初中数学学习重难点与方法点拨

合集下载

苏科版数学七年级下册 解一元一次不等式易错题专讲、方法点拨(含解析)

苏科版数学七年级下册 解一元一次不等式易错题专讲、方法点拨(含解析)

解一元一次不等式易错题专讲知识点概述:解一元一次不等式属于初中基础知识点,中考所占分值3分(计算题),解法与一元一次方程类似,只有最后一步系数化为1时,注意当系数为负时,不等号注意变号一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点: 1.解一元一次不等式;2.数形结合(不等式与数轴相结合)3.整体思想的应用易错点: 1.系数为负时,要变号2.去分母时,常数项、整式项不要漏乘【典例演练】1.【答案】a<1【解析】因为不等号的符号改变,所以x前系数为负,则a-1<0,a<1.思路点拨:本题考查不等式的变号问题,所有不等式求解的最后一步都会遇到,请时刻注意判断是否变号。

2.【答案】x>2方法二:因为分母为正数,结果为正数,所以分子只能为正,所以直接列x-2>0,解得x>2.思路点拨:法二可以提升解题速度,对于计算薄弱的学生可以避免计算出错,同类型问题非正数,非负数等,都可用此方法进行解答3.【答案】 x≥-2【解析】(x+2)-3×3x≤18x+2-9x≤18-8x≤16x≥-2思路点拨:本类型一元一次不等式易错点在于不等号右侧的6,在去分母的时候需要同乘3 4.若不等式2x<4的解都能使关于x的一次不等式(a-1)x<a+5成立,则a 的取值范围【答案】1<a≤7【解析】∵2x<4∴x<2……①∵2x<4的解都能使(a-1)x<a+5成立∴a+5≥2a-2-a≥-7a≤7∵a>1,∴1<a≤7思路点拨:1.一个不等式的解满足另一个不等式,注意哪个不等式的解的范围大2.不等式的系数有代数式时,注意通过题目先进行判断,不要盲目分类讨论3.已经得出的范围,在结果上不要忘了加上,如本题中a>1,结果不要漏了5.【答案】6<m≤7【解析】∵x-m<0∴x <m ∵7-2x ≤1 ∴x ≥3 ∵整数解共有4个,为3,4,5,6∴结合数轴考虑如图,右侧空心点应该大于6,小于等于7则6<m ≤7思路点拨:1.数形结合2.端点判断6. 当m 为何值时,关于x 的方程4152435-=-m m x 的解是非负数。

初中数学教学面临的困惑和应对策略

初中数学教学面临的困惑和应对策略

初中数学教学面临的困惑和应对策略初中数学教学面临的困惑和应对策略 问题一、关于计算器的使用困惑:数学能力的培养很重要的一个方面就是运算能力的培养。

但在七年级上册就开始学习了计算器的使用,很多同学对有理数的运算和后面的实数的运算就都使用计算器来进行,这对学生运算能力的培养有很大的负面影响,很多学生有的连简单的加减乘除都使用计算器,但是实数的很多运算不使用计算器,又得不出答案,那么在什么情况下使用计算器,什么情况下不准使用计算器呢?这一点老师很难把握。

计算器的使用给学生运算能力的提高产生很大的负面影响,而在初一上学期就使用计算器,是不是学生手头的运算能力有小学的水平就可以了?解决办法及效果:有理数的运算其实不需要使用计算器,而对于实数的运算有的题目才要借助计算器,把实数这一章内容放在初二的下个学期再开始学习。

平时强调能不用计算器的尽量不用。

但是大部分学生并不能做到这一点。

分析:分析:计算器是一种先进的计算工具。

计算器是一种先进的计算工具。

计算器是一种先进的计算工具。

回顾我国古代数学的辉煌,回顾我国古代数学的辉煌,回顾我国古代数学的辉煌,先进的计先进的计算工具(筹算、珠算)所起的作用不容抹杀。

在中学提倡使用计算器,其好处是:①习惯于电子器具的使用,输入、输出、近似数、运算规则的熟悉,这是信息社会中最起码的常识,②有助于应用题的求解,使有些因计算复杂而不能做的应用数学题借助计算器获得顺利解决,③解除数学用表的教学负担,④帮助学生在以后的就业时会正确使用,减少差错。

老师们的担心:老师们的担心:过多地依赖计算器,过多地依赖计算器,过多地依赖计算器,将会导致学生的惰性,将会导致学生的惰性,将会导致学生的惰性,久而久之,久而久之,久而久之,学生学生连简单的四则运算也不会。

有人说,使用计算器会阻碍智力发展,培养隋性,这是值得商讨的一种观点。

难道使用计算器真的只需按键而不象珠算那样伴随着智力活动吗?——难道使用计算器真的只需按键而不象珠算那样伴随着智力活动吗?——如何在复杂的计算中设计正确的按键顺序(算法)以提高精确度?如何防止按键错误?如何检验输出结果的准确性?等等。

北师大版八年级上册数学[数据的分析——知识点整理及重点题型梳理]

北师大版八年级上册数学[数据的分析——知识点整理及重点题型梳理]

北师大版八年级上册数学重难点突破知识点梳理及重点题型巩固练习数据的分析——知识讲解【学习目标】1、了解加权平均数的意义和求法,会求一组数据的平均数,体会用样本平均数估计总体平均数的思想.2、了解中位数和众数的意义,掌握它们的求法.进一步理解平均数、中位数和众数所代表的不同的数据特征.3、了解极差、方差和标准差的意义及求法,体会它们在刻画数据波动时的不同特征.体会用样本方差估计总体方差的思想,掌握分析数据的思想和方法.4、从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯. 【要点梳理】要点一、算术平均数和加权平均数一般地,对于n 个数123n x x x x 、、、…,我们把()1231n x x x x n⋅⋅⋅++++叫做这n 个数的算术平均数,简称平均数,记作x .计算公式为()1231n x x x x x n=⋅⋅⋅++++. 要点诠释:平均数表示一组数据的“平均水平”,反映了一组数据的集中趋势.(1)当一组数据较大时,并且这些数据都在某一常数a 附近上、下波动时,一般选用简化计算公式x x a '=+.其中x '为新数据的平均数,a 为取定的接近这组数据的平均数的较“整”的数.(2)平均数的大小与一组数据里的每个数据均有关系,其中任一数据的变动都会相应引起平均数的变动.所以平均数容易受到个别特殊值的影响.若n 个数12n x x x 、、…的权分别是12n w w w 、、…、,则112212......n nnx w x w x w w w w ++++++叫做这n 个数的加权平均数. 要点诠释:(1)相同数据i x 的个数i w 叫做权,i w 越大,表示i x 的个数越多,“权”就越重. 数据的权能够反映数据的相对“重要程度”.(2)加权平均数实际上是算术平均数的另一种表现形式,是平均数的简便运算. 要点二、中位数和众数 1.中位数一般地,n 个数据按照大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数. 要点诠释:(1)一组数据的中位数是唯一的;一组数据的中位数不一定出现在这组数据中.(2)由一组数据的中位数可以知道中位数以上和以下数据各占一半. 2.众数一组数据中出现次数最多的那个数据叫做这组数据的众数. 要点诠释:(1)一组数据的众数一定出现在这组数据中;一组数据的众数可能不止一个. (2)众数是一组数据中出现次数最多的数据而不是数据出现的次数. 要点三、平均数、中位数与众数的联系与区别联系:平均数、众数、中位数都是用来描述数据集中趋势的量,其中以平均数最为重要. 区别:平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个别数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适.中位数与数据排列位置有关,个别数据的波动对中位数没影响;众数主要研究各数据出现的频数,当一组数据中不少数据多次重复出现时,可用众数来描述. 要点四、极差、方差和标准差 1.极差一组数据中最大数据与最小数据的差,称为极差,极差=最大数据-最小数据. 要点诠释:极差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.一组数据极差越小,这组数据就越稳定. 2.方差方差是各个数据与平均数差的平方的平均数.方差2s 的计算公式是:()[]222212)(...)(1x x x x x x nS n -++-+-=,其中,x 是1x ,2x ,…n x 的平均数. 要点诠释:(1)方差反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.(2)一组数据的每一个数都加上(或减去)同一个常数,所得的一组新数据的方差不变. (3)一组数据的每一个数据都变为原来的k 倍,则所得的一组新数据的方差变为原来的2k 倍.3.标准差方差的算术平方根叫做这组数据的标准差,用符号s 表示,即:;标准差的数量单位与原数据一致.4.极差、方差和标准差的联系与区别联系:极差与方差、标准差都是表示一组数据离散程度的特征数.区别:极差表示一组数据波动范围的大小,它受极端数据的影响较大;方差反映了一组数据与其平均值的离散程度的大小.方差越大,稳定性也越小;反之,则稳定性越好.所以一般情况下只求一组数据的波动范围时用极差,在考虑到这组数据的稳定性时用方差. 要点五、用样本估计总体在考察总体的平均水平或方差时,往往都是通过抽取样本,用样本的平均水平或方差近似估计得到总体的平均水平或方差. 要点诠释:(1)如果总体数量太多,或者从总体中抽取个体的试验带有破坏性,都应该抽取样本.取样必须具有尽可能大的代表性.(2)用样本估计总体时,样本容量越大,样本对总体的估计也越精确.样本容量的确定既要考虑问题本身的需要,又要考虑实现的可能性所付出的代价.【典型例题】类型一、平均数、中位数、众数1、(2015•福州)若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值不可能是()A.0 B.2.5 C.3 D.5【答案与解析】解:(1)将这组数据从小到大的顺序排列为1,2,3,4,x,处于中间位置的数是3,∴中位数是3,平均数为(1+2+3+4+x)÷5,∴3=(1+2+3+4+x)÷5,解得x=5;符合排列顺序;(2)将这组数据从小到大的顺序排列后1,2,3,x,4,中位数是3,此时平均数是(1+2+3+4+x)÷5=3,解得x=5,不符合排列顺序;(3)将这组数据从小到大的顺序排列后1,x,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,不符合排列顺序;(4)将这组数据从小到大的顺序排列后x,1,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,符合排列顺序;(5)将这组数据从小到大的顺序排列后1,2,x,3,4,中位数,x,平均数(1+2+3+4+x)÷5=x,解得x=2.5,符合排列顺序;∴x的值为0、2.5或5.故选C.【总结升华】考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数举一反三:【变式】若数据3.2,3.4,3.2,x,3.9,3.7的中位数是3.5,则其众数是________,平均数是________.【答案】3.2;3.5;解:由题意3.43.5, 3.62xx+==,所以众数是3.2,平均数是3.5.2、(2016•广州)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录,甲、乙、丙三个小组各项得分如下表: 小组 研究报告 小组展示 答辩 甲 91 80 78 乙 81 74 85 丙798390计算各小组的平均成绩,并从高分到低分确定小组的排名顺序:如果按照研究报告占40%,小组展示占30%,答辩占30%,计算各小组的成绩,哪个小组的成绩最高?【思路点拨】(1)运用求平均数公式()1231n x x x x n⋅⋅⋅++++即可求出三人的平均成绩,比较得出结果;(2)将三人的成绩按比例求出测试成绩,比较得出结果. 【答案与解析】解:(1)由题意可得, 甲组的平均成绩是:(分), 乙组的平均成绩是:(分), 丙组的平均成绩是:(分),从高分到低分小组的排名顺序是:丙>甲>乙; (2)由题意可得, 甲组的平均成绩是:(分), 乙组的平均成绩是:(分), 丙组的平均成绩是:(分),由上可得,甲组的成绩最高. 答案:甲组的成绩最高【总结升华】本题考查算术平均数、加权平均数、统计表,解题的关键是明确题意,找出所求问题需要的条件. 举一反三:【变式】小王在八年级第一学期的数学成绩分别为:测验一得89分,测验二得78分,测验三得85分,期中考试得90分,期末考试得87分,如果按照平时、期中、期末的10%、30%、60%量分,那么小王该学期的总评成绩应该为多少?【答案】解:小王平时测试的平均成绩897885843x ++==(分).所以8410%9030%8760%87.610%30%60%⨯+⨯+⨯=++(分). 答:小王该学期的总评成绩应该为87.6分.3、下表是七年级(2)班30名学生期中考试数学成绩表(已破损).已知该班学生期中考试数学成绩平均分是76分. (1)求该班80分和90分的人数分别是多少?(2)设此班30名学生成绩的众数为a ,中位数为b ,求a b +的值. 【答案与解析】解:(1)设该班得80分的有x 人,得90分的有y 人.根据题意和平均数的定义,得257330,763050260570780901003,x y x y +++++=⎧⎨⨯=⨯+⨯+⨯+++⨯⎩ 整理得13,89109,x y x y +=⎧⎨+=⎩ 解得8,5.x y =⎧⎨=⎩即该班得80分的有8人,得90分的有5人.(2)因为80分出现8次且出现次数最多.所以a =80,第15、16两个数均为80分,所以b =80,则a b +=80+80=160.【总结升华】本题为统计题,考查平均数、众数与中位数的意义.解题的关键是准确理解题意,建立等量关系. 举一反三:【变式】某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行了调查统计,并绘制了统计图表如图所示的统计图.零花钱数额(元) 5 10 15 20 学生个数(个)a15205请根据图表中的信息,回答以下问题.(1)求a 的值;(2)求这50名学生每人一周内的零花钱额的众数和平均数. 【答案】解:(1) a =50-15-20-5=10.(2)众数是15.平均数为150(5×10+10×15+15×20+20×5)=12.类型二、极差、方差和标准差4、(2015•徐州)某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据图示填写下表;班级平均数(分)中位数(分)众数(分)九(1)85九(2)85 100(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.【思路点拨】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;(2)在平均数相同的情况下,中位数高的成绩较好;(3)根据方差公式计算即可:s2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2](可简单记忆为“等于差方的平均数”)【答案与解析】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100,九(2)班5名选手的复赛成绩为:70、100、100、75、80,∴九(1)的平均数为(75+80+85+85+100)÷5=85,九(1)的中位数为85,九(1)的众数为85,把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100,∴九(2)班的中位数是80;班级平均数(分)中位数(分)众数(分)九(1)85 85 85九(2)85 80 100(2)九(1)班成绩好些.因为九(1)班的中位数高,所以九(1)班成绩好些.(回答合理即可给分)(3),【总结升华】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式. 举一反三:【变式】某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,数据如下(单位:分)甲 95 82 88 81 93 79 84 78 乙8375808090859295(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由. 【答案】解:1(9582888193798478)858x =+++++++=甲(分), 1(8375808090859295)858x =+++++++=乙(分).甲、乙两组数据的中位数分别为83分、84分. (2)由(1)知85x x ==甲乙分,所以22221[(9585)(8285)(7885)]35.58s =-+-++-=甲, 22221[(8385)(7585)(9585)]418s =-+-++-=乙.①从平均数看,甲、乙均为85分,平均水平相同; ②从中位数看,乙的中位数大于甲,乙的成绩好于甲;③从方差来看,因为x x =甲乙,22s s <乙甲,所以甲的成绩较稳定;④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次,故乙的成绩好些;⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力. 综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势,所以应派乙参赛更有望取得成绩. 类型三、统计思想5、我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如图所示的条形统计图.(1)求这10个样本数据的平均数、众数和中位数;(2)根据样本数据,估计小刚所在班50名同学家庭中月均用水量不超过7t 的约有多少户.【思路点拨】(1)根据条形统计图,即可知道每一名同学家庭中一年的月均用水量.再根据加权平均数的计算方法、中位数和众数的概念进行求解;(2)首先计算样本中家庭月均用水量不超过7t 的用户所占的百分比,再进一步估计总体. 【答案与解析】解:(1)观察条形图,可知这组样本数据的平均数是62 6.54717.52816.810x ⨯+⨯+⨯+⨯+⨯==.∴这组样本数据的平均数为6.8.∴在这组样本数据中,6.5出现了4次,出现的次数最多. ∴这组数据的众数是6.5.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是 6.5,有6.5 6.56.52+=. ∴这组数据的中位数是6.5.(2)∵10户中月均用水量不超过7t 的有7户,有7503510⨯=. ∴根据样本数据,可以估计出小刚所在班50名同学家庭中月均用水量不超过7t 的约有35户.【总结升华】本题考查的是条形统计图的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.掌握平均数、中位数和众数的计算方法.。

初中数学学好的方法和技巧

初中数学学好的方法和技巧

初中数学是数学学习的重要基础阶段,以下是学好初中数学的方法和技巧:
1.制定学习计划:制定一个合理的学习计划,分配好每天的学习
时间和任务,确保按计划进行学习。

2.掌握基础知识:学好初中数学的关键在于掌握基础知识。

在学
习过程中,要注意理解概念、定理、公式等基础知识点,并不
断进行巩固练习。

3.多做练习:通过多做练习,可以加深对知识点的理解,提高解
题能力和思维灵活性。

4.重视错题:对于做错的题目,要认真分析错误原因,找出自己
的薄弱环节,以便更好地进行针对性学习。

5.积极思考:在学习的过程中,要积极思考,尝试从不同角度去
解决问题,培养自己的思维能力。

6.寻求帮助:如果遇到难以解决的问题,不要害羞,可以向老师、
同学请教,或者参加一些数学辅导班,以便得到更好的帮助和
指导。

7.培养良好的学习习惯:良好的学习习惯是学好数学的重要保障。

要养成认真听课、记笔记、独立完成作业、复习总结等良好的
学习习惯。

8.拓展学习:在学习过程中,可以适当地拓展学习范围,了解一
些数学文化、数学历史等方面的知识,这有助于增强对数学的
兴趣和认识。

初中数学学习中的困难克服(含学习方法技巧、例题示范教学方法)

初中数学学习中的困难克服(含学习方法技巧、例题示范教学方法)

初中数学学习中的困难克服数学是一门研究数量、结构、变化和空间等概念的学科,对于培养学生的逻辑思维能力、抽象思维能力和创新能力具有重要意义。

初中数学是学生数学学习的重要阶段,这一阶段的数学学习不仅关系到学生的学习成绩,还关系到学生的综合素质的提升。

然而,在初中数学学习中,许多学生都会遇到各种各样的困难,如何克服这些困难,提高数学学习的效果,是值得我们深入研究和探讨的问题。

一、初中数学学习中的常见困难1.概念理解困难初中数学涉及许多抽象的概念和理论,如负数、函数、平方根等,这些概念和理论对于学生来说比较抽象,理解起来较为困难。

2.运算能力不足运算能力是数学学习的基础,然而,许多学生在进行数学运算时,容易出现运算错误,影响了数学学习的效果。

3.逻辑思维能力不足数学是一门逻辑性很强的学科,初中数学学习要求学生具备较强的逻辑思维能力,然而,许多学生的逻辑思维能力较弱,影响了数学学习的效果。

4.学习方法不当学习方法是影响数学学习效果的重要因素,然而,许多学生并没有找到适合自己的学习方法,导致数学学习效果不佳。

二、克服初中数学学习困难的策略1.强化概念理解在初中数学学习中,首先要加强对数学概念的理解,可以通过查阅资料、向老师请教等方式,深入理解数学概念的本质和内涵。

同时,要注意将数学概念与实际问题相结合,通过解决实际问题,巩固数学概念。

2.提高运算能力提高运算能力需要日积月累的练习,学生可以通过做练习题、参加数学竞赛等方式,提高自己的运算速度和准确性。

同时,要注意总结运算规律,提高运算的效率。

3.培养逻辑思维能力初中数学学习要求学生具备较强的逻辑思维能力,可以通过阅读逻辑思维方面的书籍、参加逻辑思维训练课程等方式,提高自己的逻辑思维能力。

同时,在数学学习中,要注意分析问题的思路和方法,培养自己的逻辑思维习惯。

4.优化学习方法每个学生都有自己的学习特点和习惯,要根据自己的特点和习惯,找到适合自己的学习方法。

例如,有的人适合听课学习,有的人适合自学,有的人适合做笔记,有的人适合讨论交流等。

七年级数学学习方法技巧

七年级数学学习方法技巧

七年级数学学习方法技巧求学的三个条件是:多观察、多吃苦、多研究。

每一门科目都有自己的学习方法,但其实都是万变不离其中的,也是要记、要背、要讲练的。

下面是小编给大家整理的一些七年级数学学习方法技巧,希望对大家有所帮助。

一、如何进行数学学习方法指导学生的学习方法指导主要有以下几个环节“预习方法” 、“听课方法”、“复习巩固方法”与“作业方法”以及“总结方法”等分层次、分步骤指导。

1.预习方法的指导初一学生不懂得什么叫预习,为什么要预习,以致于教师布置了预习,学生只是多看了一遍或几遍书而已,起不到什么效果。

因此在指导学生预习时应要求学生做到:一粗读,先粗略浏览教材的有关内容,掌握本节知识的结构体系。

二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作出记号,以便带着疑问去听课。

先进行单元预习粗读过程,随后进行单课预习精读过程。

预习前教师先布置预习提纲,使学生有的放矢。

养成良好的预习习惯,是培养学生的自学能力的关键所在,它能使学生变被动学习为主动学习。

2.听课方法的指导听课习惯直接影响听课效果,所以一定要养成学生良好的听课习惯,注意处理好以下环节:首先指导学生注意听学习要求、听知识引入以及知识形成过程,听重点、难点剖析,听例题解法的思路和数学思想方法的体现,听好课后小结。

这就要求教师讲课要重点突出,层次分明,把握讲授时间,使学生听之有效。

其次要指导学生认真“思” 。

思维能力是学生学习的主体,所以要求多思、勤思,随听随思;深思、善思与反思。

可以说“听”是“思”的基础关键,“思”是“听”的深化,会听才会思,会思才会学。

最后要指导学生去“记” 。

初一学生一般不记笔记或者是不会合理记笔记,不会记表现在把教师板书的复制,往往是用“记”代替“听”和“思” ,记得很全,却耽误了“听”和“思” 。

因此在指导学生作笔记时应要求学生记笔记服从听讲,适时“记”;记要点、记疑问、记解题思路和方法;记小结、记课后思考题,使学生明确“记”是为“听”和“思”服务的。

八年级数学 第十二章 第3节 等腰三角形 人教新课标版

八年级数学 第十二章 第3节 等腰三角形 人教新课标版

初二数学第十二章第3节等腰三角形人教新课标版一、学习目标:1. 了解等腰三角形和等边三角形的概念,并能判定等腰三角形和等边三角形;2. 正确理解等腰三角形和等边三角形的性质,能运用它们的性质解决相关的问题;3. 借助轴对称图形的性质,得出等腰三角形、等边三角形、有一个角是30的直角三角形的性质。

二、重点、难点:重点:等腰三角形和等边三角形的性质和判定,及有一个角是30的直角三角形的性质。

难点:综合运用等腰三角形的性质解决问题。

三、考点分析:本节知识内容是初中数学的基础,考试题型多,方法灵活。

对这部分知识的命题方向是考查等腰三角形及等边三角形的性质和判定,即边角的相互转化。

这部分内容在中考中多以填空题、选择题的形式出现。

在综合题中,对等腰三角形的性质和判定知识的考查较为常见,中考中还经常出现与本节知识有关的探究性问题,如函数中的动点,考查动点在何处时形成的图形是等腰三角形、等边三角形等。

知识点一:等腰三角形的有关概念例1.如图,D在AC上,AB=AC,AD=DB,请指出图中的等腰三角形,以及它们的腰、底边、顶角及底角。

思路分析:这里要求根据条件说明图形的名称,而不是凭直观和想象。

相等的两边叫做腰,另一边叫做底边;两腰的夹角叫做顶角,另外的两个角叫做底角。

解答过程:图中的等腰三角形有ABC∆和ADB∆。

其中∠;∠和C ABC∠,底角是CBA ∆的腰是AB和AC,底边是BC,顶角是BAC∠,底角是∠A和ABD∠。

∆的腰是DA和DB,底边是AB,顶角是BDAADB解题后的思考:解决此类题目应先找到两腰,然后根据其他元素与两腰的相对位置关系来进行识别。

例2. 已知等腰三角形的周长为13,其一边长为3,则其他两边长分别为___________; 思路分析:长为3的边是否是腰并不清楚,故应分类讨论。

解答过程:当3为底边时,其他两边均为(133)25-÷=;当3为腰长时,其他两边为3和13337--=。

初中数学精品试题: 二次函数章末重难点题型

初中数学精品试题:  二次函数章末重难点题型

二次函数章末重难点题型【考点1 二次函数的概念】【方法点拨】掌握二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c (a、b、c是常数,a≠0)也叫做二次函数的一般形式.【例1】(2020•涡阳县一模)已知函数:①y=2x﹣1;②y=﹣2x2﹣1;③y=3x3﹣2x2;④y=2x2﹣x﹣1;⑤y=ax2+bx+c,其中二次函数的个数为()A.1B.2C.3D.4【变式1-1】(2020春•西湖区校级月考)下列各式中,一定是二次函数的有()−3x+5;④y=(2x﹣3)(3x﹣2);⑤y=ax2+bx+c;⑥y①y2=2x2﹣4x+3;②y=4﹣3x+7x2;③y=1x2=(n2+1)x2﹣2x﹣3;⑦y=m2x2+4x﹣3.A.1个B.2个C.3个D.4个【变式1-2】(2020•凉山州一模)若y=(m2+m)x m2﹣2m﹣1﹣x+3是关于x的二次函数,则m=.【变式1-3】(2020秋•江油市校级月考)函数y=(m2﹣3m+2)x2+mx+1﹣m,则当m=时,它为正比例函数;当m=时,它为一次函数;当m时,它为二次函数.【考点2 一次函数与二次函数图象】【方法点拨】判断一次函数与二次函数图象的问题关键在于掌握数形结合的思想,通过图象可以逐一去判断一次函数及二次函数的系数关系.【例2】(2020•菏泽)一次函数y=acx+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是()A.B.C.D.【变式2-1】(2020•泰安)在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b 的图象可能是()A.B.C.D.【变式2-2】(2020•湖州)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx 与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.【变式2-3】(2020•淮南模拟)下面所示各图是在同一直角坐标系内,二次函数y=ax2+(a+c)x+c与一次函数y=ax+c的大致图象.正确的是()A.B.C.D.【考点3 二次函数图象上点的坐标特征】【方法点拨】二次函数图象上点的坐标特征,解题时,需熟悉抛物线的有关性质:抛物线的开口向上,则抛物线上的点离对称轴越远,对应的函数值就越大.【例3】(2020•开封一模)已知抛物线y=ax2﹣2ax+b(a>0)的图象上三个点的坐标分别为A(﹣1,y1),B(2,y2),C(4,y3),则y1,y2,y3的大小关系为()A.y3>y1>y2B.y3>y2>y1C.y2>y1>y3D.y2>y3>y1【变式3-1】(2020•三明二模)已知抛物线y=ax2+bx﹣2(a>0)过A(﹣2,y1),B(﹣3,y2),C(1,y2),D(√3,y3)四点,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y2>y1>y3C.y1>y3>y2 D.y3>y2>y1【变式3-2】(2020•黄石)若二次函数y=a2x2﹣bx﹣c的图象,过不同的六点A(﹣1,n)、B(5,n﹣1)、C(6,n+1)、D(√2,y1)、E(2,y2)、F(4,y3),则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y2<y1<y3【变式3-3】(2020•鼓楼区校级模拟)已知抛物线y=m2x2﹣mx+c(m>0)过两点A(x0,y0)和B(x1,y1),若x0<1<x1,且x0+x1=3.则y0与y1的大小关系为()A.y0<y1B.y0=y1C.y0>y1D.不能确定【考点4 二次函数图象与几何变换】【方法点拨】解决二次函数图象与几何变换类型题,需要掌握平移的规律:左加右减,上加下减,此类题目,利用顶点的变化求解更简便.【例4】(2020春•天心区校级期末)抛物线y=﹣(x﹣1)2﹣3是由抛物线y=﹣x2经过怎样的平移得到的()A.先向右平移1个单位,再向上平移3个单位B.先向左平移1个单位,再向下平移3个单位C.先向右平移1个单位,再向下平移3个单位D.先向左平移1个单位,再向上平移3个单位【变式4-1】(2020春•岳麓区校级期末)将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为()A.y=(x+1)2﹣13B.y=(x﹣5)2﹣5C.y=(x﹣5)2﹣13D.y=(x+1)2﹣5【变式4-2】(2020•平房区一模)已知二次函数y=(x+2)2﹣1向左平移h个单位,再向下平移k个单位,得到二次函数y=(x+3)2﹣4,则h和k的值分别为()A.1,3B.3,﹣4C.1,﹣3D.3,﹣3【变式4-3】(2020春•海淀区校级期末)将抛物线y=(x﹣3)(x﹣5)先绕原点O旋转180°,再向右平移2个单位长度,所得抛物线的解析式为()A.y=﹣x2﹣4x﹣3B.y=﹣x2﹣12x﹣35C.y=x2+12x+35D.y=x2+4x+3【考点5 二次函数图象与系数关系】【方法点拨】二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置.【例5】(2020•龙岩模拟)在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:其中正确结论的个数有()①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.A.1个B.2个C.3个D.4个【变式5-1】(2020春•岳麓区校级期末)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b =0;②若m为任意实数,则a+b≥am2+bm;③a﹣b+c>0;④3a+c<0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的个数为()A.2B.3C.4D.5【变式5-2】(2020•会昌县模拟)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根,其中正确结论的个数为个.【变式5-3】(2020•鼎城区四模)函数y=x2+bx+c与y=x的图象如图所示,有以上结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的是(填序号).【考点6 二次函数与一元二次方程的关系】【例6】(2020•富阳区一模)已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+32=0的根的情况是()A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根【变式6-1】(2020•贵阳)已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,这两个整数根是()A.﹣2或0B.﹣4或2C.﹣5或3D.﹣6或4【变式6-2】(2020•安丘市一模)已知二次函数y=ax2+bx+c(a≠0)与x轴交于点(x1,0)与(x2,0),其中x1<x2,方程ax2+bx+c﹣a=0的两根为m、n(m<n),则下列判断正确的是()A.m<n<x1<x2B.m<x1<x2<n C.x1+x2>m+n D.b2﹣4ac≥0【变式6-3】(2020•岳阳)对于一个函数,自变量x取c时,函数值y等于0,则称c为这个函数的零点.若关于x的二次函数y=﹣x2﹣10x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x的方程x2+10x ﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),则下列关系式一定正确的是()A.0<x1x3<1B.x1x3>1C.0<x2x4<1D.x2x4>1【考点7 二次函数与解不等式】【方法点拨】二次函数与不等式(组):对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.【例7】(2020春•渝中区期末)数形结合是一种重要的数学思想方法,我们可以借助函数的图象求某些较为复杂不等式的解集.比如,求不等式x﹣1>2x的解集,可以先构造两个函数y1=x﹣1和y2=2x,再在同一平面直角坐标系中画出这两个函数的图象(如图1所示),通过观察所画函数的图象可知:它们交于A(﹣1,﹣2)、B(2,1)两点,当﹣1<x<0或x>2时,y1>y2,由此得到不等式x﹣1>2x的解集为﹣1<x<0或x>2.根据上述说明,解答下列问题:(1)要求不等式x2+3x>x+3的解集,可先构造出函数y1=x2+3x和函数y2=;(2)图2中已作出了函数y1=x2+3x的图象,请在其中作出函数y2的图象;(3)观察所作函数的图象,求出不等式x2+3x>x+3的解集.【变式7-1】(2020秋•宝安区期末)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)和一次函数y=kx+m(k,m为常数,且k≠0)的图象如图所示,交于点M(−32,2)、N(2,﹣2),则关于x的不等式ax2+bx+c﹣kx﹣m<0的解集是.【变式7-2】(2020•宜兴市校级一模)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,与x轴的一个交点为A(﹣1,0),点B在抛物线上,且与点C关于抛物线的对称轴对称.已知一次函数y=kx+b 的图象经过A,B两点,根据图象,则满足不等式(x+2)2+m≤kx+b的x的取值范围是.【变式7-3】(2020秋•张家港市期末)已知二次函数y=ax2+bx+c与一次函数y=x的图象如图所示,则不等式ax2+(b﹣1)x+c<0的解集为.【考点8 构建二次函数解决最值问题】【例8】(2020•江西模拟)如图,P是抛物线y=x2﹣x﹣4在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为.【变式8-1】(2020春•海淀区校级期末)如图,抛物线y=x2+5x+4与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接AC,点P在线段AC上,过点P作x轴的垂线交抛物线于点Q,则线段PQ长的最大值为.【变式8-2】(2020•攀枝花)如图,开口向下的抛物线与x轴交于点A(﹣1,0)、B(2,0),与y轴交于点C(0,4),点P是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP的面积为S,求S的最大值.【变式8-3】(2020秋•岳麓区校级期末)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x.①求h与x之间的函数关系式,并写出自变量x的取值范围;②线段PE 的长h 是否存在最大值?若存在,求出它的最大值及此时的x 值;若不存在,请说明理由?【考点9 二次函数新定义问题】【例9】(2020秋•新乡期末)我们定义一种新函数:形如y =|ax 2+bx +c |(a ≠0,b 2﹣4ac >0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y =|x 2﹣2x ﹣3|的图象(如图所示),并写出下列五个结论:其中正确结论的个数是( )①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x =1;③当﹣1≤x ≤1或x ≥3时,函数值y 随x 值的增大而增大;④当x =﹣1或x =3时,函数的最小值是0;⑤当x =1时,函数的最大值是4,A .4B .3C .2D .1【变式9-1】(2020•市中区二模)对某一个函数给出如下定义:如果存在常数M ,对于任意的函数值y ,都满足y ≤M ,那么称这个函数是有上界函数;在所有满足条件的M 中,其最小值称为这个函数的上确界.例如,函数y =﹣(x +1)2+2,y ≤2,因此是有上界函数,其上确界是2,如果函数y =﹣2x +1(m ≤x ≤n ,m <n )的上确界是n ,且这个函数的最小值不超过2m ,则m 的取值范围是( )A .m ≤13B .m <13C .13<m ≤12D .m ≤12 【变式9-2】(2020•江岸区校级模拟)定义[a 、b 、c ]为二次函数y =ax 2+bx +c (a ≠0)的特征数,下面给出特征数为[2m ,1﹣m ,﹣1﹣m ]的函数的一些结论:①当m =﹣3时,函数图象的顶点坐标是(13,83);②当m >0时,函数图象截x 轴所得的线段长度大于32;③当m <0时,函数在x >14时,y 随x 的增大而减小;④当m ≠0时,函数图象经过同一个点,正确的结论是 .【变式9-3】(2020•遂宁)阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y =a 1x 2+b 1x +c 1(a 1≠0,a 1、b 1、c 1是常数)与y =a 2x 2+b 2x +c 2(a 2≠0,a 2、b 2、c 2是常数)满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则这两个函数互为“旋转函数”.求函数y =2x 2﹣3x +1的旋转函数,小明是这样思考的,由函数y =2x 2﹣3x +1可知,a 1=2,b 1=﹣3,c 1=1,根据a 1+a 2=0,b 1=b 2,c 1+c 2=0,求出a 2,b 2,c 2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y =x 2﹣4x +3的旋转函数.(2)若函数y =5x 2+(m ﹣1)x +n 与y =﹣5x 2﹣nx ﹣3互为旋转函数,求(m +n )2020的值.(3)已知函数y =2(x ﹣1)(x +3)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是A 1、B 1、C 1,试求证:经过点A 1、B 1、C 1的二次函数与y =2(x ﹣1)(x +3)互为“旋转函数”.【考点10 二次函数的应用(抛物线形建筑问题)】【例10】(2020秋•玄武区校级月考)图中所示的抛物线形拱桥,当拱顶离水面4m 时,水面宽8m .水面上升3米,水面宽度减少多少?下面给出了解决这个问题的两种建系方法.方法一如图1,以上升前的水面所在直线与抛物线左侧交点为原点,以上升前的水面所在直线为x 轴,建立平面直角坐标系xOy ;方法二如图2,以抛物线顶点为原点,以抛物线的对称轴为y 轴,建立平面直角坐标系xOy ,【变式10-1】如图,是某市一条河上一座古拱挢的截面图,拱桥桥洞上沿是抛物线形状,抛物线拱桥处于正常水位时水面宽AB为26m,当水位上涨1m时,抛物线拱桥的水面宽CD为24m.现以水面AB所在直线为x轴,抛物线的对称轴为y轴建立直角坐标系.(1)求出抛物线的解析式;(2)经过测算,水面离拱桥顶端1.5m时为警戒水位.某次洪水到来时,小明用仪器测得水面宽为10m,请你帮助小明算一算,此时水面是否超过警戒水位?【变式10-2】(2020•武汉模拟)某坦克部队需要经过一个拱桥(如图所示),拱桥的轮廓是抛物线形,拱高OC=6m,跨度AB=20m,有5根支柱:AG、MN、CD、EF、BH,相邻两支柱的距离均为5m.(1)以AB的中点为原点,AB所在直线为x轴,支柱CD所在直线为y轴,建立平面直角坐标系,求抛物线的解析式;(2)若支柱每米造价为2万元,求5根支柱的总造价;(3)拱桥下面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道是坦克的行进方向,现每辆坦克长4m,宽2m,高3m,行驶速度为24km/h,坦克允许并排行驶,坦克前后左右距离忽略不计,试问120辆该型号坦克从刚开始进入到全部通过这座长1000m的拱桥隧道所需最短时间为多少分钟?【变式10-3】(2020•安徽模拟)如图是某隧道截面示意图,它是由抛物线和长方形构成,已知OA=12米,OB=4米,抛物线顶点D到地面OA的垂直距离为10米,以OA所在直线为x轴,以OB所在直线为y 轴建立直角坐标系.(1)求抛物线的解析式;(2)由于隧道较长,需要在抛物线型拱壁上需要安装两排灯,使它们到地面的高度相同,如果灯离地面的高度不超过8米,那么两排灯的水平距离最小是多少米?(3)一辆特殊货运汽车载着一个长方体集装箱,集装箱宽为4m,最高处与地面距离为6m,隧道内设双向行车道,双向行车道间隔距离为0.5m ,交通部门规定,车载货物顶部距离隧道壁的竖直距离不少于0.5m ,才能安全通行,问这辆特殊货车能否安全通过隧道?【考点11 二次函数的应用(抛物线形运动问题)】【例11】(2020•山西模拟)周末,小明陪爸爸去打高尔夫求,小明看到爸爸打出的球的飞行路线的形状如图,如果不考虑空气阻力,小球的飞行路线是一条抛物线.小明测得小球的飞行高度h (单位:m )与飞行时间t (单位:s )的几组值后,发现h 与t 满足的函数关系式是h =20t ﹣5t 2.(1)小球飞行时间是多少时达到最大高度,求最大高度是多少?(2)小球飞行时间t 在什么范围时,飞行高度不低于15m ?【变式11-1】(2020秋•崆峒区期末)九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高209m ,与篮圈中心的水平距离为7m ,当球出手后水平距离为4m 时到达最大高度4m ,设篮球运行的轨迹为抛物线,篮圈距地面3m .(1)建立如图所示的平面直角坐标系,求抛物线的解析式并判断此球能否准确投中?(2)此时,若对方队员乙在甲前面1m 处跳起盖帽拦截,已知乙的最大摸高为3.1m ,那么他能否获得成功?【变式11-2】(2020•洛阳模拟) 如图,在某场足球比赛中,球员甲从球门底部中心点O 的正前方10m 处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为3m 时达到最高点,此时足球飞行的水平距离为6m.已知球门的横梁高OA为2.44m.(1)在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)(2)守门员乙站在距离球门2m处,他跳起时手的最大摸高为2.52m,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?【变式11-3】(2020秋•溧阳市期末)如图,某足球运动员站在点O处练习射门.将足球从离地面0.5m的A 处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)a=−2516,c=12;(2)当足球飞行的时间为多少时,足球离地面最高?最大高度是多少?(3)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?【考点12 二次函数的应用(面积问题)】【例12】(2020秋•长兴县期末)如图,某农场准备围建一个中间隔有一道篱笆的矩形花圈,现有长为18米的篱笆,一边靠墙,若墙长a=6米,设花圃的一边AB为x米,面积为S米2.(1)求S与x的函数关系式及x值的取值范围;(2)若边BC不小于3米这个花圃的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.【变式12-1】(2020•荔城区校级模拟)某农场拟用总长为60m的建筑材料建三间矩形牛饲养室,饲养室的一面靠现有墙(墙长为40m),其中间用建筑材料做的墙隔开(如图).设三间饲养室平行于墙的一边合计用建筑材料xm,总占地面积为ym2.(1)求y关于x的函数解析式和自变量的取值范围;(2)当x为何值时,三间饲养室占地总面积最大?最大面积为多少?【变式12-2】(2020秋•东海县期末)为了节省材料,某水产养殖户利用本库的岸堤(岸堤足够长)为一边,用总长为160m的围网在水库中围成了如图所示的①、②、③三块矩形区域网箱,而且这三块矩形区域的面积相等,设BE的长度为xm,矩形区域ABCD的面积为ym2.(1)则AE=m,BC=m;(用含字母x的代数式表示)(2)求矩形区域ABCD的面积y的最大值.【变式12-3】(2020•温州模拟)某植物园有一块足够大的空地,其中有一堵长为a米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案:方案甲中AD的长不超过墙长;方案乙中AD的长大于墙长.(1)若a=6.①按图甲的方案,要围成面积为25平方米的花圃,则AD的长是多少米?②按图乙的方案,能围成的矩形花圃的最大面积是多少?(2)若0<a <6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.【考点13 二次函数的应用(利润问题)】【例13】(2020•葫芦岛)小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y (本)与销售单价x (元)之间满足一次函数关系,三对对应值如下表:销售单价x (元)12 14 16 每周的销售量y (本) 500 400 300(1)求y 与x 之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为x 元(12≤x ≤15,且x 为整数),设每周销售该款笔记本所获利润为w 元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?【变式13-1】(2020•义乌市模拟)新冠肺炎期间,某超市将购进一批口罩进行销售,已知购进4盒甲口罩和6盒乙口罩需260元,购进5盒甲口罩和4盒乙口罩需220元.两种口罩以相同的售价销售,甲口罩的销量y 1(盒)与售价x (元)之间的关系为y 1=400﹣8x ;当售价为40元时,乙口罩可销售100盒,售价每提高1元,少销售5盒.(1)求甲、乙两种口罩每盒的进价分别为多少元?(2)当乙口罩的售价为多少元时,乙口罩的销售总利润最大?此时两种口罩的销售利润总和为多少?(3)已知甲的销售量不低于乙口罩的销售量的1415,若使两种口罩的利润总和最高,此时的定价应为多少?【变式13-2】(2020•盘锦)某服装厂生产A 品种服装,每件成本为71元,零售商到此服装厂一次性批发A 品牌服装x 件时,批发单价为y 元,y 与x 之间满足如图所示的函数关系,其中批发件数x 为10的正整数倍.(1)当100≤x ≤300时,y 与x 的函数关系式为 .(2)某零售商到此服装厂一次性批发A 品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A 品牌服装x (100≤x ≤400)件,服装厂的利润为w 元,问:x 为何值时,w 最大?最大值是多少?【变式13-3】(2020•朝阳)某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:销售单价x(元)406080日销售量y(件)806040(1)直接写出y与x的关系式;(2)求公司销售该商品获得的最大日利润;(3)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过a元,在日销售量y(件)与销售单价x(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a的值.【考点14 二次函数的综合(存在性问题)】【例14】(2020秋•中山市校级期中)如图,已知抛物线y=ax2+bx+c的图象与x轴交于A(2,0),B(﹣8,0)两点,与y轴交于点C(0,﹣8).(1)求抛物线的解析式;(2)点F是直线BC下方抛物线上的一点,当△BCF的面积最大时,求出点F的坐标;(3)在(2)的条件下,是否存在这样的点Q(0,m),使得△BFQ为等腰三角形?如果有,请直接写出点Q的坐标;如果没有,请说明理由.【变式14-1】(2020秋•罗平县期中)如图,在平面直角坐标系中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于点A(﹣2,0)与点C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)直接写出B点的坐标;(2)求该二次函数的解析式;(3)若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,AB.请问是否存在点P,使得△BDP的面积恰好等于△ADB的面积?若存在请求出此时点P的坐标,若不存在说明理由.【变式14-2】(2020秋•思明区校级期中)如图,抛物线过A(1,0)、B(﹣3,0),C(0,﹣3)三点,直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点,过点P的直线垂直于x轴,交抛物线于点Q.(1)求直线AD及抛物线的解析式;(2)求线段PQ的长度l与m的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P、Q、D、R为顶点的四边形是平行四边形?若存在,求出点R的坐标;若不存在,说明理由.【变式14-3】(2020秋•江北区期中)如图,抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,﹣1),图象与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的解析式;(2)设抛物线对称轴与直线BC交于点D,连接AC、AD,点E为直线BC上的任意一点,过点E作x 轴的垂线与抛物线交于点F,问是否存在点E使△DEF为直角三角形?若存在,求出点E坐标,若不存在,请说明理由.。

初中数学技巧点拨

初中数学技巧点拨

初中数学技巧点拨数学作为一门重要的学科,对学生的思维能力和逻辑思维能力的培养起着关键作用。

初中阶段是数学基础知识和技巧的关键阶段,掌握好初中数学技巧对于学生未来的学习和应用都具有重要意义。

本文将就初中数学中的一些技巧进行点拨,以帮助学生更好地理解和掌握数学知识。

1. 合理运用单位分析法在初中数学中,许多问题可以通过单位分析法来解决。

单位分析法是一种通过换算单位的方式来解决问题的方法。

例如,在求解速度、时间和距离之间的关系问题时,可以通过确定单位之间的换算关系,将问题转化为简单的比例问题来解决。

合理运用单位分析法,不仅可以提高问题解决的速度,还可以减少解题的复杂性。

2. 多角度解题法在初中数学中,有些问题可能会存在多种解法。

为了培养学生的创新思维和多角度思考能力,我们可以教育学生从不同的角度来解决问题。

例如,在解决几何问题时,可以采用平面几何、向量几何或三角几何等不同的方法来求解。

这样的做法不仅能够展示数学的多样性,还能让学生更深入地理解数学的本质。

3. 灵活运用基本定理初中数学中有许多基本定理,如勾股定理、相似三角形的性质等。

在解决问题时,学生应该学会灵活运用这些基本定理。

例如,在解决三角形问题时,如果能够发现和利用相似三角形的性质,就可以简化问题的复杂度。

熟练掌握和灵活运用基本定理,可以帮助学生更快地解决问题,提高解题效率。

4. 掌握好万能的“代数化简”代数化简是初中数学中常见且十分重要的技巧。

通过代数化简,可以将复杂的数学问题转化为简单的表达式,并进而解决问题。

在代数化简过程中,学生需要掌握好整式的基本运算法则,熟悉常用公式的推导和运用。

通过对代数化简的掌握,学生能够提高对数学问题的抽象和符号运算的理解,从而更好地应用数学知识。

5. 善于利用图表在解决实际问题时,学生可以善于利用图表来帮助自己理解和解决问题。

例如,在统计与概率问题中,可以通过制作条形图、折线图或饼图等来展示数据,并从图表中寻找问题的规律和解决方案。

点拨提升的方法

点拨提升的方法

数学课堂中的点拨智慧数学是一门相对抽象的基础学科,一步跟不上步步跟不上,很多学生感觉难学. 课改中老师讲的少了,如何在课堂中利用几分钟的时间,通过教师只言片语的点拨使学生兴趣盎然、进而有所得,教师必须下一番工夫. 因此,数学课堂中老师的点拨更需要智慧.一、点燃激情,激发兴趣的智慧要想课堂上讲得有效果,首先学生要有兴趣听. 有经验的教师在上课时通过设疑、激趣、游戏、故事等活动或者诙谐幽默的语言等个人魅力吸引学生的注意,使自己的讲解收到了较好的效果. 这些方法都是我们组织课堂不可或缺的,但是每堂课都设计一些精彩新颖的活动对于我们平时的课堂来说似乎不太现实. 老师的语言和特点随着时间的推移被学生一点点熟悉,时间久了,学生的新鲜感消失,魅力指数下滑,课堂效果大打折扣. 如果能够深挖数学的学科魅力,再结合一些外在的组织方法,那么学生对数学将保持一种长久的兴奋状态. 数学的这种学科魅力包括数学的实用性和学科美. 优等生喜欢数学就在于被数学的美所吸引. 初中生随着他们年龄和阅历的增加,认知也从感性逐渐趋向于理性,学习不仅仅是好玩,还要有用. 数学的应用非常广泛,教师若能在课堂上讲到今天所学的知识能解决我们生活中的哪些问题,挖掘出知识的实用价值,相信学生会仔细聆听. 北师大版初中数学教材绝大部分章节的开始都有一个问题情境,起先我感觉这些问题情境太难了,学生不能理解,但后来仔细揣摩发现,这些问题情境都是我们生活中常见的问题,这些问题虽然有些难,但是应用性很强,体现了学以致用的宗旨. 如果我们能根据学生的实际适当修改这些问题,学生一定能体会到数学的实用性而更加理性、踏实地去学习. 在感受数学实用性的同时,数学美也在深深感染着我们的心灵. 数学的简洁美、和谐美、奇异突变美、对称美等在我们的课程内容中屡见不鲜,老师若能在讲解内容时能带领学生用欣赏的眼光去体会数学的美妙,我想学生一定会被它的美深深吸引,树立起对数学牢固的兴趣,甚至用毕生精力去研究它. 例如八年级下册“黄金分割”一节,当我讲到维纳斯的身材比是黄金比,舞台上主持人站在舞台的黄金比位置时观众感到最协调等实例时,学生们凝神静气,仔细程度胜过以往任何一节课,我想他们也被这“神圣的比例”所震撼了.二、交给钥匙,拨云见日的智慧数学不同于其他学科,有些内容和题目必须讲,但并不是讲的题多了,学生就一定掌握得好. 数学题不计其数,数学课又有几节?试问短短的几节课怎么讲完那么多的题?如果课堂沉浸在多讲几个题当中,势必又回到了题海战术. 作为老师,我们的作用就是通过一两道题让学生有拨云见日、一通百通的感觉,这就是典型题例的讲解. 题目出示之后,学生会做这个题了不是这道题的讲解就结束了,更重要的是做完之后分析这道题的特点,让学生理解这类题的做法. 我认为首先要讲清解决这类问题的原理;其次是引导学生理解探究解决这类问题的办法,并归纳、上升为经验或方法;再次是对比这类问题和其他问题表现形式和解题方法上有何相同与不同之处;最后是拓展这类问题有哪些变式形式. 相信把这些分析清楚之后,学生对这类问题就会有一种透的感觉. 在讲解中解题思路和数学方法必须重点分析,教学中的易错点和难点必须强调到位,至于通过学生讨论能解决的则可不讲,讲了学生也不会的不能讲,因为讲了反而让学生更加迷茫. 例如学习“列分式方程解应用题”时,我发现很多同学老师一讲他很快就会,让他们自己做却怎么都做不出来,我认为他们是不会运用解决这类问题的方法. 我在分析时就强调了解题步骤,对比了列一元一次方程和列分式方程解题的异同,强调了找关键句和列表格找等量关系的两种方法,每次分析此类题都用这些步骤讲,一段时间后,学生们逐渐有所感悟. 在讲新课时,对一些类型比较生僻的应用题可以先不讲,在期末复习后再让学生感悟,从而降低了学生学习的难度,效果较好.三、通俗易懂,简洁精练的智慧数学内容和概念大部分比较抽象,解题步骤较多,很多学生因为不能理解含义和记不住解题的要点而对学好数学失去信心. 老师在课堂上的精讲必须考虑到学生的这种感受,因此教师的语言和所概括的方法必须简洁精练,说他们最容易理解和接受的话语,概括一种最通俗、简洁的解题方法和步骤. 这样不仅节省时间,而且可以突出重点,避免重复. 对于学生来讲,老师的话语方法字字珠玑,会给他们留下深刻的印象,因为他们知道要记什么. 有时我们可能感到概括的简洁了学生听不懂,其实在概括之后可以留给学生一分钟的时间让学生静静地去品味老师的语言和方法,当理解了其中的精妙之后,他们会被这种简约而不简单的数学美所折服,老师概括的简单几个字、几个步骤他们也会迅速记住并加以应用. 例如在“垂径定理及其推论”的教学中,我把定理及其推论分成五个部分:过圆心、平分弦、垂直弦、平分优弧、平分劣弧. 这五个部分中有两个部分成立可得其他三个部分成立,其中由一、二推出三、四、五时加上条件:被平分的弦不是直径,即由二推三. 这样垂径定理由二推三被学生很快地就记住了.数学是一门重要的基础学科,教师是课堂的主导,老师点拨的到位可以让学生少走很多弯路. 如何让学生在我们的指导下感受数学的美、体会数学的实用价值,让学生对数学不再有艰深晦涩的印象,需要我们老师的智慧.。

初中数学人教七年级上册(2023年新编) 有理数正数和负数教案

初中数学人教七年级上册(2023年新编) 有理数正数和负数教案

《正数和负数》优质课教案一、教学目标1、使学生在熟悉的生活情境中初步认识正数和负数。

2、知道正数和负数的读、写方法。

知道0既不是正数也不是负数,正数都大于0,负数都小于0。

3、使学生初步学会用正数和负数表示日常生活中的简单问题。

4、培养学生获取信息并进行分析的意识和能力,体会数学与日常生活的密切联系,激发学习数学的浓厚兴趣。

5、初步了解正负数表示相反意义的量。

二、教学重难点教学重点:会读、写正负数,知道0既不是正数也不是负数,正数都大于0,负数都小于0。

教学难点:理解0既不是正数也不是负数,而是正负数的分界点。

三、教学过程(一)导入师:同学们,我们以前都学习过什么数?你们能够举例说一说吗?(生说)(师板书)师:这都是我们以前认识过的数,你们看,老师让他们发生一些变化,(师在刚才写出的数的前面加上一个负号)现在,这些是什么数?(生如果说出是负数)对,(板书:负数)刚刚老师加的符号就是负号,谁能试着读一读。

师生读(生如果说不出是负数)对于这样的数,我们给它起个名字,就叫负数。

(板书:负数)刚刚老师加的符号就是负号,谁能试着读一读。

师生读(师追问:你了解负数吗?你在哪儿见过负数?)(生:天气预报)(师及时表扬:你真是个会捕捉数学信息的孩子。

)师:同学们,由于生产和生活的需要,人们创造了这样一种数,下面就让我们一起走进生活,了解与它相关的知识。

(二)初识负数,学会读写。

1、利用气温,认识负数:师:刚才同学们都提到温度中有负数,(课件出示温度计)师:这就是我们日常测量温度的温度计。

师:请同学们看大屏幕。

为了让同学们看清楚,我截取温度计的一部分放大。

(课件出示:截取后的温度计)温度计上一大格是多少摄氏度?(生:十摄氏度)师:一小格哪?(生:代表二摄氏度)师:谁知道这个温度计上面显示的是多少度?(生:零上30摄氏度)你是怎么看的?(生:我先找到零摄氏度,然后向上数三个格)(出示课件:零度线)师: (课件出示:记作+30℃)(板书:+30)知道这是什么数吗?这就是正数家族中的一个普通成员,(板书:正数)这个数读作正三十,前面的符号就是正号。

新人教版九年级上册数学[《旋转》全章复习与巩固--知识点整理及重点题型梳理](提高)

新人教版九年级上册数学[《旋转》全章复习与巩固--知识点整理及重点题型梳理](提高)

新人教版九年级上册初中数学重难点有效突破知识点梳理及重点题型巩固练习《旋转》全章复习与巩固(提高)知识讲解【学习目标】1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形.3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用.4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等(△ABC≌△A B C''').要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转平移、轴对称、旋转之间的对比平移轴对称旋转相同点都是全等变换(合同变换),即变换前后的图形全等.不同点定义把一个图形沿某一方向移动一定距离的图形变换.把一个图形沿着某一条直线折叠的图形变换.把一个图形绕着某一定点转动一个角度的图形变换.图形要素平移方向平移距离对称轴旋转中心、旋转方向、旋转角度性质连接各组对应点的线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角都等于旋转角.对应线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.*对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角,即:对应点与旋转中心连线所成的角彼此相等.【典型例题】类型一、旋转1.如图1,ΔACB与ΔADE都是等腰直角三角形,∠ACB 和∠ADE都是直角,点C在AE上,如果ΔACB经逆时针旋转后能与ΔADE重合.①请指出其旋转中心与旋转角度;②用图1作为基本图形,经过怎样的旋转可以得到图2?【答案与解析】①旋转中心:点A;旋转角度:45°(逆时针旋转)②以点A为旋转中心,将图1顺时针(或逆时针)旋转90°三次得到图2.【总结升华】此类题型要把握好旋转的三个要素:旋转中心、旋转方向和旋转角度.举一反三:【变式】如图,在平面直角坐标系中,△ABC和△DEF为等边三角形,AB=DE,点B、C、D在x轴上,点A、E、F在y轴上,下面判断正确的是()A.△DEF是△ABC绕点O顺时针旋转90°得到的.B.△DEF是△ABC绕点O逆时针旋转90°得到的.C.△DEF是△ABC绕点O顺时针旋转60°得到的.D.△DEF是△ABC绕点O顺时针旋转120°得到的.【答案】A.类型二、中心对称2. 如图,△ABC中A(-2,3),B(-3,1),C(-1,2).⑴将△ABC向右平移4个单位长度,画出平移后的△A1B1C1;⑵画出△ABC关于x轴对称的△A2B2C2;⑶画出△ABC关于原点O对称的△A3B3C3;⑷在△A1B1C1,△A2B2C2,△A3B3C3中,△______与△______成轴对称,对称轴是______;△______与△______成中心对称,对称中心的坐标是______.【答案与解析】⑷△A2B2C2与△A3B3C3成轴对称,对称轴是y轴.△A3B3C3与△A1B1C1成中心对称,对称中心的坐标是(2,0).【总结升华】注意观察中心对称和旋转对称的关系.举一反三:【变式】如图是正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.【答案】类型三、平移、轴对称、旋转【: 388636:经典例题2-3】3.(2015•北京校级模拟)如图所示,△ABC,△ADE为等腰直角三角形,∠ACB=∠AED=90°.(1)如图1,点E在AB上,点D与C重合,F为线段BD的中点.则线段EF与FC的数量关系是;∠EFD的度数为;(2)如图2,在图1的基础上,将△ADE绕A点顺时针旋转到如图2的位置,其中D、A、C在一条直线上,F为线段BD的中点.则线段EF与FC是否存在某种确定的数量关系和位置关系?证明你的结论;(3)若△ADE绕A点任意旋转一个角度到如图③的位置,F为线段BD的中点,连接EF、FC,请你完成图3,并直接写出线段EF与FC的关系(无需证明).【思路点拨】(1)易得△EFC是等腰直角三角形,那么EF=FC,∠EFD=90°.(2)延长线段CF到M,使CF=FM,连接DM、ME、EC,易证△BFC≌△DFM,进而可以证明△MDE≌△CAE,即可证明EF=FC,EF⊥FC;(3)基本方法同(2).【答案与解析】解:(1)EF=FC,90°.(2)延长CF到M,使CF=FM,连接DM、ME、EC,如下图2∵FC=FM,∠BFC=∠DFM,DF=FB,∴△BFC≌△DFM,∴DM=BC,∠MDB=∠FBC,∴MD=AC,MD∥BC,∵ED=EA,∠MDE=∠EAC=135°,∴△MDE≌△CAE,∴ME=EC,∠DEM=∠CEA,∴∠MEC=90°,∴EF=FC,EF⊥FC(3)图形如下,结论为:EF=FC,EF⊥FC.【总结升华】延长过三角形的中线构造全等三角形是常用的辅助线方法,证明线段相等的问题可以转化为证明三角形全等的问题解决.举一反三:【变式】如图,△ABC 中,∠BAC=90°,AC=2,AB=23,△ACD 是等边三角形. (1)求∠ABC 的度数.(2)以点A 为中心,把△ABD 顺时针旋转60°,画出旋转后的图形. (3)求BD 的长度.【答案】(1)Rt △ABC 中,AC=2,AB=23, ∴BC=4, ∴∠ABC=30° (2)如图所示:(3)连接BE .由(2)知:△ACE ≌△ADB , ∴AE=AB ,∠BAE=60°,BD=EC , ∴BE=AE=AB=23,∠EBA=60°, ∴∠EBC=90°, 又BC=2AC=4,∴Rt △EBC 中,EC=2223+4=27()4.(2015•东西湖区校级模拟)如图,Rt△ABC中,AC=BC,∠ACB=90°,点E在线段AB上,CF⊥CE,CE=CF,EF交AC于G,连接AF.(1)填空:线段BE、AF的数量关系为,位置关系为;(2)当=时,求证:=2;(3)若当=n时,=,请直接写出n的值.【思路点拨】(1)在Rt△ABC中,AC=BC,∠ACB=90°,CF⊥CE,可推出∠ECB=∠ACF,且CE=CF,由此可得△ECB≌△FCA,即得BE=AF,∠CBE=∠CAF,且∠CBE+∠CAB=90°,故∠CAF+∠CAB=90°,即BE⊥AF;(2)作GM⊥AB于M,GN⊥AF于N,可得出GM=GN,从而有S△AEG=2S△AFG,即证=2;(3)根据(2)的推理过程,知S△AEG=nS△AFG,则,即可求得n的值.【答案与解析】(1)解:∵∠ACB=90°,CF⊥CE,∴∠ECB=∠ACF.又AC=BC,CE=CF,∴△ECB≌△FCA.∴BE=AF,∠CBE=∠CAF,又∠CBE+∠CAB=90°,∴∠CAF+∠CAB=90°,即BE=AF,BE⊥AF.(2)证明:作GM⊥AB于M,GN⊥AF于N,∵△ACF可由△BCE绕点C顺时针方向旋转90°而得到,∴AF=BE,∠CAF=∠CBE=45°.∴AE=2AF,∠CAF=∠CAB,∴GM=GN.∴S△AEG=2S△AFG,∴EG=2GF,∴=2.(3)解:由(2),得当=n时,S△AEG=nS△AFG,则, ∴当n=时,=.【总结升华】此题综合运用了全等三角形的判定和性质、旋转的性质,能够从特殊推广到一般发现规律. 【:388636:经典例题4-5】5.已知:点P 是正方形ABCD 内的一点,连结PA 、PB 、PC ,(1)若PA=2,PB=4,∠APB=135°,求PC 的长.(2)若2222PB PC PA =+,请说明点P 必在对角线AC 上.【思路点拨】通过旋转,把PA 、PB 、PC 或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解∠APD . 【答案与解析】(1)∵AB=BC,∠ABC=90°,∴△CBP 绕点B 逆时针旋转90°,得到△ABE, ∵BC=BA,BP=BE,∠CBP=∠ABE ∴△CBP ≌△ABE ∴AE=PC∵BE=BP,∠PBE=90°,PB=4 ∴∠BPE=45°,PE=42 又∵∠APB=135° ∴∠APE=90° ∴222AE AP EP =+ 即AE=6, 所以PC=6.(2)由(1)证得:PE=2BP,PC=AE ∵2222PB PC PA =+ ∴222PA AE PE += ∴∠PAE=90° 即∠PAB+∠BAE=90°又∵由(1)证得∠BAE=∠BCP∴∠PAB+∠BCP=90又∵∠ABC=90°∴点A,P,C三点共线,即P必在对角线AC上.【总结升华】注意勾股定理及逆定理的灵活运用.举一反三:【变式】如图,在四边形ABCD中,AB=BC,,K为AB上一点,N为BC上一点.若的周长等于AB的2倍,求的度数.【答案】显然,绕点D顺时针方向旋转至6如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得它们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B、C、F、D在同一条直线上,且点C与点F重合(在图3~图6中统一用F表示)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.⑴将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求出平移的距离;⑵将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;⑶将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH=DH.【答案与解析】⑴平移的距离为5cm(即)⑵⑶证明:在△AHE与△DHB1中∴△AHE≌△DHB1(AAS)∴AH=DH.【总结升华】注意平移和旋转综合运用时找出不变量是解题的关键.。

冀教版七年级数学上册知识讲义-1.相反数

冀教版七年级数学上册知识讲义-1.相反数

初中数学相反数 课标定位一、考点突破 1. 掌握相反数的意义;2. 会求一个数的相反数;3. 结合数轴理解相反数的几何意义,体验数形结合的数学思想。

二、重难点提示重点:求一个数的相反数。

难点:根据相反数的意义化简符号。

考点精讲1. 相反数的代数意义只有符号不同的两个数叫做互为相反数。

a 和-a 互为相反数,a 叫做-a 的相反数,-a 叫做a 的相反数。

【注意】-a 不一定是负数,a 不一定是正数。

2. 相反数的几何意义在数轴上,到原点两边距离相等的两个点表示的两个数互为相反数。

3. 相反数的性质正数的相反数一定是负数,负数的相反数一定是正数,0的相反数是0。

典例精析例题1 完成下列两题:(1)下列各数中互为相反数的是( )A. -6与-(+6)B. -(-7)与+(-7)C. -(+2)与+2.2D. -13与―(―23) (2)下列四个数中,其相反数是正整数的是( )A. 3B. 13C. -2D. -12思路分析:根据相反数的概念及正整数的概念,采用逐一检验法求解即可。

答案:(1)“+”号可以省略,两个“-”号表示一个负数的相反数,如-(-7)表示-7的相反数,-7的相反数是7,所以-(-7)=7,而+(-7)=-7,所以本题选B ,其他选项均不正确。

(2)其相反数是正整数的数,首先必须是负数,则可舍去A 、B ,而且相反数还得是整数,又舍去D,故选C。

技巧点拨:本题主要考查相反数的意义,一个数前面如果有多个符号,可以根据相反数的意义将符号化简。

例题2若m-4的相反数是-11,求3m+1的值。

思路分析:根据相反数的性质求解即可。

答案:因为11的相反数是-11,所以m-4=11,解得m=15。

所以3m+1=3×15+1=46。

技巧点拨:本题主要考查了互为相反数的定义,注意任意一个数都有相反数,但其相反数是唯一的。

例题3如图,在数轴上有三点A、B、C,请根据图示,回答下列问题:(1)将点B向左平移3个单位后,三个点所表示的数谁最小?是多少?(2)怎样移动A、B两个点中的一个,才能使这两点表示的数为互为相反数?有几种移动方法?(3)怎样移动A、B、C中的两个点,才能使三个点所表示的数相同,有几种移动方法?A B C-56-4-6-2012345-1-3思路分析:(1)若将B点向左移动3个单位后,则变为-5,三个点中点B最小,所表示的最小的数是-5;(2)分A不动,B移动;B不动,A移动两种情况讨论;(3)移动方法有3种:①把C、B两点移到A点处;②把A、C两点移到B点处;③把A、B两点移到C点处。

九年级数学下册知识讲义-2.3二次函数的解析式(附练习及答案)-北师大版

九年级数学下册知识讲义-2.3二次函数的解析式(附练习及答案)-北师大版

初中数学二次函数的解析式一、考点突破1. 掌握求二次函数解析式的方法。

2. 能够根据题目要求选择合适的求解析式的方法解决问题。

二、重难点提示重点:求二次函数解析式。

难点:根据问题选择合适的方法,求二次函数解析式。

考点精讲1.二次函数的解析式的四种形式一般式:()。

顶点式:()。

其中(,)为顶点,对称轴为。

交点式:()。

其中,为抛物线与轴交点的横坐标。

对称点式:()。

其中(,),(,)为图象上两个对称的点。

2.确定二次函数解析式的几种基本思路根据已知条件确定二次函数解析式,通常利用待定系数法。

用待定系数法求二次函数的解析式,必须根据题目的特点,选择适当的形式,才能使解题简便。

一般来说,有如下几种情况:①已知抛物线上三点的坐标,一般选用一般式;②已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;③已知抛物线与轴的两个交点的横坐标,一般选用交点式;④已知抛物线上纵坐标相同的两点,常选用对称点式。

典例精讲例题1(宝安区一模)如图,已知抛物线l1:y=(x-2)2-2与x轴分别交于O、A 两点,将抛物线l1向上平移得到l2,过点A作AB⊥x轴交抛物线l2于点B,如果由抛物线l1、l2、直线AB及y轴所围成的阴影部分的面积为16,则抛物线l2的函数解析式为()A. y=(x-2)2+4B. y=(x-2)2+3C. y=(x-2)2+2D. y=(x-2)2+1思路分析:根据题意可推知由抛物线l1、l2、直线AB及y轴所围成的阴影部分的面积就是矩形ABCO的面积;然后再根据抛物线l1的解析式,求得O、A两点的坐标,从而解得OA的长度;最后再由矩形的面积公式,求得AB的长度,即l2是由抛物线l1向上平移多少个单位得到的。

答案:解:连接BC,∵l2是由抛物线l1向上平移得到的,∴由抛物线l1、l2、直线AB及y轴所围成的阴影部分的面积就是矩形ABCO的面积;∵抛物线l1的解析式是y=(x-2)2-2,∴抛物线l1与x轴分别交于O(0,0)、A(4,0)两点,∴OA=4;∴OA•AB=16,∴AB=4;∴l2是由抛物线l1向上平移4个单位得到的,∴l2的解析式为:y=(x-2)2-2+4,即y=(x-2)2+2,选C。

新人教版九年级上册数学[《二次函数》全章复习与巩固—知识点整理及重点题型梳理](基础)

新人教版九年级上册数学[《二次函数》全章复习与巩固—知识点整理及重点题型梳理](基础)

新人教版九年级上册初中数学重难点有效突破知识点梳理及重点题型巩固练习《二次函数》全章复习与巩固—知识讲解(基础)【学习目标】1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴 顶点坐标 当时开口向上 当时开口向下(轴) (0,0) (轴)(0,) (,0)(,)()2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线20()y ax bx c a =++≠中,,,a b c 的作用: (1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式:(1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).要点诠释:求抛物线2y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题. 要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式1.已知二次函数的图象经过原点及点11,24⎛⎫-- ⎪⎝⎭,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为____ ____. 【答案】 21133y x x =-+或2y x x =+. 【解析】 正确找出图象与x 轴的另一交点坐标是解题关键.由题意知另一交点为(1,0)或(-1,0). 因此所求抛物线的解析式有两种. 设二次函数解析式为2y ax bx c =++.则有0,1114420c a b c a b c =⎧⎪⎪-=-+⎨⎪++=⎪⎩,或0,111,4420,c a b c a b c =⎧⎪⎪-=-+⎨⎪-+=⎪⎩解之13130a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,或1,1,0.a b c =⎧⎪=⎨⎪=⎩因此所求二次函数解析式为21133y x x =-+或2y x x =+. 【点评] 此题容易出错漏解的错误.举一反三:【课程名称:二次函数复习357019 :(1)-(2)问精讲】【变式】已知:抛物线y=x 2+bx+c 的对称轴为x=1,交x 轴于点A 、B(A 在B 的左侧),且AB=4,交y 轴于点C.求此抛物线的函数解析式及其顶点M 的坐标. 【答案】∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 ∴M(1,-4) ∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 , ∴M(1,-4).类型二、根据二次函数图象及性质判断代数式的符号2.(2015•盘锦)如图是二次函数y=ax 2+bx+c=0(a ≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab <0;②b 2﹣4ac >0;③9a ﹣3b+c <0;④b ﹣4a=0;⑤方程ax 2+bx=0的两个根为x 1=0,x 2=﹣4,其中正确的结论有( )A .①③④B . ②④⑤C . ①②⑤D .②③⑤【答案】B ;【解析】解:∵抛物线开口向下, ∴a <0, ∵﹣=﹣2,∴b=4a ,ab >0,∴①错误,④正确,∵抛物线与x 轴交于﹣4,0处两点,∴b 2﹣4ac >0,方程ax 2+bx=0的两个根为x 1=0,x 2=﹣4, ∴②⑤正确,∵当a=﹣3时y >0,即9a ﹣3b+c >0, ∴③错误,故正确的有②④⑤. 故选:B .【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用.类型三、数形结合3.如图所示是二次函数2y ax bx c =++图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为(3,0),则由图象可知,不等式20ax bx c ++>的解集是________.【思路点拨】根据抛物线的对称性和抛物线与x 轴的交点A 的坐标可知,抛物线与x 轴的另一个交点的坐标,观察图象可得不等式20ax bx c ++>的解集.【答案】x >3或x <-1;【解析】根据抛物线的对称性和抛物线与x 轴的交点A(3,0)知,抛物线与x 轴的另一个交点为(-1,0),观察图象可知,不等式20ax bx c ++>的解集就是2y ax bx c =++函数值,y >0时,x 的取值范围.当x >3或x <-1时,y >0,因此不等式20ax bx c ++>的解集为x >3或x <-1.【点评】弄清20ax bx c ++>与2y ax bx c =++的关系,利用数形结合在图象上找出不等式20ax bx c ++>的解集.类型四、函数与方程4.(2016•台湾)如图,坐标平面上,二次函数y=﹣x 2+4x ﹣k 的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1:4,则k 值为何?( )A.1 B.C.D.【思路点拨】求出顶点和C的坐标,由三角形的面积关系得出关于k的方程,解方程即可.【答案】D.【解析】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=AB•OC=AB•k,△ABD的面积=AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=(4﹣k),解得:k=.【点评】本题考查了抛物线与x轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.举一反三:【变式1】无论x为何实数,二次函数的图象永远在x轴的下方的条件是( ) A.B.C.D.【答案】二次函数的图象与x轴无交点,则说明y=0时,方程无解,即.又图象永远在x轴下方,则.答案:B【变式2】对于二次函数,我们把使函数值等于0的实数x叫做这个函数的零点,则二次函数(m为实数)的零点的个数是( )A.1 B.2 C.0 D.不能确定【答案】当y=0时,,,即二次函数的零点个数是2.故选B.类型五、分类讨论5.已知点A(1,1)在二次函数22y x ax b =-+的图象上.(1)用含a 的代数式表示b ;(2)如果该二次函数的图象与x 轴只有一个交点,求这个二次函数的图象的顶点坐标. 【思路点拨】(1)将A(1,1)代入函数解析式.(2)由△=b 2-4ac =0求出a . 【答案与解析】(1)因为点A(1,1)在二次函数22y x ax b =-+的图象上,所以1=1-2a+b ,所以b =2a . (2)根据题意,方程220x ax b -+=有两个相等的实数根,所以2244480a b a a -=-=, 解得a =0或a =2.当a =0时,y =x 2,这个二次函数的图象的顶点坐标是(0,0). 当a =2时,2244(2)y x x x =-+=-,这个二次函数的图象的顶点坐标为(2,0).所以,这个二次函数的图象的顶点坐标为(0,0)或(2,0).【点评】二次函数2y ax b c =++(0)a ≠的图象与x 轴只有一个交点时,方程20ax bx c ++=有两个相等的实数根,所以240b ac =-=△.类型六、二次函数与实际问题6.(2015•黄陂区校级模拟)进价为每件40元的某商品,售价为每件50元时,每星期可卖出500件,市场调查反映:如果每件的售价每降价1元,每星期可多卖出100件,但售价不能低于每件42元,且每星期至少要销售800件.设每件降价x 元 (x 为正整数),每星期的利润为y 元. (1)求y 与x 的函数关系式并写出自变量x 的取值范围;(2)若某星期的利润为5600元,此利润是否是该星期的最大利润?说明理由. (3)直接写出售价为多少时,每星期的利润不低于5000元? 【思路点拨】(1)根据利润y=每件利润×销售量,每件利润=50﹣40﹣x ,销售量=500+100x ,而售价50﹣x≥42,销售量=500+100x≥800,列不等式组求x 的取值范围;(2)根据(1)的关系式配方后确定最大利润,与5600比较后即可发现是否为最大利润; (3)设当y=5000时x 有两个解,可推出0≤x≤5时,y≥5000. 【答案与解析】解:(1)依题意,得y=(50﹣40﹣x )•(500+100x )=﹣100x 2+500x+5000,∵,∴3≤x≤8;(2)y=﹣100x2+500x+5000=﹣100(x﹣)2+5625,∵x取正整数,当x=2或3时,y=5600.∴5600元是最大利润.(3)当y=5000时,y=﹣100x2+500x+5000=5000,解得x1=0,x2=5,故当0≤x≤5时,y≥5000,即当售价在不小于45元且不大于50元时,月利润不低于5000元.【点评】本题考查二次函数的实际应用.一般求最值问题,大多是建立二次函数关系,从而借助二次函数解决实际问题.。

数学学习方法归纳总结(精编)

数学学习方法归纳总结(精编)

数学学习方法归纳总结数学学习方法归纳总结1【一、及时回忆】如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。

可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。

一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。

在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。

【二、重复巩固】即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。

可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。

从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识络,达到对知识和方法的整体把握。

【三、合理安排】复习一般可以分为集中复习和分散复习。

实验证明,分散复习的效果优于集中复习,特殊情况除外。

分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。

分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。

【四、突破重点难点】对所学的素材要进行分析、归类,找出重、难点,分清主次。

在复习过程中,特别要关注难点及容易造成误解的问题,应分析其关键点和易错点,找出原因,必要时还可以把这类问题进行梳理,记录在一个专题本上,也可以在电脑上做一个重难点“超市”,可随时点击,进行复习。

【五、效果检测】随着时间的推移,复习的效果会产生变化,有的淡化、有的模糊、有的不准确,到底各环节的内容掌握得如何,需进行效果检测,如:周周练、月月测、单元过关练习、期中考试、期末考试等,都是为了检测学习效果。

检测时必须独立,完成,保证检测出的效果的真实性,如果存在问题,应该找到错误的根源,并适时采取补救措施进行校正。

人教版初中数学课标版八年级上册第十二章12

人教版初中数学课标版八年级上册第十二章12

《三角形全等的判定(三)》教学设计一、教学背景分析1.教材内容分析本节是人教版第十二章《全等三角形》的重要内容, 三角形是最基本、常见的几何图形之一, 在日常生活中有着广泛的应用。

在知识结构上,等腰三角形, 直角三角形,线段的垂直平分线,角的平分线等内容都要通过证明两个三角形全等来加以解决;在能力培养上,无论是逻辑思维能力, 推理论证能力,还是分析问题解决问题的能力, 都可在全等三角形的教学中得以提高。

知识点本身, 证明全等三角形是证明线段相等和角相等的重要手段, 本节作为证明两个三角形全等的依据之一, 因此成为重中之重。

2.学情分析初一学生处于学习几何推理论证的初步阶段, 从这章开始, 学生应逐步学会几何证明, 几何题的推理表达对学生来说难度较大, 同时, 以前学生学习几何都是一些简单的图形, 从这章开始出现了几个图形的变换或叠加, 学生在解题过程中, 找全等条件是一个难点。

学生观察、操作、猜想能力较强, 但归纳、运用数学结论的思想较弱, 思维的广阔性、敏捷性、灵活性比较欠缺。

二、教学目标1.知识与技能2. (1)掌握尺规作图: 用“ASA”做一个三角形全等于已知三角形;3.(2)探究并掌握两个三角形全等的条件“ASA”“AAS”, 并且学会应用ASA,AAS证明两个三角形全等。

4.数学思考5.通过让学生经历观察演示, 动手操作, 合作交流, 自主探究等过程, 培养学生用数学知识解决问题的能力.6.解决问题(1)初步了解利用“ASA”“AAS”条件判定三角形全等在生活中的应用.(2)培养学生的逆向思维能力、转化能力、数学建模能力.4.情感与态度通过探究三角形全等条件的活动, 培养学生敢于面对困难、克服困难的能力;通过对知识方法的总结, 培养反思的习惯, 培养理性思维.第 1 页三、教学重点难点1.重点: 理解、掌握三角形全等的条件: “ASA”“AAS”2.难点:探究出“ASA”“AAS”方法;分析问题, 寻找判定两个三角形全等的条件(学生已熟练“SSS”“SAS”方法, 四种方法容易混淆)四、教学方法1.原则: “教与学、知识与能力的统一”、“使每个学生都得到充分发展”2.教法采用引导发现法、主动探究法、讲授教学法.2.学法3.指导学生“动手操作, 合作交流, 自主探究”.4.教学策略采用导学案、多媒体辅助教学、利用黑板板演及时反馈相关信息, 从而降低学生学习的难度.五、教学过程设计1.设计理念2.数学教学中的主要矛盾即: 学生、教师、教学内容和教学目标四要素之间的矛盾, 而学生的实际水平和教学目标之间的差异是教学过程中存在的根本原因, 数学教学活用: “五环”: 先学集疑、导学整理、拓展提升。

学好初一数学的六大方法技巧讲解

学好初一数学的六大方法技巧讲解

学好初一数学的六大方法技巧讲解(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如学习资料、英语资料、学生作文、教学资源、求职资料、创业资料、工作范文、条据文书、合同协议、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays, such as learning materials, English materials, student essays, teaching resources, job search materials, entrepreneurial materials, work examples, documents, contracts, agreements, other essays, etc. Please pay attention to the different formats and writing methods of the model essay!学好初一数学的六大方法技巧讲解学好初一数学的六大方法技巧讲解_怎样能学好数学诀窍嘿,同学们知道吗?学数学要在理解的基础上去做题,学会数学关键在于个人的悟性,以下是本店铺为大家带来的学好初一数学的六大方法技巧讲解,希望您能喜欢!学好初一数学的六大方法技巧讲解1、做好预习:单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学初中阶段学习重难点与方法点拨1、数与运算【学习重难点①】知识板块的条理性:我们教材上的课程设置通常是由易到难,由浅入深。

我们的数与运算同样是按照这样的思想,在不断扩充数的范围:六年级第一学期学整数和分数六年级下学期扩展到有理数进入到七年级第一学期进一步拓展到实数;跟数的内容安排一样,我们所学习的式子也是从整式(分母中没有未知数,根号下无字母)然后分式(分母中有未知数,根号下无字母)最后学习二次根式。

学生在学习过程中没有梳理、总结知识的意识,往往都是单一的学习某一块的内容,随着时间推移,接触内容多了之后,对之前学过的内容就会产生混乱。

【方法点拨】a.掌握基本定义这部分内容在考察的时候往往不太难,通常是基本的定义和简单运算。

所以把概念理解清楚是至关重要的,只有做到这些内容才能做到基础题不丢分。

b.把不同知识点对比讲解可以把不同的知识点对比着理解,这样可以让学生更加清楚各知识点的差异,能够更深刻地理解每个知识点。

c.形成知识体系做好复习工作,不光是对本学期所学内容进行复习,或者说到中考前才对整个初中阶段的内容进行复习;而是应该在适当的时机对相关内容进行复习。

比如在数与运算这块内容,我们可以在八年级上学期学完二次根式后,对数与运算相关的内容进行一个完整的梳理,这样的话有利于学生形成一个完整的知识体系,不至于学到后面,前面忘光。

【例题解析】【题目】同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离。

试探索:(1)求|5-(-2)|=______。

(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是_____。

(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值如果没有说明理由。

(8分)【答案】【解析】(1)直接去括号,再按照去绝对值的方法去绝对值就可以了.(2)要x的整数值可以进行分段计算,令x+5=0或x-2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.本题是一道去绝对值和数轴相联系的综合试题,考查了取绝对值的方法,取绝对值在数轴上的运用.难度较大.去绝对的关键是确定绝对值里面的数的正负性.解:(1)原式=|5+2|=7 答案为7(2)令x+5=0或x-2=0时,则x=-5或x=2当x<-5时,∴-(x+5)-(x-2)=7,-x-5-x+2=7,x=5(范围内不成立)当-5<x<2时,∴(x+5)-(x-2)=7,x+5-x+2=7,7=7,∴x=-4,-3,-2,-1,0,1当x >2时,∴(x+5)+(x-2)=7, x+5+x-2=7, 2x=4, x=2, x=2(范围内不成立)∴综上所述,符合条件的整数x 有:-5,-4,-3,-2,-1,0,1,2 (3)由(2)的探索猜想,对于任何有理数x ,|x-3|+|x-6|有最小值为3【推荐课程】六年级秋季课程/六年级寒假课程/六年级春季课程/七年级暑假课程/七年级秋季课程/七年级寒假课程/八年级暑假课程/八年级秋季课程/八年级寒假课程2、方程与不等式 【学习重难点①】 列方程解应用题:许多学生总觉得应用题难。

其实,应用题到底难在哪里呢,应用题关键是在考察学生的语文阅读理解能力,可理解了之后如何准确地以数学语言的形式呈现出来也是一个很大的问题。

a. 首先建立等量关系在解决应用题的问题时不要直接列式求解,先把等量关系(如:路程=速度x 时间;利润=收入-成本;增长率=%100基准量增长率)建立好,然后把等式的各部分内容用具体数据或者未知数代入即可解决。

剩下的就是具体计算的问题了。

b. 验根计算结束后不要忘记对各个根进行检验,但是要注意检验要从两方面出发:一是要让式子自身有意义(比如代入后根号下不能是个负数);而是要符合实际意义(如求人数不能求出是个小数)。

【方法点拨】a.掌握基本定义这部分内容在考察的时候往往不太难,通常是基本的定义和简单运算。

所以把概念理解清楚是至关重要的,只有做到这些内容才能做到基础题不丢分。

b.把不同知识点对比讲解可以把不同的知识点对比着理解,这样可以让学生更加清楚各知识点的差异,能够更深刻地理解每个知识点。

c.形成知识体系做好复习工作,不光是对本学期所学内容进行复习,或者说到中考前才对整个初中阶段的内容进行复习;而是应该在适当的时机对相关内容进行复习。

比如在数与运算这块内容,我们可以在八年级上学期学完二次根式后,对数与运算相关的内容进行一个完整的梳理,这样的话有利于学生形成一个完整的知识体系,不至于学到后面,前面忘光。

【例题解析】【题目】李老伯想用24米长的旧木料,靠a米长的围墙造一个如图所示的猪舍,它们的平面图是一排大小相等的三个长方形,总面积为32平方米.(1)求猪舍的长BC和宽AB各为多少米?(2)题中围墙的长度a米对猪舍的长和宽是否有影响?怎样影响?【答案】建立等量关系:面积=长 宽【解析】先建立等量关系,在代入数据,然后针对实际问题进行讨论【推荐课程】六年级春季课程/八年级暑假课程/八年级秋季课程/八年级寒假课程/九年级暑假课程/九年级春季课程3、函数初步【学习重难点①】函数图像的运用及动点点中的函数关系函数这部分我们只是初步接触一下几个基本的函数,为以后高中进一步研究函数打下基础。

我们主要学习正比例函数、反比例函数、一次函数、二次函数的图像及性质,其实就这部分内容自身而言是不难的。

只是函数经常会与函数解析式、等腰三角形、直角三角形、相似三角形相结合考察动点问题,而动点问题通常会涉及到分类讨论的思想。

另外,有些问题如果直接进行计算通常会比较复杂或是无从下手,但如果结合图像进行观察分析通常会有意想不到的效果。

【方法点拨】a.熟悉并理解函数图像及性质对每个函数图像的性质及特征必须非常熟悉,学习过程中对这些内容不能一味采取记忆的方法,而应该画出函数图像,结合函数图像观察、分析、总结。

因为:如果直接记忆,虽然短时间内好像很方便,套用相关结论便能解决相关简单问题;但事实上弊大于利:一旦时间久了,以前记忆的内容会遗忘、混淆,导致套用错误信息;而且,遇到复杂问题会束手无策,不知道怎么分析。

因为记忆仅仅是停留在一个认知阶段,对很多深层问题并没有真正理解。

b. 处理动点问题先搞清动的原因动点问题通常不止一个点在动,但是这些点的运动往往有一个源头,即其他点的运动都是跟随第一个点的运动而动的,也就是说其他所有量都可以用第一个变化的量来表示。

要解决这种问题,我们就要认真读题,还原图形的形成过程,找出变化源头,这对我们构建函数解析式至关重要。

绝对不能就题读图,这样往往会有些隐含信息分析不出。

c. 分析出所有可能性,一一计算遇到动点形成的等腰三角形、直角三角形、平行四边形等问题时。

我们应该先分析出所有可能出现的情况,然后一一进行计算解答。

比如,我们分析出要构成等腰三角形的点可能出现在三个位置,然后分别计算这三个点处相应的边长。

【例题解析】【题目】(1)已知二次函数()20y ax bx c a =++≠的图象如右上图所示,那么下列判断不正确的是( )A. abc >0B. 042>-ac bC. 2a+b >0D. 4a-2b+c <0【答案】D 【解析】【题目】(2)已知△ABC为等边三角形,AB=6,P是AB上的一个动点(与A、B不重合),过点P作AB的垂线与BC相交于点D,以点D为正方形的一个顶点,在△ABC内作正方形DEFG,其中D、E在BC上,F在AC上.(1)设BP的长为x,正方形DEFG的边长为y,写出y关于x的函数解析式及定义域;(2)△GDP是否可能成为直角三角形?若能,求出BP的长;若不能,请说明理由.【答案】(1)∵△ABC 为等边三角形,∴∠B=∠C =60º,AB=BC=AC=6. ∵DP ⊥AB ,BP=x , ∴BD=2x .又∵四边形DEFG 是正方形, ∴EF ⊥BC ,EF=DE=y ,∴. ∴, ∴(≤<3).(2)△GDP 能成为直角三角形.①∠PGD=90º时,则点P G F 、、共线,所以AP PF =;, ,得到:②∠GPD=90º时,点G 在AB 边上,则点A G P B 、、、共线,所以6AG PG BG ++=y EC 33=6332=++y y x 339)33(-+-=x y 63-x y y x +=-36⋅+=-)13(6x ]339)33[(-+-x 113630-=x所以: , ,得到:.③当=90GDP ∠时,不成立.∴当△GDP 为直角三角形时,BP 的长 为或者.(图1) (图2)【解析】寻找题目中的已知量和特殊条件:1.特殊图形:△ABC 为等边三角形、四边形DEFG 为正方形;2.点的情况:①点P 是AB 上的一个动点(与A 、B 不重合); ②点D 、E 在BC 上,点F 在AC 上,点G 在ABC ∆内部.3.边的长度和关系:①6AB BP x ==,; ②DP AB ⊥.4.角的大小:6030B PDB ∠=∠=,一.求解函数关系式:用6BD DE EC ++=即可求解. 二.当△GDP 为直角三角形时: 1.点的位置:点P D G 、、都在动;y x x 234+=⋅+=234x x ]339)33[(-+-x 336-=x 113630-336-=x2.分类讨论:①当∠PGD=90º时,则点P G F 、、共线,所以AP PF =;(如图1)②当∠GPD=90º时,点G 在AB 边上,则点A G P B 、、、共线, 所以6AG PG BG ++=,(如图2). ③当=90GDP ∠时,不成立。

【推荐课程】七年级春季课程/八年级暑假课程/八年级秋季课程/八年级寒假课程/九年级暑假课程4、三角形 【学习重难点①】全等三角形、相似三角形的证明和计算:几何证明这一块其实是初中数学比较难的一块内容,而三角形的全等和相似又是出现最多的,而且经常需要我们添加一些辅助线。

这就需要我们进行适当的总结。

【方法点拨】a. 梳理全等三角形添加辅助线的方法在求证边或角的相等时通常需要我们添加辅助线构造全等三角形,这就需要我们对一些常见的添加辅助线的方法进行梳理,如:截长补短、倍长中线、图形旋转、作角平分线上的点到角的垂线、联接线段垂直平分线上的点与线段的端点。

b. 折果索因法的运用很多情况下我们在解决问题时从既定条件可能难以下手。

这个时候我们可以换个思路,从结论出发,逆着去分析证明这个结论需要的条件,这样很多貌似很复杂的问题往往会变得很简单。

相关文档
最新文档