椭圆偏振法测量薄膜厚度及折射率
实验15椭圆偏振仪测量薄膜厚度和折射率
实验15 椭圆偏振仪测量薄膜厚度和折射率在近代科学技术的许多部门中对各种薄膜的研究和应用日益广泛.因此,更加精确和迅速地测定一给定薄膜的光学参数已变得更加迫切和重要.在实际工作中虽然可以利用各种传统的方法测定光学参数(如布儒斯特角法测介质膜的折射率、干涉法测膜厚等),但椭圆偏振法(简称椭偏法)具有独特的优点,是一种较灵敏(可探测生长中的薄膜小于0.1nm的厚度变化)、精度较高(比一般的干涉法高一至二个数量级)、并且是非破坏性测量.是一种先进的测量薄膜纳米级厚度的方法.它能同时测定膜的厚度和折射率(以及吸收系数).因而,目前椭圆偏振法测量已在光学、半导体、生物、医学等诸方面得到较为广泛的应用.这个方法的原理几十年前就已被提出,但由于计算过程太复杂,一般很难直接从测量值求得方程的解析解.直到广泛应用计算机以后,才使该方法具有了新的活力.目前,该方法的应用仍处在不断的发展中.实验目的(1)(1)了解椭圆偏振法测量薄膜参数的基本原理;(2)(2)初步掌握椭圆偏振仪的使用方法,并对薄膜厚度和折射率进行测量.实验原理椭偏法测量的基本思路是,起偏器产生的线偏振光经取向一定的1/4波片后成为特殊的椭圆偏振光,把它投射到待测样品表面时,只要起偏器取适当的透光方向,被待测样品表面反射出来的将是线偏振光.根据偏振光在反射前后的偏振状态变化,包括振幅和相位的变化,便可以确定样品表面的许多光学特性.1 椭偏方程与薄膜折射率和厚度的测量图15.1图15.1所示为一光学均匀和各向同性的单层介质膜.它有两个平行的界面,通常,上部是折射率为n1的空气(或真空).中间是一层厚度为d折射率为n2的介质薄膜,下层是折射率为n3的衬底,介质薄膜均匀地附在衬底上,当一束光射到膜面上时,在界面1和界面2上形成多次反射和折射,并且各反射光和折射光分别产生多光束干涉.其干涉结果反映了膜的光学特性.设φ1表示光的入射角,φ2和φ3分别为在界面1和2上的折射角.根据折射定律有n1sinφ1=n2sinφ2=n3sinφ3(15.1)光波的电矢量可以分解成在入射面内振动的P分量和垂直于入射面振动的s分量.若用E ip和E is分别代表入射光的p和s分量,用E rp及E rs分别代表各束反射光K0,K1,K2,…中电矢量的p分量之和及s分量之和,则膜对两个分量的总反射系数R p和R s定义为R P=E rp/E ip , R s=E rs/E is(15.2)经计算可得式中,r1p或r1s和r2p或r2s分别为p或s分量在界面1和界面2上一次反射的反射系数.2δ为任意相邻两束反射光之间的位相差.根据电磁场的麦克斯韦方程和边界条件,可以证明r1p=tan(φ1-φ2)/ tan(φ1+φ2), r1s=-sin (φ1-φ2)/ sin(φ1+φ2);r2p=tan(φ2-φ3)/tan(φ2+φ3), r2s =-sin (φ2-φ3)/sin(φ2+φ3). (15.4)式(15.4)即著名的菲涅尔(Fresnel)反射系数公式.由相邻两反射光束间的程差,不难算出. (15.5)式中,λ为真空中的波长,d和n2为介质膜的厚度和折射率.在椭圆偏振法测量中,为了简便,通常引入另外两个物理量ψ和Δ来描述反射光偏振态的变化.它们与总反射系数的关系定义为上式简称为椭偏方程,其中的ψ和Δ称为椭偏参数(由于具有角度量纲也称椭偏角).由式(15.1),式( 15.4),式( 15.5)和上式可以看出,参数ψ和Δ是n1,n2,n3,λ和d的函数.其中n1,n2,λ和φ1可以是已知量,如果能从实验中测出ψ和Δ的值,原则上就可以算出薄膜的折射率n2和厚度d.这就是椭圆偏振法测量的基本原理.实际上,究竟ψ和Δ的具体物理意义是什么,如何测出它们,以及测出后又如何得到n2和d,均须作进一步的讨论.2 ψ和Δ的物理意义用复数形式表示入射光和反射光的p和s分量E ip=|E ip|exp(iθip),E is=|E is|exp(iθis);E rp=|E rp|exp(iθrp) ,E rs=|E rs|exp(iθrs).(15.6)式中各绝对值为相应电矢量的振幅,各θ值为相应界面处的位相.由式(15.6),式(15.2)和式(15.7)式可以得到.(1 5.7)比较等式两端即可得tanψ=|E rp||E is|╱|E rs||E ip| (15.8)Δ=(θrp–θrs)- (θip–θis) (15.9)式(15.8)表明,参量ψ与反射前后p和s分量的振幅比有关.而(15.9)式表明,参量Δ与反射前后p和s分量的位相差有关.可见,ψ和Δ直接反映了光在反射前后偏振态的变化.一般规定,ψ和Δ的变化范围分别为0≤ψ<π /2和0≤Δ<2π.当入射光为椭圆偏振光时,反射后一般为偏振态(指椭圆的形状和方位)发生了变化的椭圆偏振光(除开ψ<π/4且Δ=0的情况).为了能直接测得ψ和Δ,须将实验条件作某些限制以使问题简化.也就是要求入射光和反射光满足以下两个条件:(1)要求入射在膜面上的光为等幅椭圆偏振光(即P和S 二分量的振幅相等).这时,|E ip|/|E is|=1,式(15.9)则简化为tanψ=|E rp|/|E rs| .(15.10)(2)要求反射光为一线偏振光.也就是要求θrp–θrs=0(或π),式(15.9)则简化为(15.15)满足后一条件并不困难.因为对某图 15.2一特定的膜,总反射系数比R p/R s是一定值.式(15.6)决定了⊿也是某一定值.根据(15.9)式可知,只要改变入射光二分量的位相差(θip–θis),直到其大小为一适当值(具体方法见后面的叙述),就可以使(θip–θis)=0(或π),从而使反射光变成一线偏振光.利用一检偏器可以检验此条件是否已满足.以上两条件都得到满足时,式(15.10)表明,tan ψ恰好是反射光的p和s分量的幅值比,ψ是反射光线偏振方向与s方向间的夹角,如图15.2所示.式(15.15)则表明,Δ恰好是在膜面上的入射光中s和s分量间的位相差.3 ψ和Δ的测量实现椭圆偏振法测量的仪器称为椭圆偏振仪(简称椭偏仪).它的光路原理如图15.3所示.氦氖激光管发出的波长为 632. 8 nm的自然光,先后通过起偏器Q,1/4波片C入射在待测薄膜F上,反射光通过检偏器R射入光电接收器T.如前所述,p和s分别代表平行和垂直于入射面的二个方向.快轴方向f,对于负是指平行于光轴的方向,对于正晶体是图15.3 从Q,C和R用虚线引下的三个插图都是迎光线看去的指垂直于光轴的方向.t代表Q的偏振方向,f代表C的快轴方向,t r 代表R的偏振方向.慢轴方向l,对于负晶体是指垂直于光轴方向,对于正晶体是指平等于光轴方向.无论起偏器的方位如何,经过它获得的线偏振光再经过1/4波片后一般成为椭圆偏振光.为了在膜面上获得p和s二分量等幅的椭圆偏振光,只须转动1/4波片,使其快轴方向f与s方向的夹角α=土π/4即可(参看后面).为了进一步使反射光变成为一线偏振光E,可转动起偏器,使它的偏振方向t与s方向间的夹角P1为某些特定值.这时,如果转动检偏器R使它的偏振方向t r与E r垂直,则仪器处于消光状态,光电接收器T接收到的光强最小,检流计的示值也最小.本实验中所使用的椭偏仪,可以直接测出消光状态下的起偏角P1和检偏方位角ψ.从式(15.15)可见,要求出Δ,还必须求出P1与(θip–θis)的关系.下面就上述的等幅椭圆偏振光的获得及P1与Δ的关系作进一步的说明.如图15.4所示,设已将1/4波片置于其快轴方向f与s方向间夹角为π/4的方位.E0为通过起偏器后的电矢量,P1 为E0与s方向间的夹角(以下简称起偏角).令γ表示椭圆的开口角(即两对角线间的夹角).由晶体光学可知,通过1/4波片后,E0沿快轴的分量E f与沿慢轴的分量E l比较,位相上超前π/2.用数学式可以表达成.(15.12).(15.13)从它们在p和s两个方向的投影可得到p和s的电矢量分别为:图15.4.(15.14).(15.15)由式(15.14)和式(15.15)看出,当1/4波片放置在+π/4角位置时,的确在p和s二方向上得到了幅值均为E0/2的椭圆偏振入射光.p和s的位相差为θip–θis =π/2-2P1.(15.16)另一方面,从图15.4上的几何关系可以得出,开口角γ与起偏角P1的关系为γ/2=π/4-P1γ=π/2-2P1 (15.17)则(15.16)式变为θip–θis=γ(15.18)由式(15.15)可得Δ=—(θip -θis)= -γ(15.19)至于检偏方位角ψ,可以在消光状态下直接读出.在测量中,为了提高测量的准确性,常常不是只测一次消光状态所对应的P1和ψ1值,而是将四种(或二种)消光位置所对应的四组(P1,ψ1)),(P2,ψ2),(P3,ψ3)和(P4,ψ4)值测出,经处理后再算出Δ和ψ值.其中,(P1,ψ1)和(P2,ψ2)所对应的是1/4波片快轴相对于S方向置+π/4时的两个消光位置(反射后P和S光的位相差为0或为π时均能合成线偏振光).而(P3,ψ3)和(P4,ψ4)对应的是1/4波片快轴相对于s方向置-π/4的两个消光位置.另外,还可以证明下列关系成立:|p1-p2|=90˚,ψ2=-ψ1.|p3-p4|=90˚,ψ4=-ψ3.求Δ和ψ的方法如下所述.(1) 计算Δ值.将P1,P2,P3和P4中大于π/2的减去π/2,不大于π/2的保持原值,并分别记为< P1>,< P2>,< P3>和< P4>,然后分别求平均.计算中,令和, (15.20)而椭圆开口角γ与和的关系为. (15.21) 由式(15.22)算得ψ后,再按表15.1求得⊿值.利用类似于图15.4的作图方法,分别画出起偏角P1在表15.1所指范围内的椭圆偏振光图,由图上的几何关系求出与公式(15.18)类似的γ与P1的关系式,再利用式(15.20)就可以得出表15.1中全部Δ与γ的对应关系.1(2)(2)计算ψ值:应按公式(15.22)进行计算. (15.22) 4折射率n2和膜厚d的计算尽管在原则上由ψ和Δ能算出n2和d,但实际上要直接解出(n2,d)和(Δ,ψ)的函数关系式是很困难的.一般在n1和n2均为实数(即为透明介质的),并且已知衬底折射率n3(可以为复数)的情况下,将(n2,d)和(Δ,ψ)的关系制成数值表或列线图而求得n2和d值.编制数值表的工作通常由计算机来完成.制作的方法是,先测量(或已知)衬底的折射率n2,取定一个入射角φ1,设一个n2的初始值,令δ从0变到180°(变化步长可取π/180,π/90,…等),利用式(15.4),式(15.5)和式(15.6),便可分别算出d,Δ和ψ值.然后将n2增加一个小量进行类似计算.如此继续下去便可得到(n2,d)~(Δ,ψ)的数值表.为了使用方便,常将数值表绘制成列线图.用这种查表(或查图)求n2和d的方法,虽然比较简单方便,但误差较大,故目前日益广泛地采用计算机直接处理数据.另外,求厚度d时还需要说明一点:当n1和n2为实数时,式(15.4)中的φ2为实数,两相邻反射光线间的位相差“亦为实数,其周期为2π.2δ可能随着d的变化而处于不同的周期中.若令2δ=2π时对应的膜层厚度为第一个周期厚度d0,由(15.4)式可以得到由数值表,列线图或计算机算出的d值均是第一周期内的数值.若膜厚大于d0,可用其它方法(如干涉法)确定所在的周期数j,则总膜厚是D = (j -1) d0+d.5金属复折射率的测量以上讨论的主要是透明介质膜光学参数的测量,膜对光的吸收可以忽略不计,因而折射率为实数.金属是导电媒质,电磁波在导电媒质中传播要衰减.故各种导电媒质中都存在不同程度的吸收.理论表明,金属的介电常数是复数,其折射率也是复数.现表示为=n2 -iκ式中的实部n2并不相当于透明介质的折射率.换句话说,n2的物理意义不对应于光在真空中速度与介质中速度的比值,所以也不能从它导出折射定律.式中κ称为吸收系数.这里有必要说明的是,当为复数时,一般φ1和φ2也为复数.折射定律在形式上仍然成立,前述的菲涅尔反射系数公式和椭偏方程也成立.这时仍然可以通过椭偏法求得参量d,n2和k,但计算过程却要繁复得多.本实验仅测厚金属铝的复折射率.为使计算简化,将式(15.25)改写成以下形式=n2-i nκ由于待测厚金属铝的厚度d与光的穿透深度相比大得多,在膜层第二个界面上的反射光可以忽略不计,因而可以直接引用单界面反射的菲涅尔反射系数公式(15.4).经推算后得公式中的n1,φ1和κ的意义均与透明介质情况下相同.实验内容关于椭偏仪的具体结构和使用方法,请参看仪器说明书.实验时为了减小测量误差,不但应将样品台调水平,还应尽量保证入射角φ1放置的准确性,保证消光状态的灵敏判别.另外,以下的测量均是在波长为632.8nm时的参数.而且,所有测量均是光从空气介质入射到膜面.1 测厚铝膜的复折射率取入射角φ1=π/3.按已述方法测得Δ和ψ.由式(15.26)和式(15.27)式算出n和κ值,并写出折射率的实部和虚部. 2 测硅衬底上二氧化硅膜的折射率和厚度已知衬底硅的复折射率为n3=3.85-i0.02,取入射角φ1=7π/18.二氧化硅膜只有实部.膜厚在第一周期内.测出Δ和ψ后,利用列线图(或数值表)和计算机求出n2和d,将两种方法的结果进行对比.并计算膜的一个周期厚度值d0.3 测量κ0玻璃衬底上氟化镁(MgF2)膜层的折射率和厚度 (1) 测κ0玻璃的折射率首先测出无膜时K0玻璃的Δ和ψ值,然后代入n3=n3(Δ,ψ,φ1)的关系式中算出n3值,测量时入射角φ1取7π/18.关于n3与三个参量的关系式,根据式(15.1),式(15.4),式(15.5)和式(15.6),并令膜厚d=0,便可以算出n3的实部n0的平方值和n3的虚部κ值为(15.28)(15.29)(2)测透明介质膜氟化镁的折射率和厚度仍取入射角φ1=7π/18.膜厚在第一周期内.测出Δ和ψ后也用列线图和计算机求出结果.思考题(1) 用椭偏仪测薄膜的厚度和折射率时,对薄膜有何要求?(2) 在测量时,如何保证φ1较准确?(3) 试证明:|P1-P2| =π/2,|P3-P4| =π/2.(4) 若须同时测定单层膜的三个参数(折射率n2,厚度d 和吸收系数κ),应如何利用椭偏方程?。
椭圆偏振仪测量薄膜厚度和折射率演示课件
实验操作
将1/4波片快轴转到+450位置 仔细调节检偏器A和起偏器P,使目镜内的亮点最暗,
即检流计值最小。计下A、P的刻度值,测得两组消 光位置数值 将1/4波片快轴转到-450位置 重复2的工作。
其中:A分别取大于900和小于900 两种情况。
14
测试结果点
15
16
17
18
19
和 称为椭圆偏参量(椭圆偏角)
8
和的物理意义
光的复数形式 EEexpi() 反射前后p和s分量的振幅比 ta nErpEis/ErsEip
反射前后p和s分量的位相差 (rp r)s(ipis )
9
问题的简化
入射光为等幅椭圆偏振光 Eis / Eip 1
反射光为线性偏振光 rprs0()
20
21
22
23
24
25
26
27
28
29
30
10
简化目的
ta n Erp/Ers 恰好是反射光p和s的幅值比,通过 检偏器角度A可求;
(ipis)0() 为光经过膜位相的改变,可通 过起偏器的角度P求得
11
简化条件的节起偏器的角度就可以使入射光的位相差连
续可调.
12
仪器校准
•自准法调光路水平和共轴 •利用布儒斯特角调节检偏器 •利用检偏器和起偏器的关系调节起偏器 •确定1/4波片
一束自然光经偏振器变成偏振光,再经过1/4波 片使它变成椭圆偏振光入射在待测膜上;
反射时,光的偏振状态发生变化;
通过检测这种变化,便可推算出待测膜面的膜 厚度和折射率.
6
多光反射示意图
p s
d
n1 n2 n3
椭圆偏振法测量薄膜厚度和折射率实验报告
椭圆偏振法测量薄膜厚度和折射率实验报告实验名称:椭圆偏振法测量薄膜厚度和折射率实验目的:利用椭圆偏振法测量薄膜的厚度和折射率,掌握椭圆偏振法的基本原理和实验操作方法。
实验原理:椭圆偏振法是一种常用的测量薄膜光学性质的方法。
当偏振光通过具有一定折射率的薄膜时,会发生透射和反射,经过反射和透射之后的光束会发生干涉现象。
当入射光是偏振光时,通过表层膜的透射光经过增偏器后变为线偏振光,其振动方向决定于表层膜的光学性质以及入射角。
通过调节增偏器的方向和旋转其角度,使得通过增偏器的振动方向与振动椭圆的长轴平行,此时称之为白光不通过表层膜,反射线偏振光与透射线偏振光的相位差为0. 形成一个相干叠加的椭圆偏振光。
根据椭圆偏振光的特性,可以通过测量椭圆偏振光的特性参数(主轴角度、椭圆离心率等)来确定薄膜的厚度和折射率。
实验装置:椭圆偏振仪、光源、待测试薄膜样品。
实验步骤:1. 启动椭圆偏振仪,调整光源使其达到合适的亮度和稳定性。
2. 将待测薄膜样品放置在椭圆偏振仪的样品台上,并通过对焦镜调整样品的焦距。
3. 调整增偏器的方向,使通过增偏器的线偏振光振动方向与椭圆的长轴平行。
4. 调整旋转台上的角度,使反射线偏振光与透射线偏振光的相位差为0,此时形成相干的椭圆偏振光。
5. 在椭圆偏振仪上的读数器上记录椭圆偏振光的主轴角度、椭圆离心率等参数。
6. 重复上述操作,测量多组数据,以提高测量准确度。
7. 根据测量得到的参数计算薄膜的厚度和折射率。
实验结果:通过测量多组数据,记录椭圆偏振光的主轴角度和椭圆离心率等参数,得到一组薄膜的厚度和折射率。
注意保留合适的有效数字。
实验讨论:1. 实验中应确保光源的稳定性和一致性,以获得准确的测量结果。
2. 实验中可以通过调整增偏器和旋转台的角度,使椭圆偏振光的参数达到最佳值,以提高测量精度。
3. 实验中应注意测量时的环境条件,避免与外部环境光的干扰。
实验结论:通过椭圆偏振法测量薄膜的厚度和折射率,可以得到薄膜的光学性质参数。
椭圆偏振法测量薄膜厚度及折射率
椭圆偏振法测量薄膜厚度及折射率实验目的:1、利用椭偏仪测量硅衬底薄膜的折射率和厚度;提高物理推理与判别处理能力。
2、用自动椭偏仪再测量进行对比;分析不同实验仪器两种方式的测量。
提高误差分析与分配能力。
教学安排手动测量记录P、A 2学时自动测量并计算n、d 1学时对比研究1学时原理综述:椭圆偏振法简称椭偏法,是一种先进的测量薄膜纳米级厚度的方法,椭偏法的基本原理由于数学处理上的困难,直到上世纪40年代计算机出现以后才发展起来,椭偏法的测量经过几十年来的不断改进,已从手动进入到全自动、变入射角、变波长和实时监测,极大地促进了纳米技术的发展,椭偏法的测量精度很高(比一般的干涉法高一至二个数量级),测量灵敏度也很高(可探测生长中的薄膜小于0.1nm的厚度变化)。
利用椭偏法可以测量薄膜的厚度和折射率,也可以测定材料的吸收系数或金属的复折射率等光学参数。
因此,椭偏法在半导体材料、光学、化学、生物学和医学等领域有着广泛的应用。
通过实验,读者应了解椭偏法的基本原理,学会用椭偏法测量纳米级薄膜的厚度和折射率,以及金属的复折射率。
一、实验原理椭偏法测量的基本思路是,起偏器产生的线偏振光经取向一定的1/4波片后成为特殊的椭圆偏振光,把它投射到待测样品表面时,只要起偏器取适当的透光方向,被待测样品表面反射出来的将是线偏振光。
根据偏振光在反射前后的偏振状态变化(包括振幅和相位的变化),便可以确定样品表面的许多光学特性。
设待测样品是均匀涂镀在衬底上的透明同性膜层。
如图3.5.1所示,n1,n2和n3分别为环境介质、薄膜和衬底的折射率,d是薄膜的厚度,入射光束在膜层上的入射角为φ1,在薄膜及衬底中的折射角分别为φ2和φ3。
按照折射定律有错误!未找到引用源。
(3.5.1)光的电矢量分解为两个分量,即在入射面内的P分量及垂直于入射面的S分量。
根据折射定律及菲涅尔反射公式,可求得P分量和S分量在第一界面上的复振幅反射率分别为而在第二个界面处则有从图3.5.1可以看出,入射光在两个界面上会有很多次的反射和折射,总反射光束将是许多反射光束干涉的结果,利用多光束干涉的理论,得p分量和s 分量的总反射系数其中是相邻反射光束之间的相位差,而λ为光在真空中的波长。
椭偏光法测薄膜的折射率和厚度
实验五 椭偏光法测薄膜的折射率和厚度一、引言椭圆偏振测量术简称椭偏术。
它是利用光的偏振性质,将一椭圆偏振光射到被测样品表面,观测反射光偏振状态的变化来推知样品的光学常数。
就其理论范畴来讲,它与十涉法一样,都是利用光的波动性,以经典物理学为基础。
这种测量方法的原理早在上个世纪就提出来了,距今已有近百年的历史。
由于光波通过偏振器件及样品反射时,光波偏振状态变化得异常灵敏,使得椭偏术的理论精度之高是干涉法不能比拟的,又由于这种测理是非破坏性的,因此它的优越性是显而易见的。
长期以来,人们一直力图将这种测量方法付诸应用。
早在40年代就有人提出实验装置,但由于计算上的困难一直得不到发展。
电子计算机及激光技术的广泛应用,为椭偏术的实际应用及迅猛发展创造了条件。
今天椭偏术已成为测量技术的一个重要的分支。
椭偏术有很多优点,主要是测量灵敏、精度高,测量范围从1oA 到几个微米而且是非接触测量。
国外生产的高精度自动椭偏仪能测量正在生长的薄膜小于l o A 的厚度变化,可检测百分之儿的单分子层厚度,深入到原子数量级。
因此既可将其应用于精密分析测量,也可以用于表面研究,用于自动监控及分析液、固分界面的变化。
目前椭偏术已应用到电子工业,光学工业,金属材料工业,化学工业,表面科学和生物医学等领域。
在我们的实验中,使用消光椭偏仪测量薄膜的折射率和厚度。
除了能学习到其测量方法外,其巧妙的设计思想也将给我们极人的启发和收益。
二、椭偏术原理1.椭偏术基本方程椭圆偏振光入射到透明介质薄膜时,光在两个分界面(空气与薄膜,薄膜与衬底)来同反射和折射,如图5.1所示。
总反射光由多光束干涉而成,光在两个分界面的P 波和S 波的反射系数分别为1122p s p s r r r r 、、、图 5—1由菲涅尔公式有:121122112112211122322323223223322233cos cos cos cos cos cos cos cos cos cos cos cos cos cos cos cos p s p s n n r n n n n r n n n n r n n n n r n n ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ-⎧=⎪+⎪-⎪=⎪+⎪⎨-⎪=⎪+⎪-⎪=⎪+⎩以上各式中1n 为空气折射率,2n 为膜层的折射率,3n 为衬底折射率。
椭圆偏振光法测量薄膜的厚度和折射率
椭圆偏振光法测量薄膜的厚度和折射率摘要:本实验中,我们用椭圆偏振光法测量了MgF 2,ZrO 2,TiO 2三种介质膜的厚度和折射率,取MgF 2作为代表,测量薄膜折射率和厚度沿径向分布的不均匀性,此外还测量了Au 和Cr 两种金属厚膜的折射率和消光系数。
掌握了椭圆偏振光法的基本原理和技术方法。
关键词:椭偏法,折射率,厚度,消光系数 引言:薄膜的厚度和折射率是薄膜光电子器件设计和制备中不可缺少的两个参数。
因此,精确而迅速地测定这两个参数非常重要。
椭圆偏振光法就是一个非常重要的方法。
将一束单色椭圆偏振光投射到薄膜表面,根据电动力学原理,反射光的椭偏状态与薄膜厚度和折射率有关,通过测出椭偏状态的变化,就可以推算出薄膜的厚度和折射率。
椭圆偏振光法是目前测量透明薄膜厚度和折射率时的常用方法,其测量精度高,特别是在测量超薄薄膜的厚度时其灵敏度很高,因此常用于研究薄膜生长的初始阶段,而且由于这种方法时非接触性的,测量过程中不破坏样品表面,因而可用于薄膜生长过程的实时监控。
本实验的目的是掌握椭偏法测量薄膜的厚度和折射率的原理和技术方法。
测量几种常用介质膜的折射率和厚度,以及金属厚膜的复折射率。
原理:1. 单层介质膜的厚度和折射率的测量原理(1)光波在两种介质分界面上的反射和折射,有菲涅耳公式:121122112112211122322323223223322233cos cos cos cos cos cos cos cos cos cos cos cos cos cos cos cos p s p s n n r n n n n r n n n n r n n n n r n n ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ-⎧=⎪+⎪-⎪=⎪+⎪⎨-⎪=⎪+⎪-⎪=⎪+⎩(tp-1); (2)单层膜的反射系数图1 光波在单层介质膜中传播以上各式中1n 为空气折射率,2n 为膜层的折射率,3n 为衬底折射率。
1ϕ为入射角,2ϕ,3ϕ分别为光波在薄膜和衬底的折射角。
椭圆偏振光法测定介质薄膜的厚度和折射率 (2)
椭圆偏振光法测定介质薄膜的厚度和折射率5-姓名:陈正 学号:PB05210465 系别:6系实验目的:本实验的目的有以下两个:1.了解椭偏仪测量薄膜参数的原理.2.初步掌握反射型椭偏仪的使用方法.实验原理:椭圆偏振光经薄膜系统反射后,偏振状态的变化量与薄膜的厚度和折射率有关,因此只要测量出偏振状态的变化量,就能利用计算机程序多次逼近定出膜厚和折射率。
参数∆描述椭圆偏振光的P 波和S 波间的相位差经薄膜系统关系后发生的变化,ψ描述椭圆偏振光相对振幅的衰减。
有超越方程:tan pr pi sr si E E E E ψ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()()pr sr pi si ββββ∆=---为简化方程,将线偏光通过方位角±45︒的14波片后,就以等幅椭圆偏振光出射,pi si E E =;改变起偏器方位角ϕ就能使反射光以线偏振光出射,()0pr sr ββπ︒∆=-=或,公式化简为:tan pr sr E E ψ=()pi si ββ∆=--实验仪器:分光计、He-Ne 激光器及电源 、起偏器 、检偏器 、14波片,待测样品、黑色反光镜、放大镜等;实验内容:1. 按调分光计的方法调整好主机.2. 水平度盘的调整.3. 光路调整.4. 检偏器读数头位置的调整和固定.5. 起偏器读数头位置的调整与固定.6. 4/1波片零位的调整.7. 将样品放在载物台中央,旋转载物台使达到预定的入射角70゜即望远镜转过40゜,并使反射光在白屏上形成一亮点.8. 为了尽量减小系统误差,采用四点测量.9. 将相关数据输入“椭偏仪数据处理程序”,经过范围确定后,可以利用逐次逼近法,求出与之对应的d 和n ;由于仪器本身的精度的限制,可将d 的误差控制在1埃左右,n 的误差控制在0.01左右.数据处理:原始数据列表:由分析知A,P 应满足以下条件:⎪⎪⎩⎪⎪⎨⎧==︒=+︒=+42314321180180A A A A A A A A ⎪⎪⎩⎪⎪⎨⎧︒=+︒=+︒=-︒=-270270909042314321P P P P P P P P 所以测量数据基本满足以上的条件。
椭偏仪测量薄膜厚度和折射率实验报告
椭偏仪测量薄膜厚度和折射率实验报告实验目的:1.学习使用椭偏仪测量薄膜的厚度和折射率。
2.了解光线在薄膜中的传播和干涉现象。
实验仪器和材料:1.椭偏仪2.微米螺旋3.干净的玻璃片4.一块薄膜样品5.直尺6.实验台7.光源实验原理:椭偏仪是一种用于测量透明物体表面薄膜的厚度和折射率的仪器。
当光线从真空进入具有一定折射率的介质中时,会发生折射和反射。
当光线垂直入射到薄膜表面时,经过多次反射和折射后会形成干涉现象。
通过观察测量光的振幅和相位差的变化,可以推导出薄膜的厚度和折射率。
实验步骤:1.将实验台安装好,并确保椭偏仪的光源正常工作。
2.用直尺测量玻璃片和薄膜样品的尺寸,并记录下来。
3.将玻璃片放在实验台上,并将椭偏仪对准玻璃片。
4.调节椭偏仪的干涉仪臂使得产生清晰的干涉条纹。
5.使用微米螺旋逐渐调整反射镜的角度,直到条纹的清晰度达到最佳状态。
6.记录下此时的微米螺旋读数,并用直尺测量薄膜样品的厚度,得到薄膜的实际厚度。
7.调节椭偏仪的角度,使得干涉条纹平行于椭偏仪的刻度线。
8.记录下此时的椭偏仪读数,并计算出薄膜的厚度。
9.重复以上步骤2-8三次,并求取平均值。
10.使用已知的材料的折射率标定椭偏仪,并根据标定值计算出薄膜样品的折射率。
实验结果:根据实验步骤中记录的数据,计算出薄膜样品的平均厚度和折射率。
实验讨论:2.在实验中,可以尝试调节椭偏仪的角度和干涉条纹的清晰度,以获得更准确的测量结果。
3.实验中使用的薄膜样品的厚度和折射率可以进一步研究其与其他因素的关系,如温度、湿度等。
实验结论:通过使用椭偏仪测量薄膜的厚度和折射率,可以得到薄膜样品的相关参数。
实验结果表明,椭偏仪是一种能够精确测量薄膜和折射率的有效工具。
通过该实验,我们可以深入理解光的干涉现象和薄膜的光学性质。
椭偏仪的测折射率和薄膜厚度
椭偏仪测折射率和薄膜厚度实验简介椭圆偏振光在样品表面反射后,偏振状态会发生变化,利用这一特性可以测量固体上介质薄膜的厚度和折射率。
它具有测量范围宽(厚度可从10^-10~10^-6m量级)、精度高(可达百分之几单原子层)、非破坏性、应用范围广(金属、半导体、绝缘体、超导体等固体薄膜)等特点。
目前商品化的全自动椭圆偏振光谱仪,利用动态光度法跟踪入射光波长和入射角改变时反射角和偏振状态的变化,实现全自动控制以及椭偏参数的自动测定、光学常数的自动计算等,但实验装置复杂,价格昂贵。
本实验采用简易的椭圆偏振仪,利用传统的消光法测量椭偏参数,使学生掌握椭偏光法的基本原理,仪器的使用,并且实际测量玻璃衬底上的薄膜的厚度和折射率。
在现代科学技术中,薄膜有着广泛的应用。
因此测量薄膜的技术也有了很大的发展,椭偏法就是70年代以来随着电子计算机的广泛应用而发展起来的目前已有的测量薄膜的最精确的方法之一。
椭偏法测量具有如下特点:1. 能测量很薄的膜(1nm),且精度很高,比干涉法高1-2个数量级。
2. 是一种无损测量,不必特别制备样品,也不损坏样品,比其它精密方法:如称重法、定量化学分析法简便。
3. 可同时测量膜的厚度、折射率以及吸收系数。
因此可以作为分析工具使用。
4. 对一些表面结构、表面过程和表面反应相当敏感。
是研究表面物理的一种方法。
实验仪器椭偏仪测折射率和薄膜厚度实验装置包括:激光器(氦氖或半导体)、分光计、光栏、望远镜、黑色反光镜、薄膜样品、起偏器、检偏器、1/4波片。
实验内容1. 熟悉并掌握椭偏仪的调整椭偏仪实物图椭偏仪结构示意图椭偏仪的实物如上图所示。
了解图中各部件的作用,并学会正确调整。
2. 调整光路,并使入射到样品的光为等幅椭圆偏振光(1) 安装半导体激光器并调整分光计,使半导体激光器光束、平行光轴的中心轴、望远镜筒的中心轴同轴。
(2) 标定检偏器透光轴的零刻度,并使检偏器的透光轴零刻度垂直于分光计主轴。
3.1 椭偏光法测量薄膜的厚度和折射率
实验3.1 椭偏光法测量薄膜的厚度和折射率一、引言椭圆偏振测量法,简称椭偏光法,是测量研究介质表面界面或薄膜光学特性的一种重要光学方法。
它是将一束偏振光非垂直地投射到被测样品表面,由观察反射光或透射光的偏振状态的变化来推知样品的光学特性,例如薄膜的厚度,材料的复折射率等。
这种测量方法的优点是测量精度非常高,而且对样品是非破坏性的,它可以测量出薄膜厚度约0.1 nm的变化。
因此。
可以用于表面界面的研究,也可用于准单原子层开始的薄膜生长过程的实时自动监测。
椭偏光法的应用范围广泛,自然界中普遍存在着各种各样的界面和薄膜,人工制备薄膜的种类也越来越多,因此椭偏光法应用于物理、化学、表面科学、材料科学、生物科学以及有关光学、微电子、机械、冶金和生物医学等领域中。
在材料科学中椭偏测量常用来测量各种功能介质薄膜、硅上超薄氧化层以及超薄异质层生长的实时监控、溅射刻蚀过程的实时监控等。
自1945年罗中(A. Rothen)描述了用以测量薄膜表面光学性质的椭偏仪以来,随着科学技术的迅速发展,椭偏光法发展很快,椭偏仪的制造水平也不断提高,特别是使用计算机处理复杂繁冗的椭偏测量数据后使测量快捷简便了许多。
二、实验目的1. 了解椭偏光测量原理和实验方法。
2. 熟悉椭偏仪器的结构和调试方法。
3. 测量介质薄膜样品的厚度和折射率,以及硅的消光系数和复折射率。
三、实验原理本实验介绍反射型椭偏光测量方法。
其基本原理是用一束椭偏光照射到薄膜样品上,光在介质膜的交界面发生多次的反射和折射,反射光的振幅和位相将发生变化,这些变化与薄膜的厚度和光学参数(折射率、消光系数等)有关,因此,只要测出反射偏振状态的变化,就可以推出膜厚和折射率等。
1. 椭圆偏振方程图1所示为均匀、各向同性的薄膜系统,它有两个平行的界面。
介质1通常是折射率为n 1的空气,介质2是一层厚度为d 的复折射率为n 2的薄膜,均匀地附在复折射率为n 3的衬底材料上。
φ1为光的入射角,φ2和φ3分别为薄膜中和衬底中的折射角。
南京大学-椭偏光法测量薄膜的厚度和折射率
椭偏光法测量薄膜的厚度和折射率(南京大学物理学院江苏南京 210000)摘要:椭圆偏振测量法,即椭偏光法,是将一束偏振光非垂直地投射到被测样品表面,观察反射光或透射光的偏振状态变化来推知样品的光学特性,如薄膜的厚度,材料的负折射率等。
本实验用椭偏仪,根据椭偏光法测量薄膜样品的厚度和折射率。
关键词:椭偏光法;椭偏仪;椭圆偏振方程;椭偏参数一、实验目的1. 了解椭偏光发测量原理和实验方法。
2. 熟悉椭偏仪器的结构和调试方法。
3. 测量介质薄膜样品的厚度和折射率,以及硅的消光系数和负折射率。
二、实验原理1.椭圆偏振方程在一光学材料上镀各向同性的单层介质膜后,光线的反射和折射在一般情况下会同时存在的。
通常,设介质层为n1、n2、n3,φ1为入射角,那么在1、2介质交界面和2、3介质交界面会产生反射光和折射光的多光束干涉,如图1图1 薄膜系统的光路示意图这里我们用2δ表示相邻两分波的相位差,其中δ=2πdn2cosφ2/λ,用r1p、r1s表示光线的p 分量、s分量在界面1、2间的反射系数,用r2p 、r2s表示光线的p分、s分量在界面2、3间的反射系数。
由多光束干涉的复振幅计算可知:其中Eip和Eis分别代表入射光波电矢量的p分量和s分量,Erp和Ers分别代表反射光波电矢量的p分量和s分量。
现将上述Eip、Eis、Erp、Ers四个量写成一个量G,即:我们定义G为反射系数比,它应为一个复数,可用tgψ和Δ表示它的模和幅角。
上述公式的过程量转换可由菲涅耳公式和折射公式给出:G是变量n1、n2、n3、d、λ、φ1的函数(φ2 、φ3可用φ1表示) ,即ψ=tg-1f,Δ=arg| f |,称ψ和Δ为椭偏参数,上述复数方程表示两个等式方程:[tgψe iΔ]的实数部分=的实数部分[tgψe iΔ]的虚数部分=的虚数部分若能从实验测出ψ和Δ的话,原则上可以解出n2和d (n1、n3、λ、φ1已知),根据公式(4)~(9),推导出ψ和Δ与r1p、r1s、r2p、r2s、和δ的关系:由上式经计算机运算,可制作数表或计算程序。
椭圆偏振仪测量薄膜厚度和折射率
实验15 椭圆偏振仪测量薄膜厚度和折射率在近代科学技术的许多部门中对各种薄膜的研究和应用日益广泛.因此,更加准确和迅速地测定一给定薄膜的光学参数已变得更加迫切和重要.在实际工作中虽然可以利用各种传统的方法测定光学参数〔如布儒斯特角法测介质膜的折射率、干预法测膜厚等〕,但椭圆偏振法〔简称椭偏法〕具有独特的优点,是一种较灵敏〔可探测生长中的薄膜小于0.1nm的厚度变化〕、精度较高〔比一般的干预法高一至二个数量级〕、并且是非破坏性测量.是一种先进的测量薄膜纳米级厚度的方法.它能同时测定膜的厚度和折射率〔以与吸收系数〕.因而,目前椭圆偏振法测量已在光学、半导体、生物、医学等诸方面得到较为广泛的应用.这个方法的原理几十年前就已被提出,但由于计算过程太复杂,一般很难直接从测量值求得方程的解析解.直到广泛应用计算机以后,才使该方法具有了新的活力.目前,该方法的应用仍处在不断的开展中.实验目的(1) 了解椭圆偏振法测量薄膜参数的根本原理;(2) 初步掌握椭圆偏振仪的使用方法,并对薄膜厚度和折射率进展测量.实验原理椭偏法测量的根本思路是,起偏器产生的线偏振光经取向一定的1/4波片后成为特殊的椭圆偏振光,把它投射到待测样品外表时,只要起偏器取适当的透光方向,被待测样品外表反射出来的将是线偏振光.根据偏振光在反射前后的偏振状态变化,包括振幅和相位的变化,便可以确定样品外表的许多光学特性.1 椭偏方程与薄膜折射率和厚度的测量图15.1所示为一光学均匀和各向同性的单层介质膜.它有两个平行的界面,通常,上部是折射率为n1的空气(或真空).中间是一层厚度为d折射率为n2的介质薄膜,下层是折射率为n3的衬底,介质薄膜均匀地附在衬底上,当一束光射到膜面上时,在界面1和界面2上形成屡次反射和折射,并且各反射光和折射光分别产生多光束干预.其干预结果反映了膜的光学特性.设φ1表示光的入射角,φ2和φ3分别为在界面1和2上的折射角.根据折射定律有n1sinφ1=n2sinφ2=n3sinφ3〔15.1〕光波的电矢量可以分解成在入射面振动的P分量和垂直于入射面振动的s 分量.假如用E ip和E is分别代表入射光的p和s分量,用E rp与E rs分别代表各束反射光K0,K1,K2,…中电矢量的p分量之和与s分量之和,如此膜对两个分量的总反射系数R p和R s定义为RP=Erp/E ip, R s=E rs/E is〔15.2〕经计算可得式中,r1p或r1s和r2p或r2s分别为p或s分量在界面1和界面2上一次反射的反射系数.2δ为任意相邻两束反射光之间的位相差.根据电磁场的麦克斯韦方程和边界条件,可以证明r 1p =tan(φ1-φ2)/ tan(φ1+φ2), r1s=-sin (φ1-φ2)/ sin(φ1+φ2);r2p=tan(φ2-φ3)/tan(φ2+φ3), r2s =-sin (φ2-φ3)/ sin(φ2+φ3).(15.4)式〔15.4〕即著名的菲涅尔〔Fresnel〕反射系数公式.由相邻两反射光束间的程差,不难算出.(15.5)式中,λ为真空中的波长,d和n2为介质膜的厚度和折射率.在椭圆偏振法测量中,为了简便,通常引入另外两个物理量ψ和Δ来描述反射光偏振态的变化.它们与总反射系数的关系定义为上式简称为椭偏方程,其中的ψ和Δ称为椭偏参数〔由于具有角度量纲也称椭偏角〕.由式(15.1),式( 15.4),式( 15.5)和上式可以看出,参数ψ和Δ是n1,n,n3,λ和d的函数.其中n1,n2,λ和φ1可以是量,如果能从实验中测出ψ2和Δ的值,原如此上就可以算出薄膜的折射率n2和厚度d.这就是椭圆偏振法测量的根本原理.实际上,终究ψ和Δ的具体物理意义是什么,如何测出它们,以与测出后又如何得到n2和d,均须作进一步的讨论.2 ψ和Δ的物理意义用复数形式表示入射光和反射光的p和s分量E=|E ip|exp(iθip),E is=|E is|exp(iθis);ipE=|E rp|exp(iθrp) ,E rs=|E rs|exp(irpθ).〔15.6〕rs式中各绝对值为相应电矢量的振幅,各θ值为相应界面处的位相.由式〔15.6〕,式〔15.2〕和式〔15.7〕式可以得到.〔15.7〕比拟等式两端即可得tanψ=|E rp||E is|╱|E rs||E ip| 〔15.8〕Δ=(θrp–θrs)- (θip–θ) 〔15.9〕is式〔15.8〕明确,参量ψ与反射前后p和s分量的振幅比有关.而〔15.9〕式明确,参量Δ与反射前后p和s分量的位相差有关.可见,ψ和Δ直接反映了光在反射前后偏振态的变化.一般规定,ψ和Δ的变化围分别为0≤ψ<π/2和0≤Δ<2π.当入射光为椭圆偏振光时,反射后一般为偏振态〔指椭圆的形状和方位〕发生了变化的椭圆偏振光(除开ψ<π/4且Δ=0的情况).为了能直接测得ψ和Δ,须将实验条件作某些限制以使问题简化.也就是要求入射光和反射光满足以下两个条件:〔1〕要求入射在膜面上的光为等幅椭圆偏振光〔即P和S二分量的振幅相等〕.这时,|E ip|/|E is|=1,式〔15.9〕如此简化为tanψ=|E rp|/|E rs| .〔15.10〕〔2〕要求反射光为一线偏振光.也就是要求θrp–θrs=0〔或π〕,式〔15.9〕如此简化为〔15.15〕满足后一条件并不困难.因为对某一特定的膜,总反射系数比R p/R s是一定值.式〔15.6〕决定了⊿也是某一定值.根据〔15.9〕式可知,只要改变入射光二分量的位相差〔θip–θis〕,直到其大小为一适当值〔具体方法见后面的表示〕,就可以使〔θip–θis〕=0〔或π〕,从而使反射光变成一线偏振光.利用一检偏器可以检验此条件是否已满足.以上两条件都得到满足时,式〔15.10〕明确,tanψ恰好是反射光的p和s分量的幅值比,ψ是反射光线偏振方向与s方向间的夹角,如图15.2所示.式〔15.15〕如此明确,Δ恰好是在膜面上的入射光中s和s分量间的位相差.3 ψ和Δ的测量实现椭圆偏振法测量的仪器称为椭圆偏振仪〔简称椭偏仪〕.它的光路原理如图15.3所示.氦氖激光管发出的波长为 632. 8 nm的自然光,先后通过起偏器Q,1/4波片C入射在待测薄膜F上,反射光通过检偏器R射入光电接收器T.如前所述,p和s分别代表平行和垂直于入射面的二个方向.快轴方向f,对于负是指平行于光轴的方向,对于正晶体是从Q,C和R用虚线引下的三个插图都是迎光线看去的指垂直于光轴的方向.t代表Q的偏振方向,f代表C的快轴方向,t r 代表R 的偏振方向.慢轴方向l,对于负晶体是指垂直于光轴方向,对于正晶体是指平等于光轴方向.无论起偏器的方位如何,经过它获得的线偏振光再经过1/4波片后一般成为椭圆偏振光.为了在膜面上获得p和s二分量等幅的椭圆偏振光,只须转动1/4波片,使其快轴方向f与s方向的夹角α=土π/4即可〔参看后面〕.为了进一步使反射光变成为一线偏振光E,可转动起偏器,使它的偏振方向t与s方向间的夹角P1为某些特定值.这时,如果转动检偏器R使它的偏振方向t r与E r垂直,如此仪器处于消光状态,光电接收器T接收到的光强最小,检流计的示值也最小.本实验中所使用的椭偏仪,可以直接测出消光状态下的起偏角P1和检偏方位角ψ.从式〔15.15〕可见,要求出Δ,还必须求出P1与〔θip–θis〕的关系.下面就上述的等幅椭圆偏振光的获得与P1与Δ的关系作进一步的说明.如图15.4所示,设已将1/4波片置于其快轴方向f与s方向间夹角为π/4的方位.E0为通过起偏器后的电矢量,P1 为E0与s方向间的夹角〔以下简称起偏角〕.令γ表示椭圆的开口角〔即两对角线间的夹角〕.由晶体光学可知,通过1/4波片后,E0沿快轴的分量E f与沿慢轴的分量E l比拟,位相上超前π/2.用数学式可以表达成.〔15.12〕.〔15.13〕从它们在p和s两个方向的投影可得到p和s的电矢量分别为:.〔15.14〕.〔15.15〕由式〔15.14〕和式〔15.15〕看出,当1/4波片放置在+π/4角位置时,确实在p和s二方向上得到了幅值均为E0/2的椭圆偏振入射光.p和s的位相差为θip–θis=π/2-2P1.〔15.16〕另一方面,从图15.4上的几何关系可以得出,开口角γ与起偏角P1的关系为γ/2=π/4-P1γ=π/2-2P1 〔15.17〕如此〔15.16〕式变为θip–θis=γ〔15.18〕由式〔15.15〕可得Δ=—(θ-θis)= -γ〔15.19〕ip至于检偏方位角ψ,可以在消光状态下直接读出.在测量中,为了提高测量的准确性,常常不是只测一次消光状态所对应的P1和ψ1值,而是将四种〔或二种〕消光位置所对应的四组〔P1,ψ1〕),〔P2,ψ2〕,〔P3,ψ3〕和〔P4,ψ4〕值测出,经处理后再算出Δ和ψ值.其中,(P1,ψ1)和〔P2,ψ2〕所对应的是1/4波片快轴相对于S方向置+π/4时的两个消光位置(反射后P和S光的位相差为0或为π时均能合成线偏振光).而(P3,ψ3)和(P4,ψ4)对应的是1/4波片快轴相对于s方向置-π/4的两个消光位置.另外,还可以证明如下关系成立:|p1-p2|=90˚,ψ2=-ψ1.|p3-p4|=90˚,ψ4=-ψ3.求Δ和ψ的方法如下所述.(1) 计算Δ值.将P1,P2,P3和P4于π/2的减去π/2,不大于π/2的保持原值,并分别记为< P1>,< P2>,< P3>和< P4>,然后分别求平均.计算中,令和,(15. 20)而椭圆开口角γ与和的关系为.(15.21)由式(15.22)算得ψ⊿值.利用类似于图15.4的作图方法,分别画出起偏角在表15.1所指围的椭圆偏振光图,由图上的几何关系求出与公式〔15.18〕P1类似的γ与P1Δ与γ的对应关系.P与Δ的对应关系1P=-(θip-θ1)is-γ0~π/4π/4~π/2γπ/2~3π/4 π-γ3π/4~π- (π-γ)(2) 计算ψ值:应按公式〔15.22〕进展计算.(15.22)4折射率n2和膜厚d的计算尽管在原如此上由ψ和Δ能算出n2和d,但实际上要直接解出〔n2,d〕和〔Δ,ψ〕的函数关系式是很困难的.一般在n1和n2均为实数〔即为透明介质的〕,并且衬底折射率n3〔可以为复数〕的情况下,将〔n2,d〕和〔Δ,ψ〕的关系制成数值表或列线图而求得n2和d值.编制数值表的工作通常由计算机来完成.制作的方法是,先测量〔或〕衬底的折射率n2,取定一个入射角φ1,的初始值,令δ从0变到180°〔变化步长可取π/180,π/90,…设一个n2等〕,利用式〔15.4〕,式〔15.5〕和式〔15.6〕,便可分别算出d,Δ和ψ值.然后将n2增加一个小量进展类似计算.如此继续下去便可得到〔n2,d〕~〔Δ,ψ〕的数值表.为了使用方便,常将数值表绘制成列线图.用这种查表〔或查图〕求n2和d的方法,虽然比拟简单方便,但误差较大,故目前日益广泛地采用计算机直接处理数据.另外,求厚度d时还需要说明一点:当n1和n2为实数时,式〔15.4〕中的φ为实数,两相邻反射光线间的位相差“亦为实数,其周期为2π.2δ可能2随着d的变化而处于不同的周期中.假如令2δ=2π时对应的膜层厚度为第一个周期厚度d0,由〔15.4〕式可以得到由数值表,列线图或计算机算出的d值均是第一周期的数值.假如膜厚大于d,可用其它方法(如干预法)确定所在的周期数j,如此总膜厚是D = (j -1) d+d.5金属复折射率的测量以上讨论的主要是透明介质膜光学参数的测量,膜对光的吸收可以忽略不计,因而折射率为实数.金属是导电媒质,电磁波在导电媒质中传播要衰减.故各种导电媒质中都存在不同程度的吸收.理论明确,金属的介电常数是复数,其折射率也是复数.现表示为=n2 -iκ式中的实部n2并不相当于透明介质的折射率.换句话说,n2的物理意义不对应于光在真空中速度与介质中速度的比值,所以也不能从它导出折射定律.式中κ称为吸收系数.这里有必要说明的是,当为复数时,一般φ1和φ2也为复数.折射定律在形式上仍然成立,前述的菲涅尔反射系数公式和椭偏方程也成立.这时仍然可以通过椭偏法求得参量d,n2和k,但计算过程却要繁复得多.本实验仅测厚金属铝的复折射率.为使计算简化,将式〔15.25〕改写成以下形式=n2-i nκ由于待测厚金属铝的厚度d与光的穿透深度相比大得多,在膜层第二个界面上的反射光可以忽略不计,因而可以直接引用单界面反射的菲涅尔反射系数公式〔15.4〕.经推算后得公式中的n1,φ1和κ的意义均与透明介质情况下一样.实验容关于椭偏仪的具体结构和使用方法,请参看仪器说明书.实验时为了减小测量误差,不但应将样品台调水平,还应尽量保证入射角φ1放置的准确性,保证消光状态的灵敏判别.另外,以下的测量均是在波长为632.8nm时的参数.而且,所有测量均是光从空气介质入射到膜面.1 测厚铝膜的复折射率=π/3.按已述方法测得Δ和ψ.由式(15.26)和式(15.27)取入射角φ1式算出n和κ值,并写出折射率的实部和虚部.2 测硅衬底上二氧化硅膜的折射率和厚度衬底硅的复折射率为n3=3.85-i0.02,取入射角φ1=7π/18.二氧化硅膜只有实部.膜厚在第一周期.测出Δ和ψ后,利用列线图〔或数值表〕和计算机求出n2和d,将两种方法的结果进展比照.并计算膜的一个周期厚度值d0.3 测量κ0玻璃衬底上氟化镁〔MgF2〕膜层的折射率和厚度(1) 测κ0玻璃的折射率首先测出无膜时K0玻璃的Δ和ψ值,然后代入n3=n3〔Δ,ψ,φ1〕的关系式中算出n3值,测量时入射角φ1取7π/18.关于n3与三个参量的关系式,根据式〔15.1〕,式〔15.4〕,式〔15.5〕和式〔15.6〕,并令膜厚d=0,便可以算出n3的实部n0的平方值和n3的虚部κ值为(15.28)(15.29)〔2〕测透明介质膜氟化镁的折射率和厚度=7π/18.膜厚在第一周期.测出Δ和ψ后也用列线仍取入射角φ1图和计算机求出结果.思考题(1) 用椭偏仪测薄膜的厚度和折射率时,对薄膜有何要求?较准确?(2) 在测量时,如何保证φ1(3) 试证明:|P1-P2| =π/2,|P3-P4| =π/2.(4) 假如须同时测定单层膜的三个参数〔折射率n2,厚度d和吸收系数κ〕,应如何利word 用椭偏方程?11 / 11。
椭圆偏振仪测量薄膜折射率及周期厚度解的分析
t ik e so h n r mo e p ro so h i n r t i i r a c l t d .Th e u t h w r e h c n s ft eo e o r e i d ft e S O2 d Z O h n f ms a e c l u a e a l e r s ls s o mo e a —
Che ng,T o he gf i W a n Xi ng S n e , ng Zhe gy , Y e Bi n i ng
( p rme to h sc ,Z @ a g Unv riy De a t n fP y is h n iest ,Ha g h u3 0 2 ,Chn ) n z o 10 7 ia
c r t o ae t t e ou in ,B n lzn ft erlt n hp b t e u aec mp rd wi oh rs lt s y a ay ig o h eai s i ewe n h o o
& △ a d 0 Ld whc a n 0 ih cn 8
Ab ta t s r c :An i r tv r g a t a ie p o r mm i g b h e t h o y wi a h ma ia i i to u e .Th e r c i ea d t e e n y t eb s e r t M t e t s n r d c d t h c er f a t n h v
薄膜 的光 学特 性 和表面 形态 的准 确测 量逐 渐 成为
薄膜研 究 的重 要 问题 。椭 圆偏振 法 由于无 须测 定 光强 的绝 对值 , 因而具 有较 高 的精度 和灵 敏度 , 测量 数 据可 在短 时 间 内快 速采 集 , 对 各 类 薄 膜 的 生长 和工 艺 过 可
实验椭圆偏振法测量薄膜厚度和折射率
实验椭圆偏振法测量薄膜厚度和折射率椭圆偏振法是一种常用的非破坏性薄膜厚度和折射率测量方法,它可以通过对样品反射和透射光的偏振状态进行测量,来获得样品的光学特性参数。
下面我们将介绍实验椭圆偏振法的测量步骤和注意事项。
1. 实验原理当一束偏振光碰到被测薄膜表面时,反射的光和透射的光都会发生偏振,其偏振状态可以通过椭圆偏振仪来测量。
通过测量样品反射和透射光的偏振椭圆参数,可以计算出薄膜厚度和折射率等光学参数。
2. 实验步骤(1) 样品制备准备一片光学平整的样品,涂上一层薄膜。
需要保证样品表面光洁度良好,无明显缺陷和表面过度粗糙。
(2) 调整椭圆偏振仪首先需要进行仪器校准,保证椭圆偏振仪能够正常工作。
然后,将样品放置在椭圆偏振仪的样品台上,调整偏振仪的角度、波长等参数,使样品的反射和透射光能够被完全接收和测量。
(3) 测量反射光打开椭圆偏振仪的偏振片,使入射光为线偏振光,然后测量样品反射光的偏振椭圆参数。
一般需要测量三个不同角度和波长条件下的参数,以保证数据的准确性。
(5) 数据处理通过测量数据,可以得到样品的反射和透射光的偏振椭圆参数。
根据计算公式,可以计算出样品的折射率和厚度等光学参数。
需要注意的是,测量过程中需保持仪器稳定,以免数据误差。
3. 注意事项(1) 样品表面应该光洁度良好,无缺陷和过度粗糙。
(2) 测量前需要进行椭圆偏振仪的校准,保证仪器能够正常工作。
(4) 测量过程中需要保持仪器稳定,以免数据误差。
(5) 需要注意心理学处理的方法和如何保留数据以及整合数据,以便之后的进一步研究和分析。
总结:实验椭圆偏振法是一种非常实用的分析方法,能够快速准确地测量薄膜的厚度和折射率等光学参数。
在实验过程中需要注意样品表面光洁度、仪器稳定等因素,以保证数据的准确性。
此外,数据分析也是实验的重要部分,需要采用合适的处理方法和工具,以得出正确的结论和结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳大学实验报告课程名称:近代物理实验实验名称:椭圆偏振法测量薄膜厚度及折射率学院:物理科学与技术学院组号指导教师:报告人:学号:实验地点实验时间:实验报告提交时间:一、实验目的1、利用椭偏仪测量硅衬底薄膜的折射率和厚度;提高物理推理与判别处理能力。
2、用自动椭偏仪再测量,进行比对;分析不同实验仪器两种方式的测量。
提高误差分析与分配能力。
二、实验原理椭偏法测量的基本思路是,起偏器产生的线偏振光经取向一定的1/4波片后成为特殊的椭圆偏振光,把它投射到待测样品表面时,只要起偏器取适当的透光方向,被待测样品表面反射出来的将是线偏振光。
根据偏振光在反射前后的偏振状态变化(包括振幅和相位的变化),便可以确定样品表面的许多光学特性。
设待测样品是均匀涂镀在衬底上的透明同性膜层。
如图3.5.1所示,n1,n2和n3分别为环境介质、薄膜和衬底的折射率,d是薄膜的厚度,入射光束在膜层上的入射角为φ1,在薄膜及衬底中的折射角分别为φ2和φ3。
按照折射定律有(3.5.1)光的电矢量分解为两个分量,即在入射面内的P分量及垂直于入射面的S分量。
根据折射定律及菲涅尔反射公式,可求得P分量和S分量在第一界面上的复振幅反射率分别为而在第二个界面处则有从图3.5.1可以看出,入射光在两个界面上会有很多次的反射和折射,总反射光束将是许多反射光束干涉的结果,利用多光束干涉的理论,得p分量和s分量的总反射系数其中是相邻反射光束之间的相位差,而λ为光在真空中的波长。
光束在反射前后的偏振状态的变化可以用总反射系数比(Rp/Rs)来表征。
在椭偏法中,用椭偏参量ψ和Δ来描述反射系数比,其定义为分析上述格式可知,在λ,φ1,n1,n3确定的条件下,ψ和Δ只是薄膜厚度d和折射率n2的函数,只要测量出ψ和Δ,原则上应能解出d和n2。
然而,从上述格式却无法解析出d=(ψ,Δ)和n2=(ψ,Δ)的具体形式。
因此,只能先按以上各式用电子计算机算出在λ,φ1,n1和n3一定的条件下(ψ,Δ)~(d,n)的关系图表,待测出某一薄膜的ψ和Δ后再从图表上查出相应的d和n(即n2)的值。
测量样品的ψ和Δ的方法主要有光度法和消光法。
下面介绍用椭偏消光法确定ψ和Δ的基本原理。
设入射光束和反射光束电矢量的p分量和s分量分别为 Eip,Eis,Erp,Ers,则有于是为了使ψ和Δ成为比较容易测量的物理量,应该设法满足下面的两个条件:1.使入射光束满足1.使发射光束成为线偏振光,也就是令反射光两分量的位相差为0或π。
满足上述两个条件时,有其中βip,βis,βrp,βrs分别是入射光束和反射光束的p分量和s分量的位相。
图3.5.2是本实验装置的示意图,在图中的坐标系中,x轴和x’面内且分别与入射光束或反射光速的传播方向垂直,而y和y’垂直于入射面。
起偏器和检偏器的透光轴t和t’ 与x轴或x’角分别为P和A。
下面将会看到,只需让1/4波片的快轴f与x轴的夹角π/4(即45°),便可以在1/4波片后面得到所需的满足条件| E-ip | = | Eis | 的特殊椭圆偏振入射光束。
图3.5.3中的Eip代表由方位角为P的起偏器出射的线偏振光。
当它投射到快轴与x轴夹角为π/4的1/4波片时,将在波片的快轴f和慢轴s上分解为通过1/4波片后,Ef将比Es超前π/2,于是在1/4波片之后应有把这两个分量分别在x轴及y轴上投影并再合成为Ex和Ey,便得到可见,Ex和Ey也就是即将投射到待测样品表面的入射光束的p分量和s分量,即显然,入射光束已经成为满足条件| E-ip | = | Eis |的特殊圆偏振光,其两分量的位相差为由图3.5.4可以看出,当检偏器的透光轴t’与合成的反射线偏振光束的电矢量Eip垂直时,即反射光在检偏器后消光时,应该有这样,由式(3.5.5)可得可以约定,A在坐标系(x’,y’)中只在第一及第四象限内取值。
下面分别讨论(βrp-βrs)为0或π时的情形。
(1)(βrp-βrs)=π. 此时P记为P1,合成的反射线偏振光的Er在第二及第四象限里,于是A在第一象限并记为A1。
由式(3.5.7)可得到(2)(βrp-βrs)=0. 此时的P记为P2,合成的放射线偏振光E-r在第一及第三象限里,于是A在第四象限并记为A2,由式(3.5.7)可得到从式(3.5.8)和式(3.5.9)可得到(P1,A1)和(P2,A2)的关系为因此,在图(3.5.2)的装置中只要使1/4波片的快轴f于x轴的夹角为π/4,然后测出检偏器后消光时的起、检偏器方位角(P1,A1)或(P2,A2),便可按式(3.5.8)或式(3.5.9)求出(ψ,Δ),从而完成总反射系数比的测量。
再借助已计算好的(ψ,Δ)~(d,n)的关系图表,即可查出待测薄膜的厚度d和折射率n2。
附带指出,当n1和n2均为实数时,也是一个实数。
d0称为一个厚度周期,因为从式(3.5.2)可见,薄膜的厚度d每增加一个d0,相应的位相差2δ也就改变2π,这将使厚度相差d0的整数倍的薄膜具有相同的(ψ,Δ)值,而(ψ,Δ)~(d,n)关系图表给出的d都是以第一周期内的数值为准的,因此应根据其它方法来确定待测薄膜厚度究竟处在哪个周期怀中。
不过,一般须用椭偏法测量的薄膜,其厚度多在第一周期内,即在0~d0之间。
能够测量微小的厚度(纳米量级),正是椭偏法的优点。
用椭偏法也可以测量金属的复折射率。
金属复射率n2可分解为实部和虚部,即据理论推导(参见附录),上式中的系数N,K与椭偏角ψ,Δ有如下的近似关系:可见,测量出与待测金属样品总反射系数比对应的椭偏参量ψ和Δ,便可以求出其复折射率n2的近似值。
三、实验仪器以及实验内容1、测厚仪的调节。
按一起说明书调节好起偏器、检偏器和1/4波片的位置,确定入射角,如70°,放上样品,打开仪器主机电源和计算机电源,使仪器处于待测状态。
2、测量硅(Si)衬底表面的SiO2薄膜厚度和折射率n2.其中硅的复折射率取3.85-0.02i,空气折射率取n1=1.3、测量氧化锆(ZrO2)衬底表面上生长超导薄膜厚度d和折射率n2.其中ZrO2的折射率取2.1.4、测量金属铝或硅的复折射率n2.5、进一步实验。
改变入射角,使其等于60°和50°.分别测量同一块薄膜样品(如SiO2)的厚度和折射率,并分析结果的相对误差和产生误差的原因。
三、思考题:1.手动椭偏仪测量:入射角为70°:P1=182.7 A1=50.05 P2=78.2 A2=138.2计算得到A=45.925° P=170.45°Ψ=A=45.925°Δ=630°-2P=289.1°理论值的P、A分别为P理=173.7°A理=46.95°误差:ΔE P=(173.7-170.45)/173.7=1.87% ΔE A=(46.95-45.925)/46.95=2.18%2.自动椭偏仪测量:对折射率和薄膜厚度求平均值:折射率 n=(1.492+1.368+1.501)/3=1.453 理论值为1.487厚度 d=(143.3+136.9+145.1)/3=141.76nm 理论值为168.2nm误差:ΔE n=(1.487-1.453)/1.487=2.28% ΔE d=(168.2-141.76)/168.2=15.7%3.误差分析:实验本应是手动椭偏仪的结果误差要大,但实际上却是自动椭偏仪的误差较大,其原因可能在于检偏时1/4波片的偏振问题造成的,以及由于人手对于介质薄膜的污染。
四、思考题:1.椭偏仪册厚仪的基本思想是什么?各主要光学不见的作用是什么?答:基本思想:起偏器产生的线偏振光经去想一定的1/4波片合成特殊的椭圆偏振光,把它透射到待测样品的表面时,只要起偏器取适当的透光方向,变测样品反射出的便是线偏振光,有偏振光在反射前后的偏振状态,便可以测定样品表面的光学特性,因此只要测出偏振状态的变化量,就能定出膜的厚度和折射率,实验中利用消光法测出椭偏系数,从中接触薄膜的厚度和折射率。
其主要光学部件有起偏器、检偏器、1/4波片,作用如下:起偏器:产生线偏振光,读数度盘刻有360个等分线,相隔1°,游幅度为0.1°,随度盘同步转动。
检偏器:检验偏振光,与起偏器的构造相同。
1/4波片:使入社的线偏振光变成等幅度的椭圆偏振光,即圆偏振光。
2.试列举椭偏法测量中可能的误差来源,并分析它们对测量结果的影响。
答:①在调节光路的过程中,没有调好共轴,使激光与偏振片、1/4波片不是严格正入射,导致测量的折射率与理论值存在偏差;②在实验过程中,用手接触了介质薄膜的表面,使得上面带有手印,灰尘等杂质,导致测得的折射率有误差;③用眼睛观察消光点,带有个人主观视觉因素;④由于波片快慢轴分量的相位不严格为π/2,即光路中存在补偿的偏差,在安装调整过程中1/4波片快轴与入射面夹角不严格为70°,促在偏差,最后起偏器角还有可能存在零点误差,这都是测量中的系统误差。
分析表明系统误差的二级小量可以忽略,用两个不同消光位置的测量值求平均值可以消除。
而对仪器的使用误差不可忽略,这些误差会使得测量结果与真实值有误差。
五、试验总结:本次利用椭偏仪测量硅衬底薄膜的折射率和厚度,通过使用手动椭偏仪和自动椭偏仪分别进行测量,并作比较。
按照常理来说应该是自动的更为精确,而手动的系统误差所造成的误差为更大,但本次实验结果却是自动的误差大于手动,其原因可能在与仪器本身在经过之前同学的多次操作后某些配置或者参数出现了问题,再加上学生的一开始的不适当操作,使得结果偏离理论值过多。
虽说最终在老师的指导下测出了有关数据,但其较大的误差仍旧无法避免。