FLAC3D和3DEC的区别(itasca论坛)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FLAC3D和3DEC的区别(itasca论坛)
在“三维可视化”专区中一位坛友讲到了3DEC建模和参数取值困难的问题,且被业界所“诟病”。楼主是3DEC的忠实用户,也用过FLAC3D和PFC,就3DEC自身的这些“问题”,略谈一二。
在建模环节上,3DEC是典型的“欺生”,即生手上来的时候可能觉得无从下手,而掌握以后觉得游刃有余。有兴趣的坛友可以访问Itasca网站中咨询研究专题下的一些应用实例,看看那里的3DEC模型,所有这些模型,除其中一个以外,建模时间都在5天以内,一般为3天,不助任何第三方软件。大家可以比较一下,这些模型用其他软件建模时需要花多长时间。
与其他ITASCA软件如FLAC3D一致地,3DEC采用命令流建模,可以嵌入FISH。这对初学者而言有些困难,但如果掌握了就很灵活:
相比较菜单操作而言,命令流显然要困难一些,因此难学。但一旦掌握,修改模型只需要修改命令流,无需进行重复的菜单操作,熟手因此多喜欢命令流的方式;
FISH本身就不是为初学者准备的,但掌握了FISH以后,任何有规律性对象的建模就容易得多。比如多机组的地下厂房洞室群,用FISH建立起来了其中一个单元以后,修改参数即可很快获得其他单元。建模过程中FISH的应用可以大大提高效率,是命令流、特别是菜单操作所难以比拟的。
因此,3DEC是典型的“欺生”,学习3DEC和训一匹“烈马”有得
一比,如果你不能驯服它,你只能是望而却步。
学习3DEC还需要“洗脑”,即固有的理论和思维模式可能会有所障碍。
不知道哪位坛友在基础理论学习过程中系统学习过非连续力学方法、或者说学习过离散元方法。以楼主的理解,国内一些关于离散元的文献中,只要谈深一点,就不乏误解和错误。其中的原因是多方面的,一是没有跟上国际潮流,没有真正弄懂就开始写文章。二是既往的教育背景基本都是连续理论和有限元方法,当用这种思维定式来应用离散元程序如3DEC时,可能会受到一些制约。
3DEC处理的对象包括两大部分,即块体和接触(结构面),相比较而言,有限元乃至FLAC3D针对的对象只是其中的块体,即便存在结构面,但在程序结构中的处理方式也与3DEC有着本质的差别。
如果说单元网格是数值模型的基本单元,那么,3DEC中包括两种网格体系,即接触网格和块体网格。这要求用户在脑子里建立这种概念,即3DEC程序结构中有两个系列的网格,而不是传统的一个系列。当然,从应用角度,如果不理会这一点也无所谓,但如果是达到写文章和理解程序的深度,则需要理解这种差别及其带来的不同。
在3DEC中,接触被作为块体的边界,因此,两个块体相接触时,无需节点之间有任何的对应关系。在FLAC专区中有一幅帖子问“这样的网格行不行”,如果放在3DEC中,这不是问题。这一差别显
然对用户有利--你无需考虑块体之间的单元节点匹配问题,简单地说,一个块体相当于一个独立的FLAC3D或有限元模型,块体边界相当于模型边界,3DEC把这些模型综合到了一起,形成一个超级模型。
既然接触时块体边界,因此,计算结果可以在边界附近出现应力和位移的不连续,这是看3DEC成果时需要注意的环节。按传统方式输出应力等值线图时,3DEC就算结果的等值线可能很难看,但却真实。当大家都习惯了漂亮的“等值线”时,可能就会“诟病”3DEC
的计算结果和3DEC程序。事实上,问题很可能出现在自身,即用固有的理念看待新问题。
所以,当决定学习3DEC时,请先做好“洗脑”的思想准备。
再就是对“调参”的诟病。对于数值计算中的“调参”,楼主倒是有话要说。
首先,我不止一次听到工程界对数值计算的抱怨,即只知道坐在计算机跟前去调参,以获得与现场“一致”的结果。而不是真正去探讨问题的本质,在解决本质问题上下功夫。
水电界的一些坛友可能都知道锦屏一级地下厂房下游拱肩一带
出现的持续变形问题,以楼主之见,毫无疑问是破裂随时间扩展的工程表现,从本质上考察问题时,需要采取相适应的数值方法、即微力学程序与PFC开展工作。如果使用FLAC3D等这些程序进行“调参”,要诟病的很可能是用户自己。
以楼主了解的情况,使用3DEC时大家常问的一个问题是刚度如何取。楼主有一个问题要问,你是否知道现实中结构面刚度受到哪些因素的影响、如何影响到计算结果?
首先,从岩石力学专业的角度,刚度本身就不是一个简单的力学常数,除了直接受到结构面自身刚度(软、硬)影响以外,还与尺寸密切相关。同一结构面,3m长和30m长时的刚度可以差别10倍,给结构面赋刚度时,不仅要看结构面性质,还要看结构面长度,这是两个基本因素,是专业知识问题。在给结构面赋刚度时,我们是否遗漏了什么?
其次,刚度影响什么?影响位移。如果你希望研究的是块体稳定,刚度取值就不怎么重要了,因为那是结构面强度参数、而不是刚度参数说了算。取不同的刚度,该失稳的块体仍然失稳,不该失稳的仍然处于稳定。不同的是,取高的刚度时,块体发生破坏时对应的位移量小一些,而取低的刚度时,破坏时对应的位移量大。如果是回答稳定问题,你完全可以不回答位移;如果你希望给出位移,心中需要有数,这是与刚度相关的相对位移。
最后,如果必须面对刚度取值问题,即重点是结构面导致的真实位移大小,这与确定岩体的弹模没有两样,最好的办法是利用现实中的位移监测“校对”出刚度值,这才是正确的“调参”方式。当然,你或许会说,此时还涉及到岩体弹模的“调参”。这是对的,离散元计算就是比连续力学计算复杂,要不然为什么从UDEC/3DEC中抽取出来的FLAC/FLAC3D有那么多人学,而问津UDEC/3DEC的人少很
多。不过,任何问题深究时都复杂,前述锦屏一级地下厂房,或许你仍然可以用FLAC3D计算,但你调参时不应该是调整弹模和峰值强度,而是残余强度以及描述破裂随时间扩展的参数,这是专业理解环节的问题。
以楼主之见,在复杂问题调参前,先看看哪些参可以调,哪些不能调。以楼主的经验,以岩体为例,峰前行为只有GSI需要调也可以调,峰后可能是复杂问题特别需要关注和调参的地方。
ITASCA软件中最先是UDEC,其中对块体应力--应变关系的数学求解采用了拉格朗日方法,把UDEC中对块体的这种求解方式拿出来形成单独的、针对连续体的程序时,这个程序就是FLAC,然后发展成FLAC3D。
打过不恰当的比方,儿子得到了广泛认可,老子的血统到成了问题,这就是UDEC、3DEC在中国面临的窘境。很多人奇怪为什么ITASCA中国公司不出来宣传和辟谣,如果了解Itasca中国公司的业务范围,也就不足为奇了,数值计算工程应用是Itasca公司的主要业务范围,没有必要花很多精力去教会竞争对手。事实上,在市场竞争激烈的一些国家,如智利、西班牙等,那里的Itasca公司根本就不愿意卖软件。好在中国很大,市场也很大,没有谁能占很大的份额,卖卖软件业无妨。
如果是常规性的岩体工程问题,3DEC完全可以取代FLAC3D,由于FLAC3D建模具有相对严格的规则要求,在处理复杂几何模型时,3DEC显然更灵活有效一些。请注意灵活两个字,不同的人有不