北邮网络学院工程数学阶段作业四

合集下载

2024年电大工程数学

2024年电大工程数学

离线作 业专业:土木工程(本) 班级:07土木工程(本) 学号: 姓名:张波要求:1、在大连校园网(.edu.cn)上实名注册。

 2、按上面次序注明教学班、年级、专业、姓名、学号。

3、上传离线作业时,必须用学号和姓名作为上传离线作业的文献名,否则视为未交离线作业。

4、假如没有本课程的离线作业,得不到平时成绩。

离线作业答题卡1.(C) 2.(C) 3.(C) 4.(B) 5.(D)6.(D)7.(C)8.(B)9.(B) 10.(C)11.(-48) 12.(1) 13.(线性无关) 14.( 特性相量)115.()216.(无偏估量量) 17.(20) 18.() 19.( 0.8 )20.(μ)⎰+∞∞-)(dxxfx 一、填空题:1. 向量组的秩是(C ).0222,0543,0321,0021,0001 (A) (B) 12 (C) (D) 342. 都是阶矩阵,则下列命题正确的是 (C) .B A ,n (A) (B) 若,则或BA AB =0AB =0A =0B = (C) (D) BA AB 2222)(BAB A B A +-=-3.若都是n 阶矩阵,则等式(C )成立.A B ,A . B . A B A B +=+ABAB =')( C . D . AB BA =()()A B A B A B+-=-224.若,则秩()=(B).⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=743222301521A A A . 1 B . 2 C . 3 D . 45.向量组的极大线性无关[][][][]αααα1234000100120123====,,,,,,,,,,,组是(D ). (A) (B) 32,αααα24, (C) (D)αα34,ααα234,,6. 甲、乙二人射击,分别表示甲、乙射中目标,则表示(D )的事件.A B ,AB (A ) 二人都没射中  (B) 最少有一人射中 (C) 两人都射中 (D ) 最少有一人没射中7.若随机事件,满足,则结论(C )成立.A B AB =∅ (A) 与是对立事件 (B) 与相互独立A B A B (C ) 与互不相容 (D) 与互不相容A B A B 8. 设是来自正态总体的样本,则(B)是统计量.x x x n 12,,, N (,)μσ2 (A); (B) ;x 1-μσ11n x i i n=∑(C);  (D)σμx 2+μx 19.对给定的正态总体的一个样本,未知,求的置信区间,选),(2σμN ),,,(21n x x x 2σμ用的样本函数服从(B).A.χ分布B .t 分布C .指数分布 D.正态分布210.下列数组中,(C)中的数组能够作为离散型随机变量的概率分布.A . B .41414121161814121 C .  D. 163161412181834121- 二、填空题 11.设均为3阶矩阵,,,则 -48 .B A ,2=A 3=B ='--13B A 12. 设矩阵,则 1 .A =⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥111111111r A ()=13.线性无关的向量组的部分组一定 线性无关 .14. 设为阶方阵,若存在数和非零维向量,使得,则称为相A n λn x x x A λ=x A 应于特性值的 特性相量 .λ 15.设随机变量的密度函数,则 .X f x A x x ()sin ,,=<<⎧⎨⎩00π其它A =2116.若参数的估量量满足,则称为的 无偏估量量 .θ θE ( )θθ= θθ17.假如随机变量的期望,,那么 20 .X 2)(=X E 9)(2=X E =)2(X D 18.设是来自正态总体的一个样本,则 µ .1021,,,x x x )4,(μN ~101101∑=i i x 19.已知,则 0.8 .5.0)(,3.0)(=-=A B P A P =+)(B A P 20.设连续型随机变量的密度函数是,则.X )(x f =)(X E dx x xf ⎰+∞∞-)(。

北邮工程数学作业1-4

北邮工程数学作业1-4

北邮工程数学作业1-4 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一、判断题(共5道小题,共50.0分)1.设A、B都为n阶矩阵,则.A.正确B.错误知识点:阶段作业一学生答案:[B;]得分:[10]试题分值:10.0提示:2.3.设A、B都为n阶矩阵,若AB = 0,则|A| = 0或|B| = 0.A.正确B.错误知识点: 阶段作业一学生答案:[A;]得分: [10] 试题分值:10.0提示:4.5.设A为n阶矩阵,则必有.A.正确B.错误知识点: 阶段作业一学生答案:[A;]得分: [10] 试题分值:10.0提示:6.7.设A为n阶矩阵,若k是不为零常数,则必有| kA| = k| A|.A.正确B.错误知识点: 阶段作业一学生答案:[B;]得分: [10] 试题分值:10.0提示:8.9.设A为5阶矩阵,若k是不为零常数,则必有.A.正确B.错误知识点: 阶段作业一学生答案:[A;]得分: [10] 试题分值:10.0提示:10.二、单项选择题(共5道小题,共50.0分)1.(错误)设A为m×n矩阵,如果Rank (A) = r (< min( m, n )),则( B ).A.A有一个r阶子式不等于零,一个r + 1阶子式等于零. XXB.A有一个r阶子式不等于零,所有r + 1阶子式都等于零.C.A的所有r阶子式都不等于零,一个r + 1阶子式等于零.D.A的r阶子式不全为零,一个r + 1阶子式等于零.知识点: 阶段作业一学生答案:[A;]不对标准 B得分: [0] 试题分值:10.0提示:2.(错误)如果n阶矩阵A,B均可逆,则必有().A.XXXXXXXXXXB.XXXXXXXXXXXXXXXXC.XXXXXXXXXXXXXXXXXXXXXXD.知识点: 阶段作业一学生答案:[C;] 标准 D得分: [0] 试题分值:10.0提示:3.(错误)当k = ( )时,矩阵不可逆.A. 4B. 2C.D.0知识点: 阶段作业一学生答案:[B;] 标准 C得分: [0] 试题分10.0值:提示:4.(错误)当ad - cb =1时,=( B ).A.B.C.D.知识点: 阶段作业一学生答案:[A;] B得分: [0] 试题分值:10.0提示:5.A为3阶矩阵且| A| =3,则 |-2A| =().A.-24B.-8C.-6D.24知识点: 阶段作业一学生答案:[A;]得分: [10] 试题分值:10.0提示:第二次作业一、判断题(共5道小题,共50.0分)1.若线性方程组的系数矩阵A满足Rank(A) < n,则此方程组有非零解.A.正确B.错误知识点: 阶段作业二学生答案: [A;]标准答案:A得分: [10] 试题分值:10.0提示:2.3.若是非齐次线性方程组的两个解,则也是它的解.A.正确B.错误知识点: 阶段作业二学生答案: [B;]标准答案:B得分: [10] 试题分值:10.0提示:4.5.任何一个齐次线性方程组都有解.A.正确B.错误知识点: 阶段作业二学生答案: [A;]标准答案:A得分: [10] 试题分值:10.0提示:6.7.任何一个齐次线性方程组都有基础解系,它的解都可由其基础解系线性表示.A.正确B.错误知识点: 阶段作业二学生答案: [B;]标准答案:B得分: [10] 试题分值:10.0提示:8.9.若存在使式子成立,则向量组线性无关.A.正确B.错误知识点: 阶段作业二学生答案: [B;]标准答案:B得分: [10] 试题分值:10.0提示:10.二、单项选择题(共5道小题,共50.0分)1.设A为n阶矩阵,,如果| A | ≠0,则齐次线性方程组AX = 0().A.无解B.有非零解C.仅有零解D.不能确定是否有非零解知识点: 阶段作业二学生答案: [C;]标准答案:C得分: [10] 试题分值:10.0提示:2.3.设向量组,,,则当实数k =( )时,,,是线性相关的.A.-2或3B.2或-3C.2或3D.-2或-3知识点: 阶段作业二学生答案: [A;]标准答案:A得分: [10] 试题分值:10.0提示:4.5.设向量,,,,则向量 可由向量线性表示的表达式为( ).A.B.C.D.知识点: 阶段作业二学生答案: [B;]标准答案:B得分: [10] 试题分值:10.0提示:6.7.设向量,,,,则向量β可由向量线性表示的表达式为( ).A.B.C.D.知识点: 阶段作业二学生答案: [D;]标准答案:D得分: [10] 试题分值:10.0提示:8.9.向量组(m≥ 2)线性无关的充分必要条件是().A.中至少有一个向量可以用其余向量线性表示.B.中有一个零向量.C.中的所有向量都可以用其余向量线性表示.D.中每一个向量都不能用其余向量线性表示.知识点: 阶段作业二学生答案: [D;]标准答案:D得分: [10] 试题分值:10.0提示:10.第三次作业:一、判断题(共5道小题,共50.0分)1.一口袋中装有6个球,球上分别标有数字-3,-3,1,1,1,2。

北京邮电大学工程数学概率部分复习

北京邮电大学工程数学概率部分复习

1 5 5 P{恰好出现两次 6 点}= C 6 6 72
2 3
所以选 D. 例:设 A、B 为两个互不相容事件,且 P ( B ) 0 ,则 P ( A B ) _________. 解:因为 A、B 为两个互不相容,即 AB ,所以
P( A B)
) .
解: P ( A B ) P ( AB ) P ( A) P ( B ) [1 P ( A)][1 P( B)]
0.4 0.3 0.12
所以选 D.
二、随机变量及其分布
1.随机变量及其分布函数:了解随机变量及其分布函数的概念、性质;掌握分布函数与随 机变量取值概率的关系. 2.离散型随机变量:掌握离散型随机变量分布律的性质;掌握分布律的求法;掌握离散型 随机变量分布函数的求法. 3.连续型随机变量:掌握连续型随机变量概率密度的性质;掌握概率密度与分布函数的关 系. 4.几个重要分布:掌握以下常用随机变量的分布.
Y X -1 0 1 1 0 1/3 0 2 1/2 0 1/6
(4) P X Y 1 P X 1, Y 2 P X 0, Y 1 例:设随机变量 X 的分布列为: X P -1 1/2 0 1/4
2
1 1 5 2 3 6
1 1/4
求(1)X 的分布函数 F ( x) ; (2)Y X 的分布列; (3)二维随机变量(X,Y)的分布列; (4) P X Y 0 . 解: (1)当 x 1 时, F ( x) P{ X x} P( ) 0 当 1 x 0 时, F ( x) P{ X x} P{x 1}
(3) P X xi , Y y j PX xi P Y y j X xi

北邮工程数学阶段作业4

北邮工程数学阶段作业4
2.设 ,如果 , ,则X的分布列 ().
A.
B.
C.
D.
知识点:
阶段作业四
学生答案:
[D;]
得分:
[10]
试题分值:
10.0
提示:
3.设随机变量X的分布列为
则 ().
A.0.6
B.3.04
C.3.4
D.3.76
知识点:
阶段作业四
学生答案:
[B;]
得分:
[10]
试题分值:
10.0
提示:
4.设(X,Y)的分布列为
则(X,Y)关于X和关于Y的边缘分布列分别为().
A.
B.
C.
D.
知识点:
阶段作业四
学生答案:
[B;]
得分:
[10]
试题分值:
10.0
提示:
5.设(X,Y)的概率密度为 ,则 ().
A.4
B.3
C.2
D.1.5
知识点:
阶段作业四
学生答案:
[A;]
得分:
[10]
试题分值:
10.0
提示:
A.正确
B.错误
知识点:
阶段作业四
学生答案:
[B;]
得分:
[10X与Y独立,X的概率密度 ,Y的概率密度 ,则(X,Y)的概率密度 .
A.正确
B.错误
知识点:
阶段作业四
学生答案:
[A;]
得分:
[10]
试题分值:
10.0
提示:
5.设(X,Y)的概率密度为 ,则X与Y相互独立.
一、判断题(共5道小题,共50.0分)
1.设 ,则 , .

最新国家开放大学电大本科《工程数学》期末试题标准题库及答案(试卷号:1080)

最新国家开放大学电大本科《工程数学》期末试题标准题库及答案(试卷号:1080)

最新国家开放大学电大本科《工程数学》期末试题标准题库及答案(试卷号:1080)
考试说明:本人汇总了历年来该科的试题及答案,形成了一个完整的标准考试题库,对考生的复习和考试起着非常重要的作用,会给您节省大量的时间。

内容包含:单选题、填空题、计算题、证明题。

做考题时,利用本文档中的查找工具(Ctrl+F),把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。

本文库还有其他网核、机考及教学考一体化试题答案,敬请查看。

《工程数学》题库一
试题答案及评分标准(仅供参考)
《工程数学》题库二
试题答案及评分标准(仅供参考)
《工程数学》题库三一、单项选择题(每小题3分.共15分)
试题答案及评分标准
(仅供参考)
《工程数学》题库四
试题答案及评分标准
(仅供参考)
《工程数学》题库五
试题答案及评分标准(仅供参考)
《工程数学》题库六一、单项选择题(每小题3分,共15分)
二、填空题(每小题3分,共15分)
三、计算题(每小题16分,共64分)
四、证明题(本题6分)
试题答案及评分标准
(仅供参考)。

工程数学形成性考核册作业2、4

工程数学形成性考核册作业2、4

工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为( ).A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪( ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( ).A. 3B. 2C. 4D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则( )是极大无关组.A. αα12,B. ααα123,,C. ααα124,,D. α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则( ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组( ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是( ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内( )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量(二)填空题(每小题2分,共16分)⒈当λ= 1 时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 . ⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 解,且系数列向量ααα123,,是线性 的.⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是 . ⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 个.⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为 .(三)解答题(第1小题9分,其余每小题11分) 1.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ为何值时,方程组有唯一解?或有无穷多解?2.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,, 3.计算下列向量组的秩,并且(1)判断该向量组是否线性相关;(2)求出该向量组的一个极大无关组。

(完整版)工程数学(概率)综合练习题整理

(完整版)工程数学(概率)综合练习题整理

北京邮电大学高等函授教育、远程教育《工程数学》综合练习题通信工程、计算机科学与技术专业(本科)《概率论与随机过程》部分一、设A 、B 、C 为三事件,用A 、B 、C 运算关系表示下列事件:1. A 发生,B 与C 不发生:_______________________ 2. A 、B 、C 中至少有一个发生:___________________ 3. A 、B 、C 中至少有两个发生:___________________ 4. A 、B 、C 中不多于一个发生。

_____________________ 二、填空1. 设A 、B 为两个事件,且5.0)()(,7.0)(===B P A P B A P Y ,则(1)=)(B A P ___________, (2)=)(B A P __________;2.若事件A 发生必导致事件B 发生,且==)(,4.0)(A B P A P 则____,=)(AB P ____; 3.若A 、B 为任意两随机事件,若)(),(),(AB P B P A P 已知,则=)(B A P Y ______________,=)(A P _______________;4. 设有三事件A 1、A 2、A 3相互独立,发生的概率分别为1p 、2p 、3p ,则这三事件中至少有一个发生的概率为__________________,这三事件中至少有一个不发生的概率为_______;5. 若随机变量X ~B (5,0.3),则P {X =3}=___________________________,P {X ≥4}=__________________________________________; 6. 设随机变量X ~B ),(p n ,且EX =2.4,DX =1.44,则X 的分布列为{}==k X P __________________________________________, {}==3X P __________________________________________;7.已知随机变量X 的概率密度函数为),(221)(8)1(2∞-∞=--x e x f π则EX =______,DX =______,X 的分布函数=)(x F __________________;8.设X ~N (1.5,4),则P {︱X ︱<3}=_________________;(已知)9878.)25.2(,7734.0)75.0(=Φ=Φ9.若X ~N (==-)(,22222Y E eY e x则),且,μμσμ___________;10.设随机变量X 的概率密度为=⎩⎨⎧≤>=-k x x ke x f x 则常数0,00,)(3_________。

工程数学作业题参考答案

工程数学作业题参考答案

《工程数学》作业题参考答案一、填空题(每小题3分,共18分)1. i =5,k = 4;2. 40;3. 2-n A;4. 2442222136x x x x x x --+;5.2-;6. 充分。

7. 1. 16;8.n 2;9. r = n , r<n ; 10. -17; 11. 11<<-t 。

二、简答题(每小题4分,12分)1. 举出任何反例皆可。

当BA AB =时,等式2222)(B AB A B A ++=+成立。

2. 一定不为零。

若A 的特征值0=λ,则存在0 ≠x 使得0 ==x x A λ,即方程0=x A 有非零解,所以0=A ,即A 不可逆,与已知矛盾。

3. 不相似。

否则有可逆阵C 使C -1AC=B ,即A=B ,矛盾。

4. 分别是A B A k B A B ==-=,,(4分)。

5. 不相似(2分)。

否则,存在可逆阵C 使C-1AC=B ,即A=B ,矛盾(2分)。

6.B A +一定为正定阵因为0,00,,>>≠∈∀x B x x A x x R x ,B A T T n有所以为正定阵,从而0)(>+x B A x T ,所以B A +一定为正定阵。

三、计算题(一)(每小题8分,共32分) 1. 值为120(答案错误可适当给步骤分)。

2. 解:由X A E AX +=+2化简得))(()(E A E A X E A +-=-,E A E A --=-故,1可逆,所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+=201030102E A X 。

3.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡601424527121103121301,,,,54321TT T T T ααααα∽⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00000110001011021301, 故421,,ααα 或431,,ααα为一个最大线性无关组(或其他正确答案)。

4. 解:利用分块矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=113232101,8231,2121A A O AA OA ,则 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎦⎤⎢⎣⎡--=--31702431161,1238211211A A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=⎥⎦⎤⎢⎣⎡=---000211000234216167000313200216110011121O A A OA5.是,⎪⎪⎩⎪⎪⎨⎧+=是奇数;,,是偶数,n n n nS 212dim 6. (1) 121||||2+=e f ;(2)))(41()(2是任意实数b e x b x g +-=。

最全北邮工程数学阶段作业.docx

最全北邮工程数学阶段作业.docx

1.A. 正确B. 错误、判断题(共5道小题,共50.0分)1.若是非齐次线性方程组的两个解,则也是它的解.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:2.3.若向量组中的可用线性表示,则线性相关.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:4.5.若向量组线性相关,则一定可用线性表示.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:6.7.若是向量组的一个极大无关组,与等价.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:8.9. (错误)若存在一组不全为零的数使,则向量组线性无关.A. 正确B. 错误知识点: 阶段作业二二、单项选择题(共5道小题,共50.0分)1.设5阶矩阵A是正交矩阵,则(D ).A. 5B. 4C. -1D. 1知识点: 阶段作业一学生答案: [B;] 标准答案: D得分: [0] 试题分值: 10.0提示:1. (错误)线性方程组的全部解为().A.B.C.D. (为任意常数)知识点: 阶段作业二学生答案: [C;] 标准答案: A得分: [0] 试题分值: 10.0提示:2. (错误)齐次线性方程组的一个基础解系为().A.B.C.D.知识点: 阶段作业二学生答案: [C;] 标准答案: D得分: [0] 试题分值: 10.0提示:3. (错误)当()时,线性方程组仅有零解.A. 且B. 且C. 且D. 且知识点: 阶段作业二学生答案: [C;] 标准答案: D;得分: [0] 试题分值: 10.0提示:4.当k =()时,线性方程组有非零解.A. 0或1B. 1或-1C. -1或-3D. -1或3知识点: 阶段作业二学生答案: [C;] 标准答案: C得分: [10] 试题分值: 10.0提示:5.6. (错误)向量组(m 2)线性相关的充分必要条件是().A. 中至少有一个向量可以用其余向量线性表示.B. 中有一个零向量.C. 中的所有向量都可以用其余向量线性表示.D. 中每一个向量都不能用其余向量线性表示.知识点: 阶段作业二学生答案: [C;] 标准答案: A得分: [0] 试题分值: 10.0提示:一、判断题(共5道小题,共50.0分)1. 设A、B为两事件,则表示“A、B两事件均不发生”.A. 正确B. 错误知识点: 阶段作业三学生答案: [B;]得分: [10] 试题分值: 10.0提示:2.3. 若X~N(μ,),则P =.A. 正确B. 错误知识点: 阶段作业三学生答案: [A;]得分: [10] 试题分值: 10.0提示:4.5. 设随机变量X的概率密度为,则常数k=.A. 正确B. 错误知识点: 阶段作业三学生答案: [B;]得分: [10] 试题分值: 10.0提示:6.7. (错误)某人打靶命中率为p,现重复射击5次,则P{至少命中2次}= .A. 正确B. 错误知识点: 阶段作业三学生答案: [A;]得分: [0] 试题分值: 10.0提示:8. (错误)A、B、C为三事件,则“A、B、C三事件不多于一个发生”表示为.A. 正确B. 错误知识点: 阶段作业三学生答案: [A;]得分: [0] 试题分值: 10.0提示:二、单项选择题(共5道小题,共50.0分)1. (错误)设,为标准正态分布的分布函数,则( ).A.B.C.D.知识点: 阶段作业三学生答案: [B;]得分: [0] 试题分值: 10.0提示:2. 设随机变量X的概率密度为,则常数().A. -4B. 4C.D.知识点: 阶段作业三学生答案: [B;]得分: [10] 试题分值: 10.0提示:3.4. (错误)设随机变量X的概率密度为,则a =().A.B.C. 1D. 2知识点: 阶段作业三学生答案: [B;]得分: [0] 试题分值: 10.0提示:5. (错误)设A与B对立,且P(A )≠ 0,P(B) ≠ 0,则().A. P(A∪B) = P(A)+ P(B)B. A =C. P(A B )≠ 0D. P(AB) = P(A) P(B)知识点: 阶段作业三学生答案: [B;]得分: [0] 试题分值: 10.0提示:6. (错误)设A与B互不相容,且P(A)>0,P(B) >0,则().A. P(AB) = P(A) P(B)B. P(A��B ) = P(A)C. P(B��A) = 0D. P(B��) ≥P(B)知识点: 阶段作业三学生答案: [B;]得分: [0] 试题分值: 10.0提示:一、判断题(共5道小题,共50.0分)1.若n阶矩阵A为正交矩阵,则A必为可逆矩阵且.A. 正确B. 错误知识点: 阶段作业一学生答案: [A;]得分: [10] 试题分值: 10.0提示:2.3.如果n阶矩阵A可逆,则=.A. 正确B. 错误知识点: 阶段作业一学生答案: [A;]得分: [10] 试题分值: 10.0提示:4.5.设A、B都为n阶矩阵,若AB = 0,则|A| = 0或|B| = 0.A. 正确B. 错误知识点: 阶段作业一学生答案: [A;]得分: [10] 试题分值: 10.0提示:6.7.设A为n阶矩阵,则必有.A. 正确B. 错误知识点: 阶段作业一学生答案: [A;]得分: [10] 试题分值: 10.0提示:8.9.设A为5阶矩阵,若k是不为零常数,则必有.A. 正确B. 错误知识点: 阶段作业一学生答案: [A;]得分: [10] 试题分值: 10.0提示:10.二、单项选择题(共5道小题,共50.0分)1. (错误)如果n阶矩阵A可逆,则= ( B ).A.B.C.D.知识点: 阶段作业一学生答案: [C;]得分: [0] 试题分值: 10.0提示:2.当k = ( A )时,矩阵不可逆.A. 4B. 2C.D. 0知识点: 阶段作业一学生答案: [C;]得分: [10] 试题分值: 10.0提示:3.4. (错误)设A、B均为n阶矩阵,且,则=().A. -1B. -8C. 16D. -32知识点: 阶段作业一学生答案: [C;]得分: [0] 试题分值: 10.0提示:5. (错误)设3阶行列式,则().A. 2kB. 6kC. 18kD.知识点: 阶段作业一学生答案: [C;]得分: [0] 试题分值: 10.0提示:6. (错误)设3阶行列式,则().A. 12B. -12C. 18D. -18知识点: 阶段作业一学生答案: [C;]得分: [0] 试题分值: 10.0提示:一、判断题(共5道小题,共50.0分)1. (错误)若线性方程组的系数矩阵A和增广矩阵满足Rank()=Rank(A),则此方程组有唯一解.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: B得分: [0] 试题分值: 10.0提示:2. (错误)若是非齐次线性方程组的两个解,则也是它的解.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: B得分: [0] 试题分值: 10.0提示:3.任何一个齐次线性方程组都有解.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:4.5. (错误)若向量组线性相关,则一定可用线性表示.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: B得分: [0] 试题分值: 10.0提示:6. (错误)若存在使式子成立,则向量组线性无关.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: B得分: [0] 试题分值: 10.0提示:二、单项选择题(共5道小题,共50.0分)1. (错误)当()时,线性方程组仅有零解.A. 且B. 且C. 且D. 且知识点: 阶段作业二学生答案: [B;] 标准答案: D;得分: [0] 试题分值: 10.0提示:2. (错误)设向量,,,,则向量β可由向量线性表示的表达式为( ).A.B.C.D.知识点: 阶段作业二学生答案: [C;] 标准答案: B得分: [0] 试题分值: 10.0提示:3. (错误)向量组(m≥ 2)线性无关的充分必要条件是().A. 中至少有一个向量可以用其余向量线性表示.B. 中有一个零向量.C. 中的所有向量都可以用其余向量线性表示.D. 中每一个向量都不能用其余向量线性表示.知识点: 阶段作业二学生答案: [B;] 标准答案: D得分: [0] 试题分值: 10.0提示:4. (错误)向量组(m 2)线性相关的充分必要条件是().A. 中至少有一个向量可以用其余向量线性表示.B. 中有一个零向量.C. 中的所有向量都可以用其余向量线性表示.D. 中每一个向量都不能用其余向量线性表示.知识点: 阶段作业二学生答案: [C;] 标准答案: A得分: [0] 试题分值: 10.0提示:5.若( )的数使,则向量组线性无关.A. 存在一组不全为零B. 存在一组全不为零C. 仅存在一组全为零D. 存在一组全为零知识点: 阶段作业二6.一、判断题(共5道小题,共50.0分)1.设,则,.A. 正确B. 错误知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:2.3.设随机变量X与Y独立,则X与Y的相关系数.A. 正确B. 错误知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:4.5.设随机变量X的概率密度,则.A. 正确B. 错误知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:6.7.设二维随机变量(X,Y)的分布列为则X与Y相互独立.A. 正确B. 错误知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:8.设(X,Y)的概率密度,则常数.A. 正确B. 错误知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:9.二、单项选择题(共5道小题,共50.0分)1.设X与Y的相关系数,,,则X与Y的协方差().A. -7.2B. -1.8C. -1.2D. -0.18知识点: 阶段作业四学生答案: [C;]得分: [10] 试题分值: 10.0提示:2.3. (错误)已知随机变量X的概率密度函数为,则,分别为( ).A. 1,2B. 1,4C. 2,1D. 4,1知识点: 阶段作业四学生答案: [C;]得分: [0] 试题分值: 10.0提示:4. (错误)设随机变量X的概率密度为,则D(X)=().A.B.C.D.知识点: 阶段作业四学生答案: [C;]得分: [0] 试题分值: 10.0提示:5.设随机变量的密度函数为,则().A.B.C.D.知识点: 阶段作业四学生答案: [C;]得分: [10] 试题分值: 10.0提示:6.7. (错误)设随机变量X的分布列为则( B ).A. 0.6B. 3.04C. 3.4D. 3.76知识点: 阶段作业四学生答案: [C;]得分: [0] 试题分值: 10.0提示:一、判断题(共5道小题,共50.0分)1.若线性方程组的系数矩阵A满足Rank(A) < n,则此方程组有非零解.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:2.3. (错误)若是非齐次线性方程组的两个解,则也是它的解.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: B得分: [0] 试题分值: 10.0提示:4. (错误)任何一个齐次线性方程组都有基础解系,它的解都可由其基础解系线性表示.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: B得分: [0] 试题分值: 10.0提示:5. (错误)若存在使式子成立,则向量组线性无关.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: B得分: [0] 试题分值: 10.0提示:6. (错误)若存在一组不全为零的数使,则向量组线性无关.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: B得分: [0] 试题分值: 10.0提示:二、单项选择题(共5道小题,共50.0分)1. (错误)线性方程组的全部解为().A.B.C.D. (为任意常数)知识点: 阶段作业二学生答案: [B;] 标准答案: A得分: [0] 试题分值: 10.0提示:2.设向量,,,,则向量 可由向量线性表示的表达式为( ).A.B.C.D.知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:3.4.设A为4阶矩阵,为它的行向量组,如果,则( ).A. 秩{}=3且向量组线性相关.B. 秩{}=4且向量组线性无关.C. 秩{}=3且向量组线性无关.D. 秩{}=4且向量组线性相关.知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:5.6.向量组(m 2)线性无关的充分必要条件是().A. 中至少有一个向量可以用其余向量线性表示.B. 中有一个零向量.C. 中的所有向量都可以用其余向量线性表示.D. 中每一个向量都不能用其余向量线性表示.知识点: 阶段作业二学生答案: [D;] 标准答案: D得分: [10] 试题分值: 10.0提示:7.8. (错误)若( )的数使,则向量组线性无关.A. 存在一组不全为零B. 存在一组全不为零C. 仅存在一组全为零D. 存在一组全为零一、判断题(共5道小题,共50.0分)1. 若线性方程组的系数矩阵A满足Rank(A) < n,则此方程组有非零解.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:2.3. (错误)若线性方程组的系数矩阵A和增广矩阵满足Rank()=Rank(A),则此方程组有唯一解.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: B得分: [0] 试题分值: 10.0提示:4. 若是非齐次线性方程组的两个解,则也是它的解.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:5.6. 任何一个齐次线性方程组都有基础解系,它的解都可由其基础解系线性表示.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:7.8. 若是向量组的一个极大无关组,与等价.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:9.二、单项选择题(共5道小题,共50.0分)1. 线性方程组的全部解为().A.B.C.D. (为任意常数)知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:2.3. (错误)三元线性方程组的全部解为().A.B.C.D. (为任意常数)知识点: 阶段作业二学生答案: [B;] 标准答案: A得分: [0] 试题分值: 10.0提示:4. 齐次线性方程组的一个基础解系为().A.B.C.D.知识点: 阶段作业二学生答案: [D;] 标准答案: D得分: [10] 试题分值: 10.0提示:5.6. 设A为n阶矩阵,,如果| A | = 0,则齐次线性方程组AX = 0().A. 无解B. 有非零解C. 仅有零解D. 不能确定是否有非零解知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:7.8. 向量组(m ³ 2)线性相关的充分必要条件是().A. 中至少有一个向量可以用其余向量线性表示.B. 中有一个零向量.C. 中的所有向量都可以用其余向量线性表示.D. 中每一个向量都不能用其余向量线性表示.知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:一、判断题(共5道小题,共50.0分)1.设A、B为两事件,则表示“A、B两事件均不发生”.A. 正确B. 错误知识点: 阶段作业三学生答案: [B;]得分: [10] 试题分值: 10.0提示:2.3.若X~N(μ,),则P =.A. 正确B. 错误知识点: 阶段作业三学生答案: [A;]得分: [10] 试题分值: 10.0提示:4.5.设随机变量X的概率密度为,则常数k=.A. 正确B. 错误知识点: 阶段作业三学生答案: [B;]得分: [10] 试题分值: 10.0提示:6.7.某人打靶命中率为p,现重复射击5次,则P{至少命中2次}= .A. 正确B. 错误知识点: 阶段作业三学生答案: [B;]得分: [10] 试题分值: 10.0提示:8.9.A、B、C为三事件,则“A、B、C三事件不多于一个发生”表示为.A. 正确B. 错误知识点: 阶段作业三学生答案: [B;]得分: [10] 试题分值: 10.0提示:10.二、单项选择题(共5道小题,共50.0分)1. (错误)设,为标准正态分布的分布函数,则( ).A.B.C.D.知识点: 阶段作业三学生答案: [C;]得分: [0] 试题分值: 10.0提示:2.设随机变量X的概率密度为,则常数().A. -4B. 4C.D.知识点: 阶段作业三学生答案: [B;]得分: [10] 试题分值: 10.0提示:3.4.设随机变量X的概率密度为,则a=().A.B.C. 1D. 2知识点: 阶段作业三学生答案: [C;]得分: [10] 试题分值: 10.0提示:5.6. (错误)设A与B对立,且P(A )≠ 0,P(B) ≠0,则().A. P(A∪B) = P(A)+ P(B)B. A =C. P(A B )≠ 0D. P(AB) = P(A) P(B)知识点: 阶段作业三学生答案: [C;]得分: [0] 试题分值: 10.0提示:7.设A与B互不相容,且P(A)>0,P(B) >0,则().A. P(AB) = P(A) P(B)B. P(A��B ) = P(A)C. P(B��A) = 0D. P(B��) ≥P(B)知识点: 阶段作业三学生答案: [C;]得分: [10] 试题分值: 10.0提示:8.9.一、判断题(共5道小题,共50.0分)1. 设A、B都为n阶矩阵,则.A. 正确B. 错误知识点: 阶段作业一学生答案: [B;]得分: [10] 试题分值: 10.0提示:2. 如果n阶矩阵A可逆,则=.A. 正确B. 错误知识点: 阶段作业一学生答案: [A;]得分: [10] 试题分值: 10.0提示:3. 设A、B都为n阶矩阵,若 AB = 0,则|A| = 0或|B| = 0.A. 正确B. 错误知识点: 阶段作业一学生答案: [A;]得分: [10] 试题分值: 10.0提示:4. 设A为n阶矩阵,则必有.A. 正确B. 错误知识点: 阶段作业一学生答案: [A;]得分: [10] 试题分值: 10.0提示:5. (错误)设A为n阶矩阵,若k是不为零常数,则必有| kA| = k| A|.A. 正确B. 错误二、单项选择题(共5道小题,共50.0分)1. (错误)设A为4阶矩阵,且,则( B ).A. 4B. 3C. 2D. 1知识点: 阶段作业一学生答案: [A;]得分: [0] 试题分值: 10.0提示:2. (错误)设A为m×n矩阵,如果Rank (A) = r (< min( m, n )),则( B ).A. A有一个r阶子式不等于零,一个r + 1阶子式等于零.B. A有一个r阶子式不等于零,所有r + 1阶子式都等于零.C. A的所有r阶子式都不等于零,一个r + 1阶子式等于零.D. A的r阶子式不全为零,一个r + 1阶子式等于零.知识点: 阶段作业一学生答案: [A;]得分: [0] 试题分值: 10.0提示:3. 当k = ( )时,矩阵不可逆.A. 4B. 2C.D. 0知识点: 阶段作业一学生答案: [C;]得分: [10] 试题分值: 10.0提示:4. (错误)设3阶行列式,则().A. 2kB. 6kC. 18kD.知识点: 阶段作业一学生答案: [B;]得分: [0] 试题分值: 10.0提示:5. 已知4阶行列式D中的第2行的元素依次为1,0,-1,2,它们的余子式依次为3,8,5,4,则D =().A. 6B. 10C. -10D. -6一、判断题(共5道小题,共50.0分)1. 若线性方程组的系数矩阵A满足Rank(A) < n,则此方程组有非零解.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:2. 若线性方程组的系数矩阵A和增广矩阵满足Rank()=Rank(A),则此方程组有唯一解.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:3. 若是向量组的一个极大无关组,与等价.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:4. 若存在使式子成立,则向量组线性无关.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:5. 若存在一组不全为零的数使,则向量组线性无关.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:6.二、单项选择题(共5道小题,共50.0分)1. (错误)当k =()时,线性方程组有非零解.A. 0或1B. 1或-1C. -1或-3D. -1或3知识点: 阶段作业二学生答案: [A;] 标准答案: C得分: [0] 试题分值: 10.0提示:2. (错误)设向量组,,,则当实数k = ( )时,,,是线性相关的.A. -2或3B. 2或-3C. 2或3D. -2或-3知识点: 阶段作业二学生答案: [B;] 标准答案: A得分: [0] 试题分值: 10.0提示:3. (错误)设矩阵的行向量组,,线性无关,则( ).A. 0B. 1C. 2D. 3知识点: 阶段作业二学生答案: [C;] 标准答案: D得分: [0] 试题分值: 10.0提示:4. (错误)向量组(m ³ 2)线性相关的充分必要条件是().A. 中至少有一个向量可以用其余向量线性表示.B. 中有一个零向量.C. 中的所有向量都可以用其余向量线性表示.D. 中每一个向量都不能用其余向量线性表示.知识点: 阶段作业二学生答案: [D;] 标准答案: A得分: [0] 试题分值: 10.0提示:5. (错误)若( )的数使,则向量组线性无关.一、判断题(共5道小题,共50.0分)1. (错误)若线性方程组的系数矩阵A满足Rank(A) < n,则此方程组有非零解.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: A得分: [0] 试题分值: 10.0提示:2. 任何一个齐次线性方程组都有基础解系,它的解都可由其基础解系线性表示.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:3. (错误)若向量组中的可用线性表示,则线性相关.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: A得分: [0] 试题分值: 10.0提示:4. 若向量组线性相关,则一定可用线性表示.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:5. 若存在使式子成立,则向量组线性无关.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:6.二、单项选择题(共5道小题,共50.0分)1. 三元线性方程组的全部解为().A.B.C.D. (为任意常数)知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:2. (错误)若线性方程组的系数矩阵A和增广矩阵满足Rank()=Rank(A) = n,则此方程组( ).A. 无解B. 有唯一解C. 有无穷多解D. 不能确定是否有解学生答案: [A;] 标准答案: B得分: [0] 试题分值: 10.0提示:3. (错误)若线性方程组的系数矩阵A和增广矩阵满足Rank()=Rank(A) < n,则此方程组( ).A. 无解B. 有唯一解C. 有无穷多解D. 不能确定是否有解知识点: 阶段作业二学生答案: [A;] 标准答案: C得分: [0] 试题分值: 10.0提示:4. (错误)当()时,线性方程组仅有零解.A. 且B. 且C. 且D. 且学生答案: [A;] 标准答案: D;得分: [0] 试题分值: 10.0提示:5. 设向量组,,,则当实数k = ( )时,,,是线性相关的.A. -2或3B. 2或-3C. 2或3D. -2或-3知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:6.一、判断题(共5道小题,共50.0分)1. 若线性方程组的系数矩阵A满足Rank(A) < n,则此方程组有非零解.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:2. 若线性方程组的系数矩阵A和增广矩阵满足Rank()=Rank(A),则此方程组有唯一解.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:3. 任何一个齐次线性方程组都有解.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:4. 任何一个齐次线性方程组都有基础解系,它的解都可由其基础解系线性表示.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:5. (错误)若是向量组的一个极大无关组,与等价.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: A得分: [0] 试题分值: 10.0提示:二、单项选择题(共5道小题,共50.0分)1. 当k =()时,线性方程组有非零解.A. 0或1B. 1或-1C. -1或-3D. -1或3知识点: 阶段作业二学生答案: [C;] 标准答案: C得分: [10] 试题分值: 10.0提示:2. 设向量组,,,则当实数k = ( )时,,,是线性相关的.A. -2或3B. 2或-3C. 2或3D. -2或-3知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:3. 设向量,,,,则向量 b 可由向量线性表示的表达式为( ).A.B.C.D.知识点: 阶段作业二学生答案: [D;] 标准答案: D得分: [10] 试题分值: 10.0提示:4. 设A为4阶矩阵,为它的行向量组,如果,则( ).A. 秩{}=3且向量组线性相关.B. 秩{}=4且向量组线性无关.C. 秩{}=3且向量组线性无关.D. 秩{}=4且向量组线性相关.知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:。

北邮工程数学第四阶段作业

北邮工程数学第四阶段作业

一、判断题(共5道小题,共50.0分)1.设,则,.A. 正确B. 错误知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:2.3.设随机变量X与Y独立,则X与Y的相关系数.A. 正确B. 错误知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:4.5.设二维随机变量(X,Y)的分布列为则X与Y相互独立.A. 正确B. 错误知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:6.设(X,Y)的概率密度,则常数.A. 正确B. 错误知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:7.8.设(X,Y)的概率密度为,则X与Y相互独立.A. 正确B. 错误知识点: 阶段作业四学生答案: [B;]得分: [10] 试题分值: 10.0提示:9.二、单项选择题(共5道小题,共50.0分)1.设随机变量X ~U[1,3],则( ).A.B.C.D.知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:2.3.设(X,Y)的分布列为则E( X ),E( Y )分别为().A. ,B. ,C. ,D. ,知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:4.设X与Y均在区间[0,2]上服从均匀分布,则().A. 1B. 1.5C. 2D. 2.5知识点: 阶段作业四学生答案: [C;]得分: [10] 试题分值: 10.0提示:5.6.设,如果,,则X的分布列().A.B.C.D.知识点: 阶段作业四学生答案: [D;]得分: [10] 试题分值: 10.0提示:7.8.已知(X,Y)的分布列为且知X与Y相互独立,则和分别为().A.B.C.D.知识点: 阶段作业四学生答案: [B;]得分: [10] 试题分值: 10.0 提示:。

北京邮电大学网络教育学院课程教材信息

北京邮电大学网络教育学院课程教材信息
北京邮电大学网络教育学院课程教材信息
统计时间:2010年3月
课程名称
教材名称
主编
出版社
版次
大学英语预备2
《大学英语》精读预备2
吴晓真
上海外语版
第三版
大学英语1
《大学英语》精读1
翟象俊
上海外语版
第三版
大学英语2
《大学英语》精读2
翟象俊
上海外语版
第三版
大学英语3
《大学英语》精读3
李荫华
上海外语版
第三版
高等数学
第十四版
统计学原理*
《统计学》
邱东
高教版
货币银行学
《货币银行学》
蔡则祥
高教版
质量管理学
《质量管理学》
李晓春
北邮版
第三版
公共关系学
《公共关系学》
熊源伟
安徽人民版
第三版
应用文写作
《应用文写作》
曾爱波
北邮版
品牌管理与决策
《品牌战略与决策》
余鑫炎
东北财经版
消费者行为学
《消费者行为学》
符国群
武汉大学版
第二版
客户关系管理*
人大版
第三版
毛泽东思想、邓小平理论与“三个代表”重要思想
《毛泽东思想和中国特色社会主义理论体系概论》
吴树青
高教版
修订版
西方经济学*
《微观经济学基础》
杨连波
经科版
市场营销学*
《市场营销学教程》
纪宝成
人大版
第四版
组织行为学
《组织行为学》
张德
高教版
第三版
电子商务
《电子商务概论》
苏丹

工程数学(本科)形考任务答案

工程数学(本科)形考任务答案

工程数学(本科)形考任务答案工程数学作业(一)答案第2 章矩阵(一)单项选择题(每小题2分,共20 分)⒈设,则(D ).A. 4B. -4C. 6D.-6⒉若,则(A ).A. B. -1 C. D. 1⒊乘积矩阵中元素(C ).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是(B).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是( D ).A. B.C. D.⒍下列结论正确的是( A ).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为(C).A. B.C. D.⒏方阵可逆的充分必要条件是( B ).A. B. C. D.⒐设均为阶可逆矩阵,则(D ).A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是( A ).A. B.C. D.(二)填空题(每小题 2 分,共20 分)⒈7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为5 ×矩4 阵.⒋二阶矩阵.⒌设,则⒍设均为3 阶矩阵,且,则72 .⒎设均为3 阶矩阵,且,则-3 .⒏若为正交矩阵,则0.⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则.(三)解答题(每小题8 分,共48 分)⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.答案:⒉设,求.解:⒊已知,求满足方程中的.解:⒋写出 4 阶行列式中元素的代数余子式,并求其值.答案:⒌用初等行变换求下列矩阵的逆矩阵:⑴;⑵;⑶.解:(1)(2)( 过程略) (3)⒍求矩阵的秩.解:(四)证明题(每小题 4 分,共12 分)⒎对任意方阵,试证是对称矩阵.证明:是对称矩阵⒏若是阶方阵,且,试证或.证明:是阶方阵,且或⒐若是正交矩阵,试证也是正交矩阵.证明:是正交矩阵即是正交矩阵工程数学作业(第二次)第3 章线性方程组(一)单项选择题(每小题2分,共16 分)⒈用消元法得的解为( C ).A. B.C. D.⒉线性方程组(B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组的秩为(A).A. 3B. 2C. 4D. 5⒋设向量组为,则(B)是极大无关组.A. B. C. D.⒌与分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D).A. 秩秩B. 秩秩C. 秩秩D. 秩秩⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A).A. 可能无解B. 有唯一解C. 有无穷多解D. 无解⒎以下结论正确的是(D).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组线性相关,则向量组内(A)可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9 .设A,B为阶矩阵,既是A又是B的特征值,既是A又是B的属于的特征向量,则结论()成立.A.是AB的特征值B.是A+B 的特征值C.是A-B 的特征值D.是A+B 的属于的特征向量10 .设A,B,P为阶矩阵,若等式(C)成立,则称A和B相似.A.B.C.D.(二)填空题(每小题2分,共16 分)⒈当1时,齐次线性方程组有非零解.⒉向量组线性相关.⒊向量组的秩是3.⒋设齐次线性方程组的系数行列式,则这个方程组有无穷多解,且系数列向量是线性相关的.⒌向量组的极大线性无关组是.⒍向量组的秩与矩阵的秩相同.⒎设线性方程组中有5 个未知量,且秩,则其基础解系中线性无关的解向量有2个.⒏设线性方程组有解,是它的一个特解,且的基础解系为,则的通解为.9 .若是A的特征值,则是方程的根.10 .若矩阵A满足,则称A为正交矩阵.(三)解答题(第1 小题9分,其余每小题11 分)1 .用消元法解线性方程组解:方程组解为2.设有线性方程组为何值时,方程组有唯一解?或有无穷多解?解:]当且时,,方程组有唯一解当时,,方程组有无穷多解3.判断向量能否由向量组线性表出,若能,写出一种表出方式.其中解:向量能否由向量组线性表出,当且仅当方程组有解这里方程组无解不能由向量线性表出4.计算下列向量组的秩,并且(1 )判断该向量组是否线性相关解:该向量组线性相关5.求齐次线性方程组的一个基础解系.解:方程组的一般解为令,得基础解系6.求下列线性方程组的全部解.解:方程组一般解为令,,这里,为任意常数,得方程组通解7.试证:任一4维向量都可由向量组,,,线性表示,且表示方式唯一,写出这种表示方式.证明:任一4维向量可唯一表示为⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解.证明:设为含个未知量的线性方程组该方程组有解,即从而有唯一解当且仅当而相应齐次线性方程组只有零解的充分必要条件是有唯一解的充分必要条件是:相应的齐次线性方程组只有零解9 .设是可逆矩阵A的特征值,且,试证:是矩阵的特征值.证明:是可逆矩阵A的特征值存在向量,使即是矩阵的特征值10 .用配方法将二次型化为标准型.解:令,,,即则将二次型化为标准型工程数学作业(第三次)第4 章随机事件与概率(一)单项选择题⒈为两个事件,则( B )成立.A. B.C. D.⒉如果(C)成立,则事件与互为对立事件.A. B.C. 且D. 与互为对立事件⒊10 张奖券中含有3 张中奖的奖券,每人购买 1 张,则前3个购买者中恰有1 人中奖的概率为( D ).A. B. C. D.4. 对于事件,命题( C )是正确的.A. 如果互不相容,则互不相容B. 如果,则C. 如果对立,则对立D. 如果相容,则相容⒌某随机试验的成功率为, 则在3 次重复试验中至少失败1次的概率为(D ).A. B. C. D.6. 设随机变量,且,则参数与分别是(A ).A. 6, 0.8B. 8, 0.6C. 12, 0.4D. 14, 0.27. 设为连续型随机变量的密度函数,则对任意的,(A ).A. B.C. D.8. 在下列函数中可以作为分布密度函数的是( B ).A. B.C. D.9. 设连续型随机变量的密度函数为,分布函数为,则对任意的区间,则(D).A. B.C. D.10. 设为随机变量,,当( C )时,有.A. B.C. D.(二)填空题⒈从数字1,2,3,4,5中任取 3 个,组成没有重复数字的三位数,则这个三位数是偶数的概率为.2. 已知,则当事件互不相容时,0.8 ,0.3 .3. 为两个事件,且,则.4. 已知,则.5. 若事件相互独立,且,则.6. 已知,则当事件相互独立时,0.65 ,0.3 .7. 设随机变量,则的分布函数.8. 若,则 6 .9. 若,则.10. 称为二维随机变量的协方差.(三)解答题1. 设为三个事件,试用的运算分别表示下列事件:⑴中至少有一个发生;⑵中只有一个发生;⑶中至多有一个发生;⑷中至少有两个发生;⑸中不多于两个发生;⑹中只有发生.解: (1) (2) (3)(4) (5) (6)2. 袋中有 3 个红球, 2 个白球,现从中随机抽取 2 个球,求下列事件的概率:⑴ 2 球恰好同色;⑵ 2 球中至少有 1 红球.解:设= “球2 恰好同色”,= “球2 中至少有1红球”3. 加工某种零件需要两道工序,第一道工序的次品率是2% ,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是3% ,求加工出来的零件是正品的概率.解:设“第i 道工序出正品”(i=1,2 )4. 市场供应的热水瓶中,甲厂产品占50% ,乙厂产品占30% ,丙厂产品占20% ,,求买到一个热水瓶是合格品的概率.甲、乙、丙厂产品的合格率分别为90%,85%,80%解:设5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是,求所需设计次数的概率分布.解:故X的概率分布是6. 设随机变量的概率分布为试求.解:7. 设随机变量具有概率密度试求.解:8. 设,求.解:9. 设,计算⑴;⑵.解:10. 设是独立同分布的随机变量,已知,设,求.解:工程数学作业(第四次)第6 章统计推断(一)单项选择题⒈设是来自正态总体(均未知)的样本,则( A )是统计量.A. B. C. D.⒉设是来自正态总体(均未知)的样本,则统计量(D)不是的无偏估计.A. B.C. D.(二)填空题1 .统计量就是不含未知参数的样本函数.2 .参数估计的两种方法是点估计和区间估计.常用的参数点估计有矩估计法和最大似然估计两种方法.3 .比较估计量好坏的两个重要标准是无偏性,有效性.4 .设是来自正态总体(已知)的样本值,按给定的显著性水平检验,需选取统计量.5 .假设检验中的显著性水平为事件(u 为临界值)发生的概率.(三)解答题1 .设对总体得到一个容量为10 的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0。

工程数学(本科)形考任务答案解析

工程数学(本科)形考任务答案解析

_工程数学作业(一)答案第 2 章矩阵(一)单项选择题(每小题 2 分,共 20 分)⒈设,则( D ).A. 4B. - 4C. 6D. - 6⒉若,则( A ).A. B. - 1 C. D. 1⒊乘积矩阵中元素( C ).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是( B ).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是( D ).A. B.C. D._⒍下列结论正确的是( A ).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为( C ).A. B.C. D.⒏方阵可逆的充分必要条件是( B ).A. B. C. D.⒐设均为阶可逆矩阵,则( D ).A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是( A ).A. B.C. D.(二)填空题(每小题 2 分,共 20 分)⒈7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为 5 × 4 矩阵.⒋二阶矩阵.⒌设,则⒍设均为 3 阶矩阵,且,则72 .⒎设均为 3 阶矩阵,且,则- 3 .⒏若为正交矩阵,则 0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则.(三)解答题(每小题 8 分,共 48 分)⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.答案:⒉设,求.解:⒊已知,求满足方程中的.解:⒋写出 4 阶行列式中元素的代数余子式,并求其值.答案:⒌用初等行变换求下列矩阵的逆矩阵:⑴;⑵;⑶.解:( 1 )( 2 )( 过程略 ) (3)⒍求矩阵的秩.解:(四)证明题(每小题 4 分,共 12 分)⒎对任意方阵,试证是对称矩阵.证明:是对称矩阵⒏若是阶方阵,且,试证或.证明:是阶方阵,且或⒐若是正交矩阵,试证也是正交矩阵.证明:是正交矩阵即是正交矩阵工程数学作业(第二次)第 3 章线性方程组(一)单项选择题 ( 每小题 2 分,共 16 分 )⒈用消元法得的解为( C ).A. B.C. D.⒉线性方程组( B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组的秩为( A ).A. 3B. 2C. 4D. 5⒋设向量组为,则(B )是极大无关组.A. B. C. D.⒌与分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则( D ).A. 秩秩B. 秩秩C. 秩秩D. 秩秩⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组( A ).A. 可能无解B. 有唯一解C. 有无穷多解D. 无解⒎以下结论正确的是( D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组线性相关,则向量组内( A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9 .设 A ,B为阶矩阵,既是A又是B的特征值,既是A又是B的属于的特征向量,则结论()成立.A.是 AB 的特征值B.是 A+B 的特征值C.是 A - B 的特征值D.是 A+B 的属于的特征向量10 .设A,B,P为阶矩阵,若等式(C)成立,则称A和B相似.A.B.C.D.(二)填空题 ( 每小题 2 分,共 16 分 )⒈当1时,齐次线性方程组有非零解.⒉向量组线性相关.⒊向量组的秩是3.⒋设齐次线性方程组的系数行列式,则这个方程组有无穷多解,且系数列向量是线性相关的.⒌向量组的极大线性无关组是.⒍向量组的秩与矩阵的秩相同.⒎设线性方程组中有 5 个未知量,且秩,则其基础解系中线性无关的解向量有2个.⒏设线性方程组有解,是它的一个特解,且的基础解系为,则的通解为.9 .若是A的特征值,则是方程的根.10 .若矩阵A满足,则称A为正交矩阵.(三)解答题 ( 第 1 小题 9 分,其余每小题 11 分 )1 .用消元法解线性方程组解:方程组解为2.设有线性方程组为何值时,方程组有唯一解 ? 或有无穷多解 ?解:]当且时,,方程组有唯一解当时,,方程组有无穷多解3.判断向量能否由向量组线性表出,若能,写出一种表出方式.其中解:向量能否由向量组线性表出,当且仅当方程组有解这里方程组无解不能由向量线性表出4.计算下列向量组的秩,并且( 1 )判断该向量组是否线性相关解:该向量组线性相关5.求齐次线性方程组的一个基础解系.解:方程组的一般解为令,得基础解系6.求下列线性方程组的全部解.解:方程组一般解为令,,这里,为任意常数,得方程组通解7.试证:任一4维向量都可由向量组,,,线性表示,且表示方式唯一,写出这种表示方式.证明:任一4维向量可唯一表示为⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解.证明:设为含个未知量的线性方程组该方程组有解,即从而有唯一解当且仅当而相应齐次线性方程组只有零解的充分必要条件是有唯一解的充分必要条件是:相应的齐次线性方程组只有零解9 .设是可逆矩阵A的特征值,且,试证:是矩阵的特征值.证明:是可逆矩阵A的特征值存在向量,使即是矩阵的特征值10 .用配方法将二次型化为标准型.解:令,,,即则将二次型化为标准型工程数学作业(第三次)第 4 章随机事件与概率(一)单项选择题⒈为两个事件,则( B )成立.A. B.C. D.⒉如果( C )成立,则事件与互为对立事件.A. B.C. 且D. 与互为对立事件⒊ 10 张奖券中含有 3 张中奖的奖券,每人购买 1 张,则前 3 个购买者中恰有 1 人中奖的概率为( D ).A. B. C. D.4. 对于事件,命题( C )是正确的.A. 如果互不相容,则互不相容B. 如果,则C. 如果对立,则对立D. 如果相容,则相容⒌某随机试验的成功率为, 则在 3 次重复试验中至少失败 1 次的概率为( D ).A. B. C. D.6. 设随机变量,且,则参数与分别是( A ).A. 6, 0.8B. 8, 0.6C. 12, 0.4D. 14, 0.27. 设为连续型随机变量的密度函数,则对任意的,( A ).A. B.C. D.8. 在下列函数中可以作为分布密度函数的是( B ).A. B.C. D.9. 设连续型随机变量的密度函数为,分布函数为,则对任意的区间,则( D ).A. B.C. D.10. 设为随机变量,,当( C )时,有.A. B.C. D.(二)填空题⒈从数字 1,2,3,4,5 中任取 3 个,组成没有重复数字的三位数,则这个三位数是偶数的概率为.2. 已知,则当事件互不相容时, 0.8 ,0.3 .3. 为两个事件,且,则.4. 已知,则.5. 若事件相互独立,且,则.6. 已知,则当事件相互独立时, 0.65 ,0.3 .7. 设随机变量,则的分布函数.8. 若,则 6 .9. 若,则.10. 称为二维随机变量的协方差.(三)解答题1. 设为三个事件,试用的运算分别表示下列事件:⑴中至少有一个发生;⑵中只有一个发生;⑶中至多有一个发生;⑷中至少有两个发生;⑸中不多于两个发生;⑹中只有发生.解 : (1) (2) (3)(4) (5) (6)2. 袋中有 3 个红球, 2 个白球,现从中随机抽取 2 个球,求下列事件的概率:⑴ 2 球恰好同色;⑵ 2 球中至少有 1 红球.解 : 设= “ 2 球恰好同色”, = “ 2 球中至少有 1 红球”3. 加工某种零件需要两道工序,第一道工序的次品率是 2% ,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是 3% ,求加工出来的零件是正品的概率.解:设“第 i 道工序出正品”( i=1,2 )4. 市场供应的热水瓶中,甲厂产品占 50% ,乙厂产品占 30% ,丙厂产品占20% ,甲、乙、丙厂产品的合格率分别为 90%,85%,80% ,求买到一个热水瓶是合格品的概率.解:设5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是,求所需设计次数的概率分布.解:……………………故 X 的概率分布是6. 设随机变量的概率分布为试求.解:7. 设随机变量具有概率密度试求.解:8. 设,求.解:9. 设,计算⑴;⑵.解:10. 设是独立同分布的随机变量,已知,设,求.解:工程数学作业(第四次)第 6 章统计推断(一)单项选择题⒈设是来自正态总体(均未知)的样本,则(A )是统计量.A. B. C. D.⒉设是来自正态总体(均未知)的样本,则统计量( D )不是的无偏估计.A. B.C. D.(二)填空题1 .统计量就是不含未知参数的样本函数.2 .参数估计的两种方法是点估计和区间估计.常用的参数点估计有矩估计法和最大似然估计两种方法.3 .比较估计量好坏的两个重要标准是无偏性,有效性.4 .设是来自正态总体(已知)的样本值,按给定的显著性水平检验,需选取统计量.5 .假设检验中的显著性水平为事件( u 为临界值)发生的概率.(三)解答题1 .设对总体得到一个容量为 10 的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值和样本方差.解:2 .设总体的概率密度函数为试分别用矩估计法和最大似然估计法估计参数.解:提示教材第 214 页例 3矩估计:最大似然估计:,3 .测两点之间的直线距离 5 次,测得距离的值为(单位: m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布的,求与的估计值.并在⑴;⑵未知的情况下,分别求的置信度为 0.95 的置信区间.解:( 1 )当时,由 1 -α= 0.95 ,查表得:故所求置信区间为:( 2 )当未知时,用替代,查 t (4, 0.05 ) ,得故所求置信区间为:4 .设某产品的性能指标服从正态分布,从历史资料已知,抽查10 个样品,求得均值为 17 ,取显著性水平,问原假设是否成立.解:,由,查表得:因为> 1.96 ,所以拒绝5 .某零件长度服从正态分布,过去的均值为 20.0 ,现换了新材料,从产品中随机抽取 8 个样品,测得的长度为(单位: cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化().解:由已知条件可求得:∵ | T | < 2.62 ∴接受 H 0。

工程数学(本科)形考任务答案解析

工程数学(本科)形考任务答案解析

_工程数学作业(一)答案第 2 章矩阵(一)单项选择题(每小题 2 分,共 20 分)⒈设,则( D ).A. 4B. - 4C. 6D. - 6⒉若,则( A ).A. B. - 1 C. D. 1⒊乘积矩阵中元素( C ).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是( B ).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是( D ).A. B.C. D._⒍下列结论正确的是( A ).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为( C ).A. B.C. D.⒏方阵可逆的充分必要条件是( B ).A. B. C. D.⒐设均为阶可逆矩阵,则( D ).A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是( A ).A. B.C. D.(二)填空题(每小题 2 分,共 20 分)⒈7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为 5 × 4 矩阵.⒋二阶矩阵.⒌设,则⒍设均为 3 阶矩阵,且,则72 .⒎设均为 3 阶矩阵,且,则- 3 .⒏若为正交矩阵,则 0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则.(三)解答题(每小题 8 分,共 48 分)⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.答案:⒉设,求.解:⒊已知,求满足方程中的.解:⒋写出 4 阶行列式中元素的代数余子式,并求其值.答案:⒌用初等行变换求下列矩阵的逆矩阵:⑴;⑵;⑶.解:( 1 )( 2 )( 过程略 ) (3)⒍求矩阵的秩.解:(四)证明题(每小题 4 分,共 12 分)⒎对任意方阵,试证是对称矩阵.证明:是对称矩阵⒏若是阶方阵,且,试证或.证明:是阶方阵,且或⒐若是正交矩阵,试证也是正交矩阵.证明:是正交矩阵即是正交矩阵工程数学作业(第二次)第 3 章线性方程组(一)单项选择题 ( 每小题 2 分,共 16 分 )⒈用消元法得的解为( C ).A. B.C. D.⒉线性方程组( B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组的秩为( A ).A. 3B. 2C. 4D. 5⒋设向量组为,则(B )是极大无关组.A. B. C. D.⒌与分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则( D ).A. 秩秩B. 秩秩C. 秩秩D. 秩秩⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组( A ).A. 可能无解B. 有唯一解C. 有无穷多解D. 无解⒎以下结论正确的是( D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组线性相关,则向量组内( A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9 .设 A ,B为阶矩阵,既是A又是B的特征值,既是A又是B的属于的特征向量,则结论()成立.A.是 AB 的特征值B.是 A+B 的特征值C.是 A - B 的特征值D.是 A+B 的属于的特征向量10 .设A,B,P为阶矩阵,若等式(C)成立,则称A和B相似.A.B.C.D.(二)填空题 ( 每小题 2 分,共 16 分 )⒈当1时,齐次线性方程组有非零解.⒉向量组线性相关.⒊向量组的秩是3.⒋设齐次线性方程组的系数行列式,则这个方程组有无穷多解,且系数列向量是线性相关的.⒌向量组的极大线性无关组是.⒍向量组的秩与矩阵的秩相同.⒎设线性方程组中有 5 个未知量,且秩,则其基础解系中线性无关的解向量有2个.⒏设线性方程组有解,是它的一个特解,且的基础解系为,则的通解为.9 .若是A的特征值,则是方程的根.10 .若矩阵A满足,则称A为正交矩阵.(三)解答题 ( 第 1 小题 9 分,其余每小题 11 分 )1 .用消元法解线性方程组解:方程组解为2.设有线性方程组为何值时,方程组有唯一解 ? 或有无穷多解 ?解:]当且时,,方程组有唯一解当时,,方程组有无穷多解3.判断向量能否由向量组线性表出,若能,写出一种表出方式.其中解:向量能否由向量组线性表出,当且仅当方程组有解这里方程组无解不能由向量线性表出4.计算下列向量组的秩,并且( 1 )判断该向量组是否线性相关解:该向量组线性相关5.求齐次线性方程组的一个基础解系.解:方程组的一般解为令,得基础解系6.求下列线性方程组的全部解.解:方程组一般解为令,,这里,为任意常数,得方程组通解7.试证:任一4维向量都可由向量组,,,线性表示,且表示方式唯一,写出这种表示方式.证明:任一4维向量可唯一表示为⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解.证明:设为含个未知量的线性方程组该方程组有解,即从而有唯一解当且仅当而相应齐次线性方程组只有零解的充分必要条件是有唯一解的充分必要条件是:相应的齐次线性方程组只有零解9 .设是可逆矩阵A的特征值,且,试证:是矩阵的特征值.证明:是可逆矩阵A的特征值存在向量,使即是矩阵的特征值10 .用配方法将二次型化为标准型.解:令,,,即则将二次型化为标准型工程数学作业(第三次)第 4 章随机事件与概率(一)单项选择题⒈为两个事件,则( B )成立.A. B.C. D.⒉如果( C )成立,则事件与互为对立事件.A. B.C. 且D. 与互为对立事件⒊ 10 张奖券中含有 3 张中奖的奖券,每人购买 1 张,则前 3 个购买者中恰有 1 人中奖的概率为( D ).A. B. C. D.4. 对于事件,命题( C )是正确的.A. 如果互不相容,则互不相容B. 如果,则C. 如果对立,则对立D. 如果相容,则相容⒌某随机试验的成功率为, 则在 3 次重复试验中至少失败 1 次的概率为( D ).A. B. C. D.6. 设随机变量,且,则参数与分别是( A ).A. 6, 0.8B. 8, 0.6C. 12, 0.4D. 14, 0.27. 设为连续型随机变量的密度函数,则对任意的,( A ).A. B.C. D.8. 在下列函数中可以作为分布密度函数的是( B ).A. B.C. D.9. 设连续型随机变量的密度函数为,分布函数为,则对任意的区间,则( D ).A. B.C. D.10. 设为随机变量,,当( C )时,有.A. B.C. D.(二)填空题⒈从数字 1,2,3,4,5 中任取 3 个,组成没有重复数字的三位数,则这个三位数是偶数的概率为.2. 已知,则当事件互不相容时, 0.8 ,0.3 .3. 为两个事件,且,则.4. 已知,则.5. 若事件相互独立,且,则.6. 已知,则当事件相互独立时, 0.65 ,0.3 .7. 设随机变量,则的分布函数.8. 若,则 6 .9. 若,则.10. 称为二维随机变量的协方差.(三)解答题1. 设为三个事件,试用的运算分别表示下列事件:⑴中至少有一个发生;⑵中只有一个发生;⑶中至多有一个发生;⑷中至少有两个发生;⑸中不多于两个发生;⑹中只有发生.解 : (1) (2) (3)(4) (5) (6)2. 袋中有 3 个红球, 2 个白球,现从中随机抽取 2 个球,求下列事件的概率:⑴ 2 球恰好同色;⑵ 2 球中至少有 1 红球.解 : 设= “ 2 球恰好同色”, = “ 2 球中至少有 1 红球”3. 加工某种零件需要两道工序,第一道工序的次品率是 2% ,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是 3% ,求加工出来的零件是正品的概率.解:设“第 i 道工序出正品”( i=1,2 )4. 市场供应的热水瓶中,甲厂产品占 50% ,乙厂产品占 30% ,丙厂产品占20% ,甲、乙、丙厂产品的合格率分别为 90%,85%,80% ,求买到一个热水瓶是合格品的概率.解:设5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是,求所需设计次数的概率分布.解:……………………故 X 的概率分布是6. 设随机变量的概率分布为试求.解:7. 设随机变量具有概率密度试求.解:8. 设,求.解:9. 设,计算⑴;⑵.解:10. 设是独立同分布的随机变量,已知,设,求.解:工程数学作业(第四次)第 6 章统计推断(一)单项选择题⒈设是来自正态总体(均未知)的样本,则(A )是统计量.A. B. C. D.⒉设是来自正态总体(均未知)的样本,则统计量( D )不是的无偏估计.A. B.C. D.(二)填空题1 .统计量就是不含未知参数的样本函数.2 .参数估计的两种方法是点估计和区间估计.常用的参数点估计有矩估计法和最大似然估计两种方法.3 .比较估计量好坏的两个重要标准是无偏性,有效性.4 .设是来自正态总体(已知)的样本值,按给定的显著性水平检验,需选取统计量.5 .假设检验中的显著性水平为事件( u 为临界值)发生的概率.(三)解答题1 .设对总体得到一个容量为 10 的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值和样本方差.解:2 .设总体的概率密度函数为试分别用矩估计法和最大似然估计法估计参数.解:提示教材第 214 页例 3矩估计:最大似然估计:,3 .测两点之间的直线距离 5 次,测得距离的值为(单位: m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布的,求与的估计值.并在⑴;⑵未知的情况下,分别求的置信度为 0.95 的置信区间.解:( 1 )当时,由 1 -α= 0.95 ,查表得:故所求置信区间为:( 2 )当未知时,用替代,查 t (4, 0.05 ) ,得故所求置信区间为:4 .设某产品的性能指标服从正态分布,从历史资料已知,抽查10 个样品,求得均值为 17 ,取显著性水平,问原假设是否成立.解:,由,查表得:因为> 1.96 ,所以拒绝5 .某零件长度服从正态分布,过去的均值为 20.0 ,现换了新材料,从产品中随机抽取 8 个样品,测得的长度为(单位: cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化().解:由已知条件可求得:∵ | T | < 2.62 ∴接受 H 0。

电大工程数学形成性考核册答案复习专用

电大工程数学形成性考核册答案复习专用

年电大【工程数学】形成性考核册答案工程数学作业(一)答案(满分分)第章 矩阵(一)单项选择题(每小题分,共分)⒈设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=( ).. . - . . - ⒉若000100002001001a a=,则a =().. 12. - . -12. ⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=( ).. . . .⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( ). . A B A B +=+---111 . ()AB BA --=11. ()A B A B +=+---111 . ()AB A B ---=111⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是( ). . A B A B +=+ . AB n A B =. kA k A = . -=-kA k A n () ⒍下列结论正确的是( ).. 若A 是正交矩阵,则A -1也是正交矩阵. 若A B ,均为n 阶对称矩阵,则AB 也是对称矩阵 . 若A B ,均为n 阶非零矩阵,则AB 也是非零矩阵 . 若A B ,均为n 阶非零矩阵,则AB ≠0 ⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( )..1325--⎡⎣⎢⎤⎦⎥ . --⎡⎣⎢⎤⎦⎥1325. 5321--⎡⎣⎢⎤⎦⎥ . --⎡⎣⎢⎤⎦⎥5321⒏方阵A 可逆的充分必要条件是( )..A ≠0 .A ≠0 . A *≠0 . A *>0⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1( ). . ()'---B A C 111 . '--B C A 11 . A C B ---'111() . ()B C A ---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是( ). . ()A B A AB B +=++2222 . ()A B B BA B +=+2 . ()221111ABC C B A ----= . ()22ABC C B A '=''' (二)填空题(每小题分,共分)⒈21014001---= . ⒉---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是 .⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积AC B ''有意义,则C 为 × 矩阵.⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051. ⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360 ⒍设A B ,均为阶矩阵,且A B ==-3,则-=2AB .⒎设A B ,均为阶矩阵,且A B =-=-13,,则-'=-312()A B - .⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a = .⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为 .⒑设A A 12,是两个可逆矩阵,则AO OA 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A .(三)解答题(每小题分,共分) ⒈设A B C =-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥123511435431,,,求⑴A B +;⑵A C +;⑶23A C +;⑷A B +5;⑸AB ;⑹()AB C '.答案:⎥⎦⎤⎢⎣⎡=+8130B A ⎥⎦⎤⎢⎣⎡=+4066C A ⎥⎦⎤⎢⎣⎡=+73161732C A⎥⎦⎤⎢⎣⎡=+01222265B A ⎥⎦⎤⎢⎣⎡=122377AB ⎥⎦⎤⎢⎣⎡='801512156)(C AB⒉设A B C =--⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥121012103211114321002,,,求AC BC +.解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC ⒊已知A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥310121342102111211,,求满足方程32A X B -=中的X .解: 32A X B -=∴ ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=252112712511234511725223821)3(21B A X⒋写出阶行列式1020143602533110--中元素a a 4142,的代数余子式,并求其值.答案:0352634020)1(1441=--=+a 45350631021)1(2442=---=+a⒌用初等行变换求下列矩阵的逆矩阵: ⑴122212221--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥; ⑵ 1234231211111026---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥; ⑶1000110011101111⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥.解:()[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+-+--+-++-+-9192929291929292911000100019192920313203231100212011220120323190063201102012001360630221100010001122212221|2313323212312122913123222r r r r r r r r r r r r r r I A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=∴-9192929291929292911A ()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-35141201132051717266221A (过程略) () ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-11000110001100011A ⒍求矩阵1011011110110010121012113201⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩. 解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-00000000111000111011011011010111000011100011101101111112211100111000111011011111102311210121010011011110110143424131212r r r r r r r r r r ∴3)(=A R(四)证明题(每小题分,共分)⒎对任意方阵A ,试证A A +'是对称矩阵. 证明:'')''(')''(A A A A A A A A +=+=+=+ ∴ A A +'是对称矩阵⒏若A 是n 阶方阵,且AA I '=,试证A =1或-1. 证明: A 是n 阶方阵,且AA I '=∴ 12==='='I A A A A A ∴ A =1或1-=A⒐若A 是正交矩阵,试证'A 也是正交矩阵. 证明: A 是正交矩阵∴ A A '=-1∴ )()()(111''==='---A A A A 即'A 是正交矩阵工程数学作业(第二次)(满分分)第章 线性方程组(一)单项选择题(每小题分,共分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为( ).. [,,]102-' . [,,]--'722. [,,]--'1122 . [,,]---'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪( ).. 有无穷多解 . 有唯一解 . 无解 . 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( ).. . . .⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则()是极大无关组.. αα12, . ααα123,, . ααα124,, . α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则().. 秩()A =秩()A . 秩()A <秩()A . 秩()A >秩()A . 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组( ).. 可能无解 . 有唯一解 . 有无穷多解 . 无解⒎以下结论正确的是( ).. 方程个数小于未知量个数的线性方程组一定有解. 方程个数等于未知量个数的线性方程组一定有唯一解 . 方程个数大于未知量个数的线性方程组一定有无穷多解 . 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内( )可被该向量组内其余向量线性表出.. 至少有一个向量 . 没有一个向量 . 至多有一个向量 . 任何一个向量.设,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( )成立.A.λ是的特征值 B.λ是的特征值C.λ是-的特征值 D.x 是的属于λ的特征向量.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似. A.BA AB = B.AB AB =')( C.B PAP =-1 D.B P PA =' (二)填空题(每小题分,共分)⒈当λ= 1 时,齐次线性方程组x x x x 12120+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多 解,且系数列向量ααα123,,是线性 相关 的. ⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是21,αα.⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 相同 .⒎设线性方程组AX =0中有个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个.⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为22110X k X k X ++..若λ是A的特征值,则λ是方程0=-A I λ 的根. .若矩阵A满足A A '=-1 ,则称A为正交矩阵. (三)解答题(第小题分,其余每小题分) .用消元法解线性方程组x x x x x x x x x x x x x x x x 123412341234123432638502412432---=-++=-+-+=--+--=⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-2612100090392700188710482319018431001850188710612312314112141205183612314132124131215323r r r r r r r r r r r r A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+3311000411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-31000101001001020001310004110046150101244200134241441542111r r r r r r r ∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x x2.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ 为何值时,方程组有唯一解?或有无穷多解?解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=++-+-↔22322222)1)(1()1)(2(00)1(110111110110111111111111111132312131λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλr r r r r r r r A ]∴当1≠λ且2-≠λ时,3)()(==A R A R ,方程组有唯一解当1=λ时,1)()(==A R A R ,方程组有无穷多解3.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,, 解:向量β能否由向量组321,,ααα线性表出,当且仅当方程组βααα=++332211x x x 有解这里 []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------==571000117100041310730110123730136578532,,,321βαααA )()(A R A R ≠∴方程组无解∴ β不能由向量321,,ααα线性表出4.计算下列向量组的秩,并且()判断该向量组是否线性相关αααα1234112343789131303319636=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=----⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥,,,解:[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=00000001800021101131631343393608293711131,,,4321αααα ∴该向量组线性相关5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪ 的一个基础解系.解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=+-+-+-+-++30000000731402114501103140731407314021314053521113215213142321241312114335r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−→−+-+↔-000100001431001450100010002114310211450100030002114310211450123133432212131141r r r r r r r r∴ 方程组的一般解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=014314543231x x x x x 令13=x ,得基础解系⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=10143145ξ 6.求下列线性方程组的全部解.x x x x x x x x x x x x x x x 12341234124123452311342594175361-+-=-+-+=----=++-=-⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=++-+-+-++00000000002872140121790156144280287214028721401132511163517409152413113251423212413121214553r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---−−→−-0000000000221711012179012141r∴方程组一般解为⎪⎪⎩⎪⎪⎨⎧---=++-=2217112197432431x x x x x x令13k x =,24k x =,这里1k ,2k 为任意常数,得方程组通解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00211021210171972217112197212121214321k k k k k k k k x x x x 7.试证:任一4维向量[]'=4321,,,a a a a β都可由向量组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00112α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=01113α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11114α线性表示,且表示方式唯一,写出这种表示方式.证明:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-001012αα⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-010023αα⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-100034αα任一4维向量可唯一表示为)()()(10000100001000013442331221143214321αααααααβ-+-+-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a a a a a a a a a a a a44343232121)()()(ααααa a a a a a a +-+-+-=⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解.证明:设B AX =为含n 个未知量的线性方程组 该方程组有解,即n A R A R ==)()(从而B AX =有唯一解当且仅当n A R =)(而相应齐次线性方程组0=AX 只有零解的充分必要条件是n A R =)(∴ B AX =有唯一解的充分必要条件是:相应的齐次线性方程组0=AX 只有零解.设λ是可逆矩阵A的特征值,且0≠λ,试证:λ1是矩阵1-A 的特征值.证明: λ是可逆矩阵A的特征值∴ 存在向量ξ,使λξξ=A∴ ξξλλξξξξ=====----1111)()()(A A A A A A I∴ξλξ11=-A即λ1是矩阵1-A 的特征值.用配方法将二次型43324221242322212222x x x x x x x x x x x x f +--++++=化为标准型.解:42244232322143324224232212)(2)(222)(x x x x x x x x x x x x x x x x x x x f -++-+++=+--+++= 222423221)()(x x x x x x -+-++=∴ 令211x x y +=,4232x x x y +-=,23x y =,44y x =即⎪⎪⎩⎪⎪⎨⎧=-+==-=44432332311y x y y y x y x y y x 则将二次型化为标准型 232221y y y f -+=工程数学作业(第三次)(满分分)第章 随机事件与概率(一)单项选择题⒈A B ,为两个事件,则( )成立.. ()A B B A +-= . ()A B B A +-⊂ . ()A B B A -+= . ()A B B A -+⊂⒉如果( )成立,则事件A 与B 互为对立事件. . AB =∅ . AB U =. AB =∅且AB U = . A 与B 互为对立事件⒊张奖券中含有张中奖的奖券,每人购买张,则前个购买者中恰有人中奖的概率为( ).. C 10320703⨯⨯.. . 03. . 07032..⨯ . 307032⨯⨯.. . 对于事件A B ,,命题( )是正确的. . 如果A B ,互不相容,则A B ,互不相容 . 如果A B ⊂,则A B ⊂. 如果A B ,对立,则A B ,对立 . 如果A B ,相容,则A B ,相容⒌某随机试验的成功率为)10(<<p p ,则在次重复试验中至少失败次的概率为( )..3)1(p - . 31p - . )1(3p - . )1()1()1(223p p p p p -+-+- .设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是( ). . , . , . , . , .设f x ()为连续型随机变量X 的密度函数,则对任意的a b a b ,()<,E X ()=( ). . xf x x ()d -∞+∞⎰ . xf x x ab()d ⎰.f x x ab ()d ⎰.f x x ()d -∞+∞⎰.在下列函数中可以作为分布密度函数的是( ). . f x x x ()sin ,,=-<<⎧⎨⎪⎩⎪ππ2320其它 . f x x x ()sin ,,=<<⎧⎨⎪⎩⎪020π其它 .f x x x ()sin ,,=<<⎧⎨⎪⎩⎪0320π其它 . f x x x ()sin ,,=<<⎧⎨⎩00π其它 .设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P ( ). . F a F b ()()- . F x x a b()d ⎰ .f a f b ()()- .f x x ab()d ⎰.设X 为随机变量,E X D X (),()==μσ2,当( )时,有E Y D Y (),()==01. . Y X =+σμ . Y X =-σμ . Y X =-μσ. Y X =-μσ2(二)填空题⒈从数字中任取个,组成没有重复数字的三位数,则这个三位数是偶数的概率为52..已知P A P B ().,().==0305,则当事件A B ,互不相容时,P A B ()+= ,P AB ()= ..A B ,为两个事件,且B A ⊂,则P A B ()+=()A P .. 已知P AB P AB P A p ()(),()==,则P B ()=P -1.. 若事件A B ,相互独立,且P A p P B q (),()==,则P A B ()+=pq q p -+.. 已知P A P B ().,().==0305,则当事件A B ,相互独立时,P A B ()+= ,P A B ()= ..设随机变量X U ~(,)01,则X 的分布函数F x ()=⎪⎩⎪⎨⎧≥<<≤111000x x xx . .若X B ~(,.)2003,则E X ()= . .若X N ~(,)μσ2,则P X ()-≤=μσ3)3(2Φ..E X E X Y E Y [(())(())]--称为二维随机变量(,)X Y 的 协方差 . (三)解答题.设A B C ,,为三个事件,试用A B C ,,的运算分别表示下列事件: ⑴ A B C ,,中至少有一个发生; ⑵ A B C ,,中只有一个发生; ⑶ A B C ,,中至多有一个发生; ⑷ A B C ,,中至少有两个发生; ⑸ A B C ,,中不多于两个发生; ⑹ A B C ,,中只有C 发生.解:()C B A ++ ()C B A C B A C B A ++ () C B A C B A C B A C B A +++ ()BC AC AB ++ ()C B A ++ ()C B A. 袋中有个红球,个白球,现从中随机抽取个球,求下列事件的概率: ⑴ 球恰好同色;⑵ 球中至少有红球.解:设A “球恰好同色”,B “球中至少有红球”521013)(252223=+=+=C C C A P 1091036)(25231213=+=+=C C C C B P . 加工某种零件需要两道工序,第一道工序的次品率是,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是,求加工出来的零件是正品的概率. 解:设=i A “第道工序出正品”()9506.0)03.01)(02.01()|()()(12121=--==A A P A P A A P. 市场供应的热水瓶中,甲厂产品占,乙厂产品占,丙厂产品占,甲、乙、丙厂产品的合格率分别为,求买到一个热水瓶是合格品的概率. 解:设""1产品由甲厂生产=A ""2产品由乙厂生产=A ""3产品由丙厂生产=A""产品合格=B)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++= 865.080.02.085.03.09.05.0=⨯+⨯+⨯=. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是p ,求所需设计次数X 的概率分布. 解:P X P ==)1(P P X P )1()2(-== P P X P 2)1()3(-==…………P P k X P k 1)1()(--==…………故的概率分布是⎥⎦⎤⎢⎣⎡⋯⋯-⋯⋯--⋯⋯⋯⋯-p p p p p p p k k 12)1()1()1(321.设随机变量X 的概率分布为12345601015020*********.......⎡⎣⎢⎤⎦⎥ 试求P X P X P X (),(),()≤≤≤≠4253.解:87.012.03.02.015.01.0)4()3()2()1()0()4(=++++==+=+=+=+==≤X P X P X P X P X P X P 72.01.012.03.02.0)5()4()3()2()52(=+++==+=+=+==≤≤X P X P X P X P X P 7.03.01)3(1)3(=-==-=≠X P X P.设随机变量X 具有概率密度f x x x (),,=≤≤⎧⎨⎩2010其它 试求P X P X (),()≤<<12142. 解:412)()21(210221021====≤⎰⎰∞-x xdx dx x f X P 16152)()241(1412141241====<<⎰⎰x xdx dx x f X P . 设X f x x x ~(),,=≤≤⎧⎨⎩2010其它,求E X D X (),().解:32322)()(10310==⋅==⎰⎰+∞∞-x xdx x dx x xf X E 21422)()(10410222==⋅==⎰⎰+∞∞-x xdx x dx x f x X E181)32(21)]([)()(222=-=-=x E X E X D. 设)6.0,1(~2N X ,计算⑴P X (..)0218<<;⑵P X ()>0.解:8164.019082.021)33.1(2)33.1()33.1()33.12.0133.1()8.12.0(=-⨯=-Φ=-Φ-Φ=<-<-=<<X P X P 0475.09525.01)67.1(1)67.16.01()0(=-=Φ-=<-=>X P X P .设X X X n 12,,, 是独立同分布的随机变量,已知E X D X (),()112==μσ,设X n X ii n==∑11,求E X D X (),().解:)]()()([1)(1)1()(21211n n ni i X E X E X E nX X X E n X n E X E +⋯⋯++=+⋯⋯++==∑=μμ==n n 1)]()()([1)(1)1()(2122121n n n i i X D X D X D nX X X D n X n D X D +⋯⋯++=+⋯⋯++==∑=22211σσn n n=⋅=工程数学作业(第四次)第章 统计推断(一)单项选择题⒈设x x x n 12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则()是统计量..x 1 . x 1+μ .x 122σ . μx 1⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量()不是μ的无偏估计. .max{,,}x x x 123 .1212()x x + . 212x x - . x x x 123--(二)填空题.统计量就是 不含未知参数的样本函数 ..参数估计的两种方法是 点估计 和 区间估计 .常用的参数点估计有 矩估计法 和 最大似然估计 两种方法..比较估计量好坏的两个重要标准是 无偏性 , 有效性 . .设x x x n 12,,, 是来自正态总体N (,)μσ2(σ2已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量nx U /0σμ-=..假设检验中的显著性水平α为事件u x >-||0μ(为临界值)发生的概率.(三)解答题.设对总体X 得到一个容量为的样本值, , , , , , , , ,试分别计算样本均值x 和样本方差s 2. 解:6.336101101101=⨯==∑=i i x x878.29.2591)(110121012=⨯=--=∑=i ix x s.设总体X 的概率密度函数为f x x x (;)(),,θθθ=+<<⎧⎨⎩1010其它试分别用矩估计法和最大似然估计法估计参数θ.解:提示教材第页例矩估计:,121)1()(110∑⎰===++=+=ni i x n x dx x x X E θθθθxx --=112ˆθ最大似然估计:θθθθθ)()1()1();,,,(21121n n i ni n x x x x x x x L +=+==0ln 1ln ,ln )1ln(ln 11=++=++=∑∑==ni i ni i x nd L d x n L θθθθ,1ln ˆ1--=∑=ni ixnθ.测两点之间的直线距离次,测得距离的值为(单位:):测量值可以认为是服从正态分布N (,)μσ2的,求μ与σ2的估计值.并在⑴σ225=.;⑵σ2未知的情况下,分别求μ的置信度为的置信区间.解: 11051ˆ51===∑=i i x x μ 875.1)(151ˆ5122=--==∑=i i x x s σ()当σ225=.时,由-α=,975.021)(=-=Φαλ 查表得:96.1=λ故所求置信区间为:]4.111,6.108[],[=+-nx n x σλσλ()当2σ未知时,用2s 替代2σ,查 (, ) ,得 776.2=λ 故所求置信区间为:]7.111,3.108[],[=+-ns x n s x λλ.设某产品的性能指标服从正态分布N (,)μσ2,从历史资料已知σ=4,抽查个样品,求得均值为,取显著性水平α=005.,问原假设H 020:μ=是否成立. 解:237.0162.343|10/42017||/|||0=⨯=-=-=n x U σμ,由975.021)(=-=Φαλ ,查表得:96.1=λ因为 237.0||=U > ,所以拒绝0H.某零件长度服从正态分布,过去的均值为,现换了新材料,从产品中随机抽取个样品,测得的长度为(单位:):, , , , , , ,问用新材料做的零件平均长度是否起了变化(α=005.).解:由已知条件可求得:0125.20=x 0671.02=s1365.0259.0035.0|8/259.0200125.20||/|||0==-=-=n s x T μ 62.2)05.0,9()05.0,1(==-=t n t λ∵ < ∴ 接受即用新材料做的零件平均长度没有变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、判断题(共5道小题,共50.0分)
1.设随机变量X与Y独立,则.
A.正确
B.错误
知识点: 阶段作业四
学生答
案:
[B;]
得分: [10] 试题分
值:
10.0
2.设,则,.
A.正确
B.错误
知识点: 阶段作业四
学生答
案:
[A;]
得分: [10] 试题分
值:
10.0
3.设随机变量X与Y独立,则X与Y的相关系数.
A.正确
B.错误
知识点: 阶段作业四
学生答
案:
[A;]
得分: [10] 试题分
值:
10.0
4.设(X,Y)的概率密度,则常数.
A.正确
B.错误
知识点: 阶段作业四学生答
案:
[A;]
得分: [10] 试题分
值:
10.0
5.(错误)
设(X,Y)的概率密度为,则X与Y相互独立.
A.正确
B.错误
知识点: 阶段作业四
学生答
案:
[A;]
得分: [0] 试题分
值:
10.0
二、单项选择题(共5道小题,共50.0分)
1.设X与Y的相关系数,,,则X与Y的协方
差().
A.-7.2
B.-1.8
C.-1.2
D.-0.18
知识点: 阶段作业四
学生答
案:
[C;]
得分: [10] 试题分
值:
10.0
2.设随机变量X ~U[1,3],则( ).
A.
B.
C.
D.
知识点: 阶段作业四
学生答
案:
[A;]
得分: [10] 试题分
值:
10.0
3.(错误)
设,如果,,则X的分布列().
A.
B.
C.
D.
知识点: 阶段作业四
学生答
案:
[C;]
得分: [0] 试题分
值:
10.0
4.设随机变量X的概率密度为,则D(X)=
().
A.
B.
C.
D.
知识点: 阶段作业四
学生答
案:
[B;]
得分: [10] 试题分
值:
10.0
5.设随机变量X的分布列为
则( ).
A. 1.7
B. 2.3
C.-2.3
D.-1.7
知识点: 阶段作业四
学生答
案:
[A;]
试题分值: 10.0
得分: [10]。

相关文档
最新文档