DAC功能描述14111.3.1使能DAC通道 14111.3.2使能DAC输出缓存 14111.3.3DAC数据格式 14211.3.4DAC转换 14211.3.5DAC输出电压 14311.3.6选择DAC触发 14311.3.7DMA请求 14411.3.8噪声生成 14411.3.9三角波生成 14511.4双DAC通道转换 14511.4.1无波形生成的独立触发 14511.4.2带相同LFSR生成的独立触发 14611.4.3带不同LFSR生成的独立触发 14611.4.4带相同三角波生成的独立触发 14611.4.5带不同三角波生成的独立触发 14611.4.6同时软件启动 14711.4.7不带波形生成的同时触发 14711.4.8带相同LFSR生成的同时触发 14711.4.9带不同LFSR生成的同时触发 14711.4.10带相同三角波生成的同时触发 14711.4.11带不同三角波生成的同时触发 14811.5DAC寄存器14911.5.1DAC控制寄存器(DAC_CR) 14911.5.2DAC软件触发寄存器(DAC_SWTRIGR) 15111.5.3DAC通道1的12位右对齐数据保持寄存器(DAC_DHR12R1) 15211.5.4DAC通道1的12位左对齐数据保持寄存器(DAC_DHR12L1) 15211.5.5DAC通道1的8位右对齐数据保持寄存器(DAC_DHR8R1) 15211.5.6DAC通道2的12位右对齐数据保持寄存器(DAC_DHR12R2) 15311.5.7DAC通道2的12位左对齐数据保持寄存器(DAC_DHR12L2) 15311.5.8DAC通道2的8位右对齐数据保持寄存器(DAC_DHR8R2) 15311.5.9双DAC的12位右对齐数据保持寄存器(DAC_DHR12RD) 15411.5.10双DAC的12位左对齐数据保持寄存器(DAC_DHR12LD) 15411.5.11双DAC的8位右对齐数据保持寄存器(DAC_DHR8RD) 15411.5.12DAC通道1数据输出寄存器(DAC_DOR1) 15511.5.13DAC通道2数据输出寄存器(DAC_DOR2) 15511.5.14DAC寄存器映像 156 12高级控制定时器(TIM1和TIM8) 15712.1TIM1和TIM8简介 15712.2TIM1和TIM8主要特性 15712.3TIM1和TIM8功能描述 15812.3.1时基单元 15812.3.2计数器模式 16012.3.3重复计数器 16712.3.4时钟选择 16812.3.5捕获/比较通道 17112.3.6输入捕获模式 17312.3.7PWM输入模式 17412.3.8强置输出模式 17412.3.9输出比较模式 17512.3.10PWM模式 17612.3.11互补输出和死区插入 17812.3.12使用刹车功能 17912.3.13在外部事件时清除OCxREF信号 18012.3.14产生六步PWM输出 18112.3.15单脉冲模式 18212.3.16编码器接口模式 18312.3.17定时器输入异或功能 18512.3.18与霍尔传感器的接口 18512.3.19TIMx定时器和外部触发的同步 18712.3.20定时器同步 19012.3.21调试模式 19012.4TIM1和TIM8寄存器描述 19112.4.1控制寄存器1(TIMx_CR1) 19112.4.2控制寄存器2(TIMx_CR2) 19212.4.3从模式控制寄存器(TIMx_SMCR) 19312.4.4DMA/中断使能寄存器(TIMx_DIER) 19512.4.5状态寄存器(TIMx_SR) 19612.4.6事件产生寄存器(TIMx_EGR) 19712.4.7捕获/比较模式寄存器1(TIMx_CCMR1) 19812.4.8捕获/比较模式寄存器2(TIMx_CCMR2) 20012.4.9捕获/比较使能寄存器(TIMx_CCER) 20212.4.10计数器(TIMx_CNT) 20312.4.11预分频器(TIMx_PSC) 20412.4.12自动重装载寄存器(TIMx_ARR) 20412.4.13重复计数寄存器(TIMx_RCR) 20412.4.14捕获/比较寄存器1(TIMx_CCR1) 20512.4.15捕获/比较寄存器2(TIMx_CCR2) 20512.4.16捕获/比较寄存器3(TIMx_CCR3) 20512.4.17捕获/比较寄存器(TIMx_CCR4) 20612.4.18刹车和死区寄存器(TIMx_BDTR) 20612.4.19DMA控制寄存器(TIMx_DCR) 20812.4.20连续模式的DMA地址(TIMx_DMAR) 20812.4.21TIM1和TIM8寄存器图 209 13通用定时器(TIMx) 21113.1TIMx简介21113.2TIMx主要功能21113.3TIMx功能描述21213.3.1时基单元 21213.3.2计数器模式 21313.3.3时钟选择 22113.3.4捕获/比较通道 22313.3.5输入捕获模式 22513.3.6PWM输入模式 22513.3.7强置输出模式 22613.3.8输出比较模式 22613.3.9PWM 模式 22713.3.10单脉冲模式 22913.3.11在外部事件时清除OCxREF信号 23113.3.12编码器接口模式 23113.3.13定时器输入异或功能 23313.3.14定时器和外部触发的同步 23313.3.15定时器同步 23513.3.16调试模式 23913.4TIMx寄存器描述 24013.4.1控制寄存器1(TIMx_CR1) 24013.4.2控制寄存器2(TIMx_CR2) 24113.4.3从模式控制寄存器(TIMx_SMCR) 24213.4.4DMA/中断使能寄存器(TIMx_DIER) 24313.4.5状态寄存器(TIMx_SR) 24413.4.6事件产生寄存器(TIMx_EGR) 24513.4.7捕获/比较模式寄存器1(TIMx_CCMR1) 24613.4.8捕获/比较模式寄存器2(TIMx_CCMR2) 24913.4.9捕获/比较使能寄存器(TIMx_CCER) 25113.4.10计数器(TIMx_CNT) 25213.4.11预分频器(TIMx_PSC) 25213.4.12自动重装载寄存器(TIMx_ARR) 25213.4.13捕获/比较寄存器1(TIMx_CCR1) 25213.4.14捕获/比较寄存器2(TIMx_CCR2) 25313.4.15捕获/比较寄存器3(TIMx_CCR3) 25313.4.16捕获/比较寄存器4(TIMx_CCR4) 25313.4.17DMA控制寄存器(TIMx_DCR) 25413.4.18连续模式的DMA地址(TIMx_DMAR) 25413.4.19TIMx寄存器图 255 14基本定时器(TIM6和TIM7) 25714.1TIM6和TIM7简介 25714.2TIM6和TIM7的主要特性 25714.3TIM6和TIM7的功能 25814.3.1时基单元 25814.3.2计数模式 25914.3.3时钟源26114.3.4调试模式 26214.4TIM6和TIM7寄存器 26214.4.1控制寄存器1(TIMx_CR1) 26214.4.2控制寄存器2(TIMx_CR2) 26314.4.3DMA/中断使能寄存器(TIMx_DIER) 26314.4.4状态寄存器(TIMx_SR) 26414.4.5事件产生寄存器(TIMx_EGR) 26414.4.6计数器(TIMx_CNT) 26414.4.7预分频器(TIMx_PSC) 26514.4.8自动重装载寄存器(TIMx_ARR) 26514.4.9TIM6和TIM7寄存器图 266 15实时时钟(RTC) 26715.1RTC简介26715.2主要特性26715.3功能描述26715.3.1概述26715.3.2复位过程 26815.3.3读RTC寄存器 26815.3.4配置RTC寄存器 26915.3.5RTC标志的设置 26915.4RTC寄存器描述 27015.4.1RTC控制寄存器高位(RTC_CRH) 27015.4.2RTC控制寄存器低位(RTC_CRL) 27015.4.3RTC预分频装载寄存器(RTC_PRLH/RTC_PRLL) 27115.4.4RTC预分频器余数寄存器(RTC_DIVH / RTC_DIVL) 27215.4.5RTC计数器寄存器 (RTC_CNTH / RTC_CNTL) 27215.4.6RTC闹钟寄存器(RTC_ALRH/RTC_ALRL) 27315.4.7RTC寄存器映像 275 16独立看门狗(IWDG) 27616.1简介27616.2IWDG主要性能27616.3IWDG功能描述27616.3.1硬件看门狗 27616.3.2寄存器访问保护 27616.3.3调试模式 27616.4IWDG寄存器描述 27716.4.1键寄存器(IWDG_KR) 27716.4.2预分频寄存器(IWDG_PR) 27816.4.3重装载寄存器(IWDG_RLR) 27816.4.4状态寄存器(IWDG_SR) 27916.4.5IWDG寄存器映像 279 17窗口看门狗(WWDG) 28017.1WWDG简介28017.2WWDG主要特性 28017.3WWDG功能描述 28017.4如何编写看门狗超时程序 28117.5调试模式28217.6寄存器描述28217.6.1控制寄存器(WWDG_CR) 28217.6.2配置寄存器(WWDG_CFR) 28317.6.3状态寄存器(WWDG_SR) 28317.6.4WWDG寄存器映像 284 18灵活的静态存储器控制器(FSMC) 28518.1FSMC功能描述28518.2框图28518.3AHB接口28618.3.1支持的存储器和操作 28618.4外部设备地址映像 28718.4.1NOR和PSRAM地址映像 28818.4.2NAND和PC卡地址映像 28818.5NOR闪存和PSRAM控制器 28918.5.1外部存储器接口信号 29018.5.2支持的存储器及其操作 29118.5.3时序规则 29118.5.4NOR闪存和PSRAM时序图 29118.5.5同步的成组读 30418.5.6NOR闪存和PSRAM控制器寄存器 30818.6NAND闪存和PC卡控制器 31318.6.1外部存储器接口信号 31318.6.2NAND闪存/PC卡支持的存储器及其操作 31418.6.3NAND闪存、ATA和PC卡时序图 31418.6.4NAND闪存操作 31518.6.5NAND闪存预等待功能 31618.6.6NAND闪存的纠错码ECC计算(NAND闪存) 31718.6.7NAND闪存和PC卡控制器寄存器 31718.7FSMC寄存器地址映象 324 19SDIO接口(SDIO) 32519.1SDIO主要功能32519.2SDIO总线拓扑32519.3SDIO功能描述32819.3.1SDIO适配器 32919.3.2SDIO AHB接口 33619.4卡功能描述33619.4.1卡识别模式 33619.4.2卡复位33619.4.3操作电压范围确认 33719.4.4卡识别过程 33719.4.5写数据块 33819.4.6读数据块 33819.4.7数据流操作,数据流写入和数据流读出(只适用于多媒体卡) 33819.4.8擦除:成组擦除和扇区擦除 33919.4.9宽总线选择和解除选择 34019.4.10保护管理 34019.4.11卡状态寄存器 34219.4.12SD状态寄存器 34419.4.13SD I/O模式 34719.4.14命令与响应 34819.5响应格式35019.5.1R1(普通响应命令) 35119.5.2R1b 35119.5.3R2(CID、CSD寄存器) 35119.5.4R3(OCR寄存器) 35119.5.5R4(快速I/O) 35219.5.6R4b 35219.5.7R5(中断请求) 35219.5.8R6(中断请求) 35319.6SDIO I/O卡特定的操作 35319.6.1使用SDIO_D2信号线的SDIO I/O读等待操作 35319.6.2使用停止SDIO_CK的SDIO读等待操作 35319.6.3SDIO暂停/恢复操作 35419.6.4SDIO中断 35419.7CE-ATA特定操作 35419.7.1命令完成指示关闭 35419.7.2命令完成指示使能 35419.7.3CE-ATA中断 35419.7.4中止CMD61 35419.8硬件流控制35419.9SDIO寄存器35519.9.1SDIO电源控制寄存器(SDIO_POWER) 35519.9.2SDIO时钟控制寄存器(SDIO_CLKCR) 35519.9.3SDIO参数寄存器(SDIO_ARG) 35619.9.4SDIO命令寄存器(SDIO_CMD) 35619.9.5SDIO命令响应寄存器(SDIO_RESPCMD) 35719.9.6SDIO响应1..4寄存器(SDIO_RESPx) 35719.9.7SDIO数据定时器寄存器(SDIO_DTIMER) 35819.9.8SDIO数据长度寄存器(SDIO_DLEN) 35819.9.9SDIO数据控制寄存器(SDIO_DCTRL) 35819.9.10SDIO数据计数器寄存器(SDIO_DCOUNT) 36019.9.11SDIO状态寄存器(SDIO_STA) 36019.9.12SDIO清除中断寄存器(SDIO_ICR) 36119.9.13SDIO中断屏蔽寄存器(SDIO_MASK) 36219.9.14SDIO FIFO计数器寄存器(SDIO_FIFOCNT) 36419.9.15SDIO数据FIFO寄存器(SDIO_FIFO) 36419.9.16SDIO寄存器映像 365 20USB全速设备接口(USB) 36620.1USB简介36620.2USB主要特征36620.3USB功能描述36720.3.1USB功能模块描述 36820.4编程中需要考虑的问题 36920.4.1通用USB设备编程 36920.4.2系统复位和上电复位 36920.4.3双缓冲端点 37220.4.4同步传输 37320.4.5挂起/恢复事件 37420.5USB寄存器描述 37520.5.1通用寄存器 37520.5.2端点寄存器 38020.5.3缓冲区描述表 38220.5.4USB寄存器映像 385 21控制器局域网(bxCAN) 38721.1bxCAN简介38721.2bxCAN主要特点 38721.2.1总体描述 38821.3bxCAN工作模式 38921.3.1初始化模式 39021.3.2正常模式 39021.3.3睡眠模式(低功耗) 39021.3.4测试模式 39021.3.5静默模式 39021.3.6环回模式 39121.3.7环回静默模式 39121.4bxCAN功能描述 39221.4.1发送处理 39221.4.2时间触发通信模式 39321.4.3接收管理 39321.4.4标识符过滤 39521.4.5报文存储 39821.4.6出错管理 39921.4.7位时间特性 40021.5bxCAN中断40221.6CAN 寄存器描述 40321.6.1寄存器访问保护 40321.6.2控制和状态寄存器 40321.6.3邮箱寄存器 41121.6.4CAN过滤器寄存器 41521.6.5bxCAN寄存器列表 419 22串行外设接口(SPI) 42222.1SPI简介42222.2SPI和I2S主要特征 42222.2.1SPI特征42222.2.2I2S功能42322.3SPI功能描述42422.3.1概述42422.3.2SPI从模式 42622.3.3SPI主模式 42722.3.4单工通信 42822.3.5状态标志 42822.3.6CRC计算 42922.3.7利用DMA的SPI通信 42922.3.8错误标志 43022.3.9关闭SPI 43022.3.10SPI中断43022.4I2S功能描述43122.4.1I2S功能描述 43122.4.2支持的音频协议 43222.4.3时钟发生器 43722.4.4I2S主模式 43822.4.5I2S从模式 43922.4.6状态标志位 44022.4.7错误标志位 44122.4.8I2S中断44122.4.9DMA功能 44122.5SPI和I2S寄存器描述 44222.5.1SPI控制寄存器1(SPI_CR1)(I2S模式下不使用) 44222.5.2SPI控制寄存器2(SPI_CR2) 44322.5.3SPI 状态寄存器(SPI_SR) 44422.5.4SPI 数据寄存器(SPI_DR) 44522.5.5SPI CRC多项式寄存器(SPI_CRCPR) 44622.5.6SPI Rx CRC寄存器(SPI_RXCRCR) 44622.5.7SPI Tx CRC寄存器(SPI_TXCRCR) 44622.5.8SPI_I2S配置寄存器(SPI_I2S_CFGR) 44722.5.9SPI_I2S预分频寄存器(SPI_I2SPR) 44822.5.10SPI 寄存器地址映象 449 23I2C接口45023.1I2C简介45023.2I2C主要特点45023.3I2C功能描述45123.3.1模式选择 45123.3.2I2C从模式 45223.3.3I2C主模式 45423.3.4错误条件 45623.3.5SDA/SCL线控制 45723.3.6SMBus 45723.3.7DMA请求 45923.3.8包错误校验(PEC) 46023.4I2C中断请求46123.5I2C调试模式46223.6I2C寄存器描述46223.6.1控制寄存器1(I2C_CR1) 46223.6.2控制寄存器2(I2C_CR2) 46423.6.3自身地址寄存器1(I2C_OAR1) 46523.6.4自身地址寄存器2(I2C_OAR2) 46523.6.5数据寄存器(I2C_DR) 46523.6.6状态寄存器1(I2C_SR1) 46623.6.7状态寄存器2 (I2C_SR2) 46823.6.8时钟控制寄存器(I2C_CCR) 46923.6.9TRISE寄存器(I2C_TRISE) 47023.6.10I2C寄存器地址映象 471 24通用同步异步收发器(USART) 47224.1USART介绍47224.2USART主要特性 47224.3USART功能概述 47324.3.1USART 特性描述 47424.3.2发送器47524.3.3接收器47724.3.4分数波特率的产生 48024.3.5多处理器通信 48124.3.6校验控制 48224.3.7LIN(局域互联网)模式 48324.3.8USART 同步模式 48524.3.9单线半双工通信 48724.3.10智能卡48724.3.11IrDA SIR ENDEC 功能块 48824.3.12利用DMA连续通信 49024.3.13硬件流控制 49124.4USART中断请求 49224.5USART模式配置 49324.6USART寄存器描述 49424.6.1状态寄存器(USART_SR) 49424.6.2数据寄存器(USART_DR) 49524.6.3波特比率寄存器(USART_BRR) 49624.6.4控制寄存器1(USART_CR1) 49624.6.5控制寄存器2(USART_CR2) 49824.6.6控制寄存器3(USART_CR3) 49924.6.7保护时间和预分频寄存器(USART_GTPR) 50124.6.8USART寄存器地址映象 502 25器件电子签名 50325.1存储器容量寄存器 50325.1.1闪存容量寄存器 50325.2产品唯一身份标识寄存器(96位) 503 26调试支持(DBG) 50526.1概况50526.2ARM参考文献50626.3SWJ调试端口(serial wire and JTAG) 50626.3.1JTAG-DP和SW-DP切换的机制 50726.4引脚分布和调试端口脚 50726.4.1SWJ调试端口脚 50726.4.2灵活的SWJ-DP脚分配 50726.4.3JTAG脚上的内部上拉和下拉 50826.4.4利用串行接口并释放不用的调试脚作为普通I/O口 50826.5STM32F10xxx JTAG TAP 连接 50926.6ID 代码和锁定机制 50926.6.1微控制器设备ID编码 50926.6.2边界扫描TAP 51026.6.3Cortex-M3 TAP 51026.6.4Cortex-M3 JEDEC-106 ID代码 51126.7JTAG调试端口51126.8SW调试端口51226.8.1SW协议介绍 51226.8.2SW协议序列 51226.8.3SW-DP状态机(Reset, idle states, ID code) 51326.8.4DP和AP读/写访问 51326.8.5SW-DP寄存器 51326.8.6SW-AP寄存器 514 26.9对于JTAG-DP或SWDP都有效的AHB-AP (AHB 访问端口) 514 26.10内核调试515 26.11调试器主机在系统复位下的连接能力 515 26.12FPB (Flash patch breakpoint) 515 26.13DWT(data watchpoint trigger) 516 26.14ITM (instrumentation trace macrocell) 51626.14.1概述51626.14.2时间戳包,同步和溢出包 516 26.15MCU调试模块(MCUDBG) 51726.15.1低功耗模式的调试支持 51726.15.2支持定时器、看门狗、bxCAN和I2C的调试 51826.15.3调试MCU配置寄存器 518 26.16TPIU (trace port interface unit) 52026.16.1导言52026.16.2跟踪引脚分配 52026.16.3TPUI格式器 52226.16.4TPUI帧异步包 52226.16.5同步帧包的发送 52226.16.6同步模式 52226.16.7异步模式 52326.16.8TRACECLKIN在STM32F10xxx内部的连接 52326.16.9TPIU寄存器 52326.16.10配置的例子 524 26.17DBG寄存器地址映象 5241 文中的缩写1.1 寄存器描述表中使用的缩写列表在对寄存器的描述中使用了下列缩写:read / write (rw) 软件能读写此位。
STM32_参考手册-中文.pdf
图210单主和单从应用
1.这里NSS引脚设置为输入
MOSI脚相互连接,MISO脚相互连接。这样,数据在主和从之间串行地传输(MSB位在前)。
通信总是由主设备发起。主设备通过MOSI脚把数据发送给从设备,从设备通过MISO引脚回传数据。这意味全双工通信的数据输出和数据输入是用同一个时钟信号同步的;时钟信号由主设备通过SCK脚提供。
读SPI_DR寄存器时,RXNE位被清除。
23.3.3配置SPI为主模式
在主配置时,在SCK脚产生串行时钟。
配置步骤
1.通过SPI_CR1寄存器的BR[2:0]位定义串行时钟波特率。
2.选择CPOL和CPHA位,定义数据传输和串行时钟间的相位关系(见图212)。
3.设置DFF位来定义8位或16位数据帧格式。
●支持DMA功能的1字节发送和接收缓冲器:产生发送和接受请求
23.2.2I2S功能
●单工通信(仅发送或接收)
●主或者从操作
●8位线性可编程预分频器,获得精确的音频采样频率(8KHz到96kHz)
●数据格式可以是16位,24位或者32位
●音频信道固定数据包帧为16位(16位数据帧)或32位(16、24或32位数据帧)
数据发送过程
在写操作中,数据字被并行地写入发送缓冲器。
当从设备收到时钟信号,并且在MOSI引脚上出现第一个数据位时,发送过程开始(译注:此时第一个位被发送出去)。余下的位(对于8位数据帧格式,还有7位;对于16位数据帧格式,还有15位)被装进移位寄存器。当发送缓冲器中的数据传输到移位寄存器时,SPI_SP寄存器的TXE标志被设置,如果设置了SPI_CR2寄存器的TXEIE位,将会产生中断。
请按照以下步骤配置SPI为从模式:
STM32_参考手册-中文.pdf
口册23 串行外设接口(SPI)小容量产品是指闪存存储器容量在16K 至32K 字节之间的STM32F101xx、STM32F102xx和STM32F103xx微控制器。
中容量产品是指闪存存储器容量在64K至128K字节之间的STM32F101xx、STM32F102xx 和STM32F103xx微控制器。
大容量产品是指闪存存储器容量在256K至512K字节之间的STM32F101xx和STM32F103xx微控制器。
互联型产品是指STM32F105xx和STM32F107xx微控制器。
除非特别说明,本章描述的模块适用于整个STM32F10xxx微控制器系列。
23.1 SPI简介在大容量产品和互联型产品上,SPI接口可以配置为支持SPI协议或者支持I2S音频协议。
SPI接口默认工作在SPI方式,可以通过软件把功能从SPI模式切换到I2S模式。
在小容量和中容量产品上,不支持I2S音频协议。
串行外设接口(SPI)允许芯片与外部设备以半/全双工、同步、串行方式通信。
此接口可以被配置成主模式,并为外部从设备提供通信时钟(SCK)。
接口还能以多主配置方式工作。
它可用于多种用途,包括使用一条双向数据线的双线单工同步传输,还可使用CRC校验的可靠通信。
I2S也是一种3引脚的同步串行接口通讯协议。
它支持四种音频标准,包括飞利浦I2S标准,MSB 和LSB对齐标准,以及PCM标准。
它在半双工通讯中,可以工作在主和从2种模式下。
当它作为主设备时,通过接口向外部的从设备提供时钟信号。
警告:由于SPI3/I2S3 的部分引脚与JTAG 引脚共享(SPI3_NSS/I2S3_WS 与JTDI ,SPI3_SCK/I2S3_CK与JTDO),因此这些引脚不受IO控制器控制,他们(在每次复位后) 被默认保留为JTAG用途。
如果用户想把引脚配置给SPI3/I2S3,必须(在调试时)关闭JTAG并切换至SWD接口,或者(在标准应用时)同时关闭JTAG和SWD接口。
STM32_参考手册-中文
23 串行外设接口(SPI)小容量产品是指闪存存储器容量在16K至32K字节之间的STM32F101xx STM32F102xx和STM32F103xx微控制器。
中容量产品是指闪存存储器容量在64K至128K字节之间的STM32F101xx、STM32F102xx和STM32F103xx微控制器。
大容量产品是指闪存存储器容量在256K至512K字节之间的STM32F101xx和STM32F103xx微控制器。
互联型产品是指STM32F105xx和STM32F107xx微控制器。
除非特别说明,本章描述的模块适用于整个STM32F10xxx微控制器系列。
SPI简介在大容量产品和互联型产品上,SPI接口可以配置为支持SPI协议或者支持I2S音频协议。
SPI接口默认工作在SPI方式,可以通过软件把功能从SPI模式切换到I2S模式。
在小容量和中容量产品上,不支持I2S音频协议。
串行外设接口(SPI)允许芯片与外部设备以半/全双工、同步、串行方式通信。
此接口可以被配置成主模式,并为外部从设备提供通信时钟(SCK)。
接口还能以多主配置方式工作。
它可用于多种用途,包括使用一条双向数据线的双线单工同步传输,还可使用CR破验的可靠通信。
I 2S也是一种3弓I脚的同步串行接口通讯协议。
它支持四种音频标准,包括飞利浦I2S标准,MSB和LSB对齐标准,以及PCM标准。
它在半双工通讯中,可以工作在主和从2种模式下。
当它作为主设备时,通过接口向外部的从设备提供时钟信号。
警告:由于SPI3/I2S3 的部分弓I脚与JTAG引脚共享(SPI3_NSS/I2S3_WS 与JTDI ,SPI3_SCK/I2S3_CK与JTDO),因此这些引脚不受IO控制器控制,他们(在每次复位后)被默认保留为JTAG用途。
如果用户想把引脚配置给SPI3/I2S3,必须(在调试时)关闭JTAG并切换至SW或口,或者(在标准应用时)同时关闭JTAG和SWD接口。
STM32_RM_CH_V10_1中文参考手册
●●●●●●●●●●
●●●●●●●●●●
●
●
●
●●●●●
●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●
●
●●●●●●●●●●
●●●●●●●●●●
提示:点击上表中的章节名字可以直接跳转到对应的章节。
参照2009年12月 RM0008 Reference Manual 英文第10版 本译文仅供参考,如有翻译错误,请以英文原稿为准。请读者随时注意在ST网站下载更新版本
串 行 总 线
器 局 域 网
外 设 总 线
间 总 线 接 口
同 步 异 步 收
串 行 总 线
网
(RTC)
口
器
发
器
(BKP)
(ETH)
OTG(OTG_FS)
(I2C)
(SPI)
(bxCAN)
(USB)
(FSMC)
( WWDG)
(IWDG)
(TIMx(x=1…8))
(DAC)
(ADC)
(USART)
(GPIO)
请读者随时注意在st网站下载更新版本目录stm32f10xxx参考手册727时钟安全系统css83728rtc时钟83729看门狗时钟847210时钟输出8473rcc寄存器85731时钟控制寄存器rcccr85732时钟配置寄存器rcccfgr86733时钟中断寄存器rcccir88734apb2外设复位寄存器rccapb2rstr91735apb1外设复位寄存器rccapb1rstr92736ahb外设时钟使能寄存器rccahbenr94737apb2外设时钟使能寄存器rccapb2enr95738apb1外设时钟使能寄存器rccapb1enr97739备份域控制寄存器rccbdcr997310控制状态寄存器rcccsr1007311ahb外设时钟复位寄存器rccahbrstr1017312时钟配置寄存器2rcccfgr21017313rcc寄存器地址映像103通用和复用功能iogpio和afio10581gpio功能描述105811通用iogpio106812单独的位设置或位清除107813外部中断唤醒线107814复用功能af107815软件重新映射io复用功能107816gpio锁定机制107817输入配置107818输出配置108819复用功能配置1098110模拟输入配置1098111外设的gpio配置11082gpio寄存器描述113821端口配置低寄存器gpioxcrlxa
STM32参考手册中文.pdf
口册23 串行外设接口(SPI)小容量产品是指闪存存储器容量在16K 至32K 字节之间的STM32F101xx、STM32F102xx和STM32F103xx微控制器。
中容量产品是指闪存存储器容量在64K至128K字节之间的STM32F101xx、STM32F102xx 和STM32F103xx微控制器。
大容量产品是指闪存存储器容量在256K至512K字节之间的STM32F101xx和STM32F103xx微控制器。
互联型产品是指STM32F105xx和STM32F107xx微控制器。
除非特别说明,本章描述的模块适用于整个STM32F10xxx微控制器系列。
23.1 SPI简介在大容量产品和互联型产品上,SPI接口可以配置为支持SPI协议或者支持I2S音频协议。
SPI接口默认工作在SPI方式,可以通过软件把功能从SPI模式切换到I2S模式。
在小容量和中容量产品上,不支持I2S音频协议。
串行外设接口(SPI)允许芯片与外部设备以半/全双工、同步、串行方式通信。
此接口可以被配置成主模式,并为外部从设备提供通信时钟(SCK)。
接口还能以多主配置方式工作。
它可用于多种用途,包括使用一条双向数据线的双线单工同步传输,还可使用CRC校验的可靠通信。
I2S也是一种3引脚的同步串行接口通讯协议。
它支持四种音频标准,包括飞利浦I2S标准,MSB 和LSB对齐标准,以及PCM标准。
它在半双工通讯中,可以工作在主和从2种模式下。
当它作为主设备时,通过接口向外部的从设备提供时钟信号。
警告:由于SPI3/I2S3 的部分引脚与JTAG 引脚共享(SPI3_NSS/I2S3_WS 与JTDI ,SPI3_SCK/I2S3_CK与JTDO),因此这些引脚不受IO控制器控制,他们(在每次复位后) 被默认保留为JTAG用途。
如果用户想把引脚配置给SPI3/I2S3,必须(在调试时)关闭JTAG并切换至SWD接口,或者(在标准应用时)同时关闭JTAG和SWD接口。
stm32f103中文手册[10]
stm32f103中文手册一、概述stm32f103c8/cb:64KB或128KB闪存,20KBSRAM,48引脚或64引脚LQFP封装。
stm32f103r8/rb:64KB或128KB闪存,20KBSRAM,64引脚LQFP封装。
stm32f103v8/vb:64KB或128KB闪存,20KBSRAM,100引脚LQFP封装。
stm32f103rc/rd/re:256KB或384KB或512KB闪存,48KB或64KB SRAM,64引脚或100引脚或144引脚LQFP封装。
stm32f103vc/vd/ve:256KB或384KB或512KB闪存,48KB或64KB SRAM,100引脚或144引脚LQFP封装。
stm32f103zc/zd/ze:256KB或384KB或512KB闪存,48KB或64KB SRAM,144引脚LQFP封装。
stm32f103的主要特性如下:基于ARM Cortex-M3内核,主频可达72MHz。
内置嵌套向量中断控制器(NVIC),支持多达60个中断源和4个优先级。
内置多种存储器资源,包括闪存、SRAM、备份寄存器和选项字节。
内置多种外设资源,包括GPIO、ADC、DAC、定时器、PWM、I2C、S PI、USART、CAN、USB等。
支持多种时钟源和时钟控制模式,包括内部RC振荡器、外部晶振、PLL等。
支持多种低功耗模式和唤醒机制,包括待机模式、停止模式、睡眠模式等。
支持多种调试和编程接口,包括JTAG/SWD、串口引导加载等。
支持多种电源管理功能,包括电压监测、温度传感器、复位控制等。
二、系统架构stm32f103的系统架构如图1所示¹。
其主要组成部分包括:ARM Cortex-M3内核:负责执行指令和处理数据。
NVIC:负责管理中断请求和中断服务程序。
存储器总线:负责连接内核和存储器资源。
AHB总线:负责连接内核和高速外设资源。
APB1总线:负责连接内核和低速外设资源1。
专题三stm32时钟树及相关库函数
#ifndef STM32F10X_CL
RCC->CFGR &= (uint32_t)0xF8FF0000;
#else
RCC->CFGR &= (uint32_t)0xF0FF0000;
#endif /* STM32F10X_CL */
APB2ENR|=1<<2;//或运算,1有效。
第二种方法就是调用库函数。
四、介绍两种库函数
4.1外设时钟使能函数
与rcc有关寄存器设置的库函数都在stm32f10x_rcc.c以及stm32f10x_rcc.h文档中。上面说要使能GPIO时钟,因为GPIO是APB2的外设,因此就是使能APB2相应外设时钟。库函数是:
三
从前面的图1可以看到,要设置STM32芯片的时钟,有以下几个方面要考虑:
1.芯片的时钟源选择HSE,HIS还是其他?
2.SYSCLK系统时钟应该选择哪个?
3.各总线的分频系数?
4.PLL锁相环的倍频系数?
5.各个外设对应的时钟是开启呢,还是禁止?
上面5个问题,STM32统一用RCC来解决。我们首先来看下与RCC相关的寄存器有哪些。
输入参数2:NewState,外设时钟的新状态,可以是DISABLE,ENABLE两种。
返回值:无
调用示范:RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);//使能GPIOB时钟
函数的具体定义引用如下:
void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
STM32固件库使用手册的中文翻译
UM0427用户手册32位基于ARM微控制器STM32F101xx与STM32F103xx固件函数库介绍本手册介绍了32位基于ARM微控制器STM32F101xx与STM32F103xx的固件函数库。
该函数库是一个固件函数包,它由程序、数据结构和宏组成,包括了微控制器所有外设的性能特征。
该函数库还包括每一个外设的驱动描述和应用实例.通过使用本固件函数库,无需深入掌握细节,用户也可以轻松应用每一个外设。
因此,使用本固态函数库可以大大减少用户的程序编写时间,进而降低开发成本。
每个外设驱动都由一组函数组成,这组函数覆盖了该外设所有功能。
每个器件的开发都由一个通用API (application programming interface 应用编程界面)驱动,API对该驱动程序的结构,函数和参数名称都进行了标准化.所有的驱动源代码都符合“Strict ANSI—C”标准(项目于范例文件符合扩充ANSI—C标准).我们已经把驱动源代码文档化,他们同时兼容MISRA-C 2004标准(根据需要,我们可以提供兼容矩阵)。
由于整个固态函数库按照“Strict ANSI—C”标准编写,它不受不同开发环境的影响。
仅对话启动文件取决于开发环境.该固态函数库通过校验所有库函数的输入值来实现实时错误检测.该动态校验提高了软件的鲁棒性。
实时检测适合于用户应用程序的开发和调试。
但这会增加了成本,可以在最终应用程序代码中移去,以优化代码大小和执行速度。
想要了解更多细节,请参阅Section 2.5。
因为该固件库是通用的,并且包括了所有外设的功能,所以应用程序代码的大小和执行速度可能不是最优的.对大多数应用程序来说,用户可以直接使用之,对于那些在代码大小和执行速度方面有严格要求的应用程序,该固件库驱动程序可以作为如何设置外设的一份参考资料,根据实际需求对其进行调整。
此份固件库用户手册的整体架构如下:⏹定义,文档约定和固态函数库规则。
STM32时钟源的介绍及使用方法——STM32时钟树
STM32时钟源的介绍及使⽤⽅法——STM32时钟树【温馨提⽰:以下内容均来⾃⽹友的⽆私奉献或书本的摘抄,在此表⽰感谢!】上图是STM32的时钟树,从树上我们可以看到,STM32的时钟有两个来源——内部时钟和外部时钟。
按时钟频率来分,⼜可分为⾼速时钟和低速时钟。
因此STM32的时钟有四个来源:⾼速外部时钟信号(HSE)、低速外部时钟信号(LSE)、⾼速内部时钟信号(HSI)和低速内部时钟信号(LSI)(图中分别⽤蓝⾊的①~④标注)。
①HSE⾼速外部时钟:由外部4~16MHz的晶体或有源晶振提供,通常采⽤8MHz。
②LSI低速外部时钟:外部晶体提供,主要是给实时时钟(RTC),⼀般为32.768kHz。
③HSI⾼速内部时钟:由内部RC振荡器产⽣的8MHz时钟,但不够稳定。
④LSI低速内部时钟:内部RC振荡器产⽣的供给RTC的时钟,频率在30kHz~60kHz之间,通常约40kHz。
时钟在STM32内部最终是供给四⼤块(图中⽤红⾊椭圆圈出):USB的48MHz时钟、系统时钟SYSCLK、实时时钟模块RTC、独⽴看门狗的时钟IWDGCLK。
其中最主要的,也是最⼤头是系统时钟SYSCLK,它可以是内部或外部⾼速时钟直接接过来,也可以内、外部⾼速时钟是PLL倍频后提供的,系统时钟再分别供给Cortex内核、SDIO、AHB总线、DMA、APB1、APB2等。
我们通常是采⽤外部8MHz⾼速时钟(HSE),所以着重说HSE。
我们以前⾯的GPIO上的时钟为例,由ST的Datasheet可知,GPIO是在APB2⾼速外设总线上的,图中绿⾊的线就是时钟的流程,我们⼀步步地来看。
8MHz外部晶体(或晶振)输⼊后,先经过⼀个开关PLLXTPRE(HSE divider for PLL entry),此开关决定对HSE进⾏2分频再输⼊到PLL或直接到PLL。
我们选择不分频。
这样时钟⼜到了第⼆个开关PLLSRC(PLL entry clock source),此开关决定PLL的时钟来源,是内部⾼速时钟⼆分频的时钟还是PLLXTPRE的输出。