GBT1295991水泥水化热测定方法溶解热法

合集下载

水泥水化热研究与分析

水泥水化热研究与分析

水泥水化热研究与分析作者:鲍安娜来源:《商情》2014年第33期在水泥较长的散热过程中,水泥浆会逐渐凝结和硬化。

水泥内部物质处于高能状态,随着时间推移,水泥浆体性质将会趋向于稳定。

针对于水泥水化热的研究,不仅可以保证结构物的施工质量,还能适当降低工程成本造价,首先介绍了影响水泥水化热大小的影响因素以及计算法方法,然后根据经验讲述了几种降低水泥水化热的措施。

水泥水化热措施配合比增加热量随着国家经济的快速发展,越来越多的工程建筑拔地而起,市场对于水泥需求量也是越来越大。

水泥在水化过程中产生的热量将会聚集在结构物内部不易散失出去,将会导致混凝土温度提高,在未受地基约束的部位,如果混凝土的内外温差过大,内部温度较高的混凝土约束外强度远大于其抗拉强度,将在混凝土的表层产生拉应力,若此时混凝土的抗拉强度不足以抵抗这种拉应力时就会产生表层温度裂缝。

若养护不当,表面裂缝将会进一步发展成深层裂缝。

在受地基约束的部位,将会产生较小的压应力。

因混凝土的散热系数较小,它从最高温度降至稳定温度需要较长时间,在此期间,混凝土的变形模量有了很大的增长,较小的变形就能产生较大的应力。

由于混凝土的早期体积变形,主要来自于水泥的水化热温升,并且降低水化热是防止混凝土早期开裂的有效途径,因此,我们有必要对水泥混凝土的水化热进行研究,以尽量避免温度裂缝的出现。

一、水化热的计算与分析1、水泥水化热分析水泥在水化时会发生温度变化,这主要源于几种无水化合物组分的溶解热和几种水化物在溶液中的沉淀热。

这些热值的代数和就是水泥在任何龄期下的水化热。

国家标准GB T 12959-2008规定了水泥水化热的测定方法,但是水泥水化热的测定较复杂,一般水泥厂都不会配备有这方面的仪器,有些水泥厂曾经添置过水泥水化热的测试仪器,但也没能很好地使用,关键是水化热测试对仪器和操作技术的要求较高,一般的工人难以熟练掌握该技术。

水泥水化热大小与水泥内部矿物质成分有一定的关系,在同等量的水泥情况下,具有C3A的水泥水化热最大,其次是C3S,最后是C4AF。

水工混凝土施工规范新版

水工混凝土施工规范新版
5.2.4骨料加工的工艺流程、设备选型应合理可靠,生产能力和料仓储量应保证混凝土施工需要。
5.2.5根据实际需要和条件,可将细骨料分成粗细两级,分别堆存,在混凝土拌和和运输时按一定比例掺配使用。
5.2.6成品骨料的堆存和运输应符合下列规定:
1 堆存场地应有良好的排水设施,必要时应设遮阳防雨棚。
2 各级骨料仓应设置隔墙等有效措施,严禁混料,并应避免泥土和其他杂物混入骨料中。
4.2 符 合
αT温度为T的等效系数
tT温度为T的养护时间
C9020 设计龄期为90d,强度标准值为20MPa的水工混凝土强度等级
fcu,k混凝土设计强度标准值
fcu0混凝土的配制强度
mfcu混凝土强度平均值
σ混凝土强度标准差
σ0验收批混凝土强度标准差
δ混凝土强度变异系数
δb 盘内混凝土强度变异系数
GB/T 14685-2001 建筑用卵石、碎石
GB/T 17671—1999 水泥胶砂强度检验方法(ISO法)
GB 50164—1992 混凝土质量控制标准
GBJ 80—1985 普通混凝土拌和物性能试验方法
GBJ 107—1987 混凝土强度评定标准
GBJ 119-1988 混凝土外加剂应用技术规范
结构物的表面积与体积之比,用符号“M”表示。
4.1.14严寒地区 servere cold region
最冷月平均气温低于-10℃的地区。
4.1.15寒冷地区 cold region
最冷月平均气温低于-10℃与-3℃的地区。
4.1.16温和地区 mild region
最冷月平均气温高于-3℃的地区。
2002年 北京
1 范 围
本标准规定了水工混凝土施工行为和质量的基本要求,适用于大、中型水电水利工程中1、2、3级水工建筑物的混凝土和钢筋混凝土的施工。

溶解热法测定水泥水化热的注意事项_户宁

溶解热法测定水泥水化热的注意事项_户宁

1390 前 言随着工程技术的发展,现在国内很多大中型工程项目都需要构筑大体积混凝土,在大体积混凝土工程中,往往由于水泥水化热在混凝土内外形成巨大的温差,引起温度应力造成混凝土产生裂缝,给工程带来不同程度的危害。

使用较低水化热的水泥是保证大体积混凝土质量的主要途径之一,而其前提是要准确测定水泥的水化热。

本文结合实际检测中遇到的问题,主要阐述了溶解热法(水泥水化热基准法)测定水泥水化热时的操作技巧和注意事项。

1 试验准备阶段的注意事项1.1 温度计的选用(1)按照GB/T 12959—2008《水泥水化热测定方法》的要求,检测可以选用贝克曼差示温度计或量热温度计,由于贝克曼差示温度计使用前需用量热温度计调整零点,而量热温度计可以直接读数,所以建议选用量热温度计检测。

(2)试验还需要分度值为0.1℃的温度计至少3支:一支插在恒温水槽内校正控温器温度,一支挂在试验室内用于测量室内气温,一支用于测量酸液温度。

1.2 温度计保护膜的选用由于试验使用的氢氟酸对玻璃有强腐蚀性,所以GB/T 12959—2008第3.3.1.4要求贝克曼差示温度计或量热温度计 “插入酸液部分需涂以石蜡或其他耐氢氟酸的材料”。

由于每次试验时温度计都需要插入、拔出,在此过程中极易磨损或划伤涂覆材料,而重新涂覆耐酸涂料需要重新标定热容量,严重影响工作效率。

因此建议使用与温度计相应大小且耐氢氟酸腐蚀的薄塑料袋,套在温度计与酸液接触的部位,并用透明胶布将其固定好,这样既防止了温度计被腐蚀,又延长了保护膜的寿命,避免了频繁标定,提高了工作效率。

每次使用前还应仔细检查耐酸薄膜是否完好。

1.3 标定热量计热容量用氧化锌的制备由于标定热量计热容量用的基准试剂氧化锌需先在900~950℃下灼烧一小时,灼烧冷却后氧化锌基本都已经结块,较难研磨。

根据实际操作经验建议研磨时先将大块碾碎过筛,然后采用“少量多份、及时过筛”的方法研磨,即每次取少量氧化锌在玛瑙研钵研磨,每遍分多份研磨,研磨时间不用过长,研磨一遍后及时过筛,这样既避免了氧化锌暴露时间过长而吸附空气中的杂质,又省时省力,按此方法一般过3遍过筛就可以将氧化锌都研磨至全部通过0.15mm方孔筛。

浅谈溶解热法检测中热水泥水化热操作技巧

浅谈溶解热法检测中热水泥水化热操作技巧

浅谈溶解热法检测中热水泥水化热操作技巧摘要:本文结合云南小湾水利水电工程水工混凝土所用中热硅酸盐水泥,着重讨论《溶解热》法检测中热水泥水化热的过程中的操作技巧。

关键词:中热硅酸盐水泥;水化热;操作技巧Abstract: This paper combine with moderate heat Portland cement used in Yunnan Creek Water Conservancy and hydropower engineering hydraulic concrete, focuses on” heat of dissolution method” hot water slurry heat in the process of operation skills.Key words: moderate heat Portland cement; hydration heat; operation skill 中图分类号:TQ172.73文献标识码:A 文章编号:工程概况:小湾水电站位于云南省西部南涧县与凤庆县交界的澜沧江中游河段与支流黑惠江交汇后下游1.5km处,系澜沧江中下游河段规划八个梯级中的第二级。

小湾电站是国家重点工程和云南省实施国家西部大开发、“西电东送”战略的标志性工程,以发电为主,并兼有防洪、灌溉、拦沙及航运等综合效益。

该工程由混凝土双曲拱坝(坝高292m)、坝后水垫塘及二道坝、左岸两条泄洪洞及右岸地下引水发电站组成。

大坝建成后将形成总库容151.32×108m3,有效库容98.95×108 m3,水库正常蓄水位1240m的多年调节水库,电站的装机容量420万KW。

泄水建筑物由坝顶五个开敞式溢流表孔、六个有压深式泄水中孔和左岸两条泄洪洞及坝后水垫塘及二道坝等部分组成。

引水发电系统布置在右岸,为地下厂房方案。

由竖井式进水口、埋藏式压力管道、地下厂房(长326m×宽29.5m×高65.6m)、主变开关室(长257m×宽22m×高32m)、尾水调压室(长251m×宽19m×高69.17m)和两条尾水隧洞等建筑物组成。

11.水泥产品生产许可证办法(精简)

11.水泥产品生产许可证办法(精简)

11.水泥产品生产许可证实施细则(摘录)全国工业产品生产许可证办公室(2007-04-04公布,2007-04-04实施)1 总则1.1为了做好水泥产品生产许可证发证工作,依据《中华人民共和国工业产品生产许可证管理条例》(国务院令第440号)、《中华人民共和国工业产品生产许可证管理条例实施办法》(国家质量监督检验检疫总局令第80号)等规定,制定本实施细则。

1.2 在中华人民共和国境内生产、销售或者在经营活动中使用水泥产品的,适用本实施细则。

任何企业未取得生产许可证不得生产水泥产品,任何单位和个人不得销售或者在经营活动中使用未取得生产许可证的水泥产品。

1.3水泥产品生产许可证的适用范围1.3.1实施生产许可证管理的水泥包括所有执行国家标准、行业标准的水泥。

本细则中水泥包括通用水泥、特种水泥和熟料。

1.3.2水泥产品生产许可证分为三个产品单元。

见表1表1 企业生产水泥品种、执行标准及申证单元划分表1.3.3 通用水泥产品单元中,水泥产品生产许可证证书注明的水泥强度等级,是指批准该企业所生产的水泥最高强度等级。

企业获取本单元中任一品种批准的强度等级通用水泥生产许可证,允许生产本单元内其他任何品种同(及以下)强度等级的水泥产品。

特种水泥产品单元中,生产特种水泥的企业应按标准规定单个品种分别申请。

企业获取特种水泥生产许可证,允许生产该品种内任一等级的特种水泥产品。

熟料产品单元中,水泥产品生产许可证证书注明的熟料强度等级,是指批准该企业生产熟料的最高强度等级。

1.3.4 本细则中水泥企业按生产工艺划分为水泥厂、熟料厂、粉磨站和配制厂四种类型。

水泥厂指包括原料处理、生料粉磨、熟料煅烧、水泥粉磨、水泥均化及配制、水泥包装及散装生产工序的企业;熟料厂指包括原料处理、生料粉磨、熟料煅烧生产工序的企业;粉磨站指包括水泥粉磨、水泥均化及配制、水泥包装及散装生产工序的企业;配制厂指包括水泥均化及配制、水泥包装及散装生产工序的企业。

水泥水化热测定原理分析

水泥水化热测定原理分析

水泥水化热测定方法(溶解热法)标准名称:水泥水化热测定方法(溶解热法)标准类型:中华人民共和国国家标准标准号:GB/T 12959-91发布单位:国家技术监督局标准名称(英) Test method for heat of hydration of cement-The heat of solution method标准发布日期 1992-06-04批准标准实施日期 1993-03-01实施标准正文1 主题内容与适用范围本标准规定了用溶解热法测定水泥水化热试验的方法原理、仪器设备、试验步骤及结果计算等。

本标准适用于中热硅酸盐水泥、低热矿渣硅酸盐水泥、硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰硅酸盐水泥、粉煤灰硅酸盐水泥和其他指定采用本方法的水泥品种。

2 方法原理本方法是依据热化学的盖斯定律,即化学反应的热效应只与体系的初态和终态有关而与反应的途径无关提出的。

它是在热量计周围温度一定的条件下,用未水化的水泥与水化一定龄期的水泥分别在一定浓度的标准酸中溶解,测得溶解热之差,即为该水泥在规定龄期内所放出的水化热。

3 仪器设备3.1 热量计:如下图所示。

由保温水槽、内筒、广口保温瓶、贝克曼差示温度计、搅拌装置等主要部件组成。

另配一个曲颈玻璃漏斗和一个直颈装酸漏斗。

3.1.1 保温水槽:水槽内外壳之间装有隔热层,内壳横断面为椭圆形的金属筒,横断面长长轴450mm,短轴300mm,深310mm,容积约30L。

并装有控制水位的溢流管。

溢流管高度距底部约270mm,水槽上装有二个搅拌器,分别用于搅拌水槽中的水和保温瓶中的酸液。

3.1.2 内筒:筒口为带法兰的不锈钢圆筒,内径150mm,深210mm筒内衬有软木层或泡沫塑料。

筒盖内镶嵌有橡胶圈以防漏水,盖上有三个孔,中孔安装酸液搅拌器,两侧的孔分别安装加料漏斗和贝克曼差示温度计。

3.1.3 广口保温瓶:容积约为600mL,当盛满比室温高5℃的水,静置30min时,其冷却速度不得超过0.001℃/min·℃。

水泥水化热测试方法的分析研究

水泥水化热测试方法的分析研究
关 键 词 :大 体 积 混凝 土 ;水 化号 :T Q1 7 2 . 1
文献标 识 码 :A
文章 编号 :1 6 7 3 - 8 2 4 1( 2 0 1 5 )0 1 - 0 0 6 5 04 -
An a l y s i s a n d S t u d y o f Ce me n t Hy d r a t i o n He a t Te s t Me t h o d
龚 英 , 丁 晶晶
( 江 西省水 利科 学研 究院 ,南 昌 3 3 0 0 2 9 )
摘 要 :水泥水化热是大体 积混凝 土产生裂缝 的主要影 响 因素 ,是 工程选 用水泥 考察参 数之 一。本 文对 比研究
了3种测试 方法 ,认为 与直接 法 ( 标准规 范)相 比 ,溶解 热法和 T A M A I R 测试 法操 作较简便 、测试 精度较 高、 试 验误差较小 ;T A M A I R测试法 可直接提供 水泥水化放热速率 曲线 ,而溶解热 法仅提供特定 龄期的水 泥水化热。
c e me n t h y d r a t i o n h e a t r a t e c u r v e ,wh i l e d i s s o l u t i o n t h e m a r l me t h o d o n l y p r o v i d e s c e me n t h y d r a t i o n h e a t o f s p e c i f i c a g e .
Ab s t r a c t :T h e c e me n t h y d r a t i o n h e a t i S t h e ma i n i n l f u e n c e f a c t o r o f ma s s i v e c o n c r e t e c r a c k s .wh i c h i S o n e o f t h e c e me n t

水泥水化热测试方法

水泥水化热测试方法

A A附录A(规范性附录)水泥水化热测试方法A.1范围本方法适用于掺加混凝土水化温升抑制剂的水泥水化热的测试。

A.2原理本方法是依据热量计在恒定的温度环境中,直接测定热量计内水泥砂浆(因水泥水化产生)的温度变化,通过计算热量计内积蓄的和散失的热量总和,求得水泥不同龄期内的水化热。

A.3仪器设备符合GB/T12959中直接法(代用法)的规定。

A.4试验条件成型试验室温度应保持在(20±2)℃,相对湿度不低于50%;试验期间水槽内的水温应保持在(20±0.1)℃。

应用于日均气温大于25℃炎热气候的产品检测时,宜将砂浆初始温度控制在(30±2)℃,试验期间水槽内的水温设置为(30±0.1)℃,或由供需双方商定。

A.5试验步骤A.5.1热量计参数测定热量计热容量的计算,热量计散热常数的测定,热量计散热常数的计算,热量计散热常数的规定符合GB/T12959中直接法(代用法)的规定。

A.5.2水泥水化热测定除以下步骤,其它均应符合GB/T12959中直接法(代用法)的规定:a)试验砂浆水灰比为0.4;b)温度采集时间间隔不超过10min;c)总热容量、水泥水化热的结果计算,水泥质量和水质量按照实际质量进行计算,计算结果保留至0.1J/g。

A.5.324h水化热计算24h水化热计算按照以下步骤:a)以水化热达到30.0J/g的时间作为时间起点,如果测试点中没有30.0J/g,则以放热量大于且最接近30.0J/g的时间为准,并记录此时的热量值为。

b)取(+24)h时的热量值为。

c)24h水化热按照式(A.1)计算:……………………………………………(A.1)式中:——24h水化热,单位为焦耳每克(J/g);——(0t+24)h时水化热,单位为焦耳每克(J/g);——时水化热,单位为焦耳每克(J/g)。

每个砂浆水化热试验用两套热量计平行试验,两次试验结果相差小于12.0J/g时,取平均值作为此砂浆样品水化热结果;两次结果相差大于12.0J/g时,应重做试验。

水泥水化热测定方法(溶解热法)

水泥水化热测定方法(溶解热法)
须涂以石蜡或其他耐氢氟酸涂料。
3.1.6曲颈玻璃漏斗:由玻璃漏斗涂蜡或用耐氢氟酸塑料制成,上口直径约70mm,深100mm
漏斗管外径7.5mm,长95mm,供装试样用。
3.1.7直颈装酸漏斗:由玻璃漏斗涂蜡或用耐氢氟酸塑料制成,上口直径约80mm,管长120mm,
外径7.5mm。
3.2天平:称量200g,分度值0.001g和称量500g,分度值为0.1g天平各一台。
高度距底部约270mm,水槽上装有二个搅拌器,分别用于搅拌水槽中的水和保温瓶中
的酸液。
3.1.2内筒:筒口为带法兰的不锈钢圆筒,内径150mm,深210mm筒内衬有软木层或泡沫
塑料。筒盖内镶嵌有橡胶圈以防漏水,盖上有三个孔,中孔安装酸液搅拌器,两侧
的孔分别安装加料漏斗和贝克曼差示温度计。
3.1.3广口保温瓶:容积约为600mL,当盛满比室温高5℃的水,静置30min时,其冷却速度
不得超过0.001℃/min·℃。
3.1.4贝克曼差示温度计(以下简称贝氏温度计):精度为0.01℃,最大差示温度为5 ̄
6℃,插入酸液部分须涂以石蜡或其他耐氢氟酸的涂料。
3.1.5搅拌装置:分为酸液搅拌器和水槽搅拌器。酸液搅拌器用玻璃或耐酸尼龙制成。直径
6.0 ̄6.5mm,总长约280mm,下端装有两片略带轴向推进作用的叶片,插入酸液部分必
3.3高温炉:使用温度不低于900℃,并带有恒温控制装置。
3.4试验筛:方孔边长0.15mm和0.60mm筛各一个。
3.5铂坩埚或瓷坩埚:容量约30mL。
3.6研钵。
3.7冰箱:用于降低硝酸溶液温度。
3.8水泥水化试样瓶:由不与水泥作用的材料制成,具有水密性,容积约15mL。
3.9其他:磨口称量瓶,最小分度0.1℃的温度计,时钟,秒表,干燥器,容量瓶,吸液管,

水工混凝土施工规范新版

水工混凝土施工规范新版
≤1

5.2.8粗骨料(碎石、卵石)的品质要求
1 粗骨料的最大粒径:不应超过钢筋净间距的2/3、构件断面最小边长的1/4、素混凝土板厚的1/2。对少筋或无筋混凝土结构,应选用较大的粗骨料粒径。
2 施工中,宜将粗骨料按粒径分成下列几种粒径组合:
1 优先使用散装水泥。
2 运到工地的水泥,应按标明品种、强度等级、生产厂家和出厂批号,分别储存到有明显标志的储罐或仓库中,不得混装。
3 水泥在运输和储存过程中应防水防潮,已受潮节快的水泥应经过处理并检验合格方可使用。罐储水泥宜一个月倒罐一次。
4 水泥仓库应有排水、通风措施,保持干燥。堆放袋装水泥时,应设防潮层,距地面、边墙至少30cm,堆放高度不得超过15袋,并留出运输通道。
3 环境水对混凝土有硫酸盐侵蚀性时,应选用抗硫酸盐水泥。
5.1.3选用的水泥强度等级应与混凝土设计强度等级相适应。水位变化区、溢流面和经常受水流冲刷部位、有抗冻要求较高的部位,宜使用较高强度等级的水泥。
5.1.4选用的水泥必须符合现行国家标准的规定。并可根据工程的特殊需要对水泥的化学成分、矿物组成和细度等提出专门要求。
5.1.5运至工地的每一批水泥,应有生产厂的出厂合格证和品质试验报告,使用单位应进行验收检验(按每200~400t同厂家、同品种、同强度等级的水泥为一取样单位,如不足200t也作为一取样单位),必要时还应进行复验。
5.1.6水泥品质的检验,按现行的国家标准进行。
5.1.7水泥的运输、保管及使用,应遵守下列规定:
GB/T 14685-2001 建筑用卵石、碎石
GB/T 17671—1999 水泥胶砂强度检验方法(ISO法)
GB 50164—1992 混凝土质量控制标准
GBJ 80—1985 普通混凝土拌和物性能试验方法

水泥水化热测试方法

水泥水化热测试方法

A A附录A(规范性附录)水泥水化热测试方法A.1范围本方法适用于掺加混凝土水化温升抑制剂的水泥水化热的测试。

A.2原理本方法是依据热量计在恒定的温度环境中,直接测定热量计内水泥砂浆(因水泥水化产生)的温度变化,通过计算热量计内积蓄的和散失的热量总和,求得水泥不同龄期内的水化热。

A.3仪器设备符合GB/T12959中直接法(代用法)的规定。

A.4试验条件成型试验室温度应保持在(20±2)℃,相对湿度不低于50%;试验期间水槽内的水温应保持在(20±0.1)℃。

应用于日均气温大于25℃炎热气候的产品检测时,宜将砂浆初始温度控制在(30±2)℃,试验期间水槽内的水温设置为(30±0.1)℃,或由供需双方商定。

A.5试验步骤A.5.1热量计参数测定热量计热容量的计算,热量计散热常数的测定,热量计散热常数的计算,热量计散热常数的规定符合GB/T12959中直接法(代用法)的规定。

A.5.2水泥水化热测定除以下步骤,其它均应符合GB/T12959中直接法(代用法)的规定:a)试验砂浆水灰比为0.4;b)温度采集时间间隔不超过10min;c)总热容量、水泥水化热的结果计算,水泥质量和水质量按照实际质量进行计算,计算结果保留至0.1J/g。

A.5.324h水化热计算24h水化热计算按照以下步骤:a)以水化热达到30.0J/g的时间作为时间起点,如果测试点中没有30.0J/g,则以放热量大于且最接近30.0J/g的时间为准,并记录此时的热量值为。

b)取(+24)h时的热量值为。

c)24h水化热按照式(A.1)计算:……………………………………………(A.1)式中:——24h水化热,单位为焦耳每克(J/g);——(0t+24)h时水化热,单位为焦耳每克(J/g);——时水化热,单位为焦耳每克(J/g)。

每个砂浆水化热试验用两套热量计平行试验,两次试验结果相差小于12.0J/g时,取平均值作为此砂浆样品水化热结果;两次结果相差大于12.0J/g时,应重做试验。

水泥水化热测定方法(溶解热法)

水泥水化热测定方法(溶解热法)

水泥水化热测定方法(溶解热法)6.1.6 水槽搅拌器连续搅拌20min停止,开动保温瓶中的酸液搅拌器,连续搅拌20min后,在贝氏温度计上读出酸液温度,隔5min后再读一次酸液温度,此后每隔1min读一次酸液温度,直至连续5min内,每分钟上升的温度差值相等时为止。

记录最后一次酸液温度,此温度值即为初读数B 0,初测期结束。

6.1.7 初测期结束后,立即将事先称量好的 7± 0.001g氧化锌通过加料漏斗徐徐地加入保温瓶酸液中(酸液搅拌器继续搅拌),加料过程须在2min内完成,漏斗和毛刷上均不得残留试样。

6.1.8 从读出初测读数B 0起分别测读20,40,60,80,90,120min 时贝氏温度计的读数。

这一过程为溶解期。

6.1.9 热量计在各时间区间内的热容量按式(1)计算,精确到 0.5J/ °C:G0 〔 1072.0 + 0.4(30 — ta) + 0.5(T — ta〕C = .............................................................. ⑴…R0式中:C—热量计热容量,J/ C ;1072.0 ――氧化锌在30C时的溶解热,J/g;G0 ――氧化锌重量,g;T ――氧化锌加入热量计时的室温,C;0.4 ――溶解热负温比热容,J/ C・g;0.5 ――氧化锌比热容,J/C・g;ta ――溶解期第一次测读数B [a]加贝氏温度计0C时相应的摄氏温度,CR0 ――经校正的温度上升值,C。

R0值按式(2)计算:aR0 a- 9 0)—--- (9 b—9 0)...... ⑵…b — a式中:9 0 --- 初测期结束时(即开始加氧化锌时)的贝氏温度计读数,C9 a -- 溶解期的第一次测读的贝氏温度计的读数,C ;9 a -- 溶解期结束时测读的贝氏温度计的读数,C ;6.1.10 6.1.11 a 、b ——分别不测读B a 或B b 时距离测初读数B 0时所经进的时间,min 。

溶解热法测定水泥水化热的探讨

溶解热法测定水泥水化热的探讨
s t a n d a r d me t h o d . o n e o f s o l u t i o n h e a t me t e r wh e t h e r mo n o c u l a r o r b i n o c u l a r t o me a s u r e i s f e a s i b l e . Ke y wo r d s :h e a t o f s o l u t i o n ; i g n i t i o n l o s s ; t e mp e r a t u r e ; c e me n t h y d r a t i o n h e a t
泥水化热 的测定准确性 。试验结果表 明 : ( 1 ) 称取 三份试样进行 灼烧试验 , 成功 的概 率更大 ; ( 2 ) 烧失量 的引入 既保 证 了称样
的速度 , 又实现 了试验的精度 ; ( 3 ) 利用基准法 , 单筒溶解热测定仪或双 筒溶 解热测 定仪 中的一 个筒来测 定是 可行 的。
关键 词 : 溶 解热 ; 烧 失量 ; 温度 ; 水 化 热
Re s e a r c h o n me a s u r i n g c e me n t h y d r a t i o n h e a t b y h e a t o f s o l u t i o n me t h o d
Ab s t r a c t : Ba s e d o n me a s u r i n g c e me n t h y d r a t i o n h e a t b y h e a t o f s o l u t i o n me t h o d , I n c r e a s e t h e a c c u r a c y o f me a s u r i n g c e me n t h y d r a t i o n h e a t b y i g n i t i o n l o s s ,a n d s o me e x p e r i e n c e a b o u t t e mp e r a t u r e c o n t r o l ,t i me o f b r e a k i n g s a mp l e ,t h e r mo me t e r s h a k i n g a n d t h e

水泥水化热测定方法

水泥水化热测定方法

水泥水化热测定方法水泥的水化反应是指水泥在水的存在下发生的反应,其中水泥与水发生化学反应生成水硬性固体,即水泥石。

水泥水化热是指在水泥水化反应过程中放出的热量。

水泥水化热的测定是水泥基材料研究领域中非常重要的一个实验方法,在水泥材料的设计、配方,以及性能等方面有着重要的意义。

下面我们就介绍一下水泥水化热的测定方法。

一、实验目的1.了解水泥与水发生反应后放出的热量;3.研究不同水泥水化热的变化规律及其影响因素。

二、实验原理在水泥的水化反应过程中,水泥与水发生化学反应后生成水泥石。

在此过程中,水泥的水化热是通过测定水泥与水反应中所放出的热量来确定的。

水泥水化热实验中主要用到反应热学的原理,根据热量守恒定律,水泥与水反应的过程中,放出的热量应该等于吸收的热量,即:Qc = QpQc是水泥的水化热,单位为焦耳(J);水泥水化热实验中,一般采用大气压下的绝热式容器来进行测定。

在实验过程中,放置水和水泥试样的绝热压力容器中,通过测量水泵冷却水的温升来测定水泥水化过程中放出的热量。

三、实验仪器和材料1.水泥:普通硅酸盐水泥;2.水:蒸馏水或去离子水;3.实验设备:加热水浴器、称量仪、绝热压力容器、热电偶、数字温度计、水泵和计时器等。

四、实验步骤1.取适量的水泥,在研钵中研磨10 min左右,筛过80目筛网备用;3.将适量的水加入绝热压力容器中,再加入研磨后的水泥,混合均匀;4.将绝热压力容器放入加热水浴器中,加热至恒定温度,并在加热过程中不断搅拌试样;5.结束加热后,测定温度计初值,并恒速搅拌计时;6.同时启动水泵电机,将冷却水从水泵进入绝热压力容器中,观察水的温度变化,并记录变化过程中的时间、温度值;7.完成实验后,根据实验数据计算水化热;8.重复进行同样的实验两次或三次,得到平均值。

五、实验记录和结果分析1.实验记录在实验过程中,需要记录每次实验开始时的时间和温度,以及结束时的时间和温度,实验的热化曲线等数据。

水工混凝土施工规范新版

水工混凝土施工规范新版
88钻芯法检测混凝土强度技术规程cecs3892钢纤维混凝土结构设计与施工规程dl50171993压力钢管制造安装及验收规范dlt505596水工混凝土掺用粉煤灰技术规程dlt505796水工混凝土结构设计规范dlt508299水工建筑物抗冻设计规程dlt51001999水工混凝土外加剂技术规程hg22881992橡胶止水带jgjt1095混凝土泵送施工技术规程jgj5292普通混凝土用砂质量标准及检验方法jgj5392普通混凝土用卵石碎石质量标准及检验方法jgjt552000普通混凝土配合比设计技术规程jgj6389混凝土拌和用水标准jgj10497建筑工程冬期施工规程sd1051982水工混凝土试验规程sdj121978水利水电枢纽工程等级划分及设计标准山区丘陵区部分sdj171978水利水电工程天然建筑材料勘察规程sdj24911988水利水电基本建设工程单元工程质量等级评定标准sdj3361989混凝土大坝安全检测技术规范试行sdj3381989水利水电工程施工组织设计规范sl621994水工建筑物水泥灌浆施工技术规范sl1721996小型水电站施工技术规范sl1761996水利水电工程施工质量评定规范试行ac121111995普通混凝土重质混凝土及大体积混凝土配合比选择的标准方法ac2141989混凝土强度试验结果评定推荐方法301本标准规范了水工建筑物混凝土的材料配合比洗涤施工温度控制低温季节施工预埋件施工质量控制与检查的基本要求302水工混凝土应满足抗压抗拉抗渗抗冻抗裂抗冲耐磨和抗侵蚀等设计要求
fcu,i第i组混凝土试件强度
△fcu,i第i组试件中最大值与最小值之差
fcu,minn组强度中的最小值
F100 表示抗冻为100级的抗冻等级
W2 表示抗渗为2级的抗渗等级
5 材 料

等温传导量热法测定水泥水化热的研究

等温传导量热法测定水泥水化热的研究

C€M£tiT2020.No. 12等温传导量热法测定水泥水化热的研究殷祥男1,宋来申1,王伟智1,王长安1,王旭方1,强玉琴2(1.中国建材检验认证集团股份有限公司,北京100024; 2.甘肃土木工程科学研究院有限公司,甘肃兰州730020)摘要:概述了等温传导量热法(ICC 法)测定水泥水化热方法标准的国内外发展现状,明确了 ICC 法测定水泥水化热的方法原理、试验材料、设备仪器和操作步驟通过重复性和再现性试验,表明ICC 法具有良好的重复性和再现性,其 中重复性限为10 J /g ,再现性限为18 J /g _通过比对ICC 法与溶解热法得出,丨CC 法和溶解热法测定水泥水化热具有较 高的一致性,表明ICC 法测定水泥水化热在我国具有良好的适用性:关键词:等温传导量热法;溶解热法;水泥水化热;重复性;再现性中图分类号:TQ 172.16 文献标识码:B 文章编号:1002-9877(2020)12-0044-05 DOI : 10.13739/j .cnki .cn ll -1899/tq .2020.12.0171研究背景温度应力是导致大体积混凝土开裂的主要原因。

水泥水化过程产生的大量水化热,在大体积混 凝土中不易散发,造成混凝土内部温度不断上升,而 混凝土表面散热较快,致使混凝土内外温差较大,引 起较大的温度应力。

对大体积混凝土防裂而言,水 泥水化热是一项重要的技术指标。

目前测定水泥水化热的方法主要有溶解热法、 直接法(半绝热法)、等温传导量热法(ICC 法)。

表1为 中国、美国、欧洲水泥水化热测定方法标准。

表1中、美、欧水泥水化热标准对比国家/地区标准号标准名称方法中国GB/T 12959—水泥水化热测定方溶解热法、直2008法接法ASTM C186-2017水泥水化热标准测试方法溶解热法美同ASTM C1702-2017采用等温量热仪测 定水泥基材料水化等温传导量热法热标准测试方法水泥试验用方法第8EN 196-8:2010部分:水泥水化热测溶解热法定方法水泥试验用方法第9欧洲EN196-9:2010部分:水泥水化热测半绝热法定方法水泥试验用方法第等温传导量热法EN196-11:201811部分:水泥水化热测定方法水泥水化热检测是国家水泥质量检验中心的重要检测业务之一,检测主要依据的标准是G B /T 12959— 2008《水泥水化热测定方法》[|]。

水泥水化热实验原始记录

水泥水化热实验原始记录

q1

R1C G1
0.8T ta
q2

R2C G2
1.7T ta 1.3ta
ta
q q1 q2 0.4(20 ta )
检验:
审核:
日期:
未水化水 泥水化热
测定
水泥重量(g)
水泥灼烧后重量(g)
θ 0′(℃)
θ a′(℃) θ b′(℃)
其他参数
T=
℃ t =
a = min b = min
热容量 q1 (J/g) 平均值:
龄期
水化水泥重量(g)
灼烧后重量(g)
经水化某 龄期水泥 水化热测

θ 0″(℃)
θ a″(℃)
θ b″(℃)
其他参数
T =
d ℃ t =
热容量 q2 (J/g) 平均值:
d
a = min b = min 平均值:
水泥水化热(J/g)
计算公式:
R1

a
0
a b a
b
a

R2

a
0
a b a

Hale Waihona Puke ba
样品描述: 样品名称 委托日期
水泥水化热试验原始记录表
试验条件:
编号: 规格型号
试验日期
试验依据
《水泥水化热测定方法》GB/T12959-2008
试验仪器 溶解热测定仪( SHR-650D ) 天平(TG328B 型、TD20002A) 高温炉 (SRJX-4-13)
试验项目
试验次数
热量计热容量 C(J/℃)

水泥水化热试验方法.doc

水泥水化热试验方法.doc

水泥水化热试验方法水泥水化热试验方法标准适用于测定水泥水化热。

本标准是在热量计周围温度不变条件下,直接测定热量计内水泥胶砂温度的变化,计算热量计内积蓄和散失热量的总和,从而求得水泥水化7天内的水化热(单位是卡/克)。

注:水泥水化7天今期的水化热可按附录方法推算,但试验结果有争议时,以实测法为准。

一、仪器设备1.热量计(1)保温瓶:可用备有软木塞的五磅广口保温瓶,内深约22厘米,内径为8.5厘米。

(2)截锥形圆筒:用厚约0.5毫米的铜皮或白铁皮制成,高17厘米,上口径7.5厘米,底径为6.5厘米。

(3)长尾温度计:0-50℃,刻度精确至0.1℃。

2.恒温水槽水槽容积可根据安放热量计的数量及温度易于控制的原则而定,水槽内水的温度应准确控制在必须重行测定散热常。

五、水泥胶砂水化热的测定11.为了保证热量计温度均匀,采用胶砂进行试验。

砂子采用GB178-77《水泥强度试验用标准砂》中规定的平谭标准砂,水泥与砂子配比根据水泥品种与标号选定,配比的选择宜参照表1;胶砂在试验过程中,温度最高值应在30-38℃范围内(即比恒温水槽的温度高10-18℃)。

试验中胶砂温度的最大上升值小于10℃或大于18℃,则须改变配比,重新进行试验。

表112.胶砂的加水量:以水泥净浆的标准稠度(%)加系数B(%)作为水泥用水量(%)。

B值根据胶砂配比而不同,见表2。

胶砂的加水量为胶砂配比中水泥的重量乘以水泥用水量(%)。

表2━━━━━┯━━━━┯━━━━┯━━━━┯━━━━┯━━━━┯━━━━━胶砂配比│1:1.0│1:1.5│1:2.0│1:2.5│1:3.0│1:3.5─────┼────┼────┼────┼────┼────┼─────B │0│0.5│1.0│3.0│5.0│6.0━━━━━┷━━━━┷━━━━┷━━━━┷━━━━┷━━━━┷━━━━━13.试验前,水泥、砂子、水待等材料和热量计各部件均应预先在20±2℃下恒温。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水泥水化热测定方法(溶解热法)标准名称:水泥水化热测定方法(溶解热法)标准类型:中华人民共和国国家标准标准号:GB/T 12959-91发布单位:国家技术监督局标准名称(英) Test method for heat of hydration of cement-The heat of solution method标准发布日期 1992-06-04批准标准实施日期 1993-03-01实施标准正文1 主题内容与适用范围本标准规定了用溶解热法测定水泥水化热试验的方法原理、仪器设备、试验步骤及结果计算等。

本标准适用于中热硅酸盐水泥、低热矿渣硅酸盐水泥、硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰硅酸盐水泥、粉煤灰硅酸盐水泥和其他指定采用本方法的水泥品种。

2 方法原理本方法是依据热化学的盖斯定律,即化学反应的热效应只与体系的初态和终态有关而与反应的途径无关提出的。

它是在热量计周围温度一定的条件下,用未水化的水泥与水化一定龄期的水泥分别在一定浓度的标准酸中溶解,测得溶解热之差,即为该水泥在规定龄期内所放出的水化热。

3 仪器设备3.1 热量计:如下图所示。

由保温水槽、内筒、广口保温瓶、贝克曼差示温度计、搅拌装置等主要部件组成。

另配一个曲颈玻璃漏斗和一个直颈装酸漏斗。

3.1.1 保温水槽:水槽内外壳之间装有隔热层,内壳横断面为椭圆形的金属筒,横断面长长轴450mm,短轴300mm,深310mm,容积约30L。

并装有控制水位的溢流管。

溢流管高度距底部约270mm,水槽上装有二个搅拌器,分别用于搅拌水槽中的水和保温瓶中的酸液。

3.1.2 内筒:筒口为带法兰的不锈钢圆筒,内径150mm,深210mm筒内衬有软木层或泡沫塑料。

筒盖内镶嵌有橡胶圈以防漏水,盖上有三个孔,中孔安装酸液搅拌器,两侧的孔分别安装加料漏斗和贝克曼差示温度计。

3.1.3 广口保温瓶:容积约为600mL,当盛满比室温高5℃的水,静置30min时,其冷却速度不得超过0.001℃/min·℃。

3.1.4 贝克曼差示温度计(以下简称贝氏温度计):精度为0.01℃,最大差示温度为5 ̄ 6℃,插入酸液部分须涂以石蜡或其他耐氢氟酸的涂料。

3.1.5 搅拌装置:分为酸液搅拌器和水槽搅拌器。

酸液搅拌器用玻璃或耐酸尼龙制成。

直径6.0 ̄6.5mm,总长约280mm,下端装有两片略带轴向推进作用的叶片,插入酸液部分必须涂以石蜡或其他耐氢氟酸涂料。

3.1.6 曲颈玻璃漏斗:由玻璃漏斗涂蜡或用耐氢氟酸塑料制成,上口直径约70mm,深100mm漏斗管外径7.5mm,长95mm,供装试样用。

3.1.7 直颈装酸漏斗:由玻璃漏斗涂蜡或用耐氢氟酸塑料制成,上口直径约80mm,管长120mm,外径7.5mm。

3.2 天平:称量200g,分度值0.001g和称量500g,分度值为0.1g天平各一台。

3.3 高温炉:使用温度不低于900℃,并带有恒温控制装置。

3.4 试验筛:方孔边长0.15mm和0.60mm筛各一个。

3.5 铂坩埚或瓷坩埚:容量约30mL。

3.6 研钵。

3.7 冰箱:用于降低硝酸溶液温度。

3.8 水泥水化试样瓶:由不与水泥作用的材料制成,具有水密性,容积约15mL。

3.9 其他:磨口称量瓶,最小分度0.1℃的温度计,时钟,秒表,干燥器,容量瓶,吸液管,石蜡等。

4 试剂及配制4.1 氧化锌:分析纯。

用于标定热量计热容量,使用前应预先进行如下处理:将氧化锌放入坩埚内,在900 ̄950℃高温下灼烧1h,取出,置于干燥器中冷却后,用玛瑙研钵研磨至全部通过0.15mm筛,贮存于干燥器中备用。

在标定试验前还庆在900 ̄950℃下灼烧5min,并在干燥器中冷却至室温。

4.2 氢氟酸:分析纯,48%(或密度1.15g/cm3)。

4.3 硝酸溶液c(HNO3)=2.00±0.02mol/L,应用分析纯硝酸大量配制。

配制时可将不同密度的浓硝酸按下列采取量用蒸馏水稀释至1L:硝本密度,g/cm3 采取量(20℃),mL1.42 1271.40 1381.38 149硝酸溶液的标定:用移液管吸取25mL上述已配制好的硝酸溶液,移入250mL的容量瓶中,用水稀释至标线,摇匀。

接着用已知浓度(约0.2mol/L)的氢氧化钠标准溶液标定容量瓶中硝酸溶液的浓度,该浓度乘以10即为上述已配制好的硝酸溶液的浓度。

5 试验室条件恒温室:温度应能控制在20±1℃。

通风橱。

6 试验步骤6.1 标定热量计的热容量6.1.1 试验前保温瓶内壁用石蜡或其他耐氢氟酸的涂料涂覆。

6.1.2 在标定热量计热容量前一天将热量计放在试验室内,保温瓶放入内筒中,酸液搅拌器放入保温瓶内,盖紧内筒盖,接着将内筒放入保温水槽的环形套内。

移动酸液搅拌器悬臂夹头至使对准内筒中心孔,并将搅拌器夹紧。

在保温水槽内加水使水面高出内筒盖(由溢流管控制高度)。

开动保温水槽搅拌器。

把水槽内的水温调到20±1℃,然后关闭搅拌器备用。

6.1.3 确定2.00mol/L硝酸溶液用量,将48%氢氟酸8mL加入书籍质量的耐氢氟酸量杯内,然后慢慢加入低于室温6 ̄7℃的2.00mol/L硝酸溶液(约393mL),使两种混合物总量达到425±0.1g,记录2.00mol/L 硝酸溶液加入的总量,该量即为试验时所需的2.00mol/L硝酸溶液的用量。

6.1.4 在标定试验前,先将贝抵温度计的零点调为14.5℃左右,再开动保温水槽内的搅拌器,并将水温调到20±0.1℃。

6.1.5 从安放贝氏温度计孔插入加酸液用的漏斗,按已确定的用量量取低于室温6 ̄7℃的2.00mol/L硝酸溶液,先向保温瓶内注入约150mL,然后加入8mL 48%氢氟酸,再加入剩余的硝酸溶液,加毕,取出漏斗,插入贝氏温度计(中途不许拔出,以免影响精度),开动保温水槽搅拌器,接通冷却搅拌器电机的循环水,5min后观察水槽温度,使其保持20±0.1℃。

从水槽搅拌器开动算起,连续搅拌20min。

6.1.6 水槽搅拌器连续搅拌20min停止,开动保温瓶中的酸液搅拌器,连续搅拌20min后,氏温度计上读出酸液温度,隔5min后再读一次酸液温度,此后每隔1min读一次酸液温度,直至连续5min内,每分钟上升的温度差值相等时为止。

记录最后一次酸液温度,此温度值即为初读数θ0,初测期结束。

6.1.7 初测期结束后,立即将事先称量好的7±0.001g氧化锌通过加料漏斗徐徐地加入保温瓶酸液中(酸液搅拌器继续搅拌),加料过程须在2min内完成,漏斗和毛刷上均不得残留试样。

6.1.8 从读出初测读数θ0起分别测读20,40,60,80,90,120min时贝氏温度计的读数。

这一过程为溶解期。

6.1.9 热量计在各时间区间内的热容量按式(1)计算,精确到0.5J/℃:G0〔1072.0+0.4(30-ta)+0.5(T-ta〕C=────────────────────── (1)R0式中:C——热量计热容量,J/℃;1072.0——氧化锌在30℃时的溶解热,J/g;G0——氧化锌重量,g;T——氧化锌加入热量计时的室温,℃;0.4——溶解热负温比热容,J/℃·g;0.5——氧化锌比热容,J/℃·g;ta——溶解期第一次测读数θ[a]加贝氏温度计0℃时相应的摄氏温度,℃;R0——经校正的温度上升值,℃。

R0值按式(2)计算:aR0=(θa-θ0)-───(θb-θ0) (2)b-a式中:θ0——初测期结束时(即开始加氧化锌时)的贝氏温度计读数,℃;θa——溶解期的第一次测读的贝氏温度计的读数,℃;θa——溶解期结束时测读的贝氏温度计的读数,℃;a、b——分别不测读θa或θb时距离测初读数θ0时所经进的时间,min。

为了保证试验结果的精度,热量计热容量对应θa、θb的测读时间a、b应分别与不同品种水泥所需要的溶解期测读时间对应。

不同水泥的具体溶解期测读时间按热量计热容量应标定两次,以两次标定值的平均值作为标定结果。

如两次标定值相差大于5J/℃时,须重新标定。

在下列情况下,热容量需重新标定:a.重新调整贝氏温度计时;b.当温度计、保温瓶、搅拌器重新更换或涂覆耐酸涂料时;c.当新配制的酸液与标定量热计热容量的酸液浓度变化超过0.02mol/L时;d.对试验结果有疑问时。

6.2 未水化水泥溶解热的测定6.2.1 按,并记录初测温度θ'0。

6.2.2 读出初测温度θ'0后,立即将预先称好的三份3±0.001g未水化水泥试样中的一份在2min内通过加料漏斗徐徐加入热量计内,漏斗、称量瓶及毛刷上均不得残留试样,然后按表1规定的各品种水泥测读温度的时间,准时读记贝氏温度计读数θ'a和θ'b。

第二份试样重复第一份的操作。

第三份试样置于900 ̄950℃灼烧90min,在干燥器中冷却至室温后称其质量G1。

表1各品种水泥测读温度的时间──────────┬──────────────────────│距初测期温度θ'0的相隔时间,min水泥品种├──────────┬───────────│θ'a│θ'b──────────┼──────────┼───────────硅酸盐水泥││中热硅酸盐水泥│ 20 │ 40普通硅酸盐水泥││──────────┼──────────┼───────────矿渣硅酸盐水泥│ 40 │ 60低热矿渣硅酸盐水泥││──────────┼──────────┼───────────火山灰硅酸盐水泥│ 60 │ 90──────────┼──────────┼───────────粉煤灰硅酸盐水泥│ 80 │ 120──────────┴──────────┴───────────注:①在普通水泥、矿渣水泥、低热矿渣水泥中掺有火山灰或粉煤灰时,可按火山灰水泥或粉煤灰水泥规定。

②如在规定的测读期结束时,温度的变化没有达到均匀一致,应适当延长测读期至每隔10min的温度变化均匀为止。

此时需要知道测读期延长后热量计的热容量,用于计算溶解热。

6.2.3 未水化水泥的溶解热按式(3)计算,精确到0.5J/g:R1Cq[1]=──-0.8(T'-T'a) (3)G1式中:q1——未水化水泥的溶解热,J/g;C——热量计的热容量,J/℃;G1——未水化水泥试样灼烧后的质量,g;T'——未水化水泥试样装入热量计时的室温,℃;t'a——溶解期第一次贝氏温度计读数换算成普通温度计的度数,℃;R1——经校正的温度上升值,℃;0.8——未水化水泥的比热容,J/℃·g。

相关文档
最新文档