锂电池发展简史
锂金属电池发展历程

锂金属电池是一种重要的高能量密度电池,其发展历程如下:
1. 1970年代初:提出锂金属电池的概念,并开始进行实验研究。
然而,由于锂金属负极的安全性和稳定性问题,该技术并未得到广泛应用。
2. 1980年代:在1980年代初期,出现了第一代锂金属电池,包括锂硫电池和锂空气电池。
这些电池具有较高的能量密度,但仍面临锂金属负极的安全性和极其活性的问题。
3. 1990年代:经过多年的研究和改进,锂离子电池于1991年商业化,取代了锂金属电池。
锂离子电池以其相对较高的安全性和更长的循环寿命成为便携式电子设备的主要电源。
4. 2010年代:随着可再生能源和电动汽车市场的快速增长,对高能量密度和长循环寿命的需求日益增加,锂金属电池再次引起了人们的关注。
研究人员致力于解决锂金属负极的安全性和稳定性问题,并提出了一系列新型锂金属电池,如固态锂金属电池、锂硫电池和锂空气电池。
5. 未来发展:当前,锂金属电池仍在不断发展和改进中。
研究人员致力于进一步提高锂金属电池的能量密度、循环寿命和安全性,以满
足更广泛的应用需求。
此外,还有一些新兴技术,如锂金属硫化物电池和多金属离子电池等,也在逐步崭露头角。
总结起来,锂金属电池经历了从概念提出到实验研究,然后到商业化应用的过程。
虽然在某些方面存在挑战和限制,但锂金属电池仍然是未来能源存储领域的重要研究方向之一,并具有巨大的发展潜力。
锂离子电池发展历程

锂离子电池发展历程锂离子电池是一种常见的电池类型,其采用锂离子作为电解质,具有高能量密度、长寿命和快速充电等优点。
以下是锂离子电池的发展历程:1. 1970年代末:锂金属电池的出现锂金属电池是锂离子电池的前身,它使用锂金属作为阳极材料。
虽然锂金属电池能够提供高能量密度,但由于锂金属的不稳定性和易燃性,使得其在商业应用中受到限制。
2. 1980年代:锂离子电池的诞生1980年代初期,研究人员发现使用锂离子代替锂金属作为阳极材料,可以解决锂金属电池的问题。
这种新型电池被称为锂离子电池。
锂离子电池具有高能量密度、长寿命和低自放电率等优点,因此被广泛用于电子产品、电动汽车和储能系统等领域。
3. 1990年代:锂离子电池的商业化1991年,索尼公司推出了第一款商业化的锂离子电池,用于便携式电子产品。
随着电动汽车和储能系统的需求增加,锂离子电池逐渐成为主流电池类型。
同时,各种新型锂离子电池也相继问世,如锰酸锂电池、钴酸锂电池和磷酸铁锂电池等。
4. 2000年代:锂离子电池的改进2000年代,锂离子电池的能量密度和循环寿命得到了进一步提高。
此外,随着环保意识的增强,研发人员开始探索使用可再生材料制造锂离子电池。
5. 2010年代至今:锂离子电池的应用扩展近年来,随着科技的不断进步,锂离子电池的应用领域不断扩展。
例如,锂离子电池已经被用于无人机、智能家居、医疗设备等领域。
此外,随着电动汽车的普及,锂离子电池也成为了主流动力电池类型。
总之,锂离子电池的发展历程经历了从锂金属电池到锂离子电池的转变,从单一应用到多个领域的普及。
未来,随着科技的不断发展,锂离子电池将继续发挥其重要作用,在各个领域中得到广泛应用。
锂电池的发展历程

锂电池的发展历程锂电池是一种能够将化学能转化为电能的电池,它使用的正极材料为锂化合物,并以金属锂或碳为负极,电解液为锂盐溶液。
锂电池具有高能量密度、长周期寿命和低自放电等优点,因此在近几十年间得到了广泛的研究和应用。
锂电池的发展可以追溯到20世纪初期。
1901年,瑞士化学家后来获得了诺贝尔奖的路易·塞尔奇议定书首次提出了锂电池的原理。
此后,锂电池的研究进展缓慢,直到20世纪70年代才有了一些突破。
1973年,美国斯坦福大学的物理学家邓肯·麦克拉沃提出了一种由钴酸锂作为正极的锂电池。
不久之后,在法国,基于三元材料的锂电池也开始获得注意。
到了20世纪90年代,人们开始对锂电池进行更深入的研究。
1991年,日本索尼公司制造出了第一款商业化的锂离子电池。
这种电池采用锰酸锂作为正极材料,石墨作为负极材料。
据报道,这种电池的能量密度可以达到石油的1/6,为当时最高水平。
随着锂电池技术的发展,其应用领域也不断扩展。
在电子设备领域,锂电池得到广泛应用,如手机、笔记本电脑、数码相机等。
锂电池的高能量密度和轻巧的特点,使得这些设备可以更长时间地使用。
同时,锂电池还被广泛应用于电动汽车领域。
由于锂电池具有高能量密度和较长的循环寿命,它可以为电动汽车提供足够的续航里程,并且具有快速充电的特点。
随着锂电池的发展,人们也逐渐意识到了其潜在的安全隐患。
锂电池在某些情况下可能出现过热、燃烧甚至爆炸的问题。
为了解决这一问题,研究人员不断致力于开发更安全的锂电池。
例如,他们改善了电解液的组成,使用更稳定的材料来替代原有的有机电解液,以减少电池的燃烧风险。
同时,还研究开发了电池管理系统,用于监控和控制电池的运行状态,提高其安全性能。
总的来说,锂电池的发展经历了一个漫长而艰难的过程。
从最初的实验室研究到商业化推广,再到如今在电子产品和电动汽车等领域的广泛应用,锂电池已经成为现代社会不可或缺的能量源。
虽然锂电池还面临一些挑战,如续航里程、充电时间和安全性等问题,但相信随着技术的不断进步,这些问题将会逐渐得到解决。
锂电池技术的发展与应用

锂电池技术的发展与应用随着科技的不断发展,人们的生活越来越离不开各种电子产品,如手机、平板电脑等。
而这些电子设备的电源则非常重要,随着时代的变迁,其电源方式也不断更新换代。
目前,最流行的电池莫过于锂电池了。
本文将从锂电池的发展历程、特点、应用领域等方面进行分析探讨。
一、锂电池的发展历程锂电池,最初是在1960年代发明的。
当时,其主要应用于军事领域。
1991年,第一款锂离子电池及其商业应用问世。
随后,锂电池随着科技的不断发展,很快成为各种电子产品的主要电源之一。
不断有新型号的锂电池被推出,使锂电池的容量、使用寿命等方面得到了不断的提升。
二、锂电池的特点1.安全性能好。
相比于传统镉镍电池和镍氢电池,锂电池具有更好的安全性能。
锂离子电池在长时间的放电操作下,并不会像其它电池那样会产生大量的热量。
2.容量大。
锂离子电池的容量相比其他电池更加出色,可以存储更多的电量,并且使用寿命较长。
3.充放电效率高。
锂电池的充电效率高,能有效地节省电量,让电池更加稳定,寿命更加长。
4.环保。
锂电池对环境的污染非常小,并且可以进行重复使用,在使用过程中还会将金属离子锂氧化成氧气和水。
三、锂电池的应用1.电子设备。
锂电池目前被广泛应用于手机、平板电脑、电子书、数码相机等各种电子设备上,因为其容量大,寿命长,充电效率高等特点,可以为这些电子设备提供稳定的电量。
2.新能源汽车。
锂电池也被广泛应用于新能源汽车上,例如特斯拉等知名新能源汽车品牌就采用了锂电池作为电源。
锂电池容量大,使用寿命长,充电效率高等特点,使得这些电动车可以行驶更远的距离,为新能源汽车的发展提供了更好的电源保障。
3.智能家居。
智能家居在近年来得到了快速的发展,各类智能设备层出不穷。
而这些智能设备往往需要经过长时间的使用,锂电池就可以为它们提供长时间的电力保障。
总的来说,锂电池是目前电子设备中最被广泛使用的电源之一。
随着科技的不断发展,相信锂电池也会得到更好的优化和完善,未来在各种应用领域的应用场景也会更加广阔。
锂电池发展简史

来自美国军方Lockheed Mis-sile and Space Co.的Chihon Jr.和 Cook使用锂金属作负极Ag,Cu,Ni 等卤化物作正极,低熔点金属盐 LiCl-AlCl3,溶解在丙烯碳酸酯(PC) 中为电解液。
1962
三洋公司在过渡金属氧化 物电极材料取得突破, 1975Li/MnO2开发成功,
在放电深度 低的情况下, 反应具有良 好的可逆性
还研究了碱金 属嵌入石墨晶 格中的反应, 并指出石墨嵌 碱金属的混合 导体能够用在 二次电池中。
嵌入容量较高, 化学性质稳定, 而且在化学电 池体系中反应 可逆性良好。
二硫化钛(TiS2)以其优 良表现得到电池设计者的青睐?
层状结构 良好的层状结构使锂离子能 在层间快速迁移,嵌入 反应速率较快。
半金属性质
半金属(semimetal)性质使 其具有良好的导电性,因此 电极中无需多添加导电添 加剂,电化学性能即可发 挥¨
单相
在与锂的嵌入/脱嵌反应过 程中,无新相生成也无成核 现象发生,从而保障反应具 有良好的可逆性(单相是反 应可逆的重要条件)。
第一块锂二次电池的诞生
A
B
C
D
E
1989年,因为Li/Mo2二次电池发生起火事故,除少数公司外,大部分企业都退出金属锂二次 电池的开发。锂金属二电池研发基本停顿关键原因还是没有从根本上解决安全问题。
可以在负极表面形成 稳定界面的电解液
锂的电极电势极低,用另一种嵌人化合物代替金属锂,其电极电势一定会上升。 要在正负极间形成一定电压降,并为了补偿负极电压升高造成电压损失,正极 材料电压要足够高;另外,无论是锂合金还是嵌锂化合物,负极材料的电压要 足够低。最后,这些正负极材料还要与匹配的电解质溶剂产生稳定的界面。
锂电池发展简史

05 现状与展望
04 锂聚合物电池(1978—1999)
03
锂离子电池(1980--1990) 02
锂金属二次电池(1972—1984) 01
锂电池概念与锂原电池发展 (1960--1970)
A Li/CuCl2体系:首次尝试 B Li/(CF)n体系:初见端倪 C Li/Mn02体系:收获成功 D Li/Ag2V4O11体系:医用领域佼佼者
锂银 钒氧化物(Li/Ag2V4O11体系)电池 最为畅销,它占据植入式心脏设
备用电池的大部分市场份额.
嵌入式原理
所谓“嵌人”,它描述的是“外来微粒可 逆地插入薄片层宿主晶格结构而宿主结构 保持不变”的过程。简单地说,“嵌入” 有两个互动的“要素”,一是“宿主”, 例如层状化合物,它能够提供“空间”让 微粒进入;二是“外来的微粒”,它们必 须能够符合一定要求,使得在“嵌入”与 “脱嵌”的过程中,“宿主”的晶格结构 保持不变.
石墨嵌锂化合物的研究历程
时间 1926年 1938年 1955年 1976年 1977年
人物 Fredenhagen&Cadengach
Rudoff与Hofmann Herold
Besenhard Armand
事件和意义 合成了碱金属(K,Rb,Cs)石墨嵌入化合物(简称GICs)
建议将GICs用于化学电源 合成了锂石墨嵌入化合物Li-GIC 多次电化学测试发现Li电化学嵌入到石墨中 第一次把Li-GIC作为锂二次电池的可逆电极
抛弃锂金属,选择另一 种嵌入化合物代替锂。 这种概念的电池被形象
地称为“摇椅式电 池”(Rocking Chair Battery,简称RCB)
抛弃液体电解质的第二 种方案,选择离子导电 聚合物电解质取代液体 电解质。聚合物电解质 同时还兼有液态锂离子
锂电池发展历程

锂电池发展历程锂电池是一种利用锂离子的电化学反应实现能量转换和储存的电池。
通过不断的发展和改进,锂电池已经成为目前最为常用和普遍的电池类型之一。
下面我们来简要地介绍一下锂电池的发展历程。
20世纪60年代,研究人员开始尝试使用锂金属作为电池的阳极材料。
然而,由于锂金属容易与电解液中的物质发生剧烈反应,导致锂电池的安全性能较差。
随后,研究人员开始尝试使用锂合金代替纯锂金属,以提高电池的安全性能。
70年代中期,研究人员开始尝试使用锂化合物作为阳极材料,如二氧化锰等。
这些锂化合物不像锂金属那样与电解液发生剧烈反应,因此大大提高了锂电池的安全性能。
然而,这一时期的锂电池仍然存在能量密度低、寿命短等问题。
80年代初,研究人员将锂金属替换为锂离子材料,并将锂离子嵌入到负极(一般为石墨)中进行储存。
这种锂离子的嵌入和释放过程可以多次循环,从而显著提高了锂电池的寿命。
90年代初,锂电池开始应用于商业领域,如便携式电子设备。
同时,锂电池的能量密度也得到了进一步提高,使其能够提供更长的电池续航时间。
21世纪初,锂电池开始广泛应用于电动汽车和储能系统领域。
锂电池的高能量密度和较长的寿命使其成为电动汽车的理想能源选择。
同时,随着可再生能源的快速发展,储能系统的需求也越来越大。
锂电池的高效能和长寿命使其成为储能系统的首选设备。
近年来,锂电池的发展仍在不断进行着。
研究人员不断探索新的材料和技术,以进一步提高锂电池的能量密度、寿命和安全性能。
例如,固态锂电池的研究和开发正在进行中,这种电池具有更高的能量密度和更好的安全性能。
总的来说,锂电池经过多年的发展和改进,已经成为一种重要的能源储存技术。
随着科技的进步和需求的增加,锂电池有望在未来继续发展,并在更广泛的领域中得到应用。
锂电池发展简史资料

26
13
1983 年, Peled 等人提出固态电解质界面膜(简称SEI)模 型。研究表明, 这层薄膜的性质(电极与电解质之间的界面 性质)直接影响到锂电池的可逆性与循环寿命。 20世纪80年代中, 研究人员开始针对“界面”进行一系列 的改造,包括寻找新电解液,加入各种添加剂与净化剂, 利用各种机械加工手段, 通过改变电极表面物理性质来抑 制锂枝晶的生长。 80年代末期, 加拿大Moli能源公司研发的Li/Mo2 锂金属二 次电池推向市场,第一块商品化锂二次电池终于诞生。
22
4. 1������
固体聚合物电解质电池
19世纪末期, Warburg发现一些固态化合物为纯离子导体。 1975年, W right等人发现聚氧化乙烯PEO能够溶解无机盐 并且在室温下表现出离子导电性。 1978年, Armand首次将这种聚合物电解质作为锂电池电解 质研究。SPEs 电解质层可以做得很薄, 电池可做成任意 形状而且防漏, 并且可防止锂枝晶的形成, 改善电池的循 环性能。但是SPE的离子导电率不高,此外还要面对电极 表面化学的问题,因此SPEs的发展并不乐观。
6
2 锂金属二次电池( 1972-1984)
锂原电池的成功激起了二次电池的研究热潮。学术界的 目光开始集中在如何使该电池反应变得可逆这个问题上。 当锂原电池由于其高能量密度迅速被应用到如手表、计 算器以及可植入医学仪器等领域的时候, 众多无机物与碱 金属的反应显示出很好的可逆性。这些后来被确定为具 有层状结构的化合物的发现, 对锂二次电池的发展起到极 为关键的作用。
24
1990年Abraham 发表添加增塑剂的凝胶状电解质体系锂 离子传导性能研究的论文, 将室温下锂离子传导性能提高 到10-3 Ω -l cm-1,在当时来讲, 该指标被认为是不可逾越的。 1994年, Bellcore公司Tarascon小组申请专利,率先提出使用 具有离子导电性的聚合物作为电解质制造聚合物锂二次 电池。 1996年, Tarascon等人报道了Bellcore/Telcordia 商品化GPE 电池性能与制备工艺。 1999年, 锂离子聚合物电池正式投入商业化生产 , 松下公 司为首的8 家公司均有产品推出, 因此, 1999年被日本人称 为锂聚合物电池的元年。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18
3.2 LiMO2 化合物研究进展
70年代末,Murphy 的研究揭示类似V6O13的氧化物一样 具有优越的电化学特性,为后来尖晶石类嵌入化合物的 研究奠定了基础。 在持续的努力下, 研究人员找到LixMO2 (M代表Co, Ni, Mn)族化合物, 它们具有与LiTiS2 类似的斜方六面体结构, 使锂离子易于在其中嵌入与脱嵌。 1980 年, Mizushima 和Goodenough就提出LixCoO2 或 LixNiO2 可能的应用价值,但由于当时主流观点认为高工 作电压对有机电解质的稳定性没有好处, 该工作没有得到 足够的重视。随着碳酸酯类电解质的应用,LixCoO2首先 成为商业锂离子电池的正极材料。
13
1983 年, Peled 等人提出固态电解质界面膜(简称SEI)模 型。研究表明, 这层薄膜的性质(电极与电解质之间的界面 性质)直接影响到锂电池的可逆性与循环寿命。 20世纪80年代中, 研究人员开始针对“界面”进行一系列 的改造,包括寻找新电解液,加入各种添加剂与净化剂, 利用各种机械加工手段, 通过改变电极表面物理性质来抑 制锂枝晶的生长。 80年代末期, 加拿大Moli能源公司研发的Li/Mo2 锂金属二 次电池推向市场,第一块商品化锂二次电池终于诞生。
锂电池发展简史
1
1 锂电池概念与锂原电池发展 ( 1960~1970)
1960~1970年代的石油危机迫使人们去寻找新的替代能 源, 同时军事、航空、医药等领域也对电源提出新的要求。 当时的电池已不能满足高能量密度电源的需要。 由于在所有金属中锂比重很小、电极电势极低, 它是能量 密度很大的金属, 锂电池体系理论上能获得最大的能量密 度, 因此它顺理成章地进入了电池设计者的视野。 但是锂金属在室温下与水反应,因此如果要让锂金属应用 在电池体系中,非水电解质的引入非常关键。
22
4. 1������
固体聚合物电解质电池
19世纪末期, Warburg发现一些固态化合物为纯离子导体。 1975年, W right等人发现聚氧化乙烯PEO能够溶解无机盐 并且在室温下表现出离子导电性。 1978年, Armand首次将这种聚合物电解质作为锂电池电解 质研究。SPEs 电解质层可以做得很薄, 电池可做成任意 形状而且防漏, 并且可防止锂枝晶的形成, 改善电池的循 环性能。但是SPE的离子导电率不高,此外还要面对电极 表面化学的问题,因此SPEs的发展并不乐观。
3
1.2 Li/(CF)n体系: 初见端倪
1970年, 日本松下电器公司与美国军方几乎同时独立合成 出新型正极材料--碳氟化物。松下电器成功制备了分子表 达式为(CFx)n (0.5≤x ≤ 1)的结晶碳氟化物, 将它作为锂原 电池正极。美国军方研究人员设计了(CxF)n(x = 3.5-7.5)。 无机锂盐+有机溶剂电化学体系, 拟用于太空探索。 1973年, 氟化碳锂原电池在松下电器实现量产, 首次装置 在渔船上。 氟化碳锂原电池发明是锂电池发展史上的大事, 原因在于 它是第一次将“嵌入化合物”引入到锂电池设计中。
24
1990年Abraham 发表添加增塑剂的凝胶状电解质体系锂 离子传导性能研究的论文, 将室温下锂离子传导性能提高 到10-3 Ω -l cm-1,在当时来讲, 该指标被认为是不可逾越的。 1994年, Bellcore公司Tarascon小组申请专利,率先提出使用 具有离子导电性的聚合物作为电解质制造聚合物锂二次 电池。 1996年, Tarascon等人报道了Bellcore/Telcordia 商品化GPE 电池性能与制备工艺。 1999年, 锂离子聚合物电池正式投入商业化生产 , 松下公 司为首的8 家公司均有产品推出, 因此, 1999年被日本人称 为锂聚合物电池的元年。
7
2. 1������
பைடு நூலகம்
嵌入化合物: 锂二次电池成功的关键
60年代末,贝尔实验室的Broadhead等人将碘或硫嵌入到二 元硫化物(如NbS2)的层间结构时发现, 在放电深度低的情 况下, 反应具有良好的可逆性。 同时,斯坦福大学的Armand等人发现一系列富电子的分 子与离子可以嵌入到层状二硫化物的层间结构中, 例如二 硫化钽(TaS2),此外,他们还研究了碱金属嵌入石墨晶格 中的反应, 并指出石墨嵌碱金属的混合导体能够用在二次 电池中。 1972年, 在一次学术会议上, Steel与Armand等人提出“电 化学嵌入”概念的理论基础。
4
1.3 Li/MnO2体系: 收获成功
1975年,三洋公司在过渡金属氧化物电极材料取得突 破,Li/MnO2开发成功,用在CS-8176L 型计算器上。1977年, 有关该体系设计思路与电池性能的文章一连两期登载在 日文杂志“电气化学与工业物理化学”上。1978 年, 锂二 氧化锰电池实现量产, 三洋第一代锂电池进入市场。
10
1972年, Exxon设计了一种以T iS2 为正极、锂金属为负极、 LiClO4 /二恶茂烷为电解液的电池体系。实验表明,该电池 的性能表现良好,深度循环接近1000 次, 每次循环损失低 于0.05%。
11
充电过程中, 由于金属锂电极表面凹凸不平, 电沉积速率的 差异造成不均匀沉积, 导致树枝状锂晶体在负极生成。当枝 晶生长到一定程度就会折断, 产生“死锂”, 造成锂的不可 逆,使电池充放电实际容量降低。锂枝晶也有可能刺穿隔膜, 12 将正极与负极连接起来, 电池产生内短路。
70年代末, Exxon 的研究人员开 始对锂铝合金电极进行研究。 1977-1979 年, Exxon推出扣式锂 合金二次电池, 用于手表和小型 设备。 1979年, Exxon在芝加哥的汽车电 子展中展示了以TiS2 为正极的大 型的锂单电池体系,后来Exxon 公司出于安全问题, 未能将该锂 二次电池体系实现商品化。
5
1.4 Li/Ag2V4O11体系: 医用领域佼佼者
1976年, 锂碘原电池出现。接着, 许多用于医药领域的专 用锂电池应运而生, 其中锂银钒氧化物( Li/Ag2V4O11 )电池 最为畅销, 它占据植入式心脏设备用电池的大部分市场份 额 。这种电池由复合金属氧化物组成, 放电时由于两种离 子被还原, 正极的储锂容量达到300mAh/g。银的加入不但 使电池体系的导电性大大增强, 而且提高了容量利用率。 Li/Ag2V4O11体系是锂电池专用领域的一大突破。
25
26
19
20
LixNiO2 具有很高的比容量, 成本也比LixCoO2 低, 但合成非 常困难, 容量衰减快, 热稳定性低, 未能在商用电池中广泛应 用。 L ixMnO2 具有的理论容量与钴镍的相仿, 但循环过程中 LixMnO2 结构逐渐改变, 分解成两相, 循环性差 , 无法作为电 极材料之选。 尖晶石结构的LiMn2O4 由于它的成本低廉、热稳定性高、 耐过充性能好、高操作电压的四大特性,对它的改性多年以 来一直都是研究的热点。缺点在于在于高温下循环性能差。 目前该材料是美国、日本等国研究动力锂电池的主要对象。 1997年Goodenough 等人开创了橄榄石结构LiFePO4的工作。 LiFePO4具有较稳定的氧化状态, 安全性能好, 高温性能好, 原材料来源广泛、价格便宜等优点,L iFePO4 被认为是极有 可能替代现有材料的新一代正极材料。缺点是导电率低, 比容量偏低。 21
14
2. 3������
锂二次电池研发的停顿
1989年, 因为Li /Mo2 二次电池发生起火事故,除少数公司 外, 大部分企业都退出金属锂二次电池的开发。锂金属二 次电池研发基本停顿, 关键原因还是没有从根本上解决安 全问题。
15
3������
锂离子电池( 1980-1990)
鉴于各种改良方案不奏效, 锂金属二次电池研究停滞不前, 研究人员选择了颠覆性方案。 第一种方案是抛弃锂金属, 选择另一种嵌入化合物代替锂。 这种概念的电池被形象地称为摇椅式电池 ( Rocking Chair Battery, 简称RCB )。将这一概念产品化, 花了足足十年的 时间, 最早到达成功彼岸的是日本索尼公司, 他们把这项 技术命名为 Li-ion (锂离子技术)。
8
锂嵌入反应示意图
9
2. 2������
第一块锂二次电池诞生
随着嵌入化合物化学研究的深入, 在该类化合物中寻找具 有应用价值的电极材料的目标逐渐清晰起来。 Exxon公司研发人员继续斯坦福大学团队的研究, 他们让 水合碱金属离子嵌入到二硫化钽TaS2中, 在分析生成的化 合物时, 研究人员发现它非常稳定。这一切都预示着: 在 层状二元硫化物中选出具有应用价值的材料作为锂二次 电池的正极将是非常有可能的。最终二硫化钛( TiS2 )以 其优良表现得到电池设计者的青睐。
16
锂离子电池原理示意图
17
3. 1������ 摇椅式电池概念
最早提出 摇椅式电池概念的是Armand。70年代初, Armand 就开始研究石墨嵌入化合物,1977年, 他为嵌锂 石墨化合物申请专利,1980年, 他提出摇椅式电池概念, 让锂二次电池的正负两极均由嵌入化合物充当。 但是要让概念变成现实,需要克服三个问题:一是找到 合适的嵌锂正极材料, 二是找到适用的嵌锂负极材料, 三 是找到可以在负极表面形成稳定界面的电解液。摇椅电 池从概念变成现实足足花了10年的时间。
2
1. 1������
Li/CuCl2 体系: 首次尝试
1958年, Harris提出采用有机电解质作为锂金属原电池的 电解质。 1962年, 在波士顿召开的电化学学会秋季会议上, 来自美 国军方Lockheed Missile和Space Co. 的Chilton Jr. 和Cook 提出“锂非水电解质体系”的设想。 Chilton与Cook设计了一种新型的电池使用锂金属作负极, Ag, Cu, Ni等卤化物作正极, 低熔点金属盐LiC l-AlCl3 溶 解在丙烯碳酸酯中作为电解液。虽然该电池存在的诸多 问题使它仅停留在概念上, 未能实现商品化, 但Chilton与 Cook的工作开启了锂电池研究的序幕。